
69

Ubiquitous Mail

Erick Gallesio
Universit́e de Nice - Sophia Antipolis

930 route des Colles, BP 145, F-06903 Sophia
Antipolis, Cedex, France

Erick.Gallesio@essi.fr

Manuel Serrano
Inria Sophia Antipolis

2004 route des Lucioles - BP 93 F-06902 Sophia
Antipolis, Cedex, France

http://www.inria.fr/mimosa/Manuel.Serrano

ABSTRACT
Bimap is a tool for synchronizing IMAP servers. It enables two
or more IMAP mirrored servers to be modified independently
and later on, synchronized. Bimap is versatile so, in addition to
synchronizing emails, it can be used for filtering and classifying
emails. For the sake of the example, the paper shows automatic
emails classification and white-listing programmed with Bimap.

Bimap is implemented in Scheme. The most important parts of
its implementation are presented in this paper with the intended
goal to demonstrate that Scheme is suited for programming tasks
that are usually devoted to scripting languages such as Perlor
Python. With additional libraries, Scheme enables compactand
efficient implementation of this distributed networked application
because the main computations that require efficiency are executed
in compiled code and only the user configurations are executed in
interpreted code.

1. Introduction
Low cost computers, ADSL, and wireless connections have made
ubiquitous computing a reality. Because the Internet is nowavail-
able nearly everywhere on the planet, most of us are nearly per-
manently connected. Many of us use various computers (maybe,
one at home, one at work, and a roaming laptop). All these com-
puters ideally use the same synchronized data. Enforcing this syn-
chronization is not always so easy. Hopefully, some dedicated tools
such as Unison [4] allow two replicas of a collection of files and
directories to be stored on different hosts, modified separately, and
then brought up to date by propagating the changes in each replica
to the other. However, as convenient as these tools are for file and
directory synchronization, they are of little help when considering
email synchronization. In this paper, we address the specific prob-
lem of synchronizing email.

Bimap is a tool for synchronizing email. It enables emails tobe
manipulated from different computers and localizations. Auser can
read, answer, and delete emails from various computers amongst
which some can be momentarily disconnected. Bimap automati-
cally propagates the changes to all these computers. As demon-
strated in this paper, synchronizing email is a simple problem of
synchronizing lists. Functional languages are therefore candidates
of choice for implementing such algorithms. Bimap is implemented

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Sixth Workshop on Scheme and Functional Programming.September 24, 2005,
Tallinn, Estonia.
Copyright c© 2005 Erick Gallesio, Manuel Serrano.

in one of them, namely Scheme, our favorite programming lan-
guage.

The rest of this paper is organized as follows. Section 2 presents
the Internet Message Access Protocolwhich constitutes the foun-
dation of Bimap. Section 3 shows the limitations of IMAP and it
presents the general system architecture used by Bimap. Section 4
presents the synchronization algorithm and its implementation in
Scheme. Section 5 presentswhite-listing, a filtering application im-
plemented with Bimap.

2. IMAP
The Internet Message Access Protocol(IMAP [1]) allows a client
to access and manipulate electronic email messages on a server. It
permits manipulation of mailboxes (remote message folders) as it
also provides the capability for an offline client to resynchronize
with the server.

In contrast with other protocols such as thePost Office Proto-
col (POP3 [3]), IMAP includes operations for creating, deleting,
and renaming mailboxes, checking for new messages, permanently
removing messages, creating new ones, etc. Hence, IMAP is a per-
fect match for our email synchronizer architecture. We haveimple-
mented a simple library that binds IMAP facilities in Scheme. It is
briefly presented in this section.

Messages in IMAP are accessed by the use of numbers. These
numbers are either message sequence numbers or unique identi-
fiers. ¿From a programming point of view, the latter are much more
convenient than the former. Message sequence numbers evolve as
emails are created of deleted. On the other hand, each email is as-
sociated with a unique identifying number (UID henceforth)that
remains valid during an IMAP session. Note that while UIDs un-
ambiguously refer to messages in a given session, no provision is
made by IMAP to make UIDs pervasive, i.e., the UID associated
with an email may change from an IMAP session to another. Hence,
it is difficult to implement a synchronization mechanism that re-
lies on IMAP’s UIDs. As seen in Section 4 our synchronization
tool prefers to use the stamps allocated by the senders than IMAP’s
UIDs. These stamps are extremely likely to be unique and in prac-
tice we have never found a collision.

Instead of tediously presenting all the functions composing the
library, we present in Figure 1 a typical example that illustrates
the most important functions. The example shows an interactive
session where a user logs in and browses some folders and emails.

Note that contrary to some other protocols, IMAP is stateful.
The state of an IMAP connection describes the current directory.
The commandimap-folder-select sets it to a new value.

In addition to the functions used in the example, the library
offers various functions for accessing the header elements, the
attributes, and the body of the messages.

70

1: ;; establish an ssl connection with the IMAP server
2: (define sock (make-ssl-client-socket "imap.nohwere.org" 993))
3: ;; get logged in with user name and password
4: (imap-login sock "john doe" "eodjohn")
5: ;; get the folders list
6: (imap-folders sock)
7: -> ("INBOX" "INBOX.-Unknown" "INBOX.foo" ...)
8: ;; go into a folder
9: (imap-folder-select sock "INBOX.foo")

10: ;; get the list of messages in "INBOX.foo"
11: (imap-folder-uids sock)
12: -> (33612 32977 29895 29132 29018 28958 26938 26937 26129)
13: ;; get the message information about one email
14: (imap-message-info sock 33612)
15: -> ((message-id . <429F0564.9040400@foo.com>)
16: (date . 02-Jun-2005 15:16:09 +0200)
17: (size . 6025) (flags \Seen) (uid . 33612))
18: ;; remove one of these messages
19: (imap-message-delete! sock 33612)
20: ;; create a new folder
21: (imap-folder-create! sock "INBOX.bar")
22: ;; create a new message in the folder "INBOX.bar"
23: (imap-message-create! sock "INBOX.bar" "subject: foo\n\nFoo is not bar")
24: -> 32739
25: ;; get the whole header of message 32739
26: (imap-message-header sock 32739)
27: -> ’((subject . "foo"))
28: ;; get the message 32739 body
29: (imap-message-body sock 32739)
30: -> "Foo is not bar"
31: ;; copy a mail accross server (usually the servers differ)
32: (imap-message-copy! sock 29132 sock "INBOX.bar")
33: ;; move it into folder "INBOX.foo"
34: (imap-message-move! sock 32739 "INBOX.foo")
35: ;; log out
36: (imap-logout sock)

Figure 1. An IMAP session in Scheme

3. The general architecture
IMAP is a distributed platform that allows clients to accessemail
servers. IMAP is a big step in the direction of ubiquitous email
because IMAP servers can be accessed by basically any computer
connected to the Internet. In the first place, we have thoughtthat
one IMAP server would be sufficient to satisfy our needs. We
have discovered that it is not. The difficulties are two fold.First
we occasionally happen to manage our email using disconnected
computers such as in-flight laptops. Even if some IMAP-capable
email readers maintain a local copy of the emails and are ableto
work offline, we are seeking a neutral architecture that doesnot
impose a specific mail reader. Second, we also happen to access
our distant incoming IMAP server using Web email clients. These
clients directly run on the computer hosting the server, modifying
its state. This introduces a de-synchronization between the server
and the local state of a disconnected laptop.

Generally, IMAP providers enforce quotas and maximal sizes
for attachments. These IMAP servers do not provide enough re-
sources for storing all emails. In consequence some emails have
to be moved in local folders (e.g., user file system). The location
and the format used for these locally stored emails highly depend
on email readers. So, they are difficult to synchronize with general
synchronization tools.

We came up with a solution that uses several IMAP servers: a
main server (orincoming server) where the emails first arrive and
one local server per computer. All the email clients only access
the IMAP server that runs locally. Any modification to an email
(deletion, access, ...) is thus local. On a regular basis allthe servers

are synchronized which maintains a coherent global state. Note that
the emails on theincoming server, which is generally on a machine
which is not under our control, can be a subset of the emails that
are stored on our personal computers.

The Figure 2 illustrates a possible use of Bimap synchroniza-
tion. For the sake of the example let’s assume two servers receiv-
ing email (provider1.eduand provider2.com). Both servers only
offer IMAP accounts. Let’s also assume three machines used to
read email (Classic, DesktopandLaptop). Classicis not synchro-
nized. It remotely accessesprovider1.eduand provider2.comvia
a direct IMAP connection.DesktopandLaptophave local folders
that are synchronized with the servers. These two machines expose
a set of folders which is the union of the emails located on thetwo
servers and the local folders. In addition to synchronizingDesktop
andLaptopwith provider1.eduandprovider2.com, Bimap is also
in charge of synchronizingDesktopandLaptoptogether in order to
ensure a correct synchronization of the email stored locally (and to
back them up on another machine too).

4. The synchronization
In this section we present the synchronization algorithm. First, the
principles are exposed. Then the specific parts of the synchroniza-
tion are presented, as well as a sketchy presentation of their imple-
mentation.

71

Figure 2. General architecture

4.1 The synchronization principles

The email synchronization relies on theMESSAGE-ID header fields
[2]. Each of these fields contains a unique identifier which refers
to oneversion ofoneemail. The uniqueness of the email identifier
is guaranteed by the host which generates it. The email identifier
pertains to exactly one instantiation of a particular email. In the
synchronization process presented here, two emails are considered
equal (i.e., the same) if and only if theirMESSAGE-ID is the same.

MESSAGE-ID are not guaranteed to be globally unique hence
one could think to replace them with another identification mecha-
nism. As exposed in Section 2, we have decided not to use IMAP’s
UID because they are not pervasive. Alternatively we could have
used a checksum mechanism applied to the entire email. This
would have had the nasty drawback of enlarged network trafficbe-
cause the whole email body would need to be transfered for identi-
fication. Using theMESSAGE-ID, only one field is transfered.

The process of synchronizing email consists in switching from
one synchronization state (sync-statein short) to another. A sync-
state is an abstract notion. In Bimap, it is represented by a sync-
table which is made of a list containing theMESSAGE-ID of the
emails that have been synchronized. When a new synchronization
takes place between two serversS1 andS2with a sync-tableSYNCT,
first the listsL1 andL2 of emails present inS1 andS2 are computed.
Then the emails ofL1 are compared toSYNCT. An email present
in L1 and absent inSYNCT is a new email that has to be copied
in L2 (and vice-versa). An email present inSYNCT but absent in
either L1 or L2 is a deleted email. The implementation of this
synchronization is presented in figures 5 and 6.

For the sake of the example, here is an example of a sync-table:

(("INBOX"
("<OFBF04EB.82F939-O125705F@us.ibm.com>" ((\Seen)))
("<1000.4779.9924@gardenia.artisan.com>" ((\Seen)))
("<169.62.5348.1708@gardenia.artisan.com>" ((\Seen)))
("<11280737.6750.7.camel@localhost.localdomain>" ())
("<2508011658.j71GTF002229@sea.inria.fr>" ((\Seen)))))

The sync-table is an association list whosecar is a folder
name ("INBOX" in this example) and thecdr is the list of syn-
chronized messages. For each synchronized message, we retain its
MESSAGE-ID as well as the list of its IMAP flags. Usage of sync-
tables is explained in Section 4.5.

The synchronization only deletes emails that are present inthe
sync-table. So, if for any reason, such as network failures,the
sync-tables are lost, the synchronization algorithm will resurrect
emails deleted on only one server but it will never erroneously
delete emails. When a message is copied from a serverS1 to a
serverS2, it preserves itsMESSAGE-ID. Hence, if sync-tables are
missing, the synchronization will not erroneously duplicate emails.
Consequently, Bimap synchronization is conservative.

4.2 The synchronization state

Instead of being implemented as files in the user file space, sync-
tables are stored in the IMAP servers they describe. Hence, users
cannot easily modify sync-tables which are private to Bimap. This
ensures the coherence of the sync-tables with respect to theservers
they describe. In addition, this technique also avoids cluttering user

72

home space with various private files. Since IMAP servers only
contains emails, a sync table is implemented as an email. Since
only folders can be named in IMAP, the sync-table is stored asthe
single message of a well-known folder.

Here is the complete implementation of the sync-table shownin
Section 4.1:

Subject: bimap Tue Aug 23 06:27:37 2005

(("INBOX"
("<OFBF04EB.82F939-O125705F@us.ibm.com>" ((\Seen)))
("<1000.4779.9924@gardenia.artisan.com>" ((\Seen)))
("<169.62.5348.1708@gardenia.artisan.com>" ((\Seen)))
("<11280737.6750.7.camel@localhost.localdomain>" ())
("<2508011658.j71GTF002229@sea.inria.fr>" ((\Seen)))))

When synchronizing serversS1 and S2 which are both refer-
enced by a socket, the name of this folder onS1 is the name of
S2 concatenated with the user login name onS1. The function
sync-folder-name implements this naming:

(define (sync-folder-name s1 s2)
(let ((n (string-replace

(socket-hostname s1)
(string-ref (imap-separator s2) 0)
#\-)))

(string-append (bimap-folder-name)
(imap-separator s2)
n "+" (socket-login s1))))

Some special attention has been paid to produce a legal name for
the folder name. Since IMAP servers reserve one character ("." or
"/") as a folder separator, this character cannot be used in folder
names. The functionimap-separator returns the character used
on the server. The functionserver-sync-table-folder-select
goes into the folder ofS1 containing the sync-table ofS2.

(define (server-sync-table-folder-select s1 s2)
(let ((f (sync-folder-name s2 s1)))

(and (folder-exists? s1 f)
(and (= (folder-length s1 f) 1)

(imap-folder-select s1 f)))))

The functionserver-sync-table-get reads eitherS1’s sync-
table forS2 or S2’s sync-table forS1 if the former is absent.

(define (server-sync-table-get s1 s2)
(cond

((server-sync-table-folder-select s1 s2)
(with-input-from-string

(imap-message-body
s1 (car (imap-folder-uids s1)))

read))
((server-sync-table-folder-select s2 s1)
(with-input-from-string

(imap-message-body
s2 (car (imap-folder-uids s2)))

read))
(else
’())))

The default case ofserver-sync-table-get is to return an
empty sync-table. Remember from Section 4.1 that the algorithm
is conservative. That is, if it happens that the sync-table is lost on
both servers, the synchronization algorithm will resurrect emails
deleted on only one server but in no case will it erroneously delete
emails.

4.3 Synchronizing servers

The synchronization of two IMAP serversS1 andS2 is parameter-
ized byfolders, a list of folders to be synchronized. The function
synchronize-servers!, presented in Figure 3, scans all the fold-

ers in the list. For each folder it checks if the folder is new,deleted,
or to be synchronized in each server. This function updates the new
sync-table in order to reflect the synchronizations that took place.

When all folders are synchronized, the new sync-table is stored
on both servers. The functionserver-sync-table-store! ac-
cepts three parameters: the socketS1 andS2 accessing the servers
and the new sync-tablensync. It computes the name of the folder
where the sync-table on both servers (seesync-folder-name in
Section 4.2) is to be stored.

When a folderF is missing on one server, it has to be determined
first if F is a freshly created folder or an older one which has
been deleted. In order to simplify the understanding of the source
code, contrary to the actual implementation, we have duplicated
the cases where a folder is either absent onS1 or S2. The code,
here duplicated, can easily be merged into a single function. The
functionnew-folder? answers this question. A folder is new if at
least one of the following conditions is met:

• It is not present in the sync-table (see Figure 4, line3).

• It contains sub-folders. Since, synchronization first checks sub-
folders, if F is old, all its sub-folders would have been previ-
ously deleted (line4).

• In order to enforce conservativeness, a folder containing new
emails (i.e., at least one non-synchronized email) is also con-
sidered new (line5).

4.4 Synchronizing folders

When a folder is present in both servers (Figure 3, line25), each
email in this folder is inspected bysynchronize-folders! de-
fined Figure 5.

The functionsync-table-folders-find, whose code is not
given here, retrieves the information available in the sync-table
about the folderF. That is, it searches the association list presented
in Section 4.1. A hash table is built (line8) for improving the
performance of the algorithm. It enables fast access to the sync-
table.

4.5 Synchronizing messages

The last step of the algorithm is the synchronization of an email.
The functionsynchronize-message! synchronizes a messageM1
localized in the folderF on serverS1 according to the sync-table
synct. In addition to copying and deleting emails, this function
also propagates theflagsthat are associated with emails. As spec-
ified by IMAP these flags denote meta-informations about emails
such asan email is read, an email is answered, ... While not ab-
solutely required, synchronizing flags is important. It enables co-
herent views of the email on all servers. In order to synchronize
flags, Bimap stores the flags of synchronized emails in the sync-
tables. That is, for each synchronized email, the sync-table denotes
its flags on the servers at the moment of the last synchronization.
The functionhashtable-message-flags returns the flags stored
in the sync-table for a given email. It returns either the list of the
email flags or#f if it is out of synchronization. In the seldom sit-
uation where two servers have separately modified the flags ofone
email, Bimap randomly selects one server for synchronizingflags,
loosing the modifications applied on the other server.

5. Filtering and classifying emails
Email has escaped the professional IT sphere. One now emailsto
colleagues as he does to relatives. Electronic merchandising also
generates emails. Electronic billing and confirmation numbers are
frequently sent by email. Many administrative procedures can also
be completed with the Web and email. All in all this represents a
huge number of emails that are sent (and also received) everyday.

73

1: (define (synchronize-servers! s1 s2 folders)
2: (let ((sync (server-sync-table-get s1 s2))
3: (folders1 (imap-folders s1))
4: (folders2 (imap-folders s2)))
5: (let loop ((folders folders)
6: (nsync ’()))
7: (cond
8: ((null? folders)
9: (server-sync-table-store! s1 s2 nsync))

10: ((not (memq (car folders) folders1))
11: ;; folder absent in s1
12: (let ((f (car folders)))
13: (if (new-folder? sync s2 f)
14: (begin

15: (imap-folder-create! s1 f)
16: (let ((s (synchronize-folders! sync s1 s2 f)))
17: (loop (cdr folders) (cons s nsync))))
18: (begin

19: (imap-folder-delete! s2 f)
20: (loop (cdr folders) nsync)))))
21: ((not (memq (car folders) folders2))
22: ;; folder absent in s2, symmetric to absent in s1
23: ...)
24: (else
25: ;; the folder is present in both servers
26: (let* ((f (car folders))
27: (s (synchronize-folders! sync s1 s2 f)))
28: (loop (cdr folders) (cons s nsync))))))))

Figure 3. Server synchronization implementation

1: (define (new-folder? sync s f)
2: (let ((dsync (sync-table-folders-find sync f)))
3: (or (not dsync)
4: (pair? (imap-subfolders s f))
5: (any? (lambda (i) (not (assoc (message-id i) dsync)))
6: (begin

7: (imap-folder-select s f)
8: (map imap-message-infos (imap-folder-uids s)))))))

Figure 4. Is a folder new?

1: (define (synchronize-folders! sync s1 s2 f)
2: ;; go into the synchronized folders
3: (imap-folder-select s1 f)
4: (imap-folder-select s2 f)
5: (let* ((l1 (map imap-message-infos (imap-folder-uids s1)))
6: (l2 (map imap-message-infos (imap-folder-uids s2)))
7: (fsync (or (sync-table-folders-find sync f) ’()))
8: (synct (sync->hashtable fsync)))
9: ;; synchronize mails

10: (for-each (lambda (m1)
11: (let ((m2 (find-mid (message-id m1) l2)))
12: (synchronize-message! synct f m1 s1 m2 s2)))
13: l1)
14: (for-each (lambda (m2)
15: (let ((m1 (find-mid (message-id m2) l1)))
16: (synchronize-message! synct f m2 s2 m1 s1)))
17: l2)
18: ;; returns a new synchronization state
19: (let ((fsyncn (hashtable-map synct list)))
20: (cons f fsyncn))))

Figure 5. Folder synchronization implementation

74

1: (define (synchronize-message! synct f m1 s1 m2 s2)
2: (let* ((mid (message-id m1))
3: (uid1 (message-uid m1))
4: (flags1 (message-flags m1))
5: (flags (hashtable-message-flags synct mid)))
6: ;; if flags is false (the message is not in the sync table)
7: ;; then the message is un-synchronized
8: (cond
9: ((and (not flags) m2)

10: ;; an un-synchronized mail, presents in s1 and s2
11: ;; (e.g., sync-table lost)
12: (let ((flags2 (message-flags m2))
13: (uid2 (message-uid m2)))
14: (imap-message-flags-change! s2 uid2 flags1)
15: (hashtable-put! synct mid (list flags1))))
16: ((not flags)
17: ;; an un-synchronized mail which does not exists in s2
18: (imap-message-copy! s1 uid1 s2 f)
19: (hashtable-put! synct mid (list flags1)))
20: ((not m2)
21: ;; a synchronized mail, removed from s2
22: (imap-message-delete! s1 uid1)
23: (hashtable-remove! synct mid))
24: (else
25: ;; a synchronized mail, present in s1 and s2
26: ;; when flags differs they have to be synchronized
27: (synchronize-message-flags! sync m1 m2 s1 s2)))))

Figure 6. Message synchronization implementation

Those of us that are used to communicate via the Internet are so
overwhelmed by emails that tools are needed for reading, filtering,
and classifying emails. In addition to synchronizing email, Bimap
can easily be adapted to these tasks, in the spirit of tools such as
procmail.

Variables declared via the macrodefine-parameter are
calledBimap parameters. The puspose ofdefine-parameter is
threefold: it declares a variable, a function named after the param-
eter that returns the value of the variable, and a function that stores
a new value in the variable. Here is an example of a parameter
declaration and use:

(define-parameter bimap-verbose 0)

(for-each (lambda (o)
(if (string=? o "-v")

(bimap-verbose-set!
(+ 1 (bimap-verbose)))))

(command-line-arguments))

When started, Bimap loads a user configuration file that speci-
fies which IMAP servers and folders have to be synchronized. This
file can also contain various definitions that are used for email clas-
sification and email filtering. Instead of inventing a new little lan-
guage for implementing these customizations, Scheme augmented
with the IMAP binding library is used. In consequence, a Bimap ex-
ecution uses compiled Scheme code for running the synchroniza-
tion algorithm and interpreted Scheme code for running the user
configuration code. This blending of compilation and interpretation
enables high expressiveness without jeopardizing performance.

5.1 Classifying emails

Bimap can be adapted to enable automatic folder selection. Slightly
modifying Bimap enables user customizations that automatically
deliver incoming emails into dedicated folders. For instance, one
may choose to archive emails emitted for a mailing list into dedi-
cated folders or another user may choose to split professional email
from personal email. This customization is specified in the new

Bimap parameter,bimap-folder-rewrite. The value of this pa-
rameter is a procedure that accept four parameters: the connection
to the IMAP server, the folder in which the email is currentlystored,
the message info, and its header fields.

Email classification takes place when a new email is detected
on only one of two servers. Instead of copying the new email in
the folder of synchronization (line18, Figure 6) it is copied into a
folder whose name is computed bybimap-folder-rewrite. That
is, line18 is replaced with:

18: (let* ((hd1 (mail-header->list
19: (imap-message-header s1 uid1)))
20: (fdest ((bimap-folder-rewrite) s2 f2 m1 hd1)))
21: (imap-message-copy! s1 uid2 s2 fdest))

The new email is copied in theFDEST directory (which defaults
to F2). No other treatment is needed. Since this email is marked as
synchronized as any other email, the next time the two servers are
synchronized, the message will be moved inS1 from folderF1 to
Fdest.

The following user configuration example illustrates how the
parameterbimap-folder-rewrite is used to store the emails
sent to a mailing list into a dedicated folder.

(let ((old-rewrite (bimap-folder-rewrite)))
(bimap-folder-rewrite-set!
(lambda (sock folder msg header)

(let ((to (message-header-field header "to")))
(if (equal? to "bigloo@sophia.inria.fr")

"Bigloo"
(old-rewrite sock folder msg header))))))

The email classification requires no extra synchronizationtreat-
ment. That is, no provision is taken to ensure the synchronization
of an emaile that is stored into a re-written folderF. The next
time a synchronization takes place, if the folderF on the list of
synchronized folders, the messageewill be automatically synchro-
nized too. This framework require no implementation effortbut it
introduces a delay in synchronization. It takes two server synchro-

75

nizations to correctly classify such an email and propagatethe clas-
sification to the servers.

5.2 Surviving Spam

Spam email is a plague. They clutter our mailboxes, threatening
email usefulness. Spams are more and more numerous. The Google
Gmail accounts of the authors of this paper are cluttered with
approximatively 3000 to 6000 spam emails per month. That is,
between 100 and 200 spam emails are received each day! The 20
to 30 legitimate emails that are received are literally lostin this
ocean of ineptitude. Spam emails are terribly annoying because
they are cumbersome, distracting, and polluting. So, it is apopular
challenge to stop spams. Many research labs have started projects
on this topic. Anti-SPAM software is widely available. The best
of these systems do an impressively good job at stopping spams.
They use more and more clever methods to decide, according to
its content, if an email is spam or not. Bayesian filtering is one
of them. Unfortunately, as good as these systems are, as with
anti-viruses software, they are bound by their very nature to be
late on spam: anti-spam filters cannot anticipate new spamming
techniques. Even more pessimistically, we think that content-based
filtering is a partial solution that could only produce middling
results. What can be reasonably expected from such filters when
applied to emails like:

.oooo.o .ooooo. oooo ooo oo.ooooo.
d88("8 d88’ ‘88b ‘88b..8P’ 888’ ‘88b
‘"Y88b. 888ooo888 Y888’ 888 888
o.)88b 888 .o .o8"’88b 888 888
8""888P’ ‘Y8bod8P’ o88’ 888o 888bod8P’

888
o888o

Spammers can use other techniques for obfuscating emails. A
lot of them attempt to fool Bayesian filters by introducing mean-
ingless texts. This ranges from c*h*a*n*g*i*n*g the space charac-
ter to replacing letters with numb8rs and n0nsense 4ccents.Pre-
sumably the most intriguing fooling technique swaps the letters
composing the words. Aoccdrnig to rscheearch at Cmabrigde uin-
ervtisy, it deosn’t mttaer waht oredr the ltteers in a wrod are, the
olny iprmoetnt tihng is taht the frist and lsat ltteres are atthe rghit
pclae. The rset can be a tatol mses and you can sitll raed it wouthit
a porbelm. Tihs is bcuseae we do not raed ervey lteter by itslef but
the wrod as a whole.

Content-based filtering is not good enough, it lets too much
spams entering our mailboxes. To work around this problem, we
have coupled content-based filtering with a more drastic approach:
white-listing. This well known technique consists of accepting in-
coming emails only from authenticated users. We are using a very
straightforward technique. We save all the email address ofour cor-
respondents into in a big database which compose our white-list.
When a new email goes through the content-based filter, the address
of the email sender is checked against the white list. If the sender
is unknown, the email is moved into a special folder. Otherwise, it
is directly delivered to the regular mail box folder. This technique
is extremely effective. In our personal setting, white-listing suc-
ceeds in detecting 99.9% of spam and only a few legitimate emails
go into the spam-dedicated folder. A vast majority of legitimate
emails are correctly handled and are no longer lost in a forest of
spam. The dedicated folder of unknown senders can be checked
once in a while when time permits.

Implementing white-listing exercises email pre-filteringas de-
scribed above. White-listing is trivial to implement because it only
requires a hash table. In the following we assume that the email
addresses are stored in the local file~/.bbdb and are organized

according to the Emacs’ Big Brother Data Base format [5]. Since
this code takes place in the user configuration file, it can be easily
adapted to satisfy everyone’s needs.

(define *white* (load-bbdb "~/.bbdb"))

(define (unknown-mail? header)
(not (hashtable-get

white (header-field ’from header))))

(let ((old-filter (bimap-filter)))
(bimap-filter-set!
(lambda (sock folder msg header)
(if (unknown-mail? header)

(imap-message-move! sock msg "INBOX.-Unknown")
(old-filter sock folder msg header)))))

6. Summary and Conclusion
We have presented Bimap, a tool for synchronizing IMAP servers.
We have shown that with very few modifications to the synchro-
nization algorithm, Bimap is also able to filter and classifyemail.
As such, Bimap could be a potential replacement forprocmail.
This is highly convenient because it enables email filteringwith
simple small Scheme scripts. Two such scripts have been presented:
one for classifying emails that belong to mailing lists and asecond
one for implementing white-listing. Each of these scripts is no more
that a few lines of Scheme code.

In order to ease the reading of the present paper, a sim-
plified version of the synchronization algorithm has been pre-
sented. Contrary to the code presented here, the actual imple-
mentation supports folder re-writing. That is, it enables synchro-
nizing folder F1 of serverS1 with folder F2 of serverS2 with-
out imposing name equality betweenF1 and F2. This is conve-
nient for managing different IMAP accounts intended for differ-
ent purposes. This incurs a small additional implementation com-
plexity, such as an indexing with two folders name in the sync-
table (so the functionsnew-folder?, synchronize-folders!,
synchronize-message!, and sync-table-folders-find no
longer take only one folder name as parameter but two), but the
main principles of the implementation stay the sames.

We are now permanently using Bimap for our own email. We
have found that email classification and white listing coupled with
Bayesian filtering (that only runs on our incoming email server)
is highly effective to filter out nearly all illegitimate emails. With-
out pretending to have rediscovered the pleasure and excitement of
answering our first 80’s emails, we claim that Bimap significantly
reduces the modern burden of coping with email. We are no longer
disturbed by irrelevant emails arriving continuously in our mail-
boxes. This makes our professional life significantly nicer!

Bimap is not yet the perfect tool. It still needs improvement.
In particular, IMAP does not support locking. This is quite unfor-
tunate, because lacking locks makes it impossible to prevent sit-
uations where two servers simultaneously attempt to synchronize
against a shared third server. In such a situation, inconsistencies
might occur in the IMAP responses that cause Bimap to fail. As
stated in Section 4.1 this is not critical because the only conse-
quence of corrupted sync-tables is emails resurrection. Inno case
could it lead to erroneous email deletion.

Bimap is a realistic, yet simple, application written in Scheme.
It benefits from the expressiveness of this language and, more im-
portantly, it uses a feature that is frequently available inScheme im-
plementations: the blending of compiled and interpreted programs.
For efficiency, the tree comparisons are compiled. For usability and
convenience the user scripts are interpreted. Few other languages
present these capabilities.

76

[1] Crispin, M. –Internet Message Access Protocol– RFC 3501, The
Internet Society, 2003.

[2] Crocker, D. –Standard for the format of ARPA Internet text
messages– RFC 822, Dept. of Electrical Engineering, University of
Delaware, 1982.

[3] Myers, J. and Rose, M. –Post Office Protocol - Version 3– RFC
1939, Carnegie Mellon and Dover Beach Consulting, Inc., 1996.

[4] Pierce, B. and Vouillon, J. –What’s in Unison? A Formal
Specification and Reference Implementation of a File
Synchronizer– MS-CIS-03-36, Dept. of Computer and Information
Science, University of Pennsylvania, 2004.

[5] Zawinski, J. –The Insidious Big Brother Database– 20th century.

