
How to Write Seemingly Unhygienic and Referentially Opaque Macros with
Syntax-rules

Oleg Kiselyov∗
Software Engineering, Naval Postgraduate School, Monterey, CA 93943

oleg@pobox.com, oleg@acm.org

Abstract

This paper details how folklore notions of hygiene and refer-
ential transparency of R5RS macros are defeated by a sys-
tematic attack. We demonstrate syntax-rules that seem to
capture user identi�ers and allow their own identi�ers to be
captured by the closest lexical bindings. In other words, we
have written R5RS macros that accomplish what commonly
believed to be impossible. We build on the the fundamental
technique by Petrofsky of extracting variables from argu-
ments of a macro. The present paper generalizes Petrofsky's
idea to attack referential transparency.

This paper also shows how to overload the lambda form.
The overloaded lambda acts as if it was infected by a virus,
which propagates through the lambda's body infecting other
lambdas in turn. The virus re-de�nes the macro being cam-
ou�aged after each binding. This rede�nition is the key
insight in achieving the overall referential opaqueness. Al-
though we eventually subvert all binding forms, we preserve
the semantics of Scheme as given in R5RS.

The novel result of this paper is a demonstration that
although R5RS macros are deliberately restricted in expres-
siveness, they still wield surprising power. We have exposed
faults and the lack of precision in commonly held informal
assertions about syntax-rule macros, and pointed out the
need for proper formalization. For a practical programmer
this paper o�ers an encouragement: more and more power-
ful R5RS macros turn out to be possible.

1 Introduction

One of the most attractive and unsurpassed features of Lisp
and Scheme is the ability to greatly extend the syntax of the
core language and to support domain-speci�c notations [14].
These syntactic extensions are commonly called macros. A
special part of a Lisp/Scheme system, a macro-expander,
systematically reduces the extended language to the core
one.

A naive macro system that merely �nds syntactic exten-
sions and replaces them with their expansions can corrupt
∗Current a�liation: Fleet Numerical Meteorology and Oceanogra-

phy Center, Monterey, CA 93943.
Permission to make digital or hard copies, to republish, to post on
servers or to redistribute to lists all or part of this work is granted
without fee provided that copies are not made or distributed for pro�t
or commercial advantage and that copies bear this notice and the full
citation on the �rst page. To otherwise copy or redistribute requires
prior speci�c permission.
Third Workshop on Scheme and Functional Programming. October
3, 2002, Pittsburgh, Pennsylvania, USA. c©2002 Oleg Kiselyov.

variable bindings and break the block structure of the pro-
gram. For instance, free identi�ers in user code may be in-
advertently captured by macro-generated bindings, which
leads to insidious bugs. This danger is very well docu-
mented, for example in [8], [1]. Lisp community has devel-
oped techniques [1] that help make macros safer, but they
rely on e�orts and care of an individual macro program-
mer. The safety is not built into the system. Furthermore,
the techniques complicate the macro code and make it more
bug-prone.

Scheme community has recognized the danger of the naive
macro expansion to the block structure of Scheme code. The
community endeavored to develop a macro system that is
safe and respectful of the lexical scope by default. In limited
circumstances, exceptions to the block-structure-preserving
policy of macros are useful and can be allowed. These ex-
ceptions however should be statically visible. A number of
experimental macro systems with the above properties have
been built ([8], [9], [1], [2], [4], [13]). The least powerful
and the most restrictive set of common features of these
macro systems has been standardized in R5RS [7]. An ear-
lier version of that system has been mentioned in the previ-
ous Scheme report, R4RS, and expounded in [3]. The R5RS
macro system permits no exceptions to the safety policy (so-
called, hygiene, see below). Furthermore, R5RS macros are
speci�ed in a restricted pattern language, which gives the
macros another name: syntax-rules. The pattern language
is di�erent from the core language and therefore removes the
need for the full Scheme evaluator at macro-expand time.
Therefore, R5RS macros are severely limited in their abil-
ity. The strict safety policy with no exceptions has lead to
claims that "Scheme's hygienic macro system is a general
mechanism for de�ning syntactic transformations that re-
liably obey the rules of lexical scope" [3]. However, there
has been little work in formalizing this assertion. Only [8]
took upon the task of proving that the systematical renam-
ing of introduced identi�ers indeed guarantees the hygiene
condition, in the macro system of [8]. The latter is not an
implementation of R5RS macros.

Surprising discoveries of R5RS macros' latent power ques-
tion commonly held beliefs about syntax-rule macros. For
example, the paper [3] claims "The primary limitation of the
hygienic macro system is that it is thoroughly hygienic, and
thus cannot express macros that bind identi�ers implicitly....
The loop-until-exit macro that is used as an example of the
low-level macro system in the Revised 4 Report is also a non-
hygienic macro." In 2001, however, Al Petrofsky did express
the loop-until-exit macro in the R5RS system [11] (see also
[12] for more discussion). Al Petrofsky's article introduced

1

a general technique, Petrofsky extraction, of writing macros
that can extract a speci�c binding from their arguments. Al
Petrofsky has also shown how to make such macros nest.
The present paper generalizes Petrofsky's ideas to writing
of seemingly referentially opaque R5RS macros.

A syntactic extension by its nature introduces a new lan-
guage, which may di�er in some aspects from the core lan-
guage. Can we write a syntax-rule�based extension that
looks like R5RS Scheme but allows seemingly referentially
opaque and non-hygienic macros? Can such an extended
language still be called R5RS Scheme? At �rst sight, the an-
swer to both questions is negative. Although R5RS macros
are Turing complete [6], they were regarded as �thoroughly
hygienic� [3]. Furthermore, the fact that R5RS macros are
written in a restricted pattern language rather than in Scheme
makes them clearly incapable of certain computations (e.g.,
concatenating strings or symbols). It is impossible to write
an R5RS macro foo such that (foo a-symbol b-symbol)
expands into a a-b-symbol, where the latter is spelt as
the concatenation of characters constituting a-symbol and
b-symbol. It is not possible for an R5RS macro to tell if two
identi�ers have the same spelling. Ostensibly these restric-
tions were put in place to guarantee and enforce the rules
of lexical scope for macros and their expansions (this sen-
timent was discussed in [1]). In this paper we demonstrate
that the power of R5RS macros has been underestimated:
We can indeed implement a syntax-rule extension of Scheme
that permits seemingly referentially opaque and unhygienic
macros [12]. Furthermore, this extended language literally
complies with R5RS.

The next section brie�y describes the notions of hygiene
and referential transparency of macro expansions. Section
3 recalls Petrofsky extraction and its application to writ-
ing weakly non-hygienic macros. Section 4 introduces the
key idea that re-de�ning a macro after each binding leads
to the overall referential opaqueness. Carrying out such re-
de�nitions requires overloading of all Scheme binding forms,
in particular, the lambda itself. Section 5 accomplishes this
overloading with the help of Petrofsky extraction. We demon-
strate an R5RS macro that looks exactly like a careless,
referentially opaque Lisp-style macro. The end result is a
library syntax let-leaky-syntax that lets a programmer
de�ne a syntax-rule macro and designate a free identi�er
from that macro for capture by local bindings. The �nal
section discusses what it all means: for macro writers, for
macro users, and for programming language researchers.

2 Hygiene and Referential Transparency of Macro Expan-
sions

This section introduces the terminology and the working ex-
amples that are used throughout the paper. We will closely
follow [8] in our terminology. A syntactic extension, or a
macro (invocation), is a phrase in an extended language dis-
tinguished by its leading token, or keyword. During the
macro-expansion process the extended language is eventu-
ally reduced to the core Scheme, in one or several steps.
One step in this transformation of a syntactic extension is
called a (macro-) expansion step or a transcription step. A
syntactic transform function (a.k.a. a macro (transformer))
is a function de�ned by the macro writer that expands the
class of syntactic extensions introduced by the same key-
word. A transcription step, which is an application of a
transformer to a syntactic extension, yields a phrase in the
core language or another syntactic extension. The latter
will be expanded in turn. The result of an expansion step

may contain identi�ers that were not present in the original
syntactic extension; we will call them generated identi�ers.

A macro system is called hygienic, in the general sense, if
it avoids inadvertent captures of free variables through sys-
tematic renaming [3]. The free variables in question can be
either generated variables, or variables present in macro in-
vocations (i.e., user variables). A narrowly de�ned hygiene
is avoiding the capture of user variables by generated bind-
ings. The precise de�nition, a hygiene condition for macro
expansions (HC/ME), is given in [8]: "Generated identi�ers
that become binding instances in the completely expanded
program must only bind variables that are generated at the
same transcription step." If a macro system on the other
hand speci�cally avoids capturing of generated identi�ers,
the latter always refer to the bindings that existed when the
macro transformer was de�ned rather to the bindings that
may exist at the point of macro invocations. This property
is often called referential transparency.

The rest of the present section expounds sample R5RS
macros chosen to illustrate HC/ME and referential trans-
parency. We will be using the examples in the rest of the
paper.

The HC/ME condition demands that bindings introduced
by macros should not capture free identi�ers in macro ar-
guments. Let us de�ne a sample macro mbi such that (mbi
body) will expand into (let ((i 10)) body). In the pat-
tern language of R5RS macros, the de�nition reads:

(define-syntax mbi
(syntax-rules ()

((mbi body) (let ((i 10)) body))))

A naive, non-hygienic expansion of (mbi (* 1 i)) would
have produced (let ((i 10)) (* 1 i)). The generated
binding of i would have captured the free variable i occur-
ring in the macro invocation. A hygienic expansion prevents
such capture through a systematic renaming of identi�ers.
Therefore,

(let ((i 1)) (mbi (* 1 i)))

actually expands to

(let ((i~2 1))
(let ((i~5 10)) (* 1 i~2))

and gives the result 1. The identi�er i~2 is di�erent from
i~5: we will call them identi�ers of di�erent colors.

The referential transparency facet demands that gener-
ated free identi�ers should not be captured by local bindings
that surround the expansion. To be more precise, if a macro
expansion generates a free identi�er, the identi�er refers to
the binding occurrence in the environment of the macro's
de�nition. For example, given the de�nitions

(define foo 1)
(define-syntax mfoo

(syntax-rules ()
((mfoo) foo)))

The form (let ((foo 2)) (mfoo)) expands into

(let ((foo~1 2))
foo)

and yields 1 when evaluated. The local let binds foo of a
di�erent color, and therefore, does not capture foo gener-
ated by the macro mfoo.

2

3 Petrofsky Extraction

In 2001 Al Petrofsky posted an article [11] that demon-
strated how to circumvent a weak form of hygiene. The
present paper generalizes Petrofsky's idea to attack referen-
tial transparency. For completeness and reference this sec-
tion systematically derives the Petrofsky technique. We aim
to write a macro mbi so that (mbi 10 body) expands into
(let ((i 10)) body) and the binding of i captures free
occurrences of i in the body. We assume that there are
no other bindings of i in the scope of (mbi 10 body), or i
was de�ned early in the global scope and was not re-de�ned
since. This assumption is the distinction between the weak
hygiene and the true one.

Developing even weakly non-hygienic macros is challeng-
ing. We cannot just write

(define-syntax mbi
(syntax-rules ()

((_ val body) (let ((i val)) body))))

because (mbi 10 (* 1 i)) will expand into

(let ((i~5 10)) (* 1 i))

where i in (* 1 i) refers to the top-level binding of i or
remains unde�ned. However, we can explicitly pass a macro
the identi�er to capture:

(define-syntax mbi-i
(syntax-rules ()

((_ i val body) (let ((i val)) body))))

In that case,

(mbi-i i 10 (* 1 i))

expands into

(let ((i 10)) (* 1 i))

and the capture occurs. Hence to circumvent the hygiene in
the weak sense, we only need to �nd a way to convert an
invocation of mbi into an invocation of mbi-i. The macro
mbi-i requires the explicit speci�cation of the identi�er to
capture � which we can get by extracting the identi�er i,
together with its color, from the argument of mbi. That is
the essence and the elegance of the Petrofsky's idea. Once
we have the rightly colored occurrence of i, we can use it in
the binding form and e�ect the capture.

The extraction of colored identi�ers from a form is done
by a macro extract, Fig. 1. This macro is the workhorse of
the hygiene circumvention strategy. We also need a macro
that extracts several identi�ers, extract* (Fig. 2). Now we
can de�ne:

(define-syntax mbi-dirty-v1
(syntax-rules ()
((_ _val _body)
(let-syntax

((cont
(syntax-rules ()

((_ (symb) val body)
(let ((symb val)) body)))))

(extract i _body (cont () _val _body))))))

so that

(mbi-dirty-v1 10 (* 1 i))

expands into

(let ((i~11 10)) (* 1 i~11))

and evaluates to 10, as expected.
The macro mbi-dirty-v1 seems to do the job, but it has

a �aw. It does not nest:

(mbi-dirty-v1 10
(mbi-dirty-v1 20 (* 1 i)))

expands into

(let ((i~16 10))
(let ((i~17~25~28 20)) (* 1 i~16)))

and evaluates to 10 rather than to 20 as we might have
hoped. The outer invocation of mbi-dirty-v1 creates a
binding for i � which violates the weak hygiene assumption.
Petrofsky [11] has shown how to overcome this problem as
well: we need to re-de�ne mbi-dirty-v1 in the scope of the
new binding to i. Hence we need a macro that re-de�nes it-
self in its own expansion. We however face a problem: If the
outer invocation of mbi-dirty-v1 re-de�nes itself, this redef-
inition has to capture the inner invocation of mbi-dirty-v1.
We already know how to do that, by extracting the colored
identi�er mbi-dirty-v1 from the outer macro's body. We
need thus to extract two identi�ers: i and mbi-dirty-v1.
We arrive at the following code:

; A macro that re-defines itself in its expansion:
; (mbi-dirty-v2 val body)
; expands into
; (let ((i val)) body)
; and also re-defines itself in the scope of body.
; myself-symb, i-symb are colored ids extracted
; from the 'body'

(define-syntax mbi-dirty-v2
(syntax-rules ()
((_ _val _body)
(letrec-syntax

((doit ; continuation from extract*
(syntax-rules ()
((_ (myself-symb i-symb) val body)
(let ((i-symb val)) ; first bind 'i'
(let-syntax ; re-define oneself

((myself-symb
(syntax-rules ()

((_ val__ body__)
(extract*
(myself-symb i-symb)
body__
(doit () val__ body__))))))

body))))))
(extract* (mbi-dirty-v2 i) _body

(doit () _val _body))))))

Therefore

(mbi-dirty-v2 10
(mbi-dirty-v2 20 (* 1 i)))

now expands to

3

; extract SYMB BODY CONT
; BODY is a form that may contain an occurrence of an identifier that
; refers to the same binding occurrence as SYMB.
; CONT is a form of the shape (K-HEAD K-IDL . K-ARGS)
; where K-IDL and K-ARGS are S-expressions representing lists or the
; empty list.
; The macro extract expands into
; (K-HEAD (extr-id . K-IDL) . K-ARGS)
; where extr-id is the extracted colored identifier. If the symbol SYMB does
; not occur in BODY at all, extr-id is identical to SYMB.

(define-syntax extract
(syntax-rules ()

((_ symb body _cont)
(letrec-syntax

((tr
(syntax-rules (symb)

; Found our 'symb' -- exit to continuation
((_ x symb tail (cont-head symb-l . cont-args))
(cont-head (x . symb-l) . cont-args))

((_ d (x . y) tail cont) ; if body is a composite form,
(tr x x (y . tail) cont)) ; look inside
((_ d1 d2 () (cont-head symb-l . cont-args))
(cont-head (symb . symb-l) . cont-args)) ; symb does not occur
((_ d1 d2 (x . y) cont)
(tr x x y cont)))))

(tr body body () _cont)))))

Figure 1: Macro extract: Extract a colored identi�er from a form

; extract* SYMB-L BODY CONT
; where SYMB-L is the list of identifiers to extract, and BODY and CONT
; has the same meaning as in extract, see above.
;
; The macro extract* expands into
; (K-HEAD (extr-id-l . K-IDL) . K-ARGS)
; where extr-id-l is the list of extracted colored identifiers. The extraction
; itself is performed by the macro extract.

(define-syntax extract*
(syntax-rules ()
((_ (symb) body cont) ; only one id: use extract to do the job
(extract symb body cont))

((_ _symbs _body _cont)
(letrec-syntax

((ex-aux ; extract id-by-id
(syntax-rules ()

((_ found-symbs () body cont)
(reverse () found-symbs cont))
((_ found-symbs (symb . symb-others) body cont)
(extract symb body

(ex-aux found-symbs symb-others body cont)))
))

(reverse ; reverse the list of extracted ids
(syntax-rules () ; to match the order of SYMB-L

((_ res () (cont-head () . cont-args))
(cont-head res . cont-args))
((_ res (x . tail) cont)
(reverse (x . res) tail cont)))))

(ex-aux () _symbs _body _cont)))))

Figure 2: Macro extract*: Extract several colored identi�ers from a form

4

(let ((i~26 10)) (let ((i~52 20)) (* 1 i~52)))

and evaluates to 20.
The macro mbi-dirty-v2 is still only weakly unhygienic.

If we evaluate

(let ((i 1))
(mbi-dirty-v2 10 (* 1 i)))

we obtain

(let ((i 1)) (let ((i~3~22~29 10)) (* 1 i)))

which evaluates to 1 rather than 10.

4 Towards the Referential Opaqueness: a mylet Form

In this section, we attack referential transparency by writ-
ing a macro that seemingly allows free identi�ers in its ex-
pansion to be captured by the closest lexical binding. To be
more precise, we want to write a macro mfoo that expands in
an identi�er foo in such a way so that the form (let ((foo
2)) (let ((foo 3)) (list foo (mfoo))))would evaluate
to the list (3 3). The key insight is a shift of focus from
the macro mfoo to the binding form let. The macro mfoo
is trivial:

(define-syntax mfoo
(syntax-rules ()
((mfoo) foo)))

We will concentrate on re-de�ning the binding form to per-
mit a referentially opaque capture. To make such rede�ni-
tion easier, we introduce in this section a custom binding
form mylet. The next section shall show how to make the
regular let act as mylet.

The goal of this section is therefore developing a binding
form mylet so that (mylet ((foo 2)) (mylet ((foo 3))
(list foo (mfoo)))) would evaluate to the list (3 3). To
make this possible, the expression should expand as follows:

(let ((foo 2))
(define-syntax-mfoo-to-expand-into-foo)
(re-define-mylet-to-account-for-

redefined-foo-and-mfoo)
(let ((foo 3))
(define-syntax-mfoo-to-expand-into-foo)
(re-define-mylet-to-account-for-

redefined-foo-and-mfoo)
(list foo (mfoo))

))

Di�erent bindings of a variable are typeset in di�erent fonts.
The expansion of the form mylet therefore binds foo and
then re-de�nes the macro mfoo within the scope of the new
binding. This mfoo will generate the identi�er foo that refers
to that local binding. The rede�nition of mfoo after a bind-
ing is the key insight. It makes it possible for the expansion
of the targeted macro to contain identi�ers whose bindings
are not inserted by the same macro. The process of de�ning
and rede�ning macros during the expansion of mylet looks
similar to the process described in the previous Section.
Therefore, we take the macro mbi-dirty-v2 as a prototype
for the design of mylet. A generator (which helps us de-
�ne and re-de�ne the macro mfoo) and the macro mylet are

given on Fig. 3. With these de�nitions, (mylet ((foo 2))
(mylet ((foo 3)) (list foo (mfoo)))) expands to ((lambda
(foo~47) ((lambda (foo~92) (list foo~92 foo~92)) 3))
2) and evaluates to (3 3). The result demonstrates that
(mfoo) indeed expanded to foo that was captured by the
local binding. The macro mfoo seems to have inserted an
opaque reference to the binding of foo. Because mylet
constantly re-generates itself, it nests. The following test
demonstrates the nesting and the capturing by the expan-
sion of (mfoo) of the closest lexical binding:

(mylet ((foo 3))
(mylet ((thunk (lambda () (mfoo))))
(mylet ((foo 4)) (list foo (mfoo) (thunk)))))

This expression evaluates to (4 4 3). The expansion of
(mfoo) within the closure thunk refers to the variable foo
that was lexically visible at that time.

5 Achieving the Referential Opaqueness: Rede�ning All Bind-
ing Forms

The previous section showed that we can indeed write a
seemingly referentially opaque R5RS macro, if we resort to
custom binding forms. R5RS does not prohibit us how-
ever from re-de�ning the standard binding forms let, let*,
letrec and lambda to suit our nefarious needs. We need
to 'overload' just one form: the fundamental binding form
lambda itself.

This overloading is done by a macro defile, which de�les
its body (Appendix B). It is worth noting a few fragments
from the macro's long code. The �rst one

(letrec-syntax
...
(lambda-native ; capture the native lambda

(syntax-rules ()
((_ . args) (lambda . args))))

does what it looks like: it captures the native lambda, which
is needed to e�ect bindings. Another fragment is:

(letrec-syntax
...
(let-symb ; R5RS definition of let
(syntax-rules ()
((_ . args)
(glet (let-symb let*-symb letrec-symb

lambda-symb) . args))))

A top-level macro glet (Appendix A) is a let with an extra
�rst argument. This argument is the �environment�, the list
of custom-bound let and lambda identi�ers for use in the
macro expansion. The de�nition of glet is taken from R5RS
verbatim, with the pattern modi�ed to account for the extra
�rst argument.

(define-syntax glet
(syntax-rules ()
((_ (let let* letrec lambda) ; the extra arg

((name val) ...) body1 body2 ...)
((lambda (name ...) body1 body2 ...) val ...))
((_ (let let* letrec lambda)

tag ((name val) ...) body1 body2 ...)
((letrec

((tag (lambda (name ...) body1 body2 ...)))
tag) val ...))))

5

; Macro: make-mfoo NAME SYMB BODY
; In the scope of BODY, define a macro NAME that expands into an identifier SYMB

(define-syntax make-mfoo
(syntax-rules ()
((_ name symb body)

(let-syntax
((name

(syntax-rules ()
((_) symb))))

body))))

; (mylet ((var init)) body)
; expands into
; (let ((var init)) body')
; where body' is the body wrapped in the re-definitions of mylet and the macro mfoo.

(define-syntax mylet
(syntax-rules ()
((_ ((_var _init)) _body)
(letrec-syntax
((doit ; The continuation from extract*

(syntax-rules () ; mylet-symb, etc. are extracted from body
((_ (mylet-symb mfoo-symb foo-symb) ((var init)) body)
(let ((var init)) ; bind the 'var' first
(make-mfoo mfoo-symb foo-symb ; now re-generate the macro mfoo

(letrec-syntax
((mylet-symb ; and re-define myself

(syntax-rules ()
((_ ((var_ init_)) body_)

(extract* (mylet-symb mfoo-symb foo-symb) (var_ body_)
(doit () ((var_ init_)) body_))))))

body)))
))))

(extract* (mylet mfoo foo) (_var _body)
(doit () ((_var _init)) _body))))))

Figure 3: Macros make-mfoo and mylet

6

The macro glet therefore relates the let form and the
lambda precisely as R5RS does; glet however substitutes
our custom-bound lambda. Finally, the overloaded lambda
is de�ned as follows:

(letrec
...
(lambda-symb ; re-defined, infected lambda
(syntax-rules ()

((_ _vars _body)
(letrec-syntax
((doit (syntax-rules ()
((_ (mylet-symb mylet*-symb

myletrec-symb mylambda-symb
mymfoo-symb myfoo-symb)
vars body)

(lambda-native vars
(make-mfoo mymfoo-symb myfoo-symb
(do-defile ; proliferate
(mylet-symb mylet*-symb
myletrec-symb mylambda-symb
mymfoo-symb myfoo-symb)
body)))))))

(extract* (let-symb let*-symb letrec-symb
lambda-symb mfoo-symb foo-symb)

(_vars _body)
(doit () _vars _body))))))

We are relying on the previously captured lambda-native to
create bindings. After that we immediately rede�ne all our
macros in the updated environment. The corrupted lambda
acts as if it were infected by a virus: every mentioning of
lambda "transcribes" the virus and causes it to spread to
other binders within the body.

The following are a few excerpts from the de�le macro
regression tests. An expression

(defile
(let ((foo 2)) (list (mfoo) foo)))

expands into

((lambda (foo~186) (list foo~186 foo~186)) 2)

and predictably evaluates to (2 2). The expansion of (mfoo)
has indeed captured a locally-bound identi�er. All the in-
fected lambdas are gone: the expansion result is the regular
Scheme code. Furthermore,

(defile
(let ((foo 2))
(let ((foo 3) (bar (list (mfoo) foo)))
(list foo (mfoo) bar))))

evaluates to (3 3 (2 2)) and

(defile
(let ((foo 2))
(list
((letrec

((bar (lambda () (list foo (mfoo))))
(foo 3))

bar))
foo (mfoo))))

to ((3 3) 2 2). The de�led let and letrec indeed act
precisely as the standard ones. Finally,

(defile
(let* ((foo 2)

(i 3)
(foo 4)
; will capture binding of foo to 4
(ft (lambda () (mfoo)))
(foo 5)
; will capture the arg of ft1
(ft1 (lambda (foo) (mfoo)))
(foo 6))

(list foo (mfoo) (ft) (ft1 7) '(mfoo))))

evaluates to the expected (6 6 4 7 (mfoo)). In all these
examples, the expansion of (mfoo) captures the closest (lo-
cal) lexical binding of the variable foo. All the examples
run with the Bigloo 2.4b interpreter and compiler and with
Scheme48.

We must point out that the de�led examples behave as if
(mfoo), unless quoted, were just the identi�er foo. In other
words, as if mfoo were de�ned as a non-hygienic, referen-
tially opaque macro

(define-macro (mfoo) foo)

To be able to capture a generated identi�er by a local bind-
ing, we need to know the name of that identi�er and the
name of a macro that generates it. We also need to e�ec-
tively wrap the defile macro around victim's code. We
can do that explicitly as in the examples above. We can
also accomplish the wrapping implicitly, e.g., by re-de�ning
the top-level let or other suitable form so as to insert the
invocation of defile at the right spot. It goes without say-
ing that we assume no bindings to the identi�ers foo, mfoo,
let, letrec, let*, and lambda between the point the macro
defile is de�ned and the point it is invoked.

It is possible to remove the dependence of the macro
defile on ad hoc identi�ers such as foo and mfoo. We can
pass the targeted macro and the identi�er to be captured
by the closest lexical binding as arguments to defile. We
arrive at a form let-leaky-syntax (Appendix C), which is
illustrated by the following two examples. An expression

(let-leaky-syntax
bar
((mbar

(syntax-rules () ((_ val) (+ bar val)))))
(let ((bar 1)) (let ((bar 2)) (mbar 2))))

evaluates to 4, whereas

(let-leaky-syntax
quux
((mquux (syntax-rules ()

((_ val) (+ quux quux val)))))
(let* ((bar 1) (quux 0) (quux 2)

(lquux (lambda (x) (mquux x)))
(quux 3)
(lcquux (lambda (quux) (mquux quux))))

(list (+ quux quux) (mquux 0) (lquux 2)
(lcquux 5))))

evaluates to the list (6 6 6 15). The form let-leaky-syntax
is similar to let-syntax. The former takes an additional
�rst argument, an identi�er from the body of the de�ned
syntax-rules. This designated identi�er will be captured by
the closest lexical binding within the body of let-leaky-syntax.
The examples show that the variable is captured indeed. In

7

particular, the macro mquux in the last example expands to
an expression that adds the value of an identi�er quux twice
to the value of the mquux's argument. Because the iden-
ti�er quux was designated for capture by the closest local
binding, a procedure (lambda (quux) (mquux quux)) e�ec-
tively triples its argument.

We have thus demonstrated the syntax form let-leaky-
syntax that de�nes a macro with a speci�c variable excepted
from the hygienic rules. The form let-leaky-syntax is a
library syntax, developed exclusively with R5RS (hygienic)
macros.

6 Discussion

In this section we will discuss the implications of the de-
�le macro. First however we have to assure the reader that
defile is legal: it fully complies with R5RS and does not
rely on unspeci�ed behavior. Indeed, the macro de�le is
written entirely in the pattern language of R5RS. Re-binding
of syntax keywords lambda, let, let*, and letrec is not
prohibited by R5RS. On the contrary, R5RS speci�cally
states that there are no reserved keywords, and syntactic
bindings may shadow variable bindings and other syntactic
bindings. Furthermore, re-de�ned let, let*, and letrec
forms relate to the lambda form precisely as the R5RS forms
do. The re-de�ned lambda form is also in compliance with
its R5RS description ([7], Section 4.1.4).

One can argue that our re-de�ned lambda leads to a vi-
olation of the constraint that R5RS places on the macro
system: "If a macro transformer inserts a free reference to
an identi�er, the reference refers to the binding that was vis-
ible where the transformer was speci�ed, regardless of any
local bindings that may surround the use of the macro."
This paragraph however applies exactly as it is to the de-
�led macros. In the code,

(define foo 1)
(defile

(let ((foo 2)) (list (mfoo) foo)))

the identi�er foo inserted by the expansion of the macro
mfoo indeed refers to the binding of foo that was visible
when the macro mfoo was de�ned. The twist is that the
de�nition of the macro mfoo happened right after the local
binding of foo. Despite mfoo being an R5RS, referentially
transparent macro, the overall result is equivalent to the
expansion of a referentially opaque macro.

The macro de�le indeed has to surround the victim's
code. One can therefore object if we merely create our own
'little language' that resembles Scheme but does not guar-
antee referential transparency of macro expansions. How-
ever, such a little language was presumed impossible with
syntax rules [2][3]! Any macro by de�nition extends the
language. The extended language is still expected to obey
certain constraints. The impetus for hygienic macros was
speci�cally to create a macro system with guaranteed hy-
gienic constraints. Although syntax-rules are Turing com-
plete, certain computations, for example, determining if two
identi�ers are spelled the same, are outside of their scope.
It was a common belief therefore that syntax-rules are thor-
oughly hygienic [3].

To be more precise, the argument that syntax-rules can-
not in principle implement macros such as let-leaky-syntax
was informally advanced in [2]. That paper described a
macro-expansion algorithm that is used in several R5RS
Scheme systems, including Bigloo. Incidentally, the algo-
rithm accounts for the possibility that the binding forms

lambda and let-syntax may be rede�ned by the user. The
paper [2] informally argues that the algorithm satis�es two
hygiene conditions: (1) "It is impossible to write a high-level
macro that inserts a binding that can capture references
other than those inserted by the macro," and (2) �It is im-
possible to write a high-level macro that inserts a reference
that can be captured by bindings other than those inserted
by the macro." Unfortunately, the paper does not state the
conditions with su�cient precision, which precludes a for-
mal proof. The notion of 'inserting a binding' is partic-
ularly vague. The common folklore interpretation of the
conditions is that generated bindings can capture only the
identi�ers that are generated at the same transcription step.
Had this interpretation been true, let-leaky-syntax would
have been impossible. However, the interpretation is false
and Petrofsky's loop macro is a counter-example [12]. Sev-
eral examples in Section 4 demonstrated the capture of gen-
erated identi�ers across transcription steps.

It is interesting to ask if it is possible to create a macro
system that is provable hygienic, which provably does not
permit tricks such as the one in this paper. The paper [8]
showed that if we do not allow macros to expand into the
de�nitions of other macros, we can design a macro system
that is provably hygienic. A MacroML paper [5] claimed
that being generative seems to be a necessary condition for a
macro extension to maintain strong invariants (static typing,
in the context of MacroML). A generative macro can build
forms from its arguments but cannot deconstruct or inspect
its arguments.

We conclude that the subject of macro hygiene is not at
all decided, and more research is needed to precisely state
what hygiene formally means and which precisely assurances
it provides.

For a practical programmer, we o�er the let-leaky-syntax
library form. The form lets the programmer write a new
class of powerful syntactic extensions with the standard R5RS
syntax-rules, without resorting to lower-level macro facili-
ties. In general, the practical macro programmer will hope-
fully view the conclusions of this paper as an encouragement.
We should realize the informal and narrow nature of many
assertions about R5RS macros. We should not read into
R5RS more than it actually says. Thus we can write more
and more expressive macros than we were previously led to
believe [12].

Acknowledgment
I am greatly indebted to Al Petrofsky for numerous dis-
cussions, which helped improve both the content and the
presentation of the paper. Special thanks are due to Alan
Bawden for extensive comments and the invaluable advice.
I would like to thank Olin Shivers and the anonymous re-
viewers for many helpful comments and suggestions. This
work has been supported in part by the National Research
Council Research Associateship Program, Naval Postgradu-
ate School, and the Army Research O�ce under contracts
38690-MA and 40473-MA-SP.

References

[1] Alan Bawden and Jonathan Rees. Syntactic closures.
In Proc. 1988 ACM Symposium on Lisp and Functional
Programming, pp. 86-95.

[2] William Clinger and Jonathan Rees. Macros that work.
In Proc. 1991 ACM Conference on Principles of Pro-
gramming Languages, pp. 155-162.

8

[3] William Clinger. Macros in Scheme. Lisp Pointers,
IV(4):25-28, December 1991.

[4] R. Kent Dybvig, Robert Hieb, and Carl Bruggeman.
Syntactic abstraction in Scheme. Lisp and Symbolic
Computation 5(4):295-326, 1993.

[5] S. Ganz, A. Sabry, W. Taha: Macros as Multi-Stage
Computations: Type-Safe, Generative, Binding Macros
in MacroML. Proc. Intl. Conf. Functional Programming
(ICFP'01), pp. 74-85. Florence, Italy, September 3-5
(2001).

[6] Erik Hilsdale and Daniel P. Friedman. Writing macros
in continuation-passing style. Scheme and Functional
Programming 2000. September 2000.

[7] R. Kelsey, W. Clinger, J. Rees (eds.), Revised5 Report
on the Algorithmic Language Scheme, J. Higher-Order
and Symbolic Computation, Vol. 11, No. 1, September,
1998.

[8] Eugene E. Kohlbecker Jr., Daniel P. Friedman,
Matthias Felleisen, and Bruce Duba. Hygienic macro
expansion. In Proc. 1986 ACM Conference on Lisp and
Functional Programming, pp. 151-161.

[9] Eugene E. Kohlbecker and M. Wand. Macro-by-
example: Deriving syntactic transformations from their
speci�cations. In Proc. 14th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages,
pp. 77 - 84, 1987.

[10] Al Petrofsky,
Oleg Kiselyov. Re: Widespread bug (arguably) in letrec
when an initializer returns twice. Messages posted on a
newsgroup comp.lang.scheme on May 21, 2001 10:30:34
and 14:56:49 PST. http://groups.google.com/groups?-
selm=7eb8ac3e.0105210930.21542605%40posting.google.com
http://groups.google.com/groups?-
selm=87ae468j7x.fsf%40app.dial.idiom.com

[11] Al Petrofsky. How to write seemingly unhygienic
macros using syntax-rules. A message posted on
a newsgroup comp.lang.scheme on November 19,
2001 01:23:33 PST. http://groups.google.com/groups?-
selm=87o�zcdwt.fsf%40radish.petrofsky.org

[12] Al Petrofsky. Re: Holey macros! (was Re: choice for
embed-
ding Scheme implementation?). A message posted on a
newsgroup comp.lang.scheme on May 22 2002 10:21:31
-0700. http://groups.google.com/groups?-
selm=874rh0p084.fsf%40radish.petrofsky.org

[13] Jonathan A. Rees. Implementing lexically scoped
macros. Lisp Pointers. 'The Scheme of Things' (col-
umn), 1993.

[14] Olin Shivers. A universal scripting framework, or
Lambda: the ultimate 'little language'. In "Concur-
rency and Parallelism, Programming, Networking, and
Security," Lecture Notes in Computer Science 1179, pp
254-265, Editors Joxan Ja�ar and Roland H. C. Yap,
1996, Springer.

Appendix A

The following are de�nitions of let, let* and letrec taken
almost verbatim from R5RS. The only di�erence is in custom-
bound let, let*, letrec and lambda identi�ers, which we
explicitly pass to the glet macros in the �rst argument.

(define-syntax glet
(syntax-rules ()
((_ (let let* letrec lambda)

((name val) ...) body1 body2 ...)
((lambda (name ...) body1 body2 ...) val ...))
((_ (let let* letrec lambda)

tag ((name val) ...) body1 body2 ...)
((letrec ((tag (lambda (name ...) body1 body2 ...)))

tag) val ...))))

(define-syntax glet*
(syntax-rules ()

((_ mynames () body1 body2 ...)
(let () body1 body2 ...))

((_ (let let* letrec lambda)
((name1 val1) (name2 val2) ...) body1 body2 ...)

(let ((name1 val1))
(let* ((name2 val2) ...) body1 body2 ...)))))

; A shorter implementations of letrec [10]
(define-syntax gletrec
(syntax-rules ()

((_ (mlet let* letrec lambda)
((var init) ...) . body)

(mlet ((var 'undefined) ...)
; the native let will do fine here
(let ((temp (list init ...)))
(begin (set! var (car temp))

(set! temp (cdr temp))) ...
(let () . body))))))

9

Appendix B1

; This macro defiles its body.
; It overloads all the let-forms and the lambda, and defines a non-hygienic macro 'mfoo'. Whenever any
; binding is introduced, the let-forms, the lambdas and 'mfoo' are re-defined. The overloaded lambda acts
; as if it were infected by a virus, which keeps spreading within lambda's body to infect other lambda's there.

(define-syntax defile
(syntax-rules ()

((_ dbody)
(letrec-syntax

((do-defile
(syntax-rules () ; all the overloaded identifiers
((_ (let-symb let*-symb letrec-symb lambda-symb mfoo-symb foo-symb) body-to-defile)
(letrec-syntax

((let-symb ; R5RS definition of let
(syntax-rules ()
((_ . args)
(glet (let-symb let*-symb letrec-symb lambda-symb)

. args))))

(let*-symb ; Redefinition of let*
(syntax-rules ()

((_ . args)
(glet* (let-symb let*-symb letrec-symb lambda-symb)

. args))))

(letrec-symb ; Redefinition of letrec
(syntax-rules ()
((_ . args)
(gletrec (let-symb let*-symb letrec-symb lambda-symb)

. args))))

(lambda-symb ; re-defined, infected lambda
(syntax-rules ()

((_ _vars _body)
(letrec-syntax

((doit
(syntax-rules ()

((_ (mylet-symb mylet*-symb myletrec-symb
mylambda-symb mymfoo-symb
myfoo-symb) vars body)

(lambda-native vars
(make-mfoo mymfoo-symb myfoo-symb

(do-defile ; proliferate in the body
(mylet-symb mylet*-symb myletrec-symb

mylambda-symb
mymfoo-symb myfoo-symb)

body)))))))
(extract* (let-symb let*-symb letrec-symb lambda-symb

mfoo-symb foo-symb)
(_vars _body)
(doit () _vars _body))))))

(lambda-native ; capture the native lambda
(syntax-rules () ((_ . args) (lambda . args))))
)

body-to-defile)))))

(extract* (let let* letrec lambda mfoo foo) dbody
(do-defile () dbody))

))))
1The current implementation of the macro defile does not corrupt bindings that are created by internal define, let-syntax and letrec-syntax

forms. There are no technical obstacles to corrupting those bindings as well. To avoid clutter, the present code does not detect a possible shadowing
of the macro mfoo by a local binding. The full code with validation tests is available at http://pobox.com/~oleg/ftp/Scheme/dirty-macros.scm.

10

Appendix C

Given below is the implementation of a library syntax let-leaky-syntax. It is based on a slightly modi�ed version of
the macro defile. The latter uses parameters leaky-macro-name, leaky-macro-name-gen, and captured-symbol instead of
hard-coded identi�ers mfoo, make-mfoo and foo.

(define-syntax defile-what
(syntax-rules ()

((_ leaky-macro-name leaky-macro-name-gen captured-symbol dbody)
(letrec-syntax

((do-defile
... similar to the defile macro, Appendix B ...

(extract*
(let let* letrec lambda
leaky-macro-name captured-symbol) dbody (do-defile () dbody))))))

(define-syntax let-leaky-syntax
(syntax-rules ()
((_ var-to-capture ((dm-name dm-body)) body)
(let-syntax
((dm-generator

(syntax-rules ()
((_ dmg-name var-to-capture dmg-outer-body)
(let-syntax
((dmg-name dm-body))
dmg-outer-body)))))

(defile-what
dm-name dm-generator var-to-capture body)

))))

11

