
Scheme Program Source Code as a Semistructured Data

Kirill Lisovsky

MISA State Technological University

Moscow, Russia

Abstract

While traditional literate programming languages utilize a
combination of a typesetting language and a programming
language and are usually oriented towards a printed paper
presentation of a program, the proposed technique combines
a programming language with a semistructured markup and
is intended for transformation of the Scheme source code
into semistructured data that may be transformed or queried
using usual semistructured data management methods and
tools.

1 Introduction

As the structure of a software program may be considered
as a "WEB" [8] made up of many interconnected pieces,
application of semistructured data management technique
looks like a natural solution.

Scheme itself is well suited for semistructured data man-
agement. Considered in this paper Mole [2] is an implemen-
tation of a Scheme source code management tool employing
SXML [3] for its representation.

The representation of a Scheme program as a SXML tree
makes it possible to use all of the SXML-based transforma-
tion and querying techniques for generation of meaningful
reports from parsed Scheme sources.

If the source code contains a mark-up expressed by means
of speci�c comments and indentation, then an additional se-
mantic structure can be deducted and utilized for transfor-
mation of the source code into semistructured data.

2 Architecture

The proposed Scheme source code management system con-
sists of three main components: the source code analyzer,
the semistructured data repository, and the report synthe-
sizer.

2.1 Source code analyzers

The purpose of the analyzers is to parse Scheme source code
and transform it into SXML data. This task may be simpli-
�ed signi�cantly if the analyzer is aware of the "formatting
style" employed in the parsed source code which is usually a
set of rules for indentation and/or commenting in a Scheme
program.

Current implementation of Mole provides a built-in source
code parser but the proposed system does not depend upon
any particular �xed source code formatting style. As long

as the code is formatted and commented in accordance with
some regulations like those described in [11], the implemen-
tation of the analyzer is not a diÆcult task.

Any source code which is already formatted for a Scheme
literate programming tool is a good candidate for transfor-
mation into SXML semistructured data. The source code
analyzer of the corresponding literal programming tool may
be used as a starting point.

2.2 Semistructured data repository

Mole uses a SXML [3] tree as a repository for the parsed
Scheme source code.

SXML is an instance of XML Infoset as S-expressions.
It speci�es the syntax and semantics for the representation
of a well-formed XML document in the form of a Scheme
S-expression. A stack of SXML based technologies, such as
SXPath, is implemented in Scheme, which makes it conve-
nient to use SXML-based transformation and querying tech-
niques from synthesizers implemented in Scheme.

While SXML is the most natural way of semistructured
data management in Scheme parsed sources may be stored
in XML �les, in a semistructured DBMS, and so on. For
example, Scheme sources in the XML format may be stored
in IBM DB2 Universal Database using DB2 XML Extender
and queried using DB2's query language.

Current Mole simply creates a repository for one source
�le and uses it for generation of requested report or stores
it as XML or SXML data. It may be reasonable to create
a repository containing all the source code for a particular
project or all available source code, or even a centralized or
distributed repository accessible via the Internet with ex-
tended querying capabilities.

2.3 Synthesizers

A synthesizer generate a "report" from the source code stored
in the semistructured data repository. This report may
be a hypertext or printable documentation. This may be
a comments-stripped source code or a source code merged
with extra documentation using external tools, such as l2t [12]
or SLaTeX [14], and so on.

Even trivial functionality may be really convenient. For
example, the source code of SXPath library is seven times
larger than its comments-, tests- and examples-stripped ver-
sion.

Since this reports may be generated using querying tools,
such as SXPath [7], it is possible to generate selective reports

4



extracting only certain parts from the information stored in
the repository.

If the repository contains a complete implementation of a
large library, such as SRFI-1, and only a few of its functions
are necessary it may be reasonable to extract just the func-
tions required, thus minimizing the application footprint.

Such a sophisticated generation of the source code from
the repository may be used for implementation-speci�c code
management, for creation of a distributive, for automated
generation of the verifying code or exclusion/inclusion of
examples, etc.

3 Data structure and
source code formatting style

One of the primary design goals for Mole's source code for-
matting style was minimization of the requirements for mark-
up in the source �le. Most of the source code structure is
deducted from the indentation and the style of the com-
ments.

At present Mole supports two types of the source code
styles: semicolons-based, as proposed in "Good Lisp Pro-
gramming Style" [11], and its own, separators-based style
which introduces one additional intermediate level of source
code hierarchy.

3.1 GLPS style

The Source code structure is expressed using comments marked
with di�erent number of leading semicolons, as proposed
in [11]. The generated SXML data represents a three-level
hierarchy module-chapter-function.

3.2 Separator-based style

The source code is parsed into structural elements using lines
starting with certain characters as separators, as shown on
Figure 1. Lines beginning with ";=" delimit chapters, with
";-" start sections. Source code structural parts separation
is the sole function of such a line, and all the characters
except the �rst two are disregarded.

A section is �nished when the beginning of a new section
or chapter is encountered, or it may be terminated explicitly
using a line which begins with ";^", which makes it possible
to mix section with units directly nested in a chapter.

Inside a section the source code is divided into "units"
which may be functions, macros, binding, etc. Each unit
starts with a "; " or "(" at the beginning of the line and is
closed by the beginning of a new unit, section or chapter.
Stand-alone blocks of comments are marked with leading
";;".

The �rst line after chapter or section separator is con-
sidered as its title, whereas the following commented lines
constitute its description. Function name is extracted from
its declaration. If a function is preceded by some commented
lines then these lines are considered as its description.

3.3 Data structure

Data structure of the generated SXML tree depends on
the source code formatting style and analyzer used. The
primary style for current Mole is the separator-based one,
where a generated SXML data represent a four-level hierar-
chy module-chapter-section-unit. Units may be nested
in chapters directly, so the use of sections is optional.

While a module corresponds to source code �le and unit
is usually a function or macro de�nition, chapters and

;; Mole
; Transforms Scheme program to SXML document
; and generates some reports from it.

;=================================================
; Analyzers
; This functions read the Scheme code, parse it to
; its structural elements, and store it in the SXML
; tree.

;-------------------------------------------------
; Low-level

; Returns description of a given S-expression
; Possible types of unit: function, macro and app
(define (expr-type expr)
... code ...)

;-------------------------------------------------
; Structural parts readers
; Readers for units, sections, chapters and entire
; source file. Beginning of each structural part
; in the source file is marked with the special
; comment line, which begins with:
; ";=" - chapter
; ";-" - section
; "; " - unit

(define (read-scm-chapter)
... code ...)

(define (read-scm-section)
... code ...)

;=================================================
; Synthesizers
; This functions generate different kinds of reports
; about the Scheme program stored in the SXML tree.

;-------------------------------------------------
; Low-level

; Extract function declaration
(define (function-declaration s-expr)
... code ...)

;-------------------------------------------------
; Chapter

; Chapter entry in the table of content
(define (toc-chapter c)
... code ...)

; Chapter content
(define (doc-chapter c)
... code ...)

;-------------------------------------------------
; Section

; Section entry in the table of content
(define (toc-section s)
... code ...)

Figure 1: Outline of a Scheme source code formatted in
separator-based style

5



(*TOP*
(module
(comment)
(chapter

(title)
(description)
(function

(name)
(description)
(code))

(section
(title)
(description)
(function

(name)
(description)
(code)))

(macro
(name)
(description)
(code)))

(app
(name)
(description)
(code)))))

Figure 2: DataGuide for the SXML tree generated by Mole

sections has no direct counterparts in the Scheme language.
Those are de�ned by the means of Mole markup and pro-
vide semantically meaningful abstractions for larger groups
of units.

Figure 2 provides the example structure of SXML tree
generated by Mole from a source code formatted in separator-
based style. It is described using strong DataGuide [6] rep-
resented in form of S-expression. DataGuide provides a de-
scriptive schema of semistructured data and it may be used
for formulation of meaningful queries.

4 Elucidative programming

Elucidative programming is a variant of literate program-
ming which keeps the source program intact and free of
lengthy documentation [10] and is based on relations be-
tween units of two documents: program source code and
elucidative text.

Mole represents a Scheme source code as a semistruc-
tured data and provides means to address a desired struc-
tural part of the source code which makes it possible to link
a unit of elucidative text to the relevant unit of the program
source code. Hence, a program conforming to Mole source
code formatting style may be elucidatively documented with-
out any changes in the source code itself.

For example, such a system may be implemented using
Mole for semistructured representation of the Scheme source
code and combination of l2t [12] and SXML data manage-
ment library [4] for embedding chunks of this source code in
elucidative LaTeX document.

Such a system may be also implemented using XML for-
mat for elucidative document, a general purpose XML trans-
formation tool, and DocBook [1] as a report generator.

5 Related works

The concept of literal programming has a wide recognition
in the Scheme community, and a lot of literate programming
tools have been developed for Scheme [12, 5, 9, 13].

Whereas most of these tools are intended for transforma-
tion of the Scheme source code into pretty-printed LaTeX or
hyper-linked HTML documentation Mole transforms it into
a SXML tree: source code parsing, parsed code querying
and resulting report transformation are separated.

While most existing literate programming tools specify
the layout of the resulting document in the source code, Mole
is focused on the de�nition of the program structure in the
source code.

Unlike any of the existing literate programming tools,
Mole is based on general-purpose SXML transformation and
querying tools. It may be used for implementation of a
repository-based Scheme source code management system
which is out of scope for traditional literal programming
tools.

The described approach may be utilized for elucidative-
style [10] documentation of the source code. Mole does not
provide a complete elucidative programming environment
comparable to Elucidator [9] but it provides a technology
which enables one to attach some elucidative documentation
to a Scheme source code. General purpose XML or SXML
navigation and querying tools may be used for linking and
embedding the structural parts of this two documents.

Mole itself is not focused on sophisticated source code
parsing or high-quality reports generation. It is intended to
be combined with external XML processors, Scheme literate
programming tools, typesetting tools, and so on.

6 Conclusions

The principles and architecture of SXML-based Scheme source
code management systems are described.

The main purpose of Mole (apart from the proof of con-
cept) is to provide an infrastructure for development of user-
de�ned source code parsers and report generators. How-
ever, it includes prede�ned analyzers and synthesizers which
makes it practically useful as a generator of a customized
source code and documentation without any additional pro-
gramming. Di�erent variants of Mole are already used,
mostly for application deployment and documentation gen-
eration. Mole is Open Source software and available from [2].

Current implementation of Mole provides only a limited
set of source code parsers and report generators. It does not
provide any bindings for external tools, such as l2t [12] or
scmdoc [5], etc., which may be used for improving the quality
of generated reports and source code parsing. However some
integration with external software is already possible using
XML representation of Mole repository.

Classi�cation of the unit types is in the preliminary state
of the art, as well as the heuristic used for deducting the unit
type and the name from the source code.

Application of the described approach to entire source
code base management provides some functionality similar
to a module system, or it may be used in conjunction with
the module systems of the underlying Scheme implementa-
tions. Such a system is especially useful for deployment of
portable applications and libraries.

It may be a good idea to standardize the semistructured
data structure used for representation of Scheme program.
Designing of an expressive and exible data structure which
may be used with a convenient variety of corresponding

6



source code formatting styles is a challenging problem, for
which this paper provides a possible starting point.

7 Acknowledgments

Fruitful discussions with Oleg Kiselyov are gratefully ac-
knowledged.

References

[1] DocBook.
http://www.oasis-open.org/docbook/.

[2] Mole.
http://pair.com/lisovsky/scheme/lit/mole/.

[3] SXML Speci�cation.
http://pobox.com/~oleg/ftp/Scheme/SXML.html.

[4] SXMLP.
http://pair.com/lisovsky/sxml/sxmlp/.

[5] D. Boucher. A Scheme documentation generator.
http://kaolin.unice.fr/~serrano/bigloo/contribs/scmdoc.tar.gz.

[6] R. Goldman and J. Widom. Dataguides: Enabling
query formulation and optimization in semistructured
databases. VLDB, 1997.

[7] O. Kiselyov. XML and Scheme.
http://pobox.com/~oleg/ftp/Scheme/xml.html.

[8] D. Knuth. The CWEB System of Structure Documen-
tation. Addison-Wesley, 1994.

[9] K. Noermark. An Elucidative Programming Environ-
ment for scheme.
Nordic Workshop on Programming Environment Re-
search. Limerick, Ireland., May 2000.

[10] K. Noermark. Requirements for an Elucidative Pro-
gramming Environment.
International Workshop on Program Comprehension.
Limerick, Ireland., June 2000.

[11] P. Norvig and K. Pitman. Tutorial on Good Lisp Pro-
gramming Style. Lisp Users and Vendors Conference,
August 1993.

[12] C. Queinnec. L2T: a Literate Programming tool.
http://www-spi.lip6.fr/queinnec/WWW/l2t.html,
January 2000.

[13] J. Ramsdell. SchemeWEB { WEB for Lisp.
http://wuarchive.wustl.edu/packages/TeX/web/schemeweb/.

[14] D. Sitaram. SLaTeX.
http://www.cs.rice.edu/CS/PLT/packages/slatex/.

7


