
13

Eager Comprehensions in Scheme
The design of SRFI 42

Sebastian Egner
Philips Research Laboratories, The Netherlands

sebastian.egner@philips.com

Abstract
This article is about a certain style of programming iterative pro-
grams. It is based on a concept we have named “eager compre-
hension,” which is a convenient and efficient alternative totail re-
cursion,do-loops, and lazy list comprehensions (aka “ZF expres-
sions”). Eager comprehensions are syntactic forms that encapsulate
the details of an accumulation process (counting elements,creating
a list, etc.). Within these forms, expressions called generators hide
the details of enumerating basic sequences (running through a list,
through a range of integers, etc.). By combining these elements in
a clearly structured and well-defined way, a concise and powerful
notation for writing loops emerges.

Of course, this style of programming is not new—it is implicitly
present in any form ofloop-macro already—and so we discuss
several concrete designs that aim for the same goal. Surprisingly,
however, none of these designs has had much impact on Scheme,
despite the fact that their common floor plan has been around for
decades. A particularly clean new design, SRFI 42, on the other
hand has already made some friends in the first few years of its
existence. Explaining the design and implementation of SRFI 42
constitutes the main part of this article.

1. Introduction
The original motivation for working on a library for comprehen-
sions in Scheme was my dissatisfaction with the available mech-
anisms for writing trivial loops. In addition, I wanted to create
an efficient mechanism for converting data structures without a
quadratically increasing number of conversion operationsnamed
chalk->cheese.

The most basic example for a trivial loop is the construction
of a list of the firstn non-negative integers, using the constructs
available in the Revised5 Report on the Algorithmic Language
Scheme (R5RS) [1] only. Maybe the shortest1 and clearest (!?)
expression for this is

(do ((k (- n 1) (- k 1))
(x ’() (cons k x)))

((< k 0) x))

1 Please let me know if you can do shorter than this inR5RS.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Sixth Workshop on Scheme and Functional Programming.September 24, 2005,
Tallinn, Estonia.
Copyright c© 2005 Sebastian Egner.

This is terrible, not so much for the number of key strokes butas an
example where details obscure intention.

In SRFI 42 that would be(list-ec (: k n) k), for inter-
active use, or(list-ec (:range k n) k) if speed is worth an-
other five key strokes. Since this article is not about the specifica-
tion of SRFI 42, but about the design principles, a basic familiarity
with the following document will be assumed from now on:

http://srfi.schemers.org/srfi-42/srfi-42.html

(Alternatively, there is a brief introduction in the appendix.) While
initially the goal was adapting the comprehensions found inHaskell
to Scheme, a number of insights turned this enterprise into awhole
new direction and eventually led to the concept later coined“eager
comprehensions.” These ideas can be summarized as follows:

1. Truly lazy comprehensions are not an attractive option in
Scheme because the overhead for non-strict data structuresand
explicit handling of continuations is high. Moreover, lazycom-
prehensions can be confusing in the presence of side-effects.

2. While list comprehensions and list generators are sufficient
for comprehensions in lazy languages, in eager languages it
is essential to be able to add application-specific comprehen-
sions and generators easily—and without modifying the exist-
ing ones.

3. While simple comprehensions resemble mathematical set com-
prehensions, more complex expressions increasingly look like
nested and parallel loops with accumulation of the results.In
fact, that is what they are.

4. The fundamental eager comprehension has nothing to do with
lists, but executes a command repeatedly according to its gen-
erators. The fundamental eager generator repeatedly modifies a
state explicitly.

After these insights it was obvious that “bringing Haskell’s compre-
hensions to Scheme” is the wrong goal to pursue. The more inter-
esting question is “What would be a useful corresponding concept
in an eager programming language?” The answer is quite surpris-
ing:

Eager comprehension:A convenient style of programming
nested and parallel loops with accumulation of results. Ide-
ally, scope and syntax are easy to remember and the irrele-
vant details of the iteration are hidden from the user.

The concept can also be interpreted as an (essentially syntactic)
abstraction mechanism from details of iteration: if you have a new
data structure that has given rise to some natural iteration, then
it might pay to encapsulate the details of this iteration process in
a generator. Similarly, if there is a natural way of constructing a
data structure from a sequence of states—a comprehension might
be useful to applications.

14

Structure of this article. The remainder of this article is orga-
nized as follows. In Section 2 different notions of “comprehension”
are introduced. These notions are related but must not be confused.
In particular the term “eager comprehension” is being used as a re-
minder that this concept has in fact very little to do with lazy list
comprehension.

Section 3 continues with stating the major design issues for(ea-
ger or lazy) comprehensions as a general and practically useful lan-
guage construct. Section 4 discusses a number of concrete designs
of loop facilities and comprehensions for the Lisp family oflan-
guages, and related work. The implementation of SRFI 42 is the
subject of Section 5. It explains the overall structure and implemen-
tation strategy used in the reference implementation (which, un-
fortunately performance-wise, is the only one available till today).
In Section 6 the performance of the portable reference implemen-
tation is compared with other libraries. Finally, for entertainment,
Section 7 presents a modular way of addinglazycomprehensions
to SRFI 42.

2. Concepts of comprehensions
In this section we briefly review different concepts of comprehen-
sion. For the sake of clarity we will always refer to them by a longer
name than just “comprehension.”

Set comprehension. The mathematical notation2

“{f(x) | P (x), x ∈ S}”

denotes the set of all values of the functionf for arguments in
the setS and satisfying the predicateP . The notation explicitly
refers to a candidate elementx, a predicateP , a universeS, and a
mappingf . This notation is called aset comprehension.

The stated form is maybe the most frequently seen, but it is not
the most fundamental. The most basic form of set comprehension
is {y | Q(y)}, wherey = f(x), P (x), andx ∈ S have been
combined intoQ(y). This concept, i.e. denoting a set defined by a
predicate (formula), is the core of what is meant by “comprehen-
sion.” While this concept has been in use for a long time already,
it was not before the development of axiomatic set theory by Zer-
melo, Fraenkel and others in the 1920s that the idea was studied
systematically. The notion of set comprehension, and its notation,
is so natural that it has gradually become a mathematical standard,
i.e. the reader of a mathematical article is expected to understand it
without definition.

Comprehensions in programming languages. The notational
convenience of set comprehension has inspired programminglan-
guage constructs with similar intent: name the data structure de-
fined by an expression for its elements. For example, in the SETL
language [19, 20]

{n**2 : n in {0..9}}

denotes the set of the first ten integer squares. This construct,
however, does not only specify the result but also analgorithm for
constructing the result (“execute a loop overn, square the values,
collected them in a data structure”). It is often convenientto ignore
the algorithmic aspect, but most of the time this is not possible—
after all, algorithms do take time, or may not terminate at all. For
this reason, set comprehension in mathematics and in programming
languages should never be confused.

Lazy comprehensions. While comprehensions were contained in
some eager (aka call-by-value) programming languages for along
time, they only became popular once they were introduced forlazy
lists in lazy (aka call-by-need) functional programming languages

2 Instead of “|” also “:” and “,” are in use.

primitive purpose
set set denote a set by properties
lazy lazy list sequence processing
eager side-effect writing nested and parallel loops

with accumulation of results

Table 1. Different concepts of “comprehension.”

(mostly based on a typedλ-calculus with normal order reduction)
in the early 1980s. In contemporary syntax (Haskell), for example,

[x*x | x <- [0..]]

denotes the (infinite) lazy list of all integer squares. Its elements
will be made explicit once they are needed.

Such alazy comprehensionprovides a convenient notation for
processing lazy lists by means of mapping, filtering, and concate-
nation. The primitive lazy comprehension (written[exp|qual+] in
Haskell) constructs a lazy list, and the primitive lazy generator (<-,
read ‘drawn from’) binds a variable3 to the elements of a lazy list.
In addition, several generators can be nested, elements canbe fil-
tered from the sequence, and local variables can be defined.

Lazy list comprehensions are widely accepted due to their con-
cise notation, and good readability in most cases. Their efficiency is
as good as any (lazy) alternative. Their primary shortcoming is an
implicit tendency to overuse them, i.e. to write complicated nested
lazy comprehensions where an appropriate abstraction had better
been introduced. The decreasing readability of more complicated
lazy comprehensions is probably due to the use of infix operators
and the “[expr|outer..inner]” scoping rule, which is not simply
left to right.

From the point of view of programming language design, it
is most informative to recall the historical development oflazy
comprehensions [18, Chapter 7]—in particular that their true nature
was not fully understood for a long time: lazy comprehensions
were first introduced as part of the NPL language (Burstall, 1977)
[25]. In NPL, however, comprehensions construct a set of objects.
While this construct is closest to the mathematical notion,lazy sets
are not nearly as useful aslazy listsare. It appears that lists and
graphs are more fundamental to programming than sets (unordered
collections); in addition, lists (in particular lazy lists) are a universal
and natural mechanism of communication between different parts
of a program. Consequently, set comprehensions were not essential
and when NPL evolved into the Hope language (Burstall, 1980)
[26] lazy comprehensions where not included.

Lazy list comprehensions made their debut in the KRC language
(Turner, 1981) [27] as “ZF expressions.” Later they were included
in several other functional programming languages like Miranda
[28, 29] (Turner, 1985). But still mathematical beauty has distracted
the mind from proper programming pragmatics for some time: gen-
erators in lazy list comprehensions can denote infinite iterations.
Hence, from a mathematical point of view the most natural way
of advancing nested generators is by (Cantorian) diagonalization,
also known as “dove-tailing.” This is the only way of reaching ev-
ery pair eventually in the case of an infinite inner generator. While
diagonalization looks like a good idea at first, it is not. Mathemati-
cal “eventually” can be a long time, and in practice diagonalization
is not worth a lot. Thus lazy list comprehensions evolved to run
the generators in the straight-forward way, i.e. exhausting the in-
ner loop before advancing the outer loop, while the diagonalizing
variants slowly went out of fashion (not without constantlybeing
reinvented).

3 A pattern possibly containing variables to be precise.

15

Specialized eager comprehensions. Encouraged by the success
of lazy comprehensions, designers of eager programming lan-
guages recently started to include comprehensions again. E.g. Python
[11] contains list comprehensions. While theseeager comprehen-
sionscan be quite useful, in particular for interactive use and script-
ing, they are much less universal in nature than their lazy counter-
parts. This is explained in greater detail in Section 3.3.

Eager comprehension as abstraction of iteration. Surprisingly,
this perceived limitation is again due to a lack of understanding for
the true nature of comprehensions, eager comprehensions this time.
As explained above, lazy comprehensions for lists are fundamental.
For eager comprehensions, however,side-effect(state) is the most
basic concept4.

As indirect evidence of this fact consider that any eager com-
prehension can be implemented in terms of

(do-ec qualifier∗ command),

which executescommandfor each state in the sequence defined by
the generators and testsqualifier∗. Similarly, each eager generator
can be implemented in some form of state-transforming iterator, in
the sense ofdo. Amazingly, this insight—which is made explicit
here—is already implicit in the design of nearly any loop facility
for the Lisp family of languages, but it has not been acknowledged
as such.

While the “can be implemented by”-relation usually does not
lead to the most fundamental concept, it does so in this case.Con-
sider the alternative of implementing the eager comprehensions in
terms of (eager) lists: the resulting implementation will be horrible!
An accumulation process (e.g. counting) cannot start untilthe last
element of the enumerated sequence has been produced and stored
in a data structure. The resulting loss in performance, as a function
of sequence length, is in fact unbounded.

Being built on this insight, SRFI 42 eventually reduces any com-
prehension todo-ec, and any generator to:do—which is some
flexible but fixed loop structure (Section 5.2) based on explicit state
transformation. In combination with a number of rules simplifying
the syntax and introducing a clean scoping rule, this results in a
facility for iteration that is both efficient and convenient.

3. Design considerations
In this section we discuss the main issues that affect the usefulness
of a programming language construct for eager comprehensions,
or for writing nested and parallel loops with accumulation of the
result. We approach these issues by exploring design alternatives:
which design decisions exist and what are their implications? Our
primary goal is not a coherent and complete theory, but rather an
informal discussion of the relative benefits of various designs in
terms of convenience and effectiveness of the language construct
for writing programs.

3.1 Mental complexity

Maybe the most important consideration is what could be called
“mental complexity.” As an anecdotal quantitative measureof men-
tal complexity we propose to count the number of times the refer-
ence manual of a loop construct was consulted when reading other
people’s loops, multiplied by the years of experience of thereader
with that particular construct.

More seriously, we would like to point out that any concept
for eager comprehensions, or loops, represents a trade-offbetween

4 We use the term ‘state’ here in an informal way, refering to the status of all
bits that could possibly alter the future of an iteration. Later, in Section 3.5,
we will clarify that a sequence of states may actually mean a sequence of
binding environments.

simplicity and flexibility. This follows from the fact that loops
cover a large scale of complexity in programs, from simple repeti-
tion to complicated nested and parallel actions with several condi-
tions in between and numerous invariants. In effect, designing “the”
loop construct might not be the right goal to aim for, and it might
also be necessary to predefine frequent idioms of loops. An import
tool for flexibility is orthogonality—for example in SRFI 42every
generator can be modified by adding another termination condition.

While the orthogonality idea is strong in Scheme, the iterative
part of it has been somewhat neglected. (More on that in Sec-
tion 4.1.) Nevertheless, the looping constructs thatare available
in R5RS are not too complicated to remember, i.e. mental com-
plexity is relatively low. At the other extreme end, Common Lisp’s
loop might be found—highly flexible but also highly complicated.
(Refer to Section 4.5.)

3.2 Interactive use vs. batch mode

Scheme can be used as an interactive system or for writing batch
programs. Although these modes are just two extremes of an entire
spectrum of human-computer interaction they are useful abstrac-
tions for evaluating designs. The two modes impose conflicting re-
quirements: concise notation and flexibility is most important to in-
teractivity, while robustness, efficiency, and readability are primary
concerns for batch mode.

In the case of eager comprehensions, the key to efficiency is the
use of typed state-based generators, i.e. programs that enumerate
a sequence by modifying a local state (values of variables),the
state being of statically known type (e.g. an integer counter). Note
that this does not necessarily mean the state is updated by using
set!, it could also mean that the state is updated by rebinding
(as with tail-recursive procedures). If the state is represented in
boxed data structures, or if each loop iteration requires dispatching,
performance usually suffers. For this reason, most loop constructs
for Scheme (or Lisp in general) concentrate on the batch mode,
only. In SRFI 42, on the other hand, the requirements of interactive
and batch mode are addressed by two different mechanisms (typed
and dispatched generators) which can be mixed freely.

3.3 Modularity

Modularity for comprehensions means that new types of generators
and new types of comprehensions can be added without modifying
the already existing generators or comprehensions. For thesake of
illustration, let us assume the new type “Fooziset” is yearning for
comprehension.

In lazy comprehensions modularity is for free: adding a gener-
ator means writing a function returning a lazy list to be usedon
the right-hand side of the single binding and enumeration construct
(“<-” in Haskell). Adding a comprehension means writing a func-
tion processing a lazy list, possibly constructed by a comprehen-
sion. In effect, the comprehension

foozi of list [x | x <- list of foozi s]

produces an element-wise copy of a Fooziset, whatever that actu-
ally means.

For eager comprehensions, on the other hand, modularity is a
challenge. And what is more important, modularity is the keyfor
creating an abstraction that goes beyond a mere idiom for frequent
programs! Unfortunately, the importance of modularity foreager
comprehensions has long been underestimated. Most designsmake
it either outright impossible to add new generators and comprehen-
sions, or this is inconvenient and cumbersome. In effect, the users
of the mechanism do not take the trouble of adding the comprehen-
sions and generators they really require in the application—wasting
a great opportunity for useful abstraction.

16

scoping convention examples
[expr|inner..outer] Magma
[expr|outer..inner] Haskell, Python, Erlang,

(Mathematica), Swindle, . . .
[inner..outer|expr] —
[outer..inner|expr] SRFI 42
[[expr|inner]|..outer] Mathematica
[outer|..[inner|expr]] Ruby, Perl, GAP

Table 2. Possible scoping conventions

For example, a library for number theory would include a gen-
erator enumerating the prime divisors of an integer, together with
its multiplicity, because that is what is needed in many places. A
library for graphs, on the other hand, would provide generators for
enumerating the vertices of a graph, or the edges leaving a particu-
lar vertex. All this is only possible through modularity.

For the design of SRFI 42 modularity has always been one of
the top priorities (right after efficiency), and the biggestchallenge.
The breakthrough came when I learned about the technique of
using hygienic macros in continuation-passing style (CPS)[8]. This
mechanism allows fully modular definition of eager generators, and
it has prompted me to start the design again from scratch. Theresult
will be explained in greater detail in Section 5.

3.4 Scope

Eager comprehensions are programming language constructsfor
writing loops. As such they include syntactic binding formsfor the
loop variables. Where there is binding, there is scope. Thismeans
a loop variable is visible to some parts of the program but not
to others—irrespective of whether this scope is specified ornot,
or whether there are simple rules to remember it. We emphasize
this trivial fact because a conscious design of the scope is another
critical factor for useful eager comprehensions.

In order to be able to talk about scoping, a language is needed
to represent different approaches. For this consider the following
simplified view of a comprehension: a comprehension consists of
an expressionexpr and zero or more nested qualifiersinner, . . . ,
outer. If the qualifiers are generators,inner denotes the one spin-
ning fastest andouter the one spinning slowest. Clearly, this ter-
minology only makes sense ifinner is in the scope of all bindings
introduced byouter, and if expr is in the scope of bothinner and
outer. In other words,expr, inner, outer are pieces of code with a
certain scoping relation (and control flow) with respect to one an-
other. These pieces can then be composed into a comprehension
syntax using ‘[’, ‘]’, and ‘|’. All possibilities, together with exam-
ples, are listed in Table 2. Some arguments are:

1. It is an advantage to have eager comprehensions mimic the
notation of set comprehensions because it is widely known. Set
comprehensions use the[expr|qualifier∗] convention, where the
nesting of the qualifiers is not fixed and must be deduced from
the context. For simple comprehensions, this is no problem and
the mathematical notation looks extremely familiar.

2. The most simple conventions nest scope in one direction,
i.e. [expr|inner..outer] or [outer..inner|expr]. In a syntac-
tically impoverished language like Scheme this is particularly
attractive.

3. More complicated comprehensions will increasingly looklike
explicitly nested loops (do, named-let), and possibly be mixed
with them. In Scheme, bindings are always introducedbefore
the body, so it is an advantage to have outer bindings appear
first.

These contradicting preferences naturally lead to the mostpop-
ular choice[expr|outer..inner] because it looks like a set com-
prehension (1.) while introducing bindings left-to-right(3.); refer
to Table 2.

For SRFI 42 linearity in scope was considered most impor-
tant (2.), which together with Scheme’s preference for left-to-right
binding (3.) leads to[outer..inner|expr]. In effect, SRFI 42 sports
an extremely simple scoping rule:

The bindings introduced by a generator are visible to all
subsequent expressions (qualifier or other) of the same com-
prehension, and only to these5.

While in principle it would also be possible to have a compiler
derive the nesting of the qualifiers from the dependency graph, this
is a fundamentally bad idea. It would allow reordering the control
flow by renaming variables, hashing readability in the process.

3.5 The meaning of state

As the Scheme language supports genuine state and destructive
modification of data structures, it is important to clarify what is
actually meant by ‘iteration state.’ More precisely, the designer of
eager comprehensions needs to take position with respect tothe
following questions:

1. What is it supposed to mean if the payload of a generator
retains (a reference to) an iteration variable, and uses it in later
iterations or even outside the loop?

2. If the payload modifies an iteration variable?
3. If the payload modifies the loop-defining arguments or defining

data structures while a loop is in progress?

Before considering possible approaches to these questions, recall
that Scheme uses the following model of ’variable’ [1, Section 3.1]:

An identifier that names a location is called a variable and
is said to be bound to that location. The set of all visible
bindings in effect at some point in a program is known as the
environment in effect at that point. The value stored in the
location to which a variable is bound is called the variable’s
value.

Concerning the first semantic question, consider the following pro-
gram (in SRFI 42 syntax):

((cadr (list-ec (:range n 3) (lambda () n))))

The result of this expression depends on how:range updates its
loop variable: by rebinding or by state modification?

In the state modification model, the variablen is bound to a
single location, andset! is used during the iteration to store the
integer for that iteration. In effect, the three proceduresin the list
constructed bylist-ec contain a reference to thesamelocation—
and the result of calling any of these procedures will be the state
after the entire loop. So the result will be either2 or 3, depending
on the way the loop modifiesn. In this model, iteration enumerates
a sequence of states stored in a given set of locations.

In the rebinding model,n is bound to a new location for every
iteration. In this case, the three procedures each retain a different
location, and the result is1. The rebinding model has been adopted
for the iteration constructs of Scheme [1, Section 4.2.4], probably
due to a desire for conceptual simplicity. Consequently, itis also
the choice for SRFI 42. It should be mentioned that the overhead of
rebinding is the same as for any other tail-recursive procedure, and
these are supposed to be efficient in Scheme.

5 As with everything in Scheme there is no way to enforce this, but SRFI 42
is built on this rule; users may have reason to deviate from this but it is not
encouraged.

17

Concerning the second semantic question, consider the follow-
ing program (again in SRFI 42 syntax):

(list-ec (:range n 3) (begin (set! n 2) n))

The result of this expression depends on whether:range uses the
variablen itself to hold the state of the iteration (in which case the
result is’(2)), or if n is just a copy of the (hidden) state of the
iteration (in which case the result is’(2 2 2)).

In Scheme [1, Section 4.2.4], named-let anddo provide access
to the state of the iteration itself. This allows arbitrary modification
of the state, which can sometimes simplify termination conditions.
For eager comprehensions, however, the variables visible to the
payload might not hold the state at all (e.g.:list hides the rest
list still to be enumerated). Hence, for eager comprehensions only
two approaches make sense: Either define that the variables visible
are always a copy, or define the effect of assigning to a loop variable
as unspecified. The latter approach was chosen for SRFI 42 in the
name of efficiency.

Concerning the third semantic question, consider:

(let ((n 3))
(list-ec (:range k n) (begin (set! n 2) k)))

Here, the question is whether:range does access the variablen for
every termination test, or just readsn once to set up the loop. Again,
different solutions are possible, but the choice becomes easier once
it is understood thatn could be replaced by an arbitrary expression.
If :range would evaluate its argument expressions repeatedly,
this could unintentionally come at a hight price. For this reason,
SRFI 42 specifies that the argument expressions of generators are
evaluated exactly once: before the loop is set up.

Related to the question what happens if the loop-defining argu-
ment is modified is the question what happens if the loop-defining
data structure is modified. As there is no way of enforcing anything
in Scheme, and copying entire data structure (even if desired) could
become costly, the result of modifying a data structure while it is
being traversed is better defined unspecified.

3.6 Parallel loops

Often several loops must be executed in lockstep, e.g. counting the
lines while reading a file. We will call this “parallel loops,” but this
does not mean that the processing steps are executed concurrently.
Several mechanisms for comprehensions do support such a com-
bination, for example Glasgow Haskell’s extension of Haskell98’s
lazy comprehensions [17], Swindle [7], and SRFI 42 [2].

In the case of lazy comprehensions, parallel generators arerela-
tively straight-forward. Since lazy comprehensions require exactly
one type of generator (running through a lazy list), it is sufficient to
provide “zipping” two or more lazy lists before enumeratingthem.
In effect, the usefulness of parallel lazy generators is primarily de-
termined by their notation.

Parallel eager generators, on the other hand, are a greater chal-
lenge. While the concept of eager comprehensions often allows
the user to ignore the details of a loop (i.e. setup, iteration, and
termination of the generator), parallel generators can only be con-
structed by interleaving the different parts of the component gener-
ators. Clearly, for this interleaving to be modular it is necessary that
every generators is represented by some fixed pattern givingaccess
to the code for setup, iteration, and termination.

In Scheme, the natural solution for this is representing a gen-
erator by a procedure computing the next element, and eventually
indicating termination. The setup part of a generator constructs the
procedure. This approach is used for example in Swindle and for
the dispatching generator (:) of SRFI 42.

A different approach is to reduce each generator to some fixed
“standard loop structure,” which provides access to the individual
parts of the generator. Then the parts can be combined syntacti-

cally for merging two or more component generators into a single
parallel generator. This is exactly what the:parallel generator
of SRFI 42 does, i.e. merging “fully decorated:do-loops” (Sec-
tion 5.2).

3.7 Index variables

A frequent special case of a parallel loop is with an additional index
variable, i.e. a variable running through0, 1, . . . while the elements
of another sequence are enumerated. There are two ways of sup-
porting this: by using:parallel for combining an unbounded in-
teger counter (with generator:integer) with any other generator,
and by adding an index variable to the other generator itself.

The first method is universally applicable to any generator,
and as such fully modular. The second method provides a more
concise notation (important for interactive use), and it can be a little
more efficient in case the other generator uses an index anyhow
(e.g.:vector). SRFI 42 supports both methods.

3.8 Early stopping

An important factor determining the flexibility of a loopingcon-
struct is a facility for terminating generators or comprehensions
early. This is a different mechanism than testing qualifiers(aka
guards or filters). The difference is best illustrated by an example.

Consider a predicate for testing if a positive integer is thesum
of its proper divisors:

(define (perfect? n)
(= (sum-ec (:range d 1 n)

(if (= (modulo n d) 0))
d)

n))

Theif-qualifier prevents the inclusion of non-divisors into the sum
but it does not stop the:range-generator. Now we start investigat-
ing perfect numbers:

(first-ec #f (: n 1 100) (if (perfect? n)) n)
⇒ 6

This time the entire comprehension was finished after computing
the first perfect number. But assume we need the numbers up to
and including the first perfect number:

(list-ec (:until (: n 1 100) (perfect? n)) n)
⇒ ’(1 2 3 4 5 6)

In this case the generator(: n 1 100) is modified to terminate
after producing the element for which the additional condition
(perfect? n) became true. (Note also that the scoping rule of
SRFI 42 stated in Section 3.4 dictates that the condition comes
after the generator in the:until expression.) Alternatively, the
generator is to terminatebeforeproducing the element violating an
additional condition.

Both forms of early-stopping generators are needed frequently.
For example, consider reading a line of text by reading individual
characters from a port. Since the last line may or may not havea
trailing newline, it is important to append each character read to the
string, including newline. This requires the use of:until:

(define (read-line port)
(string-ec (:until (:port c port read-char)

(char=? c #\newline))
c))

(In fact, this was the motivating example for including both:while
and:until in SRFI 42.) The:while form of early termination is
even more frequent since it derives directly from a precondition of
the payload of a comprehension.

Coming back tofirst-ec, the two most useful and frequent
early-stopping comprehensions test a predicate on a sequence of

18

values, stopping as soon as a violation is found. These comprehen-
sions, namedany?-ec andevery?-ec in SRFI 42, can in fact be
derived fromfirst-ec.

3.9 Prefix vs. infix syntax

A trivial but highly visible matter is to what extent the syntax makes
use of syntactic keywords in infix position (i.e. in a position not
being the first after the opening parenthesis). Ultimately,this comes
down to personal preference in the form of a compromise between
simplicity and similarity with a natural language (which tends to
be English). Most designs of comprehensions use an infix operator
for the generators (‘<-’ is most popular) and possibly more infix
operators for other qualifiers and options. This approach has the
definitive advantage of reducing the number of parentheses.

In SRFI 42, on the contrary, no infix operators are used at all
for the sake of (reducing) mental complexity. A comprehension
definingsomethingis probably namedsomething-ec, and a gen-
erator defined by an object of typetype is probably named:type.
All generators are used in the syntax(:type var arg∗), wherevar
is a variable, optionally followed by an index variablei specified as
(index i).

For illustration, Table 3 shows expressions for the same nested
loop in different programming languages supporting some form of
comprehension. Keep in mind, though, that this is an extremely
simple example where the meaning can be guessed at once. For
more complicated expressions, infix notation, potentiallyeven with
precedences, adds to mental complexity.

4. Concrete designs
In this section we consider existing concrete designs for program-
ming language constructs that enable or simplify (or obfuscate)
loops in the Lisp-family of languages. Related constructs for other
programming languages are beyond the scope of this article—but
with the exception of lazy comprehensions, and loops with genuine
parallel semantics as present in Erlang and Occam, they are also
not very interesting.

The list does cover some loop-macros from other Lisp dialects,
most notably Common Lisp, because these constructs represent se-
rious efforts to provide what is called eager comprehensions in this
article. It should be noted, however, that none of the Lisp looping
constructs ever came to popularity in the Scheme community,un-
like SRFI 42 which surprisingly has gathered quite some friends
already in the first few years of its existence. (My earliest sketches
date from late 2000; the SRFI got published in the beginning of
2003.)

4.1 Lambda, named-let, and do (R5RS)

In Scheme the most important construct for writing loops arerecur-
sive procedures, often in a tail recursive form. AsR5RS requires
implementations to provide proper tail recursion [1, Section 3.5],
recursion also serves as an idiom for iteration. A particularly con-
venient notation for defining and immediately executing recursive
procedures is named-let [1, Section 4.2.4]. In addition, Scheme
contains thedo-syntax for defining a single loop, based on explicit
state [1, Section 4.2.4].

This design represents a careful choice for including only a
few clean and powerful constructs into the language, conforming
to the overall minimalistic design philosophy of Scheme. Regret-
tably, there are two major shortcomings in practice. Firstly, it is
already complicated to write the ubiquitous simple loops (refer
to the example in the beginning). And secondly, the components
of a loop (startup, iteration, termination) are often scattered over
large amounts of source code—even if this would be unnecessary.
Yet, maybe surprising, no other mechanism for writing loopshas

achieved considerable acceptance in the Scheme community,leav-
ing the programmer to her own devices.

4.2 “Macros for writing loops” (Kelsey)

The “Macros for writing loops” library [4] is distributed with the
Scheme 48 system [3] as thereduce package.

It provides the syntactic formsiterate and reduce imple-
menting the fundamental state based eager comprehension. There
are predefined generators running through lists, vectors, strings, in-
teger ranges, reading from a port, and executing a generatorpro-
cedure (called stream). Other generators can be added fullymod-
ularly by defining a hygienic macro in continuation-passingstyle
(CPS) [4, Paragraph “Defining sequence types”]. The comprehen-
sions (iterate, reduce) define a single, possibly parallel, loop
based on explicit state modification.

“Macros for writing loops” is the probably first new loop con-
struct to be proposed for a long time. Moreover, the implementation
technique of CPS macros is the key to modularity of comprehen-
sions. In effect, “Macros for writing loops” was most influential to
the design of SRFI 42, even though the resulting mechanisms and
notations bear little resemblance.

4.3 Swindle (Barzilay)

The Swindle library [7] is a collection of modules extendingthe
PLT Scheme system [5]. It is written for and in PLT. The module
“misc.ss” of Swindle contains macros for defining eager compre-
hensions in the sense of this article.

More precisely, there are predefined comprehensions for side-
effect, making a list, numeric summation, numeric products, count-
ing, and general reduction (collect-of). Generators are prede-
fined for (integer) ranges, lists, vectors, strings, integers, execut-
ing generator procedures, and hash-tables. Swindle allowsparallel
execution of generators, early termination of comprehensions, has
local bindings and side-effects. Generators can be added fully mod-
ularly using the generator procedure interface. Swindle makes ex-
tensive use of infix notation for expressing generators (e.g. (n <-
0 .. 10), qualifiers, options, and other constructs (infixand for
parallel execution).

The mechanisms specified in Swindle and for SRFI 42 are very
closely related in their principles, but differ considerably in the
details. Both acknowledge the need for modularity and well defined
scope.

4.4 SRFI 40 “A library of streams” (Berwig)

Although the final form of SRFI 40 [9] does not contain compre-
hensions anymore, its draft versions did. These comprehensions
were of course lazy. During the discussion of SRFI 40, it was de-
cided to split the standard into a lower level part (which became the
final SRFI 40) and a higher level part, including lazy comprehen-
sions, which was to become SRFI 41.

The lazy comprehensions of SRFI 40 provided the same bene-
fits as other lazy comprehensions, that is modularity and simplic-
ity. The downside of lazy comprehensions in Scheme is a substan-
tial loss in performance due to the overhead of constructinglazy
streams correctly and reliably.

Recall that a lazy stream is something much more sophisticated
than a generator procedure (accessing a state hidden in its closure).
This implies that lazy comprehensions really require efficient non-
strict evaluation, or strictness analysis. While these methods are
being used in lazy languages, they are usually not availablein
Scheme because most programs do not require it.

4.5 Common Lisp

The Common Lisp language [10] contains several constructs for
writing loops, and nested eager comprehensions in the senseof this

19

language example
Haskell [k*k | n <- [0..9], k <- [0..n-1]]
Python [k*k for n in range(10) for k in range(n)]
Ruby (0..9).collect {|n| (0..n-1).collect {|k| k*k}}.flatten!
Erlang [K*K || N <- lists:seq(0,9), N >= 1, K <- lists:seq(0,N-1)]
Mathematica Join @@ Table[Table[k*k, {k, 0, n-1}], {n, 0, 9}]
Magma [k*k : k in [0..n-1], n in [0..9]]
GAP Concatenation(List([0..9], n -> List([0..n-1], k -> k*k)))
PLT, Swindle (list-of (* k k) (n <- 0 ..< 10) (k <- 0 ..< n))

R5RS, SRFI 42 (list-ec (: n 10) (: k n) (* k k)), or with typed generators:
(list-ec (:range n 10) (:range k n) (* k k))

Scheme48, reduce (reduce ((count* n 0 10)) ((r ’()))
(reduce ((count* k 0 n)) ((r r))

(cons (* k k) r))
(reverse r))

Table 3. Examples of a simple nested loop.

article. These constructs includedo/do*, dotimes, dolist, and
loop.

Do is essentially the same as in Scheme, apart from the fact
that Common Lisp also allows dynamic binding of variables (using
special). Do* is a sequential-binding variant ofdo. Dotimes
iterates over integer ranges, andDolist over lists; these are rather
specialized control structures.

Theloop facility, on the other hand, could be interpreted as a
general programming language in its own right (34 EBNF defini-
tions, [10, Section 6.2 “LOOP”]). It is an extremely flexiblemecha-
nism for writing nested and parallel loops, possibly with early stop-
ping, saving intermediate results, goto and labels, and several other
features. Since it also supports various forms of accumulation of
results, it should be seen as a syntactic form for eager comprehen-
sions. These include comprehensions for making lists, appending,
counting, max, min, summation, and general reduction. The syn-
tax is mostly based on infix notation with syntactic keywordsfor
clauses, options, and qualifiers.

Theloop-syntax is one of the work horses of Common Lisp. It
has evolved over a very long time towards higher and higher flexi-
bility, often through the use of infix syntactic keywords. The men-
tal complexity this has produced, however, is a big disadvantage in
practice. In effect, the construct does not enjoy large popularity in
the Scheme community.

4.6 Other iteration packages for Common Lisp

The “MIT LOOP” [35] is the predecessor of the Common Lisp
loop facility. The “SLOOP package” (Schelter) [33] is an iteration
facility generalizing MIT Lisp’sloop. The “Yale LOOP Macro”
(Ritter and Panagos) [34] is an implementation of the Yaleyloop
macro as described in [37]. All these loop facilities have incom-
mon that only the fundamental (side-effect) comprehensionis im-
plemented. The syntax is based on syntactic keywords in infixno-
tation and the expressive power varies. Often new types of genera-
tors can be added, using the underlying macro facility (procedures
as first class citizens did not exist in the language).

The “Series Macro Package” (Waters) [30, 31] implements a
concept closely related to lazy comprehensions in the senseof
this article. A “series” is essentially a data structure fora lazy
list. The package contains operations for producing, processing,
and consuming these data structures, or acting on their elements.
The implementation is often able to transform the lazy operations
into eager evaluation, producing efficient code for frequent loop
structures.

The “Lisp comprehensions” (Lapalme) [32] is an adaptation
of lazy comprehensions from Miranda into Common Lisp. In this

work, Wadler’s transformation of lazy list comprehensions[18,
Chapter 7] is translated one to one into Lisp in order to mimicthe
(infix) notation of lazy list comprehensions in Miranda. As the es-
sential conceptual difference between lazy and eager comprehen-
sions is ignored, the resulting mechanism is only of limiteduseful-
ness in practice.

4.7 “The anatomy of a loop” (Shivers)

Recently, Shivers defined a new loop mechanism [22, 23, 24] for
Scheme (in fact more generally), underpinned by a theory based on
the notion of “control dominance.” In a nutshell, control dominance
is the static property that every access to a variable occurswithin
an explicit binding construct for that variable. This can beenforced
by a type system restricting the control flow graph of the program.

In practice, this concept comes down to the following: all loops
are reduced to a primitive loop template consisting of 8 parts, with
the control flow graph being made explicit. On top of this resides
a programming language very much in the style of aloop-macro
with predefined generators, guards, and accumulators for the most
common data structures. The single outer macro (namedloop) can
be seen as the fundamental eager comprehension, the 8-part loop as
the fundamental eager generator (corresponding todo-ec and:do
in SRFI 42).

Since the control flow is made explicit in Shiver’s proposal,
the looping construct is extremely flexible. However, at present
it is not known whether it is also inherently more powerful than
the mechanism defined in SRFI 42, or essentially equivalent.This
question comes down to whether the fundamental generators (8-
part loop vs.:do) can be expressed in terms of each other. In
addition, it is too early to judge if the additional flexibility is
worth the associated mental complexity (8-part loop definedby
an explicit control flow graph), and what the impact of the minor
design decisions (e.g. infix notation) is on usability. Either way,
Shivers’ work has potential for further clarifying the truenature of
iteration in functional programs.

4.8 SRFI 42 “Eager comprehensions”

The term “eager comprehension” was coined for SRFI 42 [2] in
order to make sure the mechanism is never confused with the well-
known lazy comprehensions. The reference implementation asso-
ciated with SRFI 42 is portable underR5RS with hygienic macros.
As the SRFI found some acceptance in the community, implemen-
tations are included into several Scheme systems, including PLT
[5] and Scheme 48 [3].

The SRFI specifies an extensive set of predefined comprehen-
sions based on what makes sense inR5RS. Some infrequent com-

20

prehensions are left out (e.g.gcd-ec), while others have been
added for convenience (e.g.any?-ec). The predefined typed gen-
erators enumerate the standard data structuresR5RS. In addition, a
dispatching generator (“:”, read “run through”) selects a generator
based on the type of arguments given, e.g. the range{0, . . . , n−1}
when given an exact integern. Generators can be run in parallel
and terminated early. Other qualifiers include tests (guards), local
bindings, and side-effects.

The syntax is based on a simple naming convention and pre-
fix notation without exception. The uniform and simple scoping
rule “scope extends to the right until the enclosing comprehension
ends” is used (Section 3.4). Generators can be added fully mod-
ularly by defining a (hygienic) macro using continuation-passing
style (CPS), or by providing a suitable generator procedure. Com-
prehensions can be added as (hygienic) macros. An introduction to
SRFI 42 from the perspective of a user, together with some exam-
ples, is provided in the appendix.

5. The implementation of SRFI 42
In this section the overall structure of the reference implementation
for eager comprehensions in Scheme is explained. The readeris
assumed familiar with the specification as laid down in SRFI 42 [2].
Moreover, it is assumed that the reader is familiar with Scheme’s
hygienic macro facility [1, Sections 4.3, 5.3, 7.1.5], because it is
the primary tool for the reference implementation of SRFI 42.

5.1 A skeleton of eager comprehensions

The following is a simplified but self-contained (R5RS) working
skeleton of eager comprehensions:

(define-syntax do-ec
(syntax-rules (if :do)
((do-ec q1 q2 r1 r ...)
(do-ec q1 (do-ec q2 r1 r ...)))

((do-ec (if test) cmd)
(if test cmd))

((do-ec (:do lbs ne? lss) cmd)
(do-ec:do cmd (:do lbs ne? lss)))

; call g in CPS, reentry at (*)
((do-ec (g arg1 arg ...) cmd)
(g (do-ec:do cmd) arg1 arg ...))))

(define-syntax do-ec:do
(syntax-rules (:do) ; reentry point (*)
((do-ec:do cmd (:do (lb ...) ne? (ls ...)))

(let loop (lb ...)
(if ne?

(begin cmd
(loop ls ...)))))))

(define-syntax :do
(syntax-rules ()
((:do (cc ...) lbs ne? lss)
(cc ... (:do lbs ne? lss)))))

This code defines the primitive eager comprehensiondo-ec and the
primitive eager generator:do, utilizing a helper macrodo-ec:do
for generating code for:do.

Other generators can now be added without modifying the ex-
isting macros. E.g. after defining

(define-syntax :range
(syntax-rules ()
((:range cc var n)
(:do cc ((var 0)) (< var n) ((+ var 1))))))

the following comprehension is operational:

(do-ec (:range n 5) (:range k n) (display k))
⇒ prints: 0010120123

The critical issue is the flexibility of the generator:do to which
all other generators are being reduced. In the skeleton above (refer
to do-ec:do), the generator:do can produce a single namedlet
with an arbitrary number of variables (lb ...) and a singleif
guarding payload (cmd) and next iteration.

5.2 Fully decorated:do

In practice, the simple loop structure of the previous section is too
restricted. In particular it is not possible to derive the variables
visible to the payload from other state variables, to pre-process the
arguments, or to terminate after executing the payload. On the other
hand, complexity must be kept down.

The particular trade-off chosen for SRFI 42 is based on a fair
amount of experimentation. It turned out that the followingstruc-
ture (“fully decorated:do”) covers most relevant generators:

(let (outer-binding ...)
outer-command...
(let loop (loop-binding ...)

(if not-end-1?
(let (inner-binding ...)

inner-command...
≪payload≫
(if not-end-2?

(loop loop-step...))))))

The :do generator specifies all variable parts, except for≪pay-
load≫ of course. It allows termination of the loop before or af-
ter the payload has been executed. Since many generators do not
require “full decoration,” a simple transforming optimizer simpli-
fies boolean conditions, eliminates redundantif andlet, and turns
let without bindings intobegin.

Note that the use of named-let allows iteration by rebinding
(Section 3.5), usingloop-bindingand inner-binding. Updating by
state modification is also possible by storing the iterationstate in
outer-binding, and modifying it usingset! within loop. In fact,
:do is the only generator in SRFI 42 that allows updating by state
modification because no other generator passes the names of this
variables inouter-bindingto its≪payload≫.

The chosen structure for:do is powerful enough, and yet still
restricted enough, to support the following important constructions
on generators:

• Any generator can be modified to terminate early, based on
some additional condition, either before (:while6) or after
(:until) the payload is executed.

• Two or more:do-generators can be merged into a single gener-
ator (:parallel) enumerating all sequences simultaneously.

For the sake of illustration, here is the complete implementation
of the generator:list in SRFI 42 running a variablevar through
the concatenation of one or more lists, possibly with an additional
index variablei.

(define-syntax :list
(syntax-rules (index)

((:list cc var (index i) arg ...)
(:parallel cc (:list var arg ...)

(:integers i)))
((:list cc var arg1 arg2 arg ...)
(:list cc var (append arg1 arg2 arg ...)))
((:list cc var arg)
(:do cc (let ())

((t arg))
(not (null? t))

6 The implementation is complicated by the fact that the scopes of the
variables bound must be preserved while adding the termination condition.
This means it isnot sufficient to add a condition tonot-end-1?.

21

(let ((var (car t))))
#t
((cdr t))))))

The generator:integers runs through the infinite sequence of
non-negative integers. The expressions supplied to:do correspond
to the “fully decorated” structure given above, i.e.(t arg) is the
loop-bindingand(var (car t)) is theinner-binding.

Note that the multiple-argument case cannot easily be converted
into a nested loop because:do can only produce asingle loop;
nested loops would prevent generator-merging.

5.3 The dispatching generator

As an alternative to typed generators (:range, :list etc.) the dis-
patching generator: (read ‘run through’) of SRFI 42 first evaluates
its argument expressions and then dispatches on the type of the
values. In other words,: is a polymorphic generator. For exam-
ple, (list-ec (: x 3) x) produces’(0 1 2) and(list-ec
(: x "abc") x) produces’(#\a #\b #\c). The purpose of the
dispatching generator is making interactive use of comprehensions
more convenient.

The implementation of: evaluates the arguments and calls
a global dispatching procedure. The dispatcher is to construct a
generator procedure which is then run to enumerate the sequence. A
generator procedureg has a single argument. When called,g either
returns the next value of the sequence, or, when the sequenceran
out, it returns its argument. In the implementation, the argument
given to a generator procedure is(list #f), i.e. an object only
eq? to itself.

For the sake of modularity, the dispatcher procedure can be
retrieved and changed. Moreover, there is a macro producinga
generator procedure from a typed generator; this greatly simplifies
the definition of dispatching generators.

5.4 Grouping qualifiers with nested

In addition to defining new generators in a modular way it is also
important to define new comprehensions. While in principle there is
no problem (after all every eager comprehension can be reduced to
do-ec), the fact that there can be an arbitrary number of qualifiers
complicates the definition of new comprehensions. In the worst
case, a variation ofdo-ec must be provided every time.

A simple trick being used in SRFI 42 keeps the amount of code
for a new comprehension low. The syntactic keywordnested can
be used for grouping an arbitrary number of qualifiers into a single
equivalent qualifier understood bydo-ec. This is illustrated by the
definition of a folding comprehension:

(define-syntax fold-ec
(syntax-rules (nested)
((fold-ec x0 (nested q1 ...) q r1 r2 r ...)
(fold-ec x0 (nested q1 ... q) r1 r2 r ...))

((fold-ec x0 q1 q2 r1 r2 r ...)
(fold-ec x0 (nested q1 q2) r1 r2 r ...))

((fold-ec x0 expr f)
(fold-ec x0 (nested) expr f))

((fold-ec x0 qualifier expr f)
(let ((result x0))
(do-ec qualifier

(set! result (f expr result)))
result))))

The last case of the macro implements the functionality for the
case that there is exactly one qualifier; the other cases of the macro
collect all qualifiers into a single one. Now the list comprehension
can be defined as

(define-syntax list-ec
(syntax-rules ()

((list-ec r1 r ...)
(reverse (fold-ec ’() r1 r ... cons)))))

Alternatively, the list could beset-cdr!’ed together, which may
be faster (or not).

5.5 Early-stopping comprehensions

The early-stopping comprehensions of SRFI 42, that isany?-ec
and every?-ec, are reduced to the fundamental early-stopping
comprehensionfirst-ec with the syntax

(first-ec default qualifier∗ expr).

This comprehension evaluates the sequence of values specified by
the qualifiers, stopping after the first value ofexpr. If the sequence
is found empty, the result isdefault.

Call-with-current-continuation could be used for a non-
local exit, but the reference implementation does not. Withan eye
on performance it is implemented by introducing an additional
stopping variable and modifying each generator to stop oncethis
variable is found true (which is made happen when control reaches
expr).

6. Performance
The top priority for eager comprehensions is combining conve-
nience and performance. In this section, the performance aspect is
investigated more quantitatively.

The Sieve of Eratosthenes As an example we consider comput-
ing the primes in{2, . . . , n − 1}, n ≥ 0, by the algorithm known
as the “Sieve of Eratosthenes.” The algorithm (200 BC) ticksoff
all true multiples of the next not yet ticked off number—and the
primes are left over. The following program represents the ticks in
a string7, and uses SRFI 42 for the loops.

(define (primes n)
(let ((p (make-string n #\1)))

(do-ec (:range k 2 n)
(if (char=? (string-ref p k) #\1))
(:range i (* 2 k) n k)
(string-set! p i #\0))

(list-ec (:range k 2 n)
(if (char=? (string-ref p k) #\1))
k)))

This program is compared with three alternatives:

• The typed generators:range are replaced by the dispatching
generator: of SRFI 42.

• The comprehensions are implemented in Swindle.
• Thedo-ec is replaced by two nesteddo-loops, and thelist-ec

is replaced by a tail-recursive named-let constructing the re-
sult list.

Figure 1 shows the execution time, divided byn. A number of
things can be observed.

Firstly, all four alternatives have reasonable performance and
are able to compute the primes below106 in less than10 s. Sec-
ondly, only the “DO loop” variant shows the slow increase expected
for thisΘ(n ln ln n)-algorithm. The other curves exhibit lower or-
der terms, probably due to the overhead of setting up a loop—which
is most pronounced for the procedure-based variants (“SRFI42 (:)”
and “Swindle”).

Linear model of execution time The preceeding example is based
on a meaningful algorithm, which is important for a realistic im-
pression. Now we turn to synthetic algorithms with the goal of

7 A wasteful but practical alternative to arrays of bits, which are absent in
Scheme itself and its portable libraries.

22

0

2

4

6

8

10

12

14

16

10 100 1000 10000 100000 1e+06

us
[c

pu
 in

cl
. g

c]
/n

n

SRFI 42 (:)
Swindle

SRFI 42 (:range)
DO loop

Figure 1. The “Sieve of Eratosthenes.” MzScheme 208, Intel Pen-
tium III Mobile, 1 GHz, Win2k.

obtaining quantitative information using an abstract model of the
execution time.

It is reasonable to assume that the overhead of a loop grows
according to a linear model consisting of a fixed startup overhead
t0 and some constant overhead∆t per iteration. The objective is to
determinet0 and∆t from measured execution times. For this we
execute different implementations of the following nestedloop:

for k = 1..n do for i = 1..m do payloadod od,

wheren andm integer parameters. In order to observe both startup-
and iteration-overhead, the numberm of inner iterations is varied,
while fixing nm for obtaining sufficient total time. The data points
in Figure 2 show the result.

Ignoring the time spent on the inner payload, startup- and
iteration-overhead can readily be read off the curves as their start
and end value. By fitting

t(n, m) = (1 + n)t0 + (n + nm)∆t

to the data points in Figure 2, slightly more accurate estimates are
obtained:

t0/µs ∆t/µs
Swindle 9.99 1.24
SRFI 42 (:) 6.59 1.21
DO loop 1.36 1.15
SRFI 42 (:range) 1.38 0.60

The curves associated with these parameters are shown in Figure 2.
The particular values obtained here should be taken as an indi-

cation, only. They are heavily dependent on the execution model of
the underlying Scheme system (interpreted, byte-code, or native).
Nevertheless, there is a remarkable gap between the eager com-
prehensions based on procedures and on direct state modification
(“SRFI 42 (:range)”). As a rule of thumb, procedures cost a factor
of two per iteration and five to ten in startup. We expect this gap
to widen for Scheme systems with more sophisticated compilation
but did not investigate this quantitatively.

7. Eager comprehensions “lazified”
For what it is worth, eager comprehensions can be turned lazy
in a fully modular way. More precisely, it is possible to define
the fundamental lazy list comprehension (stream-ec that is) in a
such way that anyeagergenerator can be used with it—without
modifying the macros for the generators. Conversely, the eager

1

10

1 10 100 1000

us
[c

pu
 in

cl
. g

c]
/(

n
m

)

m

Swindle
SRFI 42 (:)

DO loop
SRFI 42 (:range)

Figure 2. Two nested loops (n times outer,m times inner,nm =
224). MzScheme 208, Intel Pentium III Mobile, 1 GHz, Win2k.

generator:stream enumerates a lazy stream, i.e. runs a variable
through the elements. For the streams we use SRFI 40 [9], which
provides (even) lazy lists called “streams” as new data structures.
With modification, it would also be possible to use simpler odd
streams, for example those presented in [36].

The comprehension expression

(stream-ec qualifier∗ expr)

constructs a stream for the sequence that a correspondinglist-ec
would create. The use ofstream-ec is best explained by example:

(define s
(stream-ec (: x 10) (begin (display x) x)))

(stream-null? s)
⇒ [prints: 0] #f

(stream-null? (stream-cdr s))
⇒ [prints: 1] #f

(list-ec (:stream x s) x)
⇒ [prints: 23456789] ’(0 1 .. 9)

In other words, the payload expression(begin (display x) x)
is to be evaluated on demand, resulting in the digits being printed
as shown.

It is an impressive illustration of the powerful mechanisms
available in Scheme thatstream-ec can in fact be defined in a
modular way. A possible implementation:

(define-syntax stream-ec
(syntax-rules (nested)
((stream-ec (nested q1 ...) q etc1 etc ...)
(stream-ec (nested q1 ... q) etc1 etc ...))
((stream-ec q1 q2 etc1 etc ...)
(stream-ec (nested q1 q2) etc1 etc ...))
((stream-ec expression)
(stream-ec (nested) expression))
((stream-ec qualifier expression)
(let ((value #f)

(produce-value #f)
(next-value #f))

(define (tail)
(stream-delay
(if (call-with-current-continuation

(lambda (cc)
(set! produce-value cc)
(next-value #f)

23

#f))
(stream-cons value (tail))
stream-null)))

(define (make-stream)
(stream-delay
(if (call-with-current-continuation

(lambda (cc)
(set! produce-value cc)
(do-ec
qualifier
(call-with-current-continuation
(lambda (cc)

(set! next-value cc)
(set! value expression)
(produce-value #t))))

(produce-value #f)))
(stream-cons value (tail))
stream-null)))

(make-stream)))))

The macro combines all qualifiers into a single one usingnested
(Section 5.4) and uses the fundamental eager comprehension
do-ec for enumerating the sequence defined by the qualifiers.
Call-with-current-continuation is used to exitdo-ec non-
locally after producing a value and possibly resuming the very
same loop again later.

The eager generator exhausting a stream can be defined as
follows:

(define-syntax :stream
(syntax-rules ()
((:stream cc var arg)
(:do cc (let ())

((s arg))
(not (stream-null? s))
(let ((var (stream-car s))))
#t
((stream-cdr t))))))

Since:stream is just another generator, it can of course be used in
stream-ec—where it is executed lazily. And sincedo-ec under-
stands guards and local definitions, we have implemented allthere
is to implement forlazycomprehensions in Scheme.

The bad news iscall-with-current-continuation and the
streams of SRFI 40 have a rather high price in terms of time
and space consumption in most major Scheme systems. For this
reason, the lazy comprehensions defined in this section should not
be understood as a serious proposal for a programming language
construct—but rather as of great educational and entertaining value.
It should be emphasized, though, that lazy comprehensions can be
very efficient, provided they are compiled properly.

8. Conclusions
Comprehensions are a particularly concise notation for writing
nested and parallel loops with accumulation of results. In the past
few years they have come to popularity in many programming lan-
guages, including Python and Erlang. When used wisely, compre-
hensions can improve readability, modularity, and possibly perfor-
mance.

However, unlike the lazy list comprehensions (ZF expressions)
of call-by-need functional languages (like Haskell), a correspond-
ing concept in a call-by-value setting (like Scheme) has substan-
tially different requirements in order to qualify for a generally use-
ful programming construct. SRFI 42 is a specific design aiming at
this goal. It is an impressive demonstration of Scheme’s ownflex-
ibility that that the mechanism specified in SRFI 42 can be imple-
mented naturally without extending the language itself.

Acknowledgements Mike Sperber has provided important input
for eager comprehensions in Scheme, in particular he pointed me

to the idea of “CPS macros.” Without the discussions with Mike,
SRFI 42 would probably not exist. Also I would like to thank Phil
Berwig, the author of SRFI 40 (‘A library of streams’) for use-
ful discussions on his lazy comprehensions for Scheme. Proba-
bly the biggest source of inspiration for my work presented here
were Richard Kelsey’s “Macros for writing loops”—even though
the casual reader might not suspect this. I would like to thank
Philips Research for making this work possible, and in particular
my colleagues Philippe Coucaud, Zbigniew Chamski, and Kerovan
Gelder for their valuable remarks. Finally, I would like to thank the
anonymous referees for their corrections and discussion. In partic-
ular the third referee brought up the important issue of semantics,
and provided an example exposing the ’update by rebind vs. by
side-effect’ choice.

References
[1] R. Kelsey, W. Clinger, and J. Rees (eds.): Revised5 Report on the

Algorithmic Language Scheme. 20 February 1998.www.schemers.
org/Documents/Standards/R5RS

[2] S. Egner: SRFI 42 “Eager Comprehensions”. Finalized July 7, 2003.
srfi.schemers.org/srfi-42

[3] R. Kelsey and J. Rees: The Scheme 48 System.s48.org

[4] R. Kelsey and J. Rees: “Macros for Writing Loops.” Thereduce
library of Scheme 48 [3].s48.org/1.2/manual/s48manual_53.
html

[5] The PLT Team: PLT Scheme.www.plt-scheme.org
[6] PLT MzScheme.www.plt-scheme.org/software/mzscheme
[7] E. Barzilay: The Swindle Library for PLT Scheme [5]. Thecollect-

macro of the module “misc.ss.” www.cs.cornell.edu/eli/
Swindle/misc-doc.html#collect

[8] E. Hilsdale, D. P. Friedman: Writing Macros in Continuation-Passing
Style. Scheme and Functional Programming 2000. September 2000.

[9] P. L. Bewig: SRFI 40 “A Library of Streams.” Finalized August 22,
2004.srfi.schemers.org/srfi-40

[10] LispWorks Ltd.: The Common Lisp HyperSpec (1996–2005),
Chapter 6 “Iteration.”www.lispworks.com/documentation/
HyperSpec/Body/06_.htm

[11] G. van Rossum: Python Reference Manual, Release 2.4.1,30 March
2005. Section 5.2.4 “List Displays”.www.python.org/doc/2.4.
1/ref/lists.html

[12] Wolfram Research: Mathematica Version 5.0, Documentation of
Table. documents.wolfram.com/mathematica/functions/
Table

[13] W. Bosma, J. Cannon: Magma (V2.11, May 2004) Documentation
of “Sets” and “Sequences”.magma.maths.usyd.edu.au/magma/
htmlhelp/part2.htm

[14] Ericsson AB: Erlang, Reference Manual (Version 5.4.3). Section 6.22
“List Comprehensions.”www.erlang.se/doc/doc-5.4.3/doc/
reference_manual/expressions.html#6.22

[15] Martin Scḧonert et. al.: GAP—Groups, Algorithms, and Program-
ming, (Version 3 Release 4 Patchlevel 4) Lehrstuhl D für Mathematik,
Rheinisch Westf̈alische Technische Hochschule, Aachen, Germany,
1997.

[16] S. L. Peyton Jones (ed.): Haskell 98 Language and Libraries, The Re-
vised Report, December 2002. Section 3.11 “List Comprehensions.”
www.haskell.org/onlinereport/exps.html

[17] The Glorious Glasgow Haskell Compilation System User’s Guide,
Version 6.4. Section 7.3.4. “Parallel List Comprehensions.” www.
haskell.org/ghc/docs/latest/html/users_guide/syntax-
extns.html#parallel-list-comprehensions

[18] S. L. Peyton Jones: The Implementation of Functional Programming
Languages. In particular, Chapter 7 “List Comprehensions”(Philip
Wadler). Prentice-Hall, Hemel Hempstead, 1987.

[19] R. B. K. Dewar: The SETL Programming Language. 1979.
[20] Schwartz, J.T., Dewar, R.B.K., Dubinsky, E., and Schonberg, E.:

Programming with Sets: An Introduction to SETL. Springer-Verlag,

24

New York, 1986.
[21] R. K. Dybvig: The Scheme Programming Language, 3rd edition.

MIT Press 2003. Section 9.3. “A Set Constructor.”www.scheme.
com/tspl3/examples.html#./examples:h3

[22] O. Shivers: “The Anatomy of a Loop: a Story of Scope and
Control.” Presentation given atDaniel P. Friedman: A Celebration
(Bloomington (IN), December 3, 2004).www.cs.indiana.edu/
dfried_celebration.html

[23] O. Shivers: “The Anatomy of a Loop: a Story of Scope and Control.”
Presentation given at Laboratoire d’Informatique de Paris6 (Paris,
January 24, 2005).www.lip6.fr/fr/liens/organise-fiche.
php?theme=5&RECORD_KEY(organise)=id&id(organise)=98

[24] O. Shivers: “The Anatomy of a Loop: a Story of Scope and Control.”
To be published at ICFP 2005, Tallinn, Estonia.

[25] R.M. Burstall: Design Considerations for a FunctionalProgramming
Language. Infotech State of the Art Conference: The Software
Revolution, Copenhagen, October, 1977.

[26] R. M. Burstall, D. B. MacQueen, and D. T. Sannella: Hope:An
Experimental Applicative Language (1980). Conference on LISP
and Functional Programming archive Proceedings of the 1980ACM
Conference on LISP and Functional Programming, pp. 136–143,
Stanford University, California, United States.

[27] D.A. Turner: The Semantic Elegance of Applicative Languages, in
Proceedings of the 1981 Conference on Functional Programming
Languages and Computer Architecture 1981, Portsmouth, New
Hampshire, USA.

[28] D.A. Turner: Miranda: A Non-strict Functional Language with
Polymorphic Type. Proceedings of a Conference on Functional
Programming Languages and Computer Architecture, pp. 1–16,
Nancy, France, 1985.

[29] D.A. Turner: An Overview of Miranda. ACM SIGPLAN Notices,
Volume 21, Issue 12, December 1986.

[30] R. C. Waters: The Series Macro Package. ACM SIGPLAN Lisp
Pointers, Volume III, Issue 1, July 1989.

[31] R. C. Waters: The Series Macro Package for Common Lisp.
series.sourceforge.net

[32] G. Lapalme: Implementation of a “Lisp Comprehension” Macro.
ACM SIGPLAN Lisp Pointers, Volume IV, Issue 2, April 1991.

[33] W. Schelter: The SLOOP Iteration Facility (1985).www-cgi.cs.
cmu.edu/afs/cs/project/ai-repository/ai/lang/lisp/
code/iter/loop/sloop/0.html

[34] F. Ritter, J. Panagos: YLOOP: Portable Implementationof the Yale
LOOP Macro (1986).www-cgi.cs.cmu.edu/afs/cs/project/
ai-repository/ai/lang/lisp/code/iter/loop/yloop/0.
html

[35] Massachusetts Institute of Technology: The MIT LOOP Macro (1980,
1986)www-cgi.cs.cmu.edu/afs/cs/project/ai-repository/
ai/lang/lisp/code/iter/loop/mit/mit_loop.cl

[36] H. Abelson, G. J.Sussman, J. Sussman: Structure and Interpretation
of Computer Programs. 2nd ed., MIT Press, Cambridge (MA), 1996.

[37] E. Charniak, C. K. Riesbeck, D. McDermott, and J. R. Meehan:
Artificial Intelligence Programming, 2nd ed. Lawrence Erlbaum
Associates, 1987.

Appendix: Summary of SRFI 42
For illustration, this appendix contains a brief introduction to
SRFI 42 from a user’s perspective, together with examples. The
actual specification is available at

http://srfi.schemers.org/srfi-42/srfi-42.html

In its most simple form, a comprehension according to SRFI 42
looks like this (its value after=>):

(list-ec (: i 5) (* i i)) => ’(0 1 4 9 16).

Here,i is a local variable sequentially having the values0, 1, . . . , 4,
and the squares of these numbers are collected in a list, which is
the result. The following example illustrates most conventions of
SRFI 42 with respect to nesting and syntax:

(list-ec (: n 1 4) (: i n) (list n i))
=> ’((1 0) (2 0) (2 1) (3 0) (3 1) (3 2)).

In this example, the variablen first has value 1 then 2 and finally 3.
For each value ofn, the variablei assumes the values0, 1, . . . , n−
1 in turn. The expression(list n i) constructs a two-element
list for each binding, and the comprehensionlist-ec collects all
these results in a list.

Eager comprehensions in the sense of SRFI 42 are just hygienic
macros. The basic syntactic form of a comprehension is

(do-ec qualifier∗ command),

i.e. zero or morequalifierarguments and acommandargument. The
do-ec comprehension enumerates the sequence of binding envi-
ronments specified by the qualifiers and for each such environment
evaluatescommandfor side-effects. In a similar fashion,(sum-ec
qualifier∗ expression) sums the values obtained by evaluatingex-
pressionfor the sequence of binding environments specified by
qualifier∗. If qualifier∗ is empty (i.e. no qualifiers at all) thenex-
pressionis evaluated once. The eager comprehensionlist-ec
constructs a list of the values of its expression.

The most common qualifiers are generators. For example,
(:range i 5) runs variablei through0, 1, . . . , 4. The genera-
tor (: i 5) does the same but uses the type of its argument (i.e.5)
to decide that it is a range of exact integers that is to be enumerated.
In every iteration,i is bound to a new location where the integer
for that iteration is stored. Other qualifiers are for filtering, e.g.(if
condition), or for side-effect, e.g.(begin command). The full
syntax of SRFI 42 is listed with comments in Table 4.

Checklist for adding comprehensions and generators

The following checklists can if the user wants to add application-
specific comprehensions and generators in the style of SRFI 42.

For adding an application-specific comprehension:

1. Use the syntax(accu-ec ≪outer≫ qualifier∗ ≪inner≫), with
≪outer≫ being a fixed list of parameter expressions (e.g. for
default values),≪inner≫ being a fixed list inner expressions
(usually justexpression), andaccurefering to the accumulation
process that is being executed.

2. Use the left-to-right scoping rule as much as possible.
3. Avoid syntactic keywords, in particular in infix position.
4. Evaluate parameter expressions exactly once, or at most once

if their evaluation is control-flow dependent. Implement this by
insertinglet.

5. Make sure the implementation does not copy macro arguments,
because that might lead to exponential growth in code size when
nested.

For adding an application-specific typed generator:

25

expression→ comprehension| . . .
comprehension→

(ordinary-ec qualifier∗ expression) evaluateexpressionfor the sequence of binding
environments (or states) specified by the qualifiers

| (vector-of-length-ec k qualifier∗ expression) vector-length of result known to bek
| (fold-ec x0 qualifier∗ expressionf2) f2(xn, f2(xn−1, · · · f2(x1, x0) · · ·)) for x1..n from expression
| (fold3-ec x0 qualifier∗ expressionf1 f2) f2(xn, f2(xn−1, · · · f2(x2, f1(x1)) · · ·)), or x0 if n = 0
| (do-ec qualifier∗ command) evaluatecommandfor side-effect
| application-specific-comprehension define using hygienic macro, use checklist

ordinary-ec→
list-ec | append-ec | string-ec | string-append-ec

| vector-ec | sum-ec | product-ec | min-ec | max-ec
| any?-ec | every?-ec | first-ec | last-ec early stopping (aka short evaluation)

qualifier→
generator

| (if expression) insert test (aka guard or filter)
| (not expression) | (and expression∗) | (or expression∗) abbreviate(if (not expression)) etc.
| (begin command∗ expression) insert side-effect
| (nested qualifier∗) syntactic grouping of qualifiers

generator→
(: variables expression+) dispatch on type (list,string,vector,integer,real,char,port)

| (:list variables expression+) elements of a (proper) list
| (:string variables expression+) characters of a string
| (:vector variables expression+) elements of a vector
| (:integers variables) the infinite sequence0, 1, . . .
| (:range variables range-limits) exact integer range
| (:real-range variables range-limits) real (either all exact, or all inexact) range
| (:char-range variables min max) character range up to and includingmax
| (:port variables expression[read]) readdefaults toread
| (:dispatched variables dispatch expression+) callsdispatchto construct generator procedure to run
| (:let variables expression) single value sequence (for introducing intermediate variable)
| (:parallel generator∗) interleaved execution, until one a generators is exhausted
| (:while generator expression) executegeneratorwhile expressionis non-#f
| (:until generator expression) executegeneratoruntil (and incl.)expressionis non-#f
| (:do [(let (ob∗) oc∗)] (lb∗) ne1?

[(let (ib∗) ic∗) ne2?] (ls∗)) loop by named-let, possibly decorated
| application-specific-typed-generator define as hygienic macro in CPS, use checklist

range-limits→ stop| start stop| start stop step from start (default0) to stop(excl.) bystep(default1)
variables→ identifier [(index identifier)] index variable runs through0, 1, . . .
x0, f1, f2 min, max, read, dispatch, start, stop, step→ expression

Table 4. Syntax of SRFI 42.

1. Use the syntax(:type var [(index i)] ≪args≫), with
≪args≫ being the argument expression(s) defining the loop.
Heretypeindicates the type of object to enumerate through.

2. Use the syntax(:type var1· · · varn [(index i)] ≪args≫)
if there are always exactlyn variables to iterate through.

3. Use the syntax(:type (var∗) [(index i)] ≪args≫) if
there is a variable number of variables to iterate through.

4. Use the left-to-right scoping rule as much as possible.
5. Avoid syntactic keywords, in particular in infix position.
6. Make sure argument expressions are evaluated exactly once.
7. Update the iteration state by rebinding, i.e. make sure all vari-

ables visible to the payload (var, i) are bound either inlb∗ (loop
bindings) or inib∗ (inner bindings).

8. Support multiple arguments if that makes sense, but avoidzero
arguments.

Examples

The factorial of a non-negative integer:

(define (factorial n)

(product-ec (:range k 2 (+ n 1)) k))

The sum of the divisors of a positive integer:

(define (sigma n)
(sum-ec (:range d 1 (+ n 1))

(if (zero? (modulo n d)))
d))

Pythagorean Triples with entries not exceedingn, i.e.(a, b, c) such
thata2 + b2 = c2 and integer1 ≤ a ≤ b ≤ c ≤ n:

(define (pythagoras n)
(list-ec (:let sqr-n (* n n))

(:range a 1 (+ n 1))
(:let sqr-a (* a a))
(:range b a (+ n 1))
(:let sqr-c (+ sqr-a (* b b)))
(if (<= sqr-c sqr-n))
(:range c b (+ n 1))
(if (= (* c c) sqr-c))
(list a b c)))

Quicksort with naive choice of pivots (stable):

26

(define (qsort xs)
(if (null? xs)

’()
(let ((pivot (car xs)))
(append
(qsort (list-ec (:list x (cdr xs))

(if (< x pivot))
x))

(list pivot)
(qsort (list-ec (:list x (cdr xs))

(if (>= x pivot))
x))))))

Approximation ofπ by Bailey-Borwein-Plouffe’s hex-digit extrac-
tion formula, i.e.|(pi-BBP m)− π| ≤ 16−m for m ≥ 1.

(define (pi-BBP m)
(sum-ec (:range n 0 (+ m 1))

(:let n8 (* n 8))
(* (- (/ 4 (+ n8 1))

(+ (/ 2 (+ n8 4))
(/ 1 (+ n8 5))
(/ 1 (+ n8 6))))

(/ 1 (expt 16 n)))))

Adding two vectors of equal length (simple program):

(define (vector+ x y)
(vector-ec (:parallel (:vector xi x) (:vector yi y))

(+ xi yi)))

Adding two vectors of equal length (no intermediate lists):

(define (vector+ x y)
(vector-of-length-ec (vector-length x)
(:range i (vector-length x))
(+ (vector-ref x i) (vector-ref y i))))

Reading a line from an input port, returning all characters read
(including newline if present), or returning the eof object:

(define (read-line port)
(let ((line

(string-ec
(:until (:port c port read-char)

(char=? c #\newline))
c)))

(if (string=? line "")
(read-char port) ; eof-object
line)))

Reading a file, returning a list of the lines:

(define (read-lines filename)
(call-with-input-file
filename
(lambda (port)
(list-ec (:port line port read-line) line))))

