
Processes vs. User-Level Threads in Scsh

Martin Gasbichler Michael Sperber
Universität Tübingen

{gasbichl,sperber}@informatik.uni-tuebingen.de

Abstract

The new version of scsh enables concurrent system programming
with portable user-level threads. In scsh, threads behave like pro-
cesses in many ways. Each thread receives its own set of process re-
sources. Like Unix processes, forked threads can inherit resources
from the parent thread. To store these resources scsh usespreserved
thread fluids, a special kind of fluid variables. The paper gives a
detailed description of an efficient implementation for thread-local
process resources. Scsh also provides an interface to thefork sys-
tem calls which avoids common pitfalls which arise with a user-
level thread system. Scsh contains a binding forfork that forks
“only the current thread.”

1 Introduction

Scsh [14] is a variant of Scheme 48 [11, 10] with extensive support
for Unix systems and shell programming. Specifically, it contains
full access to all basic primitive functions specified by POSIX. Scsh
0.1, the first version, came out in 1994.

In late 1999, the scsh maintainers set out to produce a version of
scsh capable of multithreading. The main motivation was to im-
prove scsh’s abstraction of the operation system [15] as well as to
implement multi-threaded Internet servers with scsh. At the time,
scsh was based on Scheme 48 version 0.36 which did not sup-
port multithreading. Meanwhile, Scheme 48 had reached version
0.53 which did support fast, preemptive user-level multithreading.
Hence, the task was originally to disentangle scsh from the under-
lying 0.36 substrate and port it to 0.53.

However, once the basic porting work was finished, it turned out
that some of the POSIX functionality interfered with the user-
level threads. Writing multi-threaded scsh programs is easiest
when threads behave mostly like processes. However, this analogy
breaks in a straightforward implementation of user-level threads
and POSIX system calls in two important respects:

Permission to make digital or hard copies, to republish, to post on servers or
to redistribute to lists all or part of this work is granted without fee provided
that copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page. To
otherwise copy or redistribute requires prior specific permission.
Third Workshop on Scheme and Functional Programming. October 3, 2002,
Pittsburgh, Pennsylvania, USA.
Copyright 2002 Martin Gasbichler and Michael Sperber.

• A number of system resources, such as the environment or
current working directory are process-local but thread-global.
This would cause programs which would work correctly in
a single-threaded system to interfere with each other when
run concurrently in multiple threads, even though there is no
explicit shared state or communication with other threads.

• The POSIXfork system call would copy the entire process,
and all threads of the parent would also run in the child. This
interferes with the intuition of the programmer who expects
“only the current thread to fork.” Moreover, it causes a num-
ber of race conditions associated with thefork /exec * pattern
common in POSIX programming. Worse, the programmer
cannot work around this problem easily because the primi-
tives of the thread system are not powerful enough.

Moreover, the C library causes some problems: Thesyslog in-
terface to the system’s message logging facility offers only a sin-
gle global, implicit connection which needs to be multiplexed
among threads. Also, some POSIX library calls block indefi-
nitely, making timely preemption of threads impossible while they
are running. The most notable examples aregethostbyname and
gethostbyaddress whose functionality is indispensable for im-
plementing multi-threaded Internet servers.

This paper describes the steps taken in scsh 0.6 towards handling or
working around those problems:

• Scsh represents thread-local process resources bythread flu-
ids, thread-local cells which support binding, assignment, and
preservation across afork -like operation on threads.

• Scsh usesresource alignmentto lazily keep the internal rep-
resentation synchronized with the process state.

• Scsh’s thread system supports a novel primitive callednarrow
which allows implementing a fork operation that forks “only
the current thread.”

OverviewSection 2 gives a brief account of the Scheme 48 thread
system. Section 3 briefly describes the process resource functional-
ity POSIX offers. Section 4 describes thread fluids which scsh uses
to represent process resources. Next, Section 5 describes how to use
thread fluids to keep the thread-local process state lazily aligned
with the actual process state. Scsh’s implementation offork is
described in Section 6. Section 7 describes some of the miscella-
neous problems with integrating the standard C library with user-
level threads. Section 8 reviews some related work, and Section 9
concludes.

1

2 The Scheme 48 Thread System

Concurrency within scsh is expressed in terms of the user-level
thread system of Scheme 48 [2]. Its structure is inspired by nestable
engines [7, 8, 4] and is almost entirely implemented in Scheme, and
therefore extensible without changing the VM in any way. The VM
supports the thread system in two ways:

• It schedules timer interrupts and thus allows preemption of
running threads off the interrupt handler.1

• The VM I/O primitives are non-blocking. The VM manages
queues of outstanding I/O requests and schedules interrupts as
they become enabled.

Each thread is represented by a Scheme object which, while it is
running, keeps track of its remaining time before preemption. As
in other engines-based thread systems, Scheme 48 uses continua-
tions for saving and restoring the control contexts of threads. For a
blocked thread, the thread object contains a saved continuation and
an interrupt mask.

As in any continuations-based system, Scheme 48 needs to take
dynamic-wind into account: for context switching, the thread sys-
tem employs theprimitive-cwcc VM primitive which merely rei-
fies the VM-level continuation. Each thread object also keeps track
of the dynamic environment and the dynamic wind point, which
in turn are used to implementdynamic-wind and the full-scale
call-with-current-continuation .

The dynamic environment contains thread-local bindings forfluid
variables(or justfluids) that implement a form of dynamic binding
local to a single thread. Specifically, Scheme 48 holds the current
input and output ports in fluids. Fluids play a crucial role in coordi-
nating thread-local state and process state. Section 4 explains this
issue in detail.

Each thread is under the control of ascheduler, itself a regular
thread. Schedulers nest, so all threads in the running system are
organized as a tree. A scheduler can run a thread for a slice of its
own time by calling(run thread time) . The call torun returns
either when the time slice has expired or aneventhappened. This
event might signify termination, an interrupt, a blocked operation,
another thread becoming runnable, or a request from the thread to
the scheduler. For example, a thread can cause the scheduler to
spawn a new thread by returning aspawned event along with a
thunk to be run in the new thread. Note that it is easily possible
to pass an event upwards in the thread tree if the current scheduler
is unwilling to handle it.

Thus, a scheduler performs at least two tasks: it implements a
scheduling policy by deciding which threads to run for how long,
and it must handle events returned byrun .

A non-interactive Scheme 48 process has only a singleroot sched-
uler. The root scheduler, in addition to managing its subordinate
threads, also periodically wakes sleeping threads and takes care of
port flushing. An interactive Scheme 48 also has a scheduler for
eachcommand levelthat encapsulates a state of interaction with the
user. This allows Scheme 48 to cleanly interrupt all running threads
at any time by entering a new command level, and later continue
them by throwing back into an old one. The built-in schedulers all
use a simple round-robin scheduling policy.

1Scsh restarts system calls interrupted by the timer at the
Scheme level.

3 Unix Process Resources

The representation of a process within the kernel of a Unix opera-
tion system contains severalprocess resources. The kernel initial-
izes these resources during creation of a process, typically by copy-
ing the values from the parent process. Here are the most important
process resources:

• the current working directory,

• the file mode creation mask, calledumask,

• the user and group ID,

• the environment.

For each resource the kernel provides system calls to read and set
the resource. For the current working directory,getcwd returns the
path as a string andchdir sets the directory to a new path.

A number of system calls implicitly consult the resources of the
calling process. In the current working directory example, when
the process uses theopen system call to open a file, the kernel in-
terprets the filename argument ofopen relative to the value of the
current working-directory resource. Likewise,chdir resolves its
path argument relative to the current working directory if it does
not start with a slash.

4 Scheme Thread-Local Resources

Threads share state. This enables inter-thread communication by
explicitly providing to several threads access to shared state by lex-
ical binding. The various process resources, however, constitute
implicit state, just like the settings forcurrent-input-port and
current-output-port .

For managing the latter, Scheme 48 keeps their values influid bind-
ings: a fluid is a cell that allows dynamic binding.(make-fluid
v) creates a fluid with default valuev, (fluid f) references the
value bound to a fluid, and(let-fluid f v t) calls thunkt with
fluid f bound to valuev during the dynamic extent of this call. That
is, the fluid mechanism resets the binding to the value before the
let-fluid if the thunk calls a previously stored continuation, and
if the thunkt captures a continuation, on a later call to this contin-
uation the fluid mechanism again binds the fluidf to the valuev.
Here are some examples from a Scheme 48 session, where> marks
the command prompt andcall-with-current-continuation is
abbreviated ascall/cc :

> (define f (make-fluid 1))
> (fluid f)
; 1

Let-fluid binds the fluid only during the execution of the thunk:

> (+ (let-fluid f 3 (lambda () (fluid f)))
(fluid f))

; 4

Save a continuation with a dynamic binding in*k* :

> (define *k*)
> (let-fluid f 25

(lambda ()
(* (call/cc (lambda (k) (set! *k* k) 10))

(fluid f))))
; 250

2

The top-level binding is still the initialization value:

> (fluid f)
; 1

Throwing back into the thunk using the stored continuation reacti-
vates the binding introduced by thelet-fluid above:

> (*k* 100)
; 2500

Capture a continuation that returns the value of the fluid added to
the argument of the continuation:

> (define *kk*)
> ((lambda (x) (+ x (fluid f)))

(call/cc
(lambda (k)

(set! *kk* k)
20)))

; 21

Calling the stored continuation amounts to throwing out of the dy-
namic extent of the thunk:

> (let-fluid f -1
(lambda ()

(*kk* 3)))
; 4

The environment that associates fluids with their values is local to
each thread. Each newly spawned thread gets a fresh dynamic envi-
ronment from its scheduler, typically with all fluids bound to their
default values:

> (define f (make-fluid 1))

Start a new thread:

> (let-fluid f 23
(lambda ()

(spawn (lambda ()
(display (fluid f))))))

; prints 1

For process resources, sharing their settings among the threads is
undesirable, as threads might interfere with each other, even though
there is no explicit, intended communication among them. More-
over, it often makes more sense to dynamically bind a process re-
source rather than mutate it permanently. (To this end, scsh has
always offered constructs likewith-cwd , with-env etc.)

Therefore, fluids seem like the right low-level means for imple-
menting thread-local process resources. However, they do not
support assignment, primarily because its intended semantics is
not immediately obvious: should assignments be visible in other
threads?2 Scsh therefore offers a primitive mechanism orthog-
onal to fluids calledthread-local cellsor thread cells: a thread
cell supports assignment, and assignment is always thread-local.
(make-thread-cell v) returns a thread cell with default valuev,
(thread-cell-ref c) returns the current contents of the cell, and

2The parametermechanism of MzScheme [6] supports both
binding and assignment. Assignment is always thread-local. The
(as of the time of writing) soon-to-be-released version of Gambit-C
also has parameters. These will have “binding-local” assignment:
assignment by default is visible in other threads unless there is an
intervening binding [5].

(thread-cell-set! c v) mutates the cell’s value as seen by the
current thread tov.

> (define a-cell (make-thread-cell 23))
> (thread-cell-ref a-cell)
; 23

Start a new thread which mutates the cell:

> (spawn (lambda ()
(thread-cell-set! a-cell 42)
(let lp ()

(display (thread-cell-ref a-cell))
(lp))))

; Keeps printing 42 until the end of days

The top-level thread still sees the initial value:

> (thread-cell-ref a-cell)
; 23

Moreover, scsh also ships with an abstraction built upon thread
cells—thread fluids. Thread fluids obey the rules of dynamic bind-
ing just as ordinary fluids but also support mutation like thread cells.
In fact, a thread fluid corresponds to a fluid containing a thread cell.
Here is the transcript of a Scheme 48 session using thread fluids:

> (define f (make-thread-fluid 1))

Save a continuation with a dynamic binding in*k* :

> (define *k*)
> (let-thread-fluid f 25

(lambda ()
(* (call/cc (lambda (k) (set! *k* k) 10))

(thread-fluid f))))
; 250

Modify the value of the thread fluid:

> (set-thread-fluid! f -1)
> (thread-fluid f)
; -1

A call to the stored continuation shows that the dynamic binding is
still active:

> (*k* 100)
; 2500

To sum up, a thread fluid supportsboth binding and thread-local
assignment, thereby offering the right functionality for representing
process resources per thread.

Just as with fluids, a newly spawned thread receives the default val-
ues for the thread-fluid bindings from its scheduler, rather than from
the thread which evaluated the call tospawn . This is contrary to
how process resources work, where the child inherits from the par-
ents.3 Simple lexical bindings allows communicating a thread fluid
to a spawned thread “by hand:”

3In fact, in MzScheme, a spawned thread inherits the param-
eter bindings from the spawning thread. However, the built-in
error-escape-handler parameter alone does not propagate to
spawned threads—this would cause a space leak [1]. The po-
tential for space leaks alone suggests that the programmer should
have control over the propagation of thread fluid values to spawned
threads.

3

(define t-fluid (make-thread-fluid #f))
...
(spawn

(let ((val (thread-fluid t-fluid)))
(lambda ()

(let-thread-fluid t-fluid val
...))))

The thread-fluids library exports two proceduresmake-
preserved-thread-fluid and preserve-thread-
fluids : make-preserved-thread-fluid is just like
make-thread-fluid , but marks the thread fluid for preser-
vation. Preserve-thread-fluids accepts a thunk as an
argument and returns another thunk wrapped in pairs oflet and
let-thread-fluid forms for all live thread fluids marked for
preservation. Thus, the above code could be rewritten as:

(define t-fluid (make-preserved-thread-fluid #f))

...
(spawn

(preserve-thread-fluids
(lambda ()

...)))

The thread-fluids package also exports a procedure
fork-thread with the following definition:4

(define (fork-thread thunk . rest)
(apply spawn (preserve-thread-fluids thunk) rest))

Now a forked thread can inherit values from its parent:

> (define f (make-preserved-thread-fluid 0))
> (let-thread-fluid f 1

(lambda ()
(fork-thread

(lambda () (display (thread-fluid f))))))
; prints 1

Mutation of preserved thread fluids is still thread-local:

> (begin
(let-thread-fluid f 1

(lambda ()
(fork-thread

(lambda () (set-thread-fluid! f -1)))))
(thread-fluid f))

; 0

5 Thread-Local Process Resources

To enable modular system programming in the presence of threads
the values of process resources must be local to each thread. To
mimic processes, freshly created threads should inherit the re-
sources from their parents. Preserved thread fluids provide the right
vehicle to store the values within the threads, but communicating
the values to the actual process resources requires additional ma-
chinery.

A simple approach to implement thread-local process resources is
to adjust the process resources on a thread context switch: If the

4One reviewer rightly noted that “A fluid friendly version of
fork would have to be calledspoon .” The next version of scsh
will feature this alias.

scheduler suspends the current thread the values of all resources are
saved in thread fluids. Before the scheduler runs the next thread,
it updates the process resources with the values of the thread fluid
of the respective thread. This means that the process resources are
alignedwith the thread fluids on a context switch. Unfortunately,
this method requires system calls for saving and restoring on each
context switch as well as crossing the C foreign function interface
boundary, both of which are comparatively expensive.

As the kernel inspects the process resources only during certain sys-
tem calls, it is not required that process resources and thread fluids
match all the time. It is sufficient to align a process resource when
the thread actually performs a system call which is affected by the
resource. Theopen system call would then be defined as:

(define (open filename)
(chdir-syscall (thread-fluid $cwd)
(set-umask-syscall (thread-fluid $umask)
(open-syscall filename))

This code has a race condition: Another thread could align the
umask and the current working directory with its own values before
theopen . Locks remedy this problem by performing alignment and
the actual system call atomically:

(define cwd-lock (make-lock))
(define umask-lock (make-lock))
(define (open filename)

(obtain-lock cwd-lock)
(obtain-lock umask-lock)
(chdir-syscall (thread-fluid $cwd))
(open-syscall filename)
(release-lock umask-lock)
(release-lock cwd-lock))

Make-lock creates a standard mutex lock. After one thread has
calledobtain-lock on this lock all other threads doing the same
will block until the lock is released byrelease-lock .

The performance of this approach is still not optimal: for each
open , scsh executes onechdir and oneset-umask , regardless of
the actual values of the respective resources. Scsh caches the value
of the process resource whenever it is changed and compares the
cache with the thread fluid to determine if the process needs to align
with the resource. The rest of the section describes how scsh im-
plements this strategy for the various process resources.

The umask case is the simplest. There is a cache and a replacement
for set-umask that sets the cache:

(define *umask-cache* (process-umask) 5)
(define umask-lock (make-lock))
(define $umask (make-preserved-thread-fluid (umask-cache)))

(define (umask-cache)
umask-cache)

(define (change-and-cache-umask new-umask)
(set-process-umask new-umask)
(set! *umask-cache* (process-umask)))

This code uses another call toumask to feed the cache: this ensures
proper error detection in case the specified value was not valid.

5The actual implementation initializes the cache when the sys-
tem starts.

4

Next, there is code to access and modify the thread fluid:

(define (umask) (thread-fluid $umask))
(define (thread-set-umask! new-umask)

(set-thread-fluid! $umask new-umask))
(define (let-umask new-umask thunk)

(let-thread-fluid $umask new-umask thunk))

To change the umask scsh provides the following procedure:

(define (set-umask new-umask)
(with-lock umask-lock

(lambda ()
(change-and-cache-umask new-umask)
(thread-set-umask! (umask-cache)))))

A lock is required to synchronize the access to the cache. The fol-
lowing procedure aligns the resource with the thread fluid:

(define (align-umask!)
(let ((thread-umask (umask)))

(if (not (= thread-umask (umask-cache)))
(change-and-cache-umask thread-umask))))

The test of the conditional compares the value of the cache with
the thread fluid; the code in the consequence adjusts the resource
in case of a mismatch. The following procedure aligns the umask
and then calls its argument which is typically the actual system call
wrapped in a thunk:

(define (with-umask-aligned* thunk)
(obtain-lock umask-lock)
(align-umask!)
(with-handler

(lambda (cond more)
(release-lock umask-lock)
(more))

(lambda ()
(let ((ret (thunk)))

(release-lock umask-lock)
ret))))

The lock prevents another thread from aligning the umask with its
own value before the system call completes. As always with locks,
some care must be taken to ensure the code releases the lock un-
der unusual circumstances. Thethunk argument usually contains
only the call to the C function which in turn performs the system
call so throwing out and back into its execution state by saved con-
tinuations is not an issue. However, in case the system call fails
the C code will immediately raise an exception which allows ex-
ecution to resume at a different point. To release the lock in this
case the code above installs an exception handler which releases
the lock and passes the exception along to the next handler: The
with-handler procedure installs its first argument as a exception
handler for the second argument. The handler releases the lock and
calls the surrounding handler passed as argumentmore afterwards.

For the current working directory, caching is more involved as the
chdir syscall itself reads the current working directory in case the
given path is not absolute. Scsh circumvents this case by making
the path absolute:

(define (change-and-cache-cwd new-cwd)
(if (not (file-name-absolute? new-cwd))

(process-chdir (assemble-path (cwd) new-cwd))
(process-chdir new-cwd))

(set! *cwd-cache* (process-cwd)))

Again, the cache is fed by consulting the kernel, this time to find out
if the kernel has resolved any symbolic links. Setting and aligning
the current working directory is completely analogous to the umask
case:

(define (chdir cwd)
(with-lock cwd-lock

(lambda ()
(change-and-cache-cwd cwd)
(thread-set-cwd! (cwd-cache)))))

(define (align-cwd!)
(let ((thread-cwd (cwd)))

(if (not (string=? thread-cwd (cwd-cache)))
(change-and-cache-cwd thread-cwd))))

The environment requires special treatment: First, there is a direct
access to the resource itself. It is stored in the C variableenviron
of type char ** . Programs normally access this vector through
the functionsgetenv , putenv and setenv provided by the C li-
brary. Moreover, the only system call the environment influences is
exec *. Therefore, scsh represents the environment by an associa-
tion list in Scheme and turns it into an C array onexec * only. In
this case scsh maintains an association of the Scheme list and the C
array to allow the latter to be reused and automatically deleted. The
caching procedure setsenviron** :

(define (change-and-cache-env env)
(environ**-set env)
(set! *env-cache* env))

Reading the resource is only required on startup of the system;
There the C vector is read into a Scheme list.

The last remaining process resource is the user identification.6 In
Unix, user identification comes in three flavors:

1. Thereal user IDencodes the identity of the owner of the pro-
cess. The kernel copies the value from the parent when creat-
ing the process.

2. Theeffective user IDdetermines which files the process may
access.

3. Thesaved set-user IDis set byexec * on start of the process
and provides an alternative value for the effective user ID.

For changing these values, POSIX specifies the system callsetuid .
Unfortunately, its semantics depends on the value of the effective
user ID: If the effective user ID is the ID of the super user,setuid
changesall three values to thesamebut arbitrary ID. However, af-
terwards the effective user ID is no longer the ID of the super user
andsetuid cannot change the IDs any more. Automatic mainte-
nance as described for the other resources is therefore not possible
in general.

For unprivileged users things look slightly different: hereSetuid
setsonly the effective user ID to either the real user ID or the saved
set-user ID. The other IDs remain untouched. As the real user ID
and the saved set-user ID may be different, both can act as a source
for the effective user ID in turn. This behavior is desirable for appli-
cations which are started with a special saved set-user ID but want
to exploit it only for certain tasks such as maintaining lock files.

6The following description translates literally to group identi-
fication. The presentation therefore does not consider group IDs
further.

5

A multi-threaded application possibly wants to equip each thread
with one of the two IDs. To support this, scsh provides thread-local
effective user IDs.

The implementation of effective user IDs per thread is anal-
ogous to the umask case. A thread can read the ef-
fective user ID with user-effective-uid and set it with
set-user-effective-uid . Scsh guards system calls operation
on files with thewith-euid-aligned macro. Depending on the
platform, scsh uses one of the non-standard system callssetreuid
or seteuid which change only the effective user ID to prevent the
super user from unintentionally changing all three IDs.

Now the machinery is in place to properly define Scheme bindings
for resource-accessing system calls:

(define (open-fdes path flags . maybe-mode)
(with-cwd-aligned

(with-umask-aligned
(with-euid-aligned

(with-egid-aligned
(%open path

flags
(:optional maybe-mode #o666)))))))

The%open procedure is bound to theopen system-call. It opens the
file specified bypath with umask, current working directory, effec-
tive user id and effective group id aligned. Theoptional macro
returns the default mode#o666 if the caller supplied no third argu-
ment toopen-fdes .

6 Fork vs. Threads

The counterpart tospawn /fork-thread in the realm of Unix pro-
cesses is calledfork : it creates and starts a child process that is
a copy of the parent process, distinguished from the parent by the
return value offork . Moreover, the childhas its own process ID,
parent process ID and resource utilizations. The child process also
gets copies of the parents file descriptors which, however, reference
the same underlying objects.

In a user-level thread system, all threads are contained in the pro-
cess. Consequently, the child process also runs duplicates of the
threads of the parent process. Depending on the concrete thread
system, this is desirable for the the system threads, such as those
doing I/O cleanup, run finalizers, etc. However, this is usually
wrong for the threads explicitly created by a running program. The
most common use offork in scsh programs is from the& andrun
forms that run external programs: in Unix, the only way to run an-
other program is to replace the running process by it viaexec *(3).
Hence,run and& first fork, and the newly created child then re-
places itself by the new program. Unfortunately, the delay between
fork andexec * create a race condition: other threads of the run-
ning program can get scheduledin the child.

This race can have disastrous consequences: the Scheme Under-
ground web server [17] starts a separate thread for each connection.
Some connection requests require starting an external program such
as a CGI script [3]. Now, consider a web server simultaneously
serving two connections as shown in Figure 1. Thread #1 is busy
serving a connection on the shown socket. Thread #2 forks in order
to exec a CGI program. This creates an exact replica of the par-
ent process, including the scheduler and all of its children threads
which share access to the file descriptors of the parent process. It is
now possible that the child scheduler schedules thread #1, thereby

Scheduler Scheduler

Thread #1 Thread #1

Thread #2 Thread #2

Socket

fork

Figure 1. Interference between parent and child in a multi-
threaded Internet server

interfering with the parent thread #1. This at least leads to mangling
of the output.

This problem is well known in the realm of OS-level thread sys-
tems. Specifically, IEEE 1003.1-2001 [13] specifies that the child
only runs the currently executing thread:

A process shall be created with a single thread. If a
multi-threaded process callsfork() , the new process
shall contain a replica of the calling thread and its entire
address space, possibly including the states of mutexes
and other resources. [. . .]

”
Forking the current thread“ is a more useful intuition for what

fork should do. However, this notion as such is rife with ambi-
guity. (For example, what happens if the current thread is holding
on to a mutex another thread is blocked on, and then, in the child,
releases that mutex?) Moreover,fork has been notoriously difficult
to implement correctly in Unix systems (see also Section 8).7

Fortunately, the implementation issues in the context of a nestable-
engines-based thread system are entirely different ones from more
traditional settings: Scsh solves the problem by providing a spe-
cial scheduler which accepts an additional kind of event from its
children threads callednarrow . Narrow accepts a thunk as an ar-
gument, and causes the scheduler to spawn a new scheduler and
suspend itself until the new scheduler terminates. The new sched-
uler starts off with a newly created single thread that runs the thunk.

The scsh scheduler sits beneath the root scheduler. Thus, the root
scheduler can still perform the necessary housekeeping. Figure 2
shows the setup: Thenarrow call from thread #2 suspends to the
scheduler, passing a thunk to run inside the narrowed thread under
the new scheduler. Thefork now happens in the narrowed thread,
which also runs the thunk passed to fork. In the parent process, the
narrowed thread terminates again which also returns operation to
the original scheduler.

Thus, a simplified version offork in scsh (the actual production
code needs to perform more complex argument handling and avoid
a subtle race condition) looks like this:

7In systems where threads are implemented as processes, the
correct implementation offork is trivial. However, then the im-
plementation ofexec *(2) becomes a problem because the new pro-
gram must replaceall threads of the old one. On the other hand, the
implementation ofexec is trivially correct in scsh.

6

new Scheduler

Thread #1

scsh Scheduler

Root Scheduler

Thread #2 new Thread

Housekeeping

Socket

narrow

fork

spawn

Figure 2. Thenarrow operation

(define (fork thunk)
(let ((proc #f))

(narrow
(preserve-ports

(preserve-thread-fluids
(lambda ()

(let ((pid (%%fork)))
(if (zero? pid)

(call-terminally thunk) ; Child
(set! proc (new-child-proc pid))))))))

proc))

%%fork is the pure POSIXfork system call. It returns 0 in the child,
and a non-zero process ID in the parent.Call-terminally runs
the thunk in an empty continuation to save space and guarantee that
the child terminates oncethunk returns.

Note that, just as withthread-fork , fork needs to pre-
serve the thread fluids viapreserve-thread-fluids . More-
over, preserve-ports preserves the regular fluids holding the
current- {input,output,error } ports.

This implementation offork avoids the various semantic pitfalls:
All threads are still present after anarrow ; they are merely chil-
dren of a suspended scheduler. Therefore, if, for example, the cur-
rent thread releases mutex locks other threads are blocked on, these
threads are queued with their respective schedulers and can con-
tinue after thenarrow completes. There are no restrictions on what
the narrowed thread can do.

The implementation offork actually shipped with scsh also allows
duplicating all threads in the child. Consequently, through the use
of nested schedulersnarrow andspawn , the programmer has fine-
grained control over the set of running threads.

Of course, the user-level program might create its own schedulers
beneath the scsh scheduler. This, in general, requires that the new
scheduler passesnarrow events upwards in the scheduler tree to
the scsh scheduler, which is trivial in the Scheme 48 thread system.
On the other hand, it is possible that an application needs to handle
narrow in a different way. The key observations of this work are
thatnarrow is the appropriate mechanism for the feasible common
cases, and that nestable schedulers provide a suitable implementa-
tion mechanism for providing afork with well-defined behavior.

7 User-level threads and the C libraries

In addition to an interface to the Unix system calls, scsh also pro-
vides bindings for standard libraries. Two library facilities cause
problems: DNS queries viagethostbyname /gethostbyaddr
eventually block the process. The Syslog connections are an ad-
ditional process resource. This section explains how scsh tackles
these issues.

7.1 DNS queries

A user-level thread implementation must never call functions which
might block the process and thereby stops all threads. All POSIX
system calls can operate in non-blocking mode. Unfortunately, the
same is not true for the standard C library:gethostbyaddr and
gethostbyname turn host names into IP addresses and vice versa.
These functions are indispensable for writing almost any kind of
Internet server. They block until they receive an answer or time-
out. Thus, the process callinggethostby . . . blocks for up to several
minutes8. To prevent scsh from blocking, we have written a library
for DNS queries directly in Scheme; it is part of the upcoming ver-
sion of the Scheme Underground networking package[17].

7.2 Syslog

Another problem is the standard C library’s interface to the system
message logger: Theopenlog function opens a connection to the
syslogd daemon. Thesyslog function sends the actual messages
to the daemon. The syslog daemon processes the messages accord-
ing to the parameters ofsyslog and the ones specified by the last
openlog call. Calls toopenlog may not nest.

Therefore, scsh treats the connection to the logger analogously to
the process resources mentioned in Section 3: The interface to
openlog virtualizes connections to the loggers assyslog channels.
The syslog channel records all parameters given toopenlog . Scsh
stores the channel in a thread fluid and maintains a cache for the
current channel. When another thread callssyslog and the cache
differs from the thread’s connection, scsh closes the connection to
the syslog daemon usingcloselog and reconnects with the param-
eters obtained from the thread fluid. Thus, every thread has its own
virtual connection to the syslog daemon.

7.3 FFI Coding Guidelines

Generally, threads complicate FFI issues because the language sub-
strates on both sides of the FFI barrier are currently likely to be us-
ing different thread systems. The work on scsh indicates that coding
guidelines should impose certain restrictions on foreign code called
via the FFI:

• Foreign functions should not block indefinitely.

• Implicit state such as the process resources should be multi-
plexed via thread-local process resources.

• Non-reentrant foreign function APIs such assyslog should
be virtualized to reentrant interfaces.

8Internet applications such as Netscape [12] and the Squid web
cache [16] work around this problem by launching a second pro-
cess to perform DNS queries. This allows the normal process to
continue asynchronously or block on a pipe to the helper process
usingselect .

7

8 Related work

The POSIX manpage [13] specifies thatfork replicate only the
calling thread. The manpage also mentions a proposedforkall
function that replicates all running threads in the child. However,
forkall was rejected for inclusion in the standard. The manpage
lists a number of semantic issues for bothfork and forkall that
arise in the context of the Unix API. Specifically, a kernel-level
thread system needs to deal with threads that are stuck in the ker-
nel at the time of thefork . Reports of problems with handling or
implementingfork with the proper semantics abound. Examples
can be found in the FreeBSD commit logs and various Linux fo-
rums. Details vary greatly depending on implementation details of
the operating system kernel and the thread system at hand.

The GNU adns C library [9] also provides an implementation of
asynchronous DNS lookups.

9 Conclusion

Scsh combines user-level threads and the Unix API to yield a pow-
erful tool for concurrent systems programming. The scsh API tries
to maintain an analogy between threads and processes wherever
possible. Specifically, threads see process resources as thread-
local, andfork only “forks the current thread.” The API issues
involved are not new, but they occur in new forms in the context of
Scheme 48’s user-level thread system and scsh’s support for the full
POSIX API. The solutions have led to the design of the thread-fluid
mechanism for managing thread-local dynamic bindings as well as
of thenarrow thread primitive which allows, together with nested
threads, more fine-grained control over the set of running threads.

Acknowledgements

The implementation of thread-local process resources was devel-
oped in collaboration with Olin Shivers during the first author’s visit
at MIT. An email discussion with Richard Kelsey eventually led to
the design of thread cells and thread fluids. He specifically pro-
posed separating fluids from thread-local cells. Marcus Crestani
implemented the DNS library for the Scheme Underground net-
working package. We also would like to thank all the users of scsh
for constant feedback and valuable bug reports.

10 References

[1] Edoardo Biagioni, Ken Cline, Peter Lee, Chris Okasaki, and
Chris Stone. Safe-for-space threads in Standard ML.Higher-
Order and Symbolic Computation, 11(2):209–225, December
1998.

[2] Henry Cejtin, Suresh Jagannathan, and Richard Kelsey.
Higher-order distributed objects.ACM Transactions on Pro-
gramming Languages and Systems, 17(5):704–739, Septem-
ber 1995.

[3] CGI: Common gateway interface.http://www.w3.org/
CGI/ .

[4] R. Kent Dybvig and Robert Hieb. Engines from continuations.
Computer Languages, 14(2):109–123, 1989.

[5] Marc Feeley. Parameters in Gambit-C. Personal communica-
tion, September 2001.

[6] Matthew Flatt. PLT MzScheme: Language Manual. Rice
University, University of Utah, August 2000. Version 103.

[7] Christopher T. Haynes and Daniel P. Friedman. Engines build
process abstractions. InACM Conference on Lisp and Func-
tional Programming, pages 18–24, 1984.

[8] Christopher T. Haynes and Daniel P. Friedman. Abstract-
ing timed preemption with engines.Computer Languages,
12(2):109–121, 1987.

[9] Ian Jackson and Tony Finch. GNU adns.http://www.
chiark.greenend.org.uk/˜ian/adns/ , 2000.

[10] Richard Kelsey and Jonathan Rees.Scheme 48 Reference
Manual, 2002. Part of the Scheme 48 distribution athttp:
//www.s48.org/ .

[11] Richard A. Kelsey and Jonathan A. Rees. A tractable Scheme
implementation.Lisp and Symbolic Computation, 7(4):315–
335, 1995.

[12] Netscape. Netscape browser central.http://browsers.
netscape.com/browsers/main.tmpl , 2002.

[13] The Open Group Base Specifications Issue 6 IEEE Std
1003.1-2001. http://www.opengroup.org/onlinepubs/
007904975/ , 2001.

[14] Olin Shivers. A Scheme Shell. Technical Report TR-635,
Massachusetts Institute of Technology, Laboratory for Com-
puter Science, April 1994.

[15] Olin Shivers. Automatic management of operating system re-
sources. In Mads Tofte, editor,International Conference on
Functional Programming, pages 274–279, Amsterdam, The
Netherlands, June 1997. ACM Press, New York.

[16] Team Squid. Squid web proxy cache.http://www.
squid-cache.org/ , 2002.

[17] The Scheme Underground networking package.http://
www.scsh.net/sunet/ .

8

