Eager Comprehensions in Scheme
The design of SRFI 42

Sebastian Egner

Philips Research Laboratories, The Netherlands
sebastian.egner@philips.com

Abstract
This article is about a certain style of programming iteafpro-

grams. It is based on a concept we have named “eager compre

hension,” which is a convenient and efficient alternativéaibre-
cursion,do-loops, and lazy list comprehensions (aka “ZF expres-
sions”). Eager comprehensions are syntactic forms thatpsutate
the details of an accumulation process (counting elemergating
a list, etc.). Within these forms, expressions called gatoes hide
the details of enumerating basic sequences (running thradigt,
through a range of integers, etc.). By combining these ai¢sria
a clearly structured and well-defined way, a concise and gae
notation for writing loops emerges.

Of course, this style of programming is not new—it is imglici
present in any form ofloop-macro already—and so we discuss
several concrete designs that aim for the same goal. Singyis

however, none of these designs has had much impact on Scheme,

despite the fact that their common floor plan has been aroond f
decades. A particularly clean new design, SRFI 42, on theroth
hand has already made some friends in the first few years of its
existence. Explaining the design and implementation of ISR
constitutes the main part of this article.

1. Introduction

The original motivation for working on a library for compre
sions in Scheme was my dissatisfaction with the availablehme
anisms for writing trivial loops. In addition, | wanted toeate
an efficient mechanism for converting data structures witthe
quadratically increasing number of conversion operaticased
chalk->cheese

The most basic example for a trivial loop is the construction
of a list of the firstn non-negative integers, using the constructs
available in the RevisédReport on the Algorithmic Language
Scheme R’RS) [1] only. Maybe the shorteStand clearest (1?)
expression for this is

(do ((x (-n 1) (- k 1))
(x > (cons k x)))
((<k0) x))

1Please let me know if you can do shorter than thiRiRS.

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copresiaer made or distributed
for profit or commercial advantage and that copies bear titissand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

Sixth Workshop on Scheme and Functional Programmir8eptember 24, 2005,
Tallinn, Estonia.
Copyright(© 2005 Sebastian Egner.

13

This is terrible, not so much for the number of key strokesasian
example where details obscure intention.

In SRFI 42 that would b&list-ec (: k n) k), for inter-
active use, o(list-ec (:range k n) k) if speed is worth an
other five key strokes. Since this article is not about thei§ipa-
tion of SRFI 42, but about the design principles, a basic lianty
with the following document will be assumed from now on:

http://srfi.schemers.org/srfi-42/srfi-42.html

(Alternatively, there is a brief introduction in the appengWhile
initially the goal was adapting the comprehensions fourididakell
to Scheme, a number of insights turned this enterprise intoce
new direction and eventually led to the concept later cofieeder
comprehensions.” These ideas can be summarized as follows:

1. Truly lazy comprehensions are not an attractive option in
Scheme because the overhead for non-strict data structodes
explicit handling of continuations is high. Moreover, laaym-
prehensions can be confusing in the presence of side-®ffect

2. While list comprehensions and list generators are seffici
for comprehensions in lazy languages, in eager languages it
is essential to be able to add application-specific comprehe
sions and generators easily—and without modifying thetexis
ing ones.

. While simple comprehensions resemble mathematicabset ¢

prehensions, more complex expressions increasingly ek |

nested and parallel loops with accumulation of the resits.
fact, that is what they are.

The fundamental eager comprehension has nothing to do wit

lists, but executes a command repeatedly according to iits ge

erators. The fundamental eager generator repeatedly emdifi
state explicitly.

4.

After these insights it was obvious that “bringing Hasleatiompre-
hensions to Scheme” is the wrong goal to pursue. The more inte
esting question is “What would be a useful correspondingeph

in an eager programming language?” The answer is quiteisurpr
ing:

Eager comprehensioriA convenient style of programming
nested and parallel loops with accumulation of results. Ide
ally, scope and syntax are easy to remember and the irrele-
vant details of the iteration are hidden from the user.

The concept can also be interpreted as an (essentiallycsimta
abstraction mechanism from details of iteration: if youdawmnew
data structure that has given rise to some natural iteratfean

it might pay to encapsulate the details of this iterationcpss in

a generator. Similarly, if there is a natural way of conding a
data structure from a sequence of states—a comprehensg mi
be useful to applications.

Structure of this article. The remainder of this article is orga-
nized as follows. In Section 2 different notions of “compeakion”
are introduced. These notions are related but must not Hasexuh
In particular the term “eager comprehension” is being useal iz-
minder that this concept has in fact very little to do withyldist
comprehension.

Section 3 continues with stating the major design issueefr
ger or lazy) comprehensions as a general and practicaffyluan-
guage construct. Section 4 discusses a number of concraEtmnde
of loop facilities and comprehensions for the Lisp familylah-
guages, and related work. The implementation of SRFI 42ds th
subject of Section 5. It explains the overall structure amplémen-
tation strategy used in the reference implementation (whio-
fortunately performance-wise, is the only one availabledday).

In Section 6 the performance of the portable reference imefe
tation is compared with other libraries. Finally, for eméémment,
Section 7 presents a modular way of addiagy comprehensions
to SRFI 42.

2. Concepts of comprehensions

In this section we briefly review different concepts of coetpen-
sion. For the sake of clarity we will always refer to them bgader
name than just “comprehension.”

The mathematical notatién

{f(@) | P(z),z € S}"

denotes the set of all values of the functigrfor arguments in
the setS and satisfying the predicate. The notation explicitly
refers to a candidate elementa predicateP, a universeS, and a
mappingf. This notation is called aet comprehension

The stated form is maybe the most frequently seen, but ittis no
the most fundamental. The most basic form of set comprebensi
is{y | Q(y)}, wherey = f(z), P(z), andz € S have been
combined intaQ(y). This concept, i.e. denoting a set defined by a
predicate (formula), is the core of what is meant by “compreh
sion.” While this concept has been in use for a long time dyea
it was not before the development of axiomatic set theory &y Z
melo, Fraenkel and others in the 1920s that the idea wasestudi
systematically. The notion of set comprehension, and itatitm,
is so natural that it has gradually become a mathematicadiatd,
i.e. the reader of a mathematical article is expected tonstated it
without definition.

Set comprehension.

Comprehensions in programming languages. The notational
convenience of set comprehension has inspired programiauing
guage constructs with similar intent: name the data straatie-
fined by an expression for its elements. For example, in tHELSE
language [19, 20]

{n**2 : n in {0..9}}

denotes the set of the first ten integer squares. This camstru
however, does not only specify the result but alsakgorithmfor
constructing the result (“execute a loop owersquare the values,
collected them in a data structure”). It is often conventeriginore
the algorithmic aspect, but most of the time this is not faesi-
after all, algorithms do take time, or may not terminate htFadr
this reason, set comprehension in mathematics and in progirsg
languages should never be confused.

Lazy comprehensions. While comprehensions were contained in
some eager (aka call-by-value) programming languages lforga
time, they only became popular once they were introducelhfiyr
lists in lazy (aka call-by-need) functional programmingdaages

2Instead of {” also “:” and *,” are in use.

14

| primitive | purpose

set set denote a set by properties
lazy lazy list | sequence processing
eager | side-effect| writing nested and parallel loops

with accumulation of results

Table 1. Different concepts of “comprehension.”

(mostly based on a typedtcalculus with normal order reduction)
in the early 1980s. In contemporary syntax (Haskell), faregle,

[xxx | x <= [0..]]

denotes the (infinite) lazy list of all integer squares. leneents
will be made explicit once they are needed.

Such alazy comprehensioprovides a convenient notation for
processing lazy lists by means of mapping, filtering, anccatet
nation. The primitive lazy comprehension (writteéexpl qual™] in
Haskell) constructs a lazy list, and the primitive lazy geamer <-,
read ‘drawn from’) binds a variabldo the elements of a lazy list.
In addition, several generators can be nested, elementsectiilh
tered from the sequence, and local variables can be defined.

Lazy list comprehensions are widely accepted due to their co
cise notation, and good readability in most cases. Theaieffcy is
as good as any (lazy) alternative. Their primary shortcgnisran
implicit tendency to overuse them, i.e. to write complichtested
lazy comprehensions where an appropriate abstraction éther b
been introduced. The decreasing readability of more caatgd
lazy comprehensions is probably due to the use of infix opesat
and the fexpr|outer..inner]” scoping rule, which is not simply
left to right.

From the point of view of programming language design, it
is most informative to recall the historical developmentlafy
comprehensions [18, Chapter 7]—in particular that thee trature
was not fully understood for a long time: lazy comprehension
were first introduced as part of the NPL language (BurstaIr,7}
[25]. In NPL, however, comprehensions construct a set ofaibj
While this construct is closest to the mathematical notiazy sets
are not nearly as useful dszy listsare. It appears that lists and
graphs are more fundamental to programming than sets (erestd
collections); in addition, lists (in particular lazy li$&re a universal
and natural mechanism of communication between differartsp
of a program. Consequently, set comprehensions were raités
and when NPL evolved into the Hope language (Burstall, 1980)
[26] lazy comprehensions where not included.

Lazy list comprehensions made their debut in the KRC languag
(Turner, 1981) [27] as “ZF expressions.” Later they werduded
in several other functional programming languages likeakita
[28, 29] (Turner, 1985). But still mathematical beauty hissrelcted
the mind from proper programming pragmatics for some tiree:-g
erators in lazy list comprehensions can denote infinitaiiens.
Hence, from a mathematical point of view the most natural way
of advancing nested generators is by (Cantorian) diagmatadn,
also known as “dove-tailing.” This is the only way of reaahiev-
ery pair eventually in the case of an infinite inner generatdrile
diagonalization looks like a good idea at first, it is not. Nehati-
cal “eventually” can be a long time, and in practice diagmaion
is not worth a lot. Thus lazy list comprehensions evolveduio r
the generators in the straight-forward way, i.e. exhagdiire in-
ner loop before advancing the outer loop, while the diagoima)
variants slowly went out of fashion (not without constartiling
reinvented).

3 A pattern possibly containing variables to be precise.

Specialized eager comprehensions. Encouraged by the success
of lazy comprehensions, designers of eager programming lan
guages recently started to include comprehensions agairPizhon
[11] contains list comprehensions. While thesser comprehen-
sionscan be quite useful, in particular for interactive use amipsc
ing, they are much less universal in nature than their lazytey-
parts. This is explained in greater detail in Section 3.3.

Eager comprehension as abstraction of iteration. Surprisingly,
this perceived limitation is again due to a lack of underdiag for
the true nature of comprehensions, eager comprehensisrisrib.
As explained above, lazy comprehensions for lists are fonefaal.
For eager comprehensions, howegte-effec(state) is the most
basic concefit

As indirect evidence of this fact consider that any eager-com
prehension can be implemented in terms of

(do-ec qualifier commandl,

which executesommandor each state in the sequence defined by
the generators and tesimalifier*. Similarly, each eager generator
can be implemented in some form of state-transformingtiberin

the sense ofio. Amazingly, this insight—which is made explicit
here—is already implicit in the design of nearly any loopilfgc

for the Lisp family of languages, but it has not been ackndeyéel

as such.

While the “can be implemented by"-relation usually does not
lead to the most fundamental concept, it does so in this Gae.
sider the alternative of implementing the eager compreébeasn
terms of (eager) lists: the resulting implementation wélHorrible!

An accumulation process (e.g. counting) cannot start thilast
element of the enumerated sequence has been produced et sto
in a data structure. The resulting loss in performance, asetibn

of sequence length, is in fact unbounded.

Being built on this insight, SRFI 42 eventually reduces amy¢e
prehension talo-ec, and any generator todo—which is some
flexible but fixed loop structure (Section 5.2) based on exstate
transformation. In combination with a number of rules siifypig
the syntax and introducing a clean scoping rule, this resola
facility for iteration that is both efficient and convenient

3. Design considerations

In this section we discuss the main issues that affect thielngss
of a programming language construct for eager comprehesisio
or for writing nested and parallel loops with accumulatidrtte
result. We approach these issues by exploring design attees:
which design decisions exist and what are their implicao®ur
primary goal is not a coherent and complete theory, but rathe
informal discussion of the relative benefits of various gesiin
terms of convenience and effectiveness of the languageroohs
for writing programs.

3.1 Mental complexity

Maybe the most important consideration is what could besdall
“mental complexity.” As an anecdotal quantitative measiimaen-

tal complexity we propose to count the number of times therref
ence manual of a loop construct was consulted when readisg ot
people’s loops, multiplied by the years of experience ofreeler
with that particular construct.

More seriously, we would like to point out that any concept

for eager comprehensions, or loops, represents a tradewiten

4We use the term ‘state’ here in an informal way, refering todtatus of all
bits that could possibly alter the future of an iterationtdrain Section 3.5,
we will clarify that a sequence of states may actually meaacaence of
binding environments.

15

simplicity and flexibility. This follows from the fact thabbps
cover a large scale of complexity in programs, from simpjeete
tion to complicated nested and parallel actions with sésenadi-
tions in between and numerous invariants. In effect, désigthe”
loop construct might not be the right goal to aim for, and ighti
also be necessary to predefine frequent idioms of loops. Aim
tool for flexibility is orthogonality—for example in SRFI 4&ery
generator can be modified by adding another terminationittond
While the orthogonality idea is strong in Scheme, the iteeat
part of it has been somewhat neglected. (More on that in Sec-
tion 4.1.) Nevertheless, the looping constructs tuat available
in R°RS are not too complicated to remember, i.e. mental com-
plexity is relatively low. At the other extreme end, Commadsg’s
loop might be found—highly flexible but also highly complicated.
(Refer to Section 4.5.)

3.2

Scheme can be used as an interactive system or for writirg bat
programs. Although these modes are just two extremes oftae en
spectrum of human-computer interaction they are usefutratbs
tions for evaluating designs. The two modes impose conftiate-
quirements: concise notation and flexibility is most impattto in-
teractivity, while robustness, efficiency, and readapdite primary
concerns for batch mode.

In the case of eager comprehensions, the key to efficienbgis t
use of typed state-based generators, i.e. programs thatezate
a sequence by modifying a local state (values of variablég),
state being of statically known type (e.g. an integer caginkéote
that this does not necessarily mean the state is updatedify us
set!, it could also mean that the state is updated by rebinding
(as with tail-recursive procedures). If the state is repmésd in
boxed data structures, or if each loop iteration requirsgatching,
performance usually suffers. For this reason, most loogtrocts
for Scheme (or Lisp in general) concentrate on the batch mode
only. In SRFI 42, on the other hand, the requirements of &utére
and batch mode are addressed by two different mechanisped(ty
and dispatched generators) which can be mixed freely.

Interactive use vs. batch mode

3.3 Modularity

Modularity for comprehensions means that new types of geoer
and new types of comprehensions can be added without modifyi
the already existing generators or comprehensions. Faatke of
illustration, let us assume the new type “Fooziset” is yaaytior
comprehension.

In lazy comprehensions modularity is for free: adding a gene
ator means writing a function returning a lazy list to be used
the right-hand side of the single binding and enumeratiorstract
(“<-"in Haskell). Adding a comprehension means writing a func-
tion processing a lazy list, possibly constructed by a c@nen-
sion. In effect, the comprehension

foozi_of_list [x | x <- list_of_foozi s]

produces an element-wise copy of a Fooziset, whatever that a
ally means.

For eager comprehensions, on the other hand, modularity is a
challenge. And what is more important, modularity is the fay
creating an abstraction that goes beyond a mere idiom fquénet
programs! Unfortunately, the importance of modularity éager
comprehensions has long been underestimated. Most desakes
it either outright impossible to add new generators and cehgn-
sions, or this is inconvenient and cumbersome. In effeetuders
of the mechanism do not take the trouble of adding the congpreh
sions and generators they really require in the applicatimasting
a great opportunity for useful abstraction.

scoping convention
[expr|inner..outer]
[expr|outer..inner]

examples

Magma

Haskell, Python, Erlang,
(Mathematica), Swindle, ...
SRFI 42

Mathematica

Ruby, Perl, GAP

[inner..outer|expr]
[outer..inner|expr]
[[expr|inner]|..outer]
[outer|..[inner|expr]]

Table 2. Possible scoping conventions

For example, a library for number theory would include a gen-
erator enumerating the prime divisors of an integer, togretbith
its multiplicity, because that is what is needed in many gtad
library for graphs, on the other hand, would provide geressfior
enumerating the vertices of a graph, or the edges leavingiaypa
lar vertex. All this is only possible through modularity.

These contradicting preferences naturally lead to the payst

ular choicelexpr|outer..inner] because it looks like a set com-
prehension (1.) while introducing bindings left-to-rig3t); refer
to Table 2.

For SRFI 42 linearity in scope was considered most impor-

tant (2.), which together with Scheme’s preference fortieftight
binding (3.) leads tgouter..inner|expr]. In effect, SRFI 42 sports
an extremely simple scoping rule:

The bindings introduced by a generator are visible to all
subsequent expressions (qualifier or other) of the same com-
prehension, and only to these

While in principle it would also be possible to have a compile

derive the nesting of the qualifiers from the dependencytyridyis
is a fundamentally bad idea. It would allow reordering thatoal

flow by renaming variables, hashing readability in the pssce

3.5 The meaning of state

For the design of SRFI 42 modularity has always been one of As the Scheme language supports genuine state and desructi

the top priorities (right after efficiency), and the biggelsallenge.

The breakthrough came when | learned about the technique of
using hygienic macros in continuation-passing style (GBST his
mechanism allows fully modular definition of eager genergtand

it has prompted me to start the design again from scratchr&dust

will be explained in greater detail in Section 5.

3.4 Scope

Eager comprehensions are programming language constaucts
writing loops. As such they include syntactic binding forfosthe
loop variables. Where there is binding, there is scope. iit@ans

a loop variable is visible to some parts of the program but not
to others—irrespective of whether this scope is specifiedaty

or whether there are simple rules to remember it. We emphasiz
this trivial fact because a conscious design of the scopedthar
critical factor for useful eager comprehensions.

In order to be able to talk about scoping, a language is needed
to represent different approaches. For this consider thenfimg
simplified view of a comprehension: a comprehension cansit
an expressiomxpr and zero or more nested qualifiemser, .. .,
outer. If the qualifiers are generatolisner denotes the one spin-
ning fastest anduter the one spinning slowest. Clearly, this ter-
minology only makes senseiiiner is in the scope of all bindings
introduced byouter, and if expris in the scope of botmner and
outer. In other wordsexpr, inner, outer are pieces of code with a
certain scoping relation (and control flow) with respect e @n-
other. These pieces can then be composed into a comprehensio
syntax using[’, ‘]', and ‘|'. All possibilities, together with exam-
ples, are listed in Table 2. Some arguments are:

1. It is an advantage to have eager comprehensions mimic the
notation of set comprehensions because it is widely knoweh. S
comprehensions use tfexpriqualifier*] convention, where the
nesting of the qualifiers is not fixed and must be deduced from
the context. For simple comprehensions, this is no problein a
the mathematical notation looks extremely familiar.

. The most simple conventions nest scope in one direction,
i.e. [expr|inner..outer] or [outer..inner|expr]. In a syntac-
tically impoverished language like Scheme this is partidyl
attractive.

. More complicated comprehensions will increasingly Idi&k
explicitly nested loopsdo, namedtet), and possibly be mixed
with them. In Scheme, bindings are always introdubetbre
the body, so it is an advantage to have outer bindings appear
first.

16

modification of data structures, it is important to clarifhat is
actually meant by ‘iteration state.” More precisely, thsideer of
eager comprehensions needs to take position with respebeto

following questions:

1. What is it supposed to mean if the payload of a generator
retains (a reference to) an iteration variable, and usedadttéer
iterations or even outside the loop?

2. If the payload modifies an iteration variable?

3. If the payload modifies the loop-defining arguments or degin
data structures while a loop is in progress?

Before considering possible approaches to these questiecs|
that Scheme uses the following model of 'variable’ [1, Sat8.1]:

An identifier that names a location is called a variable and
is said to be bound to that location. The set of all visible
bindings in effect at some pointin a program is known as the
environment in effect at that point. The value stored in the
location to which a variable is bound is called the variable’
value.

Concerning the first semantic question, consider the fatigyero-
gram (in SRFI 42 syntax):

((cadr (list-ec (:range n 3) (lambda () n))))

The result of this expression depends on hawinge updates its
loop variable: by rebinding or by state modification?

In the state modification model, the variahlds bound to a
single location, andet! is used during the iteration to store the
integer for that iteration. In effect, the three procedurethe list
constructed byist-ec contain a reference to tsameocation—
and the result of calling any of these procedures will be thtes
after the entire loop. So the result will be eitteeor 3, depending
on the way the loop modifias In this model, iteration enumerates
a sequence of states stored in a given set of locations.

In the rebinding model is bound to a new location for every
iteration. In this case, the three procedures each retaifiesesht
location, and the result is The rebinding model has been adopted
for the iteration constructs of Scheme [1, Section 4.2.4jbably
due to a desire for conceptual simplicity. Consequentlig @lso
the choice for SRFI 42. It should be mentioned that the ottoé
rebinding is the same as for any other tail-recursive proeedand
these are supposed to be efficient in Scheme.

5 As with everything in Scheme there is no way to enforce this IRFI 42
is built on this rule; users may have reason to deviate frastit it is not
encouraged.

Concerning the second semantic question, consider trefoll
ing program (again in SRFI 42 syntax):

(list-ec (:range n 3) (begin (set! n 2) n))

The result of this expression depends on whethrange uses the
variablen itself to hold the state of the iteration (in which case the
result is’ (2)), or if n is just a copy of the (hidden) state of the
iteration (in which case the resultig2 2 2)).

In Scheme [1, Section 4.2.4], namaét anddo provide access
to the state of the iteration itself. This allows arbitrargdification
of the state, which can sometimes simplify termination é¢tows.
For eager comprehensions, however, the variables visibtae
payload might not hold the state at all (e:@.ist hides the rest
list still to be enumerated). Hence, for eager comprehessimly
two approaches make sense: Either define that the variaiblbkev
are always a copy, or define the effect of assigning to a locphia
as unspecified. The latter approach was chosen for SRFI 42in t
name of efficiency.

Concerning the third semantic question, consider:

(let ((n 3))
(list-ec (:range k n) (begin (set! n 2) k)))

Here, the question is whetherange does access the variahidor
every termination test, or just reaisnce to set up the loop. Again,
different solutions are possible, but the choice becomgigeance
itis understood that could be replaced by an arbitrary expression.
If :range would evaluate its argument expressions repeatedly,
this could unintentionally come at a hight price. For thiasen,
SRFI 42 specifies that the argument expressions of gengrater
evaluated exactly once: before the loop is set up.

Related to the question what happens if the loop-defining-arg
ment is modified is the question what happens if the loop-hefin
data structure is modified. As there is no way of enforcinglaing
in Scheme, and copying entire data structure (even if dsbauld
become costly, the result of modifying a data structure evhils
being traversed is better defined unspecified.

3.6 Parallel loops

Often several loops must be executed in lockstep, e.g. t@utite
lines while reading a file. We will call this “parallel loopsut this
does not mean that the processing steps are executed amtburr

Several mechanisms for comprehensions do support such a com

bination, for example Glasgow Haskell's extension of HHSi&&s
lazy comprehensions [17], Swindle [7], and SRFI 42 [2].

In the case of lazy comprehensions, parallel generatorgkre
tively straight-forward. Since lazy comprehensions regexactly
one type of generator (running through a lazy list), it idisiént to
provide “zipping” two or more lazy lists before enumeratthgm.

In effect, the usefulness of parallel lazy generators i arily de-
termined by their notation.

Parallel eager generators, on the other hand, are a gréater c
lenge. While the concept of eager comprehensions oftemsllo
the user to ignore the details of a loop (i.e. setup, itenatand
termination of the generator), parallel generators cag balcon-
structed by interleaving the different parts of the compayener-
ators. Clearly, for this interleaving to be modular it is essary that
every generators is represented by some fixed pattern qecess
to the code for setup, iteration, and termination.

In Scheme, the natural solution for this is representingra ge
erator by a procedure computing the next element, and esigntu
indicating termination. The setup part of a generator coots the
procedure. This approach is used for example in Swindle and f
the dispatching generator)(of SRFI 42.

cally for merging two or more component generators into glsin
parallel generator. This is exactly what thparallel generator

of SRFI 42 does, i.e. merging “fully decoratedo-loops” (Sec-

tion 5.2).

3.7

A frequent special case of a parallel loop is with an addéldmdex
variable, i.e. a variable running throught, . . . while the elements
of another sequence are enumerated. There are two ways-of sup
porting this: by using parallel for combining an unbounded in-
teger counter (with generatointeger) with any other generator,
and by adding an index variable to the other generator itself

The first method is universally applicable to any generator,
and as such fully modular. The second method provides a more
concise notation (important for interactive use), andiitloa a little
more efficient in case the other generator uses an index anyho
(e.g.:vector). SRFI 42 supports both methods.

Index variables

3.8 Early stopping

An important factor determining the flexibility of a loopirapn-
struct is a facility for terminating generators or compmeiens
early. This is a different mechanism than testing qualifiaisa
guards or filters). The difference is best illustrated by eameple.

Consider a predicate for testing if a positive integer isshm
of its proper divisors:

(define (perfect? n)
(= (sum-ec (:range d 1 n)
(if (= (modulo n d) 0))
d)
n))

Theif-qualifier prevents the inclusion of non-divisors into thes
but it does not stop therange-generator. Now we start investigat-
ing perfect numbers:

(first-ec #f (: n 1 100) (if (perfect? n)) n)
= 6

This time the entire comprehension was finished after coimgut
the first perfect number. But assume we need the numbers up to
and including the first perfect number:

(list-ec (:until (: n 1 100) (perfect? n)) n)
= ’(123456)

In this case the generat@: n 1 100) is modified to terminate
after producing the element for which the additional condition
(perfect? n) became true. (Note also that the scoping rule of
SRFI 42 stated in Section 3.4 dictates that the conditionesom
after the generator in theuntil expression.) Alternatively, the
generator is to terminateeforeproducing the element violating an
additional condition.

Both forms of early-stopping generators are needed fretyuen
For example, consider reading a line of text by reading iiddig!
characters from a port. Since the last line may or may not have
trailing newline, it is important to append each charactadrto the
string, including newline. This requires the use:ahtil:

(define (read-line port)
(string-ec (:until (:port c port read-char)
(char=? c #\newline))

c))

(In fact, this was the motivating example for including bothile
and:until in SRFI 42.) The:while form of early termination is
even more frequent since it derives directly from a prectonliof

A different approach is to reduce each generator to some fixed the payload of a comprehension.

“standard loop structure,” which provides access to théviddal
parts of the generator. Then the parts can be combined $iyntac

17

Coming back tafirst-ec, the two most useful and frequent
early-stopping comprehensions test a predicate on a segudn

values, stopping as soon as a violation is found. These aimepr
sions, namedny?-ec andevery?-ec in SRFI 42, can in fact be
derived fromfirst-ec.

3.9 Prefix vs. infix syntax

A trivial but highly visible matter is to what extent the sgrtmakes
use of syntactic keywords in infix position (i.e. in a pogitinot
being the first after the opening parenthesis). Ultimathlg,comes
down to personal preference in the form of a compromise tetwe
simplicity and similarity with a natural language (whicits to
be English). Most designs of comprehensions use an infixabqer
for the generators €-’ is most popular) and possibly more infix
operators for other qualifiers and options. This approachtha
definitive advantage of reducing the number of parentheses.

In SRFI 42, on the contrary, no infix operators are used at all
for the sake of (reducing) mental complexity. A comprehensi
defining somethings probably namedomethingec, and a gen-
erator defined by an object of typgpeis probably namedtype
All generators are used in the syntéxtype var arg), wherevar
is a variable, optionally followed by an index variabkpecified as
(index i).

For illustration, Table 3 shows expressions for the sam&edes
loop in different programming languages supporting sonne fof
comprehension. Keep in mind, though, that this is an exthgme

achieved considerable acceptance in the Scheme commieaity,
ing the programmer to her own devices.

4.2 “Macros for writing loops” (Kelsey)

The “Macros for writing loops” library [4] is distributed wh the
Scheme 48 system [3] as theduce package.

It provides the syntactic formsterate and reduce imple-
menting the fundamental state based eager comprehensiere T
are predefined generators running through lists, vectwoinsgs, in-
teger ranges, reading from a port, and executing a gengveder
cedure (called stream). Other generators can be addednfiaty
ularly by defining a hygienic macro in continuation-passstye
(CPS) [4, Paragraph “Defining sequence types”]. The congoreh
sions (iterate, reduce) define a single, possibly parallel, loop
based on explicit state modification.

“Macros for writing loops” is the probably first new loop con-
struct to be proposed for a long time. Moreover, the impleation
technique of CPS macros is the key to modularity of comprehen
sions. In effect, “Macros for writing loops” was most influih to
the design of SRFI 42, even though the resulting mechanisighs a
notations bear little resemblance.

4.3 Swindle (Barzilay)
The Swindle library [7] is a collection of modules extenditing

simple example where the meaning can be guessed at once. FOPLT Scheme system [5]. It is written for and in PLT. The module

more complicated expressions, infix notation, potentielgn with
precedences, adds to mental complexity.

4. Concrete designs

In this section we consider existing concrete designs fogam-
ming language constructs that enable or simplify (or oldtesc
loops in the Lisp-family of languages. Related construatother
programming languages are beyond the scope of this artimle—
with the exception of lazy comprehensions, and loops witiuges
parallel semantics as present in Erlang and Occam, theylsoe a
not very interesting.

The list does cover some loop-macros from other Lisp digject
most notably Common Lisp, because these constructs repisse
rious efforts to provide what is called eager compreherssiothis
article. It should be noted, however, that none of the Lisgping
constructs ever came to popularity in the Scheme community,
like SRFI 42 which surprisingly has gathered quite somenfige
already in the first few years of its existence. (My earli&stshes
date from late 2000; the SRFI got published in the beginnihg o
2003.)

4.1 Lambda, namediet, anddo (R°RS)

In Scheme the most important construct for writing loopsraceir-
sive procedures, often in a tail recursive form. RSRS requires
implementations to provide proper tail recursion [1, Seti.5],
recursion also serves as an idiom for iteration. A partidyleon-
venient notation for defining and immediately executingureive
procedures is namerkt [1, Section 4.2.4]. In addition, Scheme
contains thelo-syntax for defining a single loop, based on explicit
state [1, Section 4.2.4].

This design represents a careful choice for including only a
few clean and powerful constructs into the language, comifoy
to the overall minimalistic design philosophy of SchemegiRe
tably, there are two major shortcomings in practice. Bjrstlis
already complicated to write the ubiquitous simple loop=feir
to the example in the beginning). And secondly, the comptanen
of a loop (startup, iteration, termination) are often s=atl over
large amounts of source code—even if this would be unnegessa
Yet, maybe surprising, no other mechanism for writing lobps

18

“misc.ss” of Swindle contains macros for defining eager canp
hensions in the sense of this article.

More precisely, there are predefined comprehensions fer sid
effect, making a list, numeric summation, numeric produmsint-
ing, and general reductiorcqllect-of). Generators are prede-
fined for (integer) ranges, lists, vectors, strings, integexecut-
ing generator procedures, and hash-tables. Swindle apjavalel
execution of generators, early termination of compretwsihas
local bindings and side-effects. Generators can be addlgarfad-
ularly using the generator procedure interface. Swindlkanax-
tensive use of infix notation for expressing generators (@g<-

0 .. 10), qualifiers, options, and other constructs (irdkd for
parallel execution).

The mechanisms specified in Swindle and for SRFI 42 are very
closely related in their principles, but differ considdyain the
details. Both acknowledge the need for modularity and wefinegd
scope.

4.4 SRFI 40 “A library of streams” (Berwig)

Although the final form of SRFI 40 [9] does not contain compre-
hensions anymore, its draft versions did. These compréens
were of course lazy. During the discussion of SRFI 40, it was d
cided to split the standard into a lower level part (whichdree the
final SRFI 40) and a higher level part, including lazy compreh
sions, which was to become SRFI 41.

The lazy comprehensions of SRFI 40 provided the same bene-
fits as other lazy comprehensions, that is modularity angl&m
ity. The downside of lazy comprehensions in Scheme is a anbst
tial loss in performance due to the overhead of construdtay
streams correctly and reliably.

Recall that a lazy stream is something much more sophisticat
than a generator procedure (accessing a state hidden iastg€).
This implies that lazy comprehensions really require effichon-
strict evaluation, or strictness analysis. While thesehods are
being used in lazy languages, they are usually not availeble
Scheme because most programs do not require it.

4.5 Common Lisp

The Common Lisp language [10] contains several constructs f
writing loops, and nested eager comprehensions in the sétisis

language example

for k in range(n)]

.n-1) .collect {lk| k*k}}.flatten!
[K¥K || N <- lists:seq(0,9), N >= 1, K <- lists:seq(0,N-1)]
Join @@ Table[Tablel[k*k, {k, 0, n-1}], {n, 0, 9}]

Concatenation(List([0..9], n -> List([0..n-1], k -> kxk)))

..< 10) (k <- 0 ..< n))

Haskell [k*k | n <- [0..9], k <- [0..n-1]]
Python [k*k for n in range(10)

Ruby (0..9).collect {Inl (0.

Erlang

Mathematica

Magma [kxk : k in [0..n-1], n in [0..9]]
GAP

PLT, Swindle (list-of (x k k) (n <- 0

R°RS, SRFI 42

(list-ec (: n 10) (: k n) (* k k)), or with typed generators:
(list-ec (:range n 10) (:range k n) (* k k))

Scheme48, reduce (reduce ((count* n 0 10)) ((r *O))

(cons (* k k) 1))
(reverse r))

(reduce ((count* k 0 n)) ((r r))

Table 3. Examples of a simple nested loop.

article. These constructs include/do*, dotimes, dolist, and
loop.

work, Wadler’s transformation of lazy list comprehensid@s,
Chapter 7] is translated one to one into Lisp in order to mithe

Do is essentially the same as in Scheme, apart from the fact (infix) notation of lazy list comprehensions in Miranda. A= tes-

that Common Lisp also allows dynamic binding of variablesir{g
special). Dox is a sequential-binding variant @fo. Dotimes
iterates over integer ranges, anglist over lists; these are rather
specialized control structures.

The loop facility, on the other hand, could be interpreted as a
general programming language in its own right (34 EBNF defini
tions, [10, Section 6.2 “LOOP”)). Itis an extremely flexibteecha-
nism for writing nested and parallel loops, possibly withyatop-
ping, saving intermediate results, goto and labels, anerakuther
features. Since it also supports various forms of accurioulaif
results, it should be seen as a syntactic form for eager ceimepr
sions. These include comprehensions for making lists, ragipg,
counting, max, min, summation, and general reduction. Fime s
tax is mostly based on infix notation with syntactic keywofois
clauses, options, and qualifiers.

Theloop-syntax is one of the work horses of Common Lisp. It
has evolved over a very long time towards higher and highei fle
bility, often through the use of infix syntactic keywords.eTimen-
tal complexity this has produced, however, is a big disathgamin
practice. In effect, the construct does not enjoy large iy in
the Scheme community.

4.6 Other iteration packages for Common Lisp

The “MIT LOOP” [35] is the predecessor of the Common Lisp
loop facility. The “SLOOP package” (Schelter) [33] is an itecati
facility generalizing MIT Lisp'sloop. The “Yale LOOP Macro”
(Ritter and Panagos) [34] is an implementation of the Yaleop
macro as described in [37]. All these loop facilities havedm-
mon that only the fundamental (side-effect) comprehenisiom-
plemented. The syntax is based on syntactic keywords in fivafix
tation and the expressive power varies. Often new typesraérge
tors can be added, using the underlying macro facility (pdoces
as first class citizens did not exist in the language).

The “Series Macro Package” (Waters) [30, 31] implements a
concept closely related to lazy comprehensions in the sefise
this article. A “series” is essentially a data structure #oftazy
list. The package contains operations for producing, [msiog,
and consuming these data structures, or acting on theireglism
The implementation is often able to transform the lazy oj@na
into eager evaluation, producing efficient code for frequenp
structures.

The “Lisp comprehensions” (Lapalme) [32] is an adaptation
of lazy comprehensions from Miranda into Common Lisp. Irsthi

19

sential conceptual difference between lazy and eager ahepr
sions is ignored, the resulting mechanism is only of limitedful-
ness in practice.

4.7

Recently, Shivers defined a new loop mechanism [22, 23, 24] fo
Scheme (in fact more generally), underpinned by a theorgdas
the notion of “control dominance.” In a nutshell, controhdimance
is the static property that every access to a variable oagitingn
an explicit binding construct for that variable. This carelnéorced
by a type system restricting the control flow graph of the prog

In practice, this concept comes down to the following: atide
are reduced to a primitive loop template consisting of 8gyavith
the control flow graph being made explicit. On top of this desi
a programming language very much in the style aloap-macro
with predefined generators, guards, and accumulators éamtist
common data structures. The single outer macro (ndraep)) can
be seen as the fundamental eager comprehension, the 8&gqaetd
the fundamental eager generator (correspondirigtec and:do
in SRFI 42).

Since the control flow is made explicit in Shiver's proposal,
the looping construct is extremely flexible. However, atspre
it is not known whether it is also inherently more powerfuanh
the mechanism defined in SRFI 42, or essentially equivaldns
question comes down to whether the fundamental generaers (
part loop vs.:do) can be expressed in terms of each other. In
addition, it is too early to judge if the additional flexilbyliis
worth the associated mental complexity (8-part loop defibgd
an explicit control flow graph), and what the impact of the anin
design decisions (e.g. infix notation) is on usability. Eitlvay,
Shivers’ work has potential for further clarifying the troature of
iteration in functional programs.

“The anatomy of a loop” (Shivers)

4.8 SRFI 42 “Eager comprehensions”

The term “eager comprehension” was coined for SRFI 42 [2] in
order to make sure the mechanism is never confused with the we
known lazy comprehensions. The reference implementasen-a
ciated with SRFI1 42 is portable undBf RS with hygienic macros.
As the SRFI found some acceptance in the community, implemen
tations are included into several Scheme systems, inculr
[5] and Scheme 48 [3].

The SRFI specifies an extensive set of predefined comprehen-
sions based on what makes sensBRS. Some infrequent com-

prehensions are left out (e.gcd-ec), while others have been The critical issue is the flexibility of the generatodo to which
added for convenience (e.gny?-ec). The predefined typed gen- all other generators are being reduced. In the skeletoneafpefer

erators enumerate the standard data strucRF&S. In addition, a to do-ec:do), the generatotdo can produce a single namaedt
dispatching generator (", read “run through”) selects a generator with an arbitrary number of variabledy ...) and a singleif
based on the type of arguments given, e.g. the réfige ., n —1} guarding payloaddmd) and next iteration.

when given an exact integer. Generators can be run in parallel

and terminated early. Other qualifiers include tests (g)atdcal 5.2 Fully decorated:do

bindings, and side-effects. In practice, the simple loop structure of the previous secis too

~ The syntax is based on a simple naming convention and pre- restricted. In particular it is not possible to derive theiafles
fix notation without exception. The uniform and simple se@pi yjsible to the payload from other state variables, to preepss the

rule “scope extends to the right until the enclosing comension arguments, or to terminate after executing the payloadh®other
ends” is used (Section 3.4). Generators can be added fully mo hgng, complexity must be kept down.

ularly by defining a (hygienic) macro using continuatiorsgiag The particular trade-off chosen for SRFI 42 is based on a fair
style (CPS), or by providing a suitable generator procedDoen- amount of experimentation. It turned out that the followstguc-
prehensions can be added as (hygienic) macros. An intriogutet ture (“fully decorated do”) covers most relevant generators:

SRFI 42 from the perspective of a user, together with somemexa L

ples, is provided in the appendix. (1et (outer-binding ...)

outer-command. . .
(let loop (loop-binding ...)

5. The implementation of SRFI 42 (if not-end-1?

In this section the overall structure of the reference imyaatation (let (inner-binding ...)

for eager comprehensions in Scheme is explained. The réader inner-command. . .

assumed familiar with the specification as laid down in SRH. <payloads

Moreover, it is assumed that the reader is familiar with Sutie (if not-end-27?

hygienic macro facility [1, Sections 4.3, 5.3, 7.1.5], hesm it is (Loop loop-step...) X))

the primary tool for the reference implementation of SRFI 42 The :do generator specifies all variable parts, except 4qay-

load> of course. It allows termination of the loop before or af-

5.1 A skeleton of eager comprehensions .
ter the payload has been executed. Since many generatoist do n

The following is a simplified but self-containe@ {RS) working require “full decoration,” a simple transforming optimiz@mpli-
skeleton of eager comprehensions: fies boolean conditions, eliminates redundahéndlet, and turns
(define-syntax do-ec let without bindings intdegin.

(syntax-rules (if :do) Note that the use of nhamddt allows iteration by rebinding
((do-ec q1 @2 r1 r ...) (Section 3.5), usingpop-bindingandinner-binding Updating by

(do-ec q1 (do-ec @2 r1 r ...))) state modification is also possible by storing the iterasitaie in

((do-ec (if test) cmd) outer-binding and modifying it usingset! within loop. In fact,

(if test cmd)) :do is the only generator in SRFI 42 that allows updating by state

((do-ec (:do 1lbs ne? lss) cmd)

(do-oc:do cmd (:do 1bs ne? 188))) modification because no other generator passes the namiis of t

; call g in CPS, reentry at (%) variables inouter-bindingto its <payload>. _
((do-ec (g argl arg ...) cmd) The chosen structure fardo is powerful enough, and yet still
(g (do-ec:do cmd) argl arg ...)))) restricted enough, to support the following important ¢nnrgions
on generators:
(define-syntax do-ec:do

(syntax-rules (:do) ; reentry point (%) e Any generator can be modified to terminate early, based on

((do-ec:do cmd (:do (Ib ...) ne? (Is ...))) some additional condition, either beforewfile®) or after
(let loop (1b ...) (:until) the payload is executed.
(if ne? e Two or more: do-generators can be merged into a single gener-
(begin cmd ator (: parallel) enumerating all sequences simultaneously.

(loop 1s ...) DN
For the sake of illustration, here is the complete impleragon

(define-syntax :do of the generatorlist in SRFI 42 running a variablear through
(syntax-rules () the concatenation of one or more lists, possibly with an taafthl
((:do (cc ...) 1lbs ne? lss) index variablei.
(cc ... (:do 1lbs ne? 1lss)))))
. . Lo . (define-syntax :list
This code defines the primitive eager comprehenéierec and the (syntax-rules (index)
primitive eager generatardo, utilizing a helper macrdo-ec:do ((:list cc var (index i) arg ...)
for generating code fordo. (:parallel cc (:list var arg ...)
Other generators can now be added without modifying the ex- (:integers 1)))
isting macros. E.g. after defining ((:list cc var argl arg2 arg ...)
(:1list cc var (append argl arg2 arg ...)))
(define-syntax :range ((:list cc var arg)
(syntax-rules () (:do cc (let)
((:range cc var n) ((t arg))
(:do cc ((var 0)) (< var n) ((+ var 1)))))) (not (null? t))

the following comprehension is operational: 6The implementation is complicated by the fact that the ssopfethe

(do-ec (:range n 5) (:range k n) (display k)) variables bound must be preserved while adding the terramabndition.
= prints: 0010120123 This means it i;ot sufficient to add a condition teot-end-17?

20

(let ((var (car t))))
#t
((cdr £)) NN

The generator integers runs through the infinite sequence of
non-negative integers. The expressions suppliedisocorrespond
to the “fully decorated” structure given above, i(e. arg) is the
loop-bindingand (var (car t)) is theinner-binding

Note that the multiple-argument case cannot easily be ctat/e
into a nested loop becauséo can only produce &ingle loop;
nested loops would prevent generator-merging.

5.3 The dispatching generator

As an alternative to typed generatotg4nge, :1ist etc.) the dis-
patching generatar (read ‘run through’) of SRFI 42 first evaluates
its argument expressions and then dispatches on the tygeeof t
values. In other words; is a polymorphic generator. For exam-
ple, (1ist-ec (: x 3) x) produces’ (0 1 2) and (list-ec
(: x "abc") x) produces (#\a #\b #\c). The purpose of the
dispatching generator is making interactive use of conmgnsions
more convenient.

The implementation of: evaluates the arguments and calls
a global dispatching procedure. The dispatcher is to cocisa
generator procedure which is then run to enumerate the segué
generator procedurghas a single argument. When callgaither
returns the next value of the sequence, or, when the sequance
out, it returns its argument. In the implementation, theuargnt
given to a generator procedure (3ist #f), i.e. an object only
eq? to itself.

((list-ec r1 r ...)
(reverse (fold-ec () r1 r ...

cons)))))

Alternatively, the list could beet-cdr!’ed together, which may
be faster (or not).

5.5 Early-stopping comprehensions

The early-stopping comprehensions of SRFI 42, thaig?-ec
and every?-ec, are reduced to the fundamental early-stopping
comprehensiofiirst-ec with the syntax

(first-ec default qualifief expr).

This comprehension evaluates the sequence of values spduyfi
the qualifiers, stopping after the first valueeofpr. If the sequence
is found empty, the result efault
Call-with-current-continuation could be used foranon-
local exit, but the reference implementation does not. \&fitleye
on performance it is implemented by introducing an addélon
stopping variable and modifying each generator to stop timise
variable is found true (which is made happen when contrares

expy).

6. Performance

The top priority for eager comprehensions is combining eenv
nience and performance. In this section, the performanoecas
investigated more quantitatively.

The Sieve of Eratosthenes As an example we consider comput-
ing the primes in{2,...,n — 1}, n > 0, by the algorithm known

For the sake of modularity, the dispatcher procedure can be g5 the “Sieve of Eratosthenes.” The algorithm (200 BC) tioks

retrieved and changed. Moreover, there is a macro produging
generator procedure from a typed generator; this greatiplgies
the definition of dispatching generators.

5.4 Grouping qualifiers with nested

In addition to defining new generators in a modular way it #al
important to define new comprehensions. While in principée is
no problem (after all every eager comprehension can be eeltoc
do-ec), the fact that there can be an arbitrary number of qualifiers
complicates the definition of new comprehensions. In thestor
case, a variation afo-ec must be provided every time.

A simple trick being used in SRFI 42 keeps the amount of code
for a new comprehension low. The syntactic keywnedted can
be used for grouping an arbitrary number of qualifiers intmgle
equivalent qualifier understood lag-ec. This is illustrated by the
definition of a folding comprehension:

(define-syntax fold-ec
(syntax-rules (nested)

((fold-ec x0 (nested q1 ...) qrlr2r ...)
(fold-ec x0 (nested q1 ... @) rir2r ...))

((fold-ec x0 q1 g2 r1 r2 r ...)
(fold-ec x0 (nested ql g2) r1 r2 r ..

((fold-ec x0 expr f)
(fold-ec x0 (nested) expr f))

)

((fold-ec x0 qualifier expr f)
(let ((result x0))
(do-ec qualifier
(set! result (f expr result)))
result))))

The last case of the macro implements the functionality ffer t
case that there is exactly one qualifier; the other casesahtitro
collect all qualifiers into a single one. Now the list compaion
can be defined as

(define-syntax list-ec
(syntax-rules ()

21

all true multiples of the next not yet ticked off number—aine t
primes are left over. The following program represents itlestin
a strind, and uses SRFI 42 for the loops.

(define (primes n)
(let ((p (make-string n #\1)))
(do-ec (:range k 2 n)
(if (char=? (string-ref p k) #\1))
(:range i (* 2 k) n k)
(string-set! p i #\0))
(list-ec (:range k 2 n)
(if (char=? (string-ref p k) #\1))
k)))

This program is compared with three alternatives:

e The typed generatorsrange are replaced by the dispatching
generator: of SRFI 42.

e The comprehensions are implemented in Swindle.

e Thedo-ec is replaced by two nestetb-loops, and thaist-ec
is replaced by a tail-recursive namaedt constructing the re-
sult list.

Figure 1 shows the execution time, divided by A number of
things can be observed.

Firstly, all four alternatives have reasonable perforneaand
are able to compute the primes beld®’ in less thanl0 s. Sec-
ondly, only the “DO loop” variant shows the slow increaseentpd
for this ©(n In In n)-algorithm. The other curves exhibit lower or-
der terms, probably due to the overhead of setting up a loopielw
is most pronounced for the procedure-based variants (“8RE)”
and “Swindle”).

Linear model of executiontime The preceeding example is based
on a meaningful algorithm, which is important for a reatistn-
pression. Now we turn to synthetic algorithms with the goll o

7 A wasteful but practical alternative to arrays of bits, whare absent in
Scheme itself and its portable libraries.

16 T T T T T T T
SRFI 42 () — Swindle ~+
14 Swindle - g SRFI42 () ~
SRFI 42 (:range) ~ 10x DOloop * 1
c 12t % DO loop 1 § SRFI 42 (:range) ©
S 10t >
S =
£ gt =
> £
S e 1 g
O | e O, L *]
S gt 1 g 1 B
.] R _—
0 1 1 1 1 1 1 1
10 100 1000 10000 100000 1e+06 1 10 100 1000
n m

Figure 1. The “Sieve of Eratosthenes.” MzScheme 208, Intel Pen- Figure 2. Two nested loopsr{times outeryn times innernm =

tium 11l Mobile, 1 GHz, Win2k. 224), MzScheme 208, Intel Pentium Il Mobile, 1 GHz, Win2k.

obtaining quantitative information using an abstract madehe generator: stream enumerates a lazy stream, i.e. runs a variable

execution time. through the elements. For the streams we use SRFI 40 [9]hwhic
It is reasonable to assume that the overhead of a loop growsprovides (even) lazy lists called “streams” as new datecires.

according to a linear model consisting of a fixed startup loeed With modification, it would also be possible to use simpledod

to and some constant overheAd per iteration. The objectiveisto streams, for example those presented in [36].

determinet, and At from measured execution times. For this we The comprehension expression

execute different implementations of the following nedteap: (stream-ec qualifier expn

for k= 1.ndo fori = l..m do payloadod od, constructs a stream for the sequence that a correspohilitgec

wheren andm integer parameters. In order to observe both startup- would create. The use etream-ec is best explained by example:
and iteration-overhead, the numberof inner iterations is varied,
while fixing nm for obtaining sufficient total time. The data points
in Figure 2 show the result.

Ignoring the time spent on the inner payload, startup- and (stream-null? s)
iteration-overhead can readily be read off the curves ds steat = [prints: 0] #f
and end value. By fitting

(define s
(stream-ec (: x 10) (begin (display x) x)))

(stream-null? (stream-cdr s))
t(n,m) = (1 +n)to + (n + nm)At = [prints: 1] #f

to the data points in Figure 2, slightly more accurate esgmare

obtained: (list-ec (:stream x s) x)

= [prints: 23456789] (0 1 .. 9)
| to/ps At/us

In other words, the payload expressittegin (display x) x)

g\g:?ldjé 6) Z'gg igzll is to be evaluated on demand, resulting in the digits beingqu
DO loop 136 1.15 as shown.

. It is an impressive illustration of the powerful mechanisms
SRFI42 (range) | 1.3 0.60 available in Scheme thattream-ec can in fact be defined in a
The curves associated with these parameters are showruirefag modular way. A possible implementation:
The particular values obtained here should be taken as &n ind
cation, only. They are heavily dependent on the executiotaiaf
the underlying Scheme system (interpreted, byte-codeativa).

(define-syntax stream-ec
(syntax-rules (nested)
((stream-ec (nested ql ...) q etcl etc ...

Nevertheless, there is a remarkable gap between the eager co (stream-ec (nested ql ... q) etcl etc ;)
prehensions based on procedures and on direct state mtidifica ((stream-ec ql q2 etcl etc ...)
(“SRFI 42 (:range)”). As a rule of thumb, procedures cost a factor (stream-ec (nested g1 g2) etcl etc ...))
of two per iteration and five to ten in startup. We expect tlap g ((stream-ec expression)
to widen for Scheme systems with more sophisticated cotigpila (stream-ec (nested) expression))
but did not investigate this quantitatively. ((stream-ec qualifier expression)
(let ((value #£)

. p (produce-value #f)

7. Eager comprehensions “lazified” (next-value #£))

(define (tail)
(stream-delay
(if (call-with-current-continuation

For what it is worth, eager comprehensions can be turned lazy
in a fully modular way. More precisely, it is possible to defin

the fundamental lazy list comprehensignifeam-ec that is) in a (lambda (cc)
such way that anyagergenerator can be used with it—without (set! produce-value cc)
modifying the macros for the generators. Conversely, ttgerea (next-value #f)

22

#f))
(stream-cons value (tail))
stream-null)))
(define (make-stream)
(stream-delay
(if (call-with-current-continuation
(lambda (cc)
(set! produce-value cc)
(do-ec
qualifier
(call-with-current-continuation
(lambda (cc)
(set! next-value cc)
(set! value expression)
(produce-value #t))))
(produce-value #f)))
(stream-cons value (tail))
stream-null)))
(make-stream)))))

The macro combines all qualifiers into a single one usiegted

(Section 5.4) and uses the fundamental eager comprehension
do-ec for enumerating the sequence defined by the qualifiers.

Call-with-current-continuation is used to exitlo-ec non-
locally after producing a value and possibly resuming they ve
same loop again later.

The eager generator exhausting a stream can be defined as

follows:

(define-syntax :stream
(syntax-rules ()

((:stream cc var arg)

(:do cc (let ()
((s arg))
(not (stream-null? s))
(let ((var (stream-car s))))
#t
((stream-cdr t))))))

Since:streamn is just another generator, it can of course be used in
stream-ec—where it is executed lazily. And sing®-ec under-
stands guards and local definitions, we have implementetiei
is to implement fotazy comprehensions in Scheme.

The bad news isall-with-current-continuation and the
streams of SRFI 40 have a rather high price in terms of time

to the idea of “CPS macros.” Without the discussions with &ik
SRFI 42 would probably not exist. Also | would like to thankilPh
Berwig, the author of SRFI 40 (‘A library of streams’) for use
ful discussions on his lazy comprehensions for Scheme.aProb
bly the biggest source of inspiration for my work presentedeh
were Richard Kelsey’s “Macros for writing loops”’—even thgbu
the casual reader might not suspect this. | would like to khan
Philips Research for making this work possible, and in palair
my colleagues Philippe Coucaud, Zbigniew Chamski, and Karno
Gelder for their valuable remarks. Finally, | would like tank the
anonymous referees for their corrections and discussiopadtic-
ular the third referee brought up the important issue of seits
and provided an example exposing the 'update by rebind vs. by
side-effect’ choice.

References

[1] R. Kelsey, W. Clinger, and J. Rees (eds.): RevisBeport on the
Algorithmic Language Scheme. 20 February 1988+. schemers.
org/Documents/Standards/R5RS
[2] S. Egner: SRFI 42 “Eager Comprehensions”. Finalizeg Ju2003.
srfi.schemers.org/srfi-42
[3] R. Kelsey and J. Rees: The Scheme 48 Systa18. org
[4] R. Kelsey and J. Rees: “Macros for Writing Loops.” Theduce
library of Scheme 48 [3]s48.0rg/1.2/manual/s48manual _53.
html
[5] The PLT Team: PLT Schemeww.plt-scheme.org
[6] PLT MzSchemewww.plt-scheme.org/software/mzscheme
[7] E. Barzilay: The Swindle Library for PLT Scheme [5]. Thellect-
macro of the modulertisc.ss.” wuw.cs.cornell.edu/eli/
Swindle/misc-doc.html#collect
[8] E. Hilsdale, D. P. Friedman: Writing Macros in Continiagi- Passing
Style. Scheme and Functional Programming 2000. Septendféx. 2
[9] P. L. Bewig: SRFI 40 “A Library of Streams.” Finalized Augt 22,
2004.srfi.schemers.org/srfi-40
[10] LispWorks Ltd.: The Common Lisp HyperSpec (1996-2005)
Chapter 6 “lteration."www.lispworks.com/documentation/
HyperSpec/Body/06_.htm

[11] G. van Rossum: Python Reference Manual, Release 3@.March
2005. Section 5.2.4 “List Displaystww.python.org/doc/2.4.
1/ref/lists.html

and space consumption in most major Scheme systems. For this[12] Wolfram Research: Mathematica Version 5.0, Documétaof

reason, the lazy comprehensions defined in this sectioridhoti

be understood as a serious proposal for a programming lgegua
construct—but rather as of great educational and entértaialue.

It should be emphasized, though, that lazy comprehensambe
very efficient, provided they are compiled properly.

8. Conclusions

Comprehensions are a particularly concise notation fotinvgi
nested and parallel loops with accumulation of resultshéengast
few years they have come to popularity in many programming la
guages, including Python and Erlang. When used wisely, cemp
hensions can improve readability, modularity, and poggikeffor-
mance.

However, unlike the lazy list comprehensions (ZF expressgio
of call-by-need functional languages (like Haskell), arespond-
ing concept in a call-by-value setting (like Scheme) hastub
tially different requirements in order to qualify for a geakly use-
ful programming construct. SRFI 42 is a specific design ainain
this goal. It is an impressive demonstration of Scheme’s fhexa
ibility that that the mechanism specified in SRFI 42 can belémp
mented naturally without extending the language itself.

Acknowledgements Mike Sperber has provided important input
for eager comprehensions in Scheme, in particular he pbimte

23

Table. documents.wolfram.com/mathematica/functions/
Table

[13] W. Bosma, J. Cannon: Magma (V2.11, May 2004) Documéntat
of “Sets” and “Sequencesthagma.maths.usyd. edu.au/magma/
htmlhelp/part2.htm

[14] Ericsson AB: Erlang, Reference Manual (Version 5.4Sction 6.22
“List Comprehensions.tww.erlang.se/doc/doc-5.4.3/doc/
reference_manual/expressions.html#6.22

[15] Martin Sctonert et. al.: GAP—Groups, Algorithms, and Program-
ming, (Version 3 Release 4 Patchlevel 4) LehrstuhliDMathematik,
Rheinisch WesHlische Technische Hochschule, Aachen, Germany,
1997.

[16] S. L. Peyton Jones (ed.): Haskell 98 Language and Li#gsafhe Re-
vised Report, December 2002. Section 3.11 “List Comprebass
www.haskell.org/onlinereport/exps.html

[17] The Glorious Glasgow Haskell Compilation System Us&uide,
Version 6.4. Section 7.3.4. “Parallel List Comprehensionsw .
haskell.org/ghc/docs/latest/html/users_guide/syntax-
extns.html#parallel-list-comprehensions

[18] S. L. Peyton Jones: The Implementation of FunctionabPamming
Languages. In particular, Chapter 7 “List ComprehensidRsiilip
Wadler). Prentice-Hall, Hemel Hempstead, 1987.

[19] R. B. K. Dewar: The SETL Programming Language. 1979.

[20] Schwartz, J.T., Dewar, R.B.K., Dubinsky, E., and Sdfemn, E.:
Programming with Sets: An Introduction to SETL. Springer&g,

New York, 1986.

[21] R. K. Dybvig: The Scheme Programming Language, 3rdiauit
MIT Press 2003. Section 9.3. “A Set Constructarw . scheme.
com/tspl3/examples.html#./examples:h3

[22] O. Shivers: “The Anatomy of a Loop: a Story of Scope and
Control.” Presentation given &@aniel P. Friedman: A Celebration
(Bloomington (IN), December 3, 2004yww.cs.indiana.edu/
dfried_celebration.html

[23] O. Shivers: “The Anatomy of a Loop: a Story of Scope anci@d.”
Presentation given at Laboratoire d’Informatique de PariRaris,
January 24, 2005yww.1ip6.fr/fr/liens/organise-fiche.
php?theme=54RECORD_KEY (organise)=id&id(organise)=98

[24] O. Shivers: “The Anatomy of a Loop: a Story of Scope anahi@d.”
To be published at ICFP 2005, Tallinn, Estonia.

[25] R.M. Burstall: Design Considerations for a FunctioRabgramming

Language. Infotech State of the Art Conference: The Soéiwar

Revolution, Copenhagen, October, 1977.

R. M. Burstall, D. B. MacQueen, and D. T. Sannella: Hope:

Experimental Applicative Language (1980). Conference tBPL

and Functional Programming archive Proceedings of the 2g3d

Conference on LISP and Functional Programming, pp. 136-143

Stanford University, California, United States.

D.A. Turner: The Semantic Elegance of Applicative Laages, in

Proceedings of the 1981 Conference on Functional Progragimi

Languages and Computer Architecture 1981, Portsmouth, New

Hampshire, USA.

D.A. Turner: Miranda: A Non-strict Functional Languagvith

Polymorphic Type. Proceedings of a Conference on Fundtiona

Programming Languages and Computer Architecture, pp.,1-16

Nancy, France, 1985.

[29] D.A. Turner: An Overview of Miranda. ACM SIGPLAN Notise
Volume 21, Issue 12, December 1986.

[30] R. C. Waters: The Series Macro Package. ACM SIGPLAN Lisp
Pointers, Volume lll, Issue 1, July 1989.

[31] R. C. Waters: The Series Macro Package for Common Lisp.
series.sourceforge.net

[32] G. Lapalme: Implementation of a “Lisp Comprehensionadvo.
ACM SIGPLAN Lisp Pointers, Volume 1V, Issue 2, April 1991.

[33] W. Schelter: The SLOORP lteration Facility (198%puw-cgi.cs.
cmu.edu/afs/cs/project/ai-repository/ai/lang/lisp/
code/iter/loop/sloop/0.html

[34] F. Ritter, J. Panagos: YLOOP: Portable Implementatibthe Yale
LOOP Macro (1986)www-cgi.cs.cmu.edu/afs/cs/project/
ai-repository/ai/lang/lisp/code/iter/loop/yloop/0.
html

[35] Massachusetts Institute of Technology: The MIT LOORckg(1980,
1986)www-cgi.cs.cmu.edu/afs/cs/project/ai-repository/
ai/lang/lisp/code/iter/loop/mit/mit_loop.cl

[36] H. Abelson, G. J.Sussman, J. Sussman: Structure aerptetation
of Computer Programs. 2nd ed., MIT Press, Cambridge (MA9619

[37] E. Charniak, C. K. Riesbeck, D. McDermott, and J. R. Meeh
Artificial Intelligence Programming, 2nd ed. Lawrence Edim
Associates, 1987.

[26]

[27]

(28]

24

Appendix: Summary of SRFI 42

For illustration, this appendix contains a brief introdant to
SRFI 42 from a user’s perspective, together with examplég. T
actual specification is available at

http://srfi.schemers.org/srfi-42/srfi-42.html

In its most simple form, a comprehension according to SRFI 42
looks like this (its value aftet>):

(list-ec (: 1 B) (x i 1)) => (014 9 16).

Here,i is alocal variable sequentially having the valOes, . . . , 4,
and the squares of these numbers are collected in a listhvigic
the result. The following example illustrates most coniarg of
SRFI 42 with respect to nesting and syntax:

(list-ec (: n 1 4) (: i n) (list n 1))
=>’((10) (20) (21) (30) (31) (32)).

In this example, the variablefirst has value 1 then 2 and finally 3.
For each value af, the variablei assumes the valuésl, ... n—
1 in turn. The expressiolflist n i) constructs a two-element
list for each binding, and the comprehensiarst-ec collects all
these results in a list.

Eager comprehensions in the sense of SRFI 42 are just hggieni
macros. The basic syntactic form of a comprehension is

(do-ec qualifier* command,

i.e. zero or moregualifierarguments andeommandirgument. The
do-ec comprehension enumerates the sequence of binding envi-
ronments specified by the qualifiers and for each such envieon
evaluatecommandor side-effects. In a similar fashiofsum-ec
qualifier* expressioh sums the values obtained by evaluating
pressionfor the sequence of binding environments specified by
qualifier*. If qualifier” is empty (i.e. no qualifiers at all) thesx-
pressionis evaluated once. The eager comprehensipst-ec
constructs a list of the values of its expression.

The most common qualifiers are generators. For example,
(:range i 5) runs variablei throughO,1,...,4. The genera-
tor (: i 5) does the same but uses the type of its argumensgji.e.
to decide that it is a range of exact integers that is to be enated.
In every iterationi is bound to a new location where the integer
for that iteration is stored. Other qualifiers are for filbeyje.g.(if
condition, or for side-effect, e.g(begin command. The full
syntax of SRFI 42 is listed with comments in Table 4.

Checklist for adding comprehensions and generators

The following checklists can if the user wants to add apgilica
specific comprehensions and generators in the style of SRFI 4
For adding an application-specific comprehension:

1. Use the syntaxaccu-ec <outers qualifier” <inners), with
<outer> being a fixed list of parameter expressions (e.g. for
default values)<inners being a fixed list inner expressions
(usually justexpressioly andaccurefering to the accumulation
process that is being executed.

2. Use the left-to-right scoping rule as much as possible.

. Avoid syntactic keywords, in particular in infix position

4. Evaluate parameter expressions exactly once, or at mast o
if their evaluation is control-flow dependent. Implemeris ty
insertinglet.

5. Make sure the implementation does not copy macro argument
because that might lead to exponential growth in code sizmwh
nested.

w

For adding an application-specific typed generator:

expression— comprehensiof. . .
comprehension-
(ordinary-ec qualifief expressioh

| (vector-of-length-ec k qualifier expressioh
| (fold-ec zo qualifier" expressionf.)
| (fold3-ec z(qualifier expressionfi f2)
| (do-ec qualifier command
| application-specific-comprehension
ordinary-ec—
list-ec | append-ec | string-ec | string-append-ec
| vector-ec | sum-ec | product-ec | min-ec | max-ec
| any?-ec | every?-ec | first-ec | last-ec
qualifier —
generator
| (if expressioh
| (not expressioh | (and expressiof) | (or expressiof)
| (begin command expressioh
| (nested qualifier”)
generator—
(: variables expression)
:1ist variables expression)
:string variables expression)
:vector variables expressioh)
:integers variableg
:range variables range-limits
:real-range variables range-limity
:char-range variables min max
:port variables expressiorj read])
:dispatched variables dispatch expression
:let variables expression
:parallel generatof)
:while generator expression
:until generator expression
:do [(let (ob*) oc*)] (Ib*) nel?
[(Qet (ib*) ic*) ne2?] (Is*))
application-specific-typed-generator
range-limits— stop| start stop| start stop step
variables— identifier| (index identifier)]
xo, f1, f2 min, max read, dispatch start, stop step— expression

AN A AAAAAAAAA A A

evaluateexpressiorfor the sequence of binding
environments (or states) specified by the qualifiers
vector-length of result known to b

fo(xn, fo(xn-1, - fa(x1,20) - - -)) for z1. ., from expression
fo(@n, f2(Tn-1," - fa(z2, fr(z1)) -+)), Orzo if n=0
evaluatecommandor side-effect

define using hygienic macro, use checklist

early stopping (aka short evaluation)

insert test (aka guard or filter)
abbreviate(if (not expressioh) etc.
insert side-effect

syntactic grouping of qualifiers

dispatch on type (list,string,vector,integer,real, qbant)
elements of a (proper) list

characters of a string

elements of a vector

the infinite sequence, 1, . ..

exact integer range

real (either all exact, or all inexact) range

character range up to and includingx

read defaults taread

callsdispatchto construct generator procedure to run
single value sequence (for introducing intermediate éa)a
interleaved execution, until one a generators is exhausted
executggeneratorwhile expressions non-#f
executegeneratoruntil (and incl.)expressions non-#f

loop by namedtet, possibly decorated

define as hygienic macro in CPS, use checklist
from start (default0) to stop(excl.) bystep(default1)
index variable runs through 1, . ..

Table 4. Syntax of SRFI 42.

1. Use the syntax(:type var| (index i) | <args>), with

(product-ec (:range k 2 (+ n 1)) k))

<argss> being the argument expression(s) defining the loop.

Heretypeindicates the type of object to enumerate through.

2. Usethe syntax:type vai---var, [(index i)] <args>)
if there are always exactly variables to iterate through.
3. Use the syntax(:type (var*) [(index i)] <argss>) if
there is a variable number of variables to iterate through.
. Use the left-to-right scoping rule as much as possible.
. Avoid syntactic keywords, in particular in infix position

~N o oA

. Update the iteration state by rebinding, i.e. make sureaal
ables visible to the payloaddr, i) are bound either itb* (loop
bindings) or inib* (inner bindings).

8. Support multiple arguments if that makes sense, but aearil
arguments.

Examples

The factorial of a non-negative integer:

(define (factorial n)

. Make sure argument expressions are evaluated exacty onc

The sum of the divisors of a positive integer:

(define (sigma n)
(sum-ec (:range d 1 (+ n 1))
(if (zero? (modulo n d)))
d)

Pythagorean Triples with entries not exceedinge. (a, b, ¢) such

thata®? + > =2 andinteged < a <b<c<n:

(define (pythagoras n)
(list-ec (:let sqr-n

(:range a 1
(:let sqgr-a
(:range b a (+ n 1))
(:let sqr-c (+ sqr-a (* b b)))
(if (<= sqr-c sqr-n))
(:range ¢ b (+ n 1))
(if (= (* ¢ c) sqr-c))
(1ist a b ¢)))

(*
(+
(*

n n))
n 1))
a a))

Quicksort with naive choice of pivots (stable):

25

(define (gsort xs)
(if (null? xs)
>0
(let ((pivot (car xs)))
(append
(gsort (list-ec (:list x (cdr xs))
(if (< x pivot))
x))
(list pivot)
(gsort (list-ec (:list x (cdr xs))
(if (>= x pivot))
x))))))

Approximation ofr by Bailey-Borwein-Plouffe’s hex-digit extrac-
tion formula, i.e.|(pi-BBP m) — «| < 16~ ™ form > 1.

(define (pi-BBP m)
(sum-ec (:range n 0 (+ m 1))
(:let n8 (* n 8))
(x (- (/ 4 (+ n8 1))
(+ (/ 2 (+ n8 4))
(/ 1 (+ n8 5))
(/ 1 (+ n8 6))))
(/ 1 (expt 16 n)))))

Adding two vectors of equal length (simple program):

(define (vector+ x y)
(vector-ec (:parallel (:vector xi x) (:vector yi y))
(+ xi yi))

Adding two vectors of equal length (no intermediate lists):

(define (vector+ x y)
(vector-of-length-ec (vector-length x)
(:range i (vector-length x))
(+ (vector-ref x i) (vector-ref y i))))

Reading a line from an input port, returning all characteradr
(including newline if present), or returning the eof object

(define (read-line port)
(let ((line
(string-ec
(:until (:port c port read-char)
(char=7 c #\newline))
c)
(if (string=7 line "")
(read-char port) ; eof-object
line)))

Reading a file, returning a list of the lines:

(define (read-lines filename)
(call-with-input-file
filename
(lambda (port)
(list-ec (:port line port read-line) line))))

26

