| mplementing a Bibliography Processor

in Scheme

Jean-Michel Hufflen

LIFC (FRE CNRS 2661)
University of Franche-Comté
16, route de Gray
25030 BESANCON CEDEX

FRANCE

hufflen@lifc.univ-fcomte.fr

Abstract

We report an experience of implementing the MIBX bibliogra-

phy processor, a re-implementation aBE=X with particular fo-

cus on multilingual features. First we describe the behawibthis
software and explain why we chose Scheme to implement the firs
public version. Then we give the broad outlines of our immem
tation and show how we took as much advantage as possible of th
main features of Scheme. We also explain what we really misse
and suggest some ways to improve these points.

Keywords MIBIBTEX, bibliography processor, medium-sized pro-
gramming in Scheme.

1. Introduction

This article reports an experience of implementing medsaimed
software in Scheme. The ‘philosophy’ related to the debnitdf

this programming language is that ‘a very small number o$ifija
rules [...] suffice to form a practical and efficient programm
language, as mentioned at the introduction of the currevision

of Scheme [24]. So this article is an attempt to show how sariéw
can be developed using ‘a very small number of basic rules/-A
way, we do not regret to have developed our software in Scheme
but have some criticisms: we think they are constructive.

The program we have written using Scheme lsildiography
processor More precisely, this is a re-implementation oBEB=X
[36], the bibliography processor associated with #igX. word
processor [29]. Reading this paper does not require pr&nisel-
edge of ATEX and BBTEX, but we provide a brief introduction in
order to make our purpose more preci$gX is not an interactive
word processor: first, users typsaurce file then ETgX processess
this source file and produces an output file that can be disglap
a screen or printed on a laser print&fgX, which uses gX as type-
set engin&[28], produces high-quality print outputs. In particular,
itis able to hyphenate words correctly [28, App. H].

17EX, defined by Donald E. Knuth [28], provides a general framewio
format texts. To be fit for use, the definitions of this framekwoeed to be
organised in drmat There are several formats, the most well-known being
IATEX.

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copresi@r made or distributed
for profit or commercial advantage and that copies bear titissand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

Sixth Workshop on Scheme and Functional Programmir8eptember 24, 2005,
Tallinn, Estonia.
Copyright(© 2005 Jean-Michel Hufflen.

77

Items of the bibliographical information cited throughaarn
article typeset withAIEX can be denoted by an identifier, e.g.:

\cite{ziemianski2002a}

[33, § 12.2.1]—from a syntactic point of viewiTEX commands
begin with "\’ and braces are used to surround arguments—and
when BBTX is used to build the ‘References’ section of the article,
it searchedbibliography filescontainingentries e.g.:

Q@INPROCEEDINGS{ziemianski2002a,
R

[33, 8§ 13.2] and generates a file containing bibliographietdr-
encescited throughout the article. WheATEX runs again, such
references are typeset and appear as part of this article.

IATEX's recent versions have greatly improved multilingual ca-
pabilities. For example, the command for specifying thefmsgg
of a chapter and its title is:

\chapter{...}

[33, § 2.2] and the keyword put b¥TEX defaults to the English
one, i.e., ‘Chapter,’ but can b€hapitre (resp. ‘Kapitel, . ..) for a
book written in French (resp. German, .. .) In additiéfigK is able

to switch to accurate patterns for hyphenating non-Englisids.
Thebabel packag@[33, Ch. 9] provides multilungal operations for
IATEX. Other packages do that, too, but the most multilingual one
is babel, in the sense that this package processes all the natural
languages it knows, without giving any privilege to a partéic
one. Therefore this package is especially suitable formgizseveral
languages within the same document. For example, if we want
to write an article in Polish with some fragments in Germae, w
declare:

\usepackage [german,polish]{babel}

the last option—here polish’—gives the default language of the
document. If we want to write ‘Bus to Poznan, the words ‘bois t
being translated in German, we can use \fiereignlanguage
command of théabel package:

\foreignlanguage{german}{Autobus nach} Pozna\’{n}

Besides, AIgX is able to deal with ‘foreign’ characters, that is,
accented letters (e.g.h") and other diacritics, but in this paper,
we do not go thoroughly into that, we just us&X commands to
produce such characters.

2W.r.t. IBTEX's terminology, apackageis a collection of commands. Some-
thing belonging to the Lsp world and close to this notion is the system of
modulesn COMMON Lisp, controlled by thesmodulesx* variable and the
functionsprovide andrequire [47, § 11.8].

However, BBTEX's present version does not provide as many
multilingual features asATEX's, even if the insertion of some
multilingual aspects has been put into action [33, pp. 733—7
& § 13.5.2]. In fact, the commands of theabel package can
be used within the values of IBIEX fields—as we showed in
the previous example—andiEX will copy these values onto
the files it generates. However, this method seems to us to be
bad, because users of such bibliographical entries haveatt |
the babel package with all the accurate options in any document.
This package operates statically, that is, all the langsiggssi-
bly used throughout a document must be declared as options of
theusepackage command, located at the beginning of the docu-
ment. In other words, using languages that are not selechet w

@INPROCEEDINGS{ziemianski2002a,
AUTHOR = {Andrzej Ziemianskil,
TITLE = {[Autobahn nach] : german {Poznan}},
BOOKTITLE = {Zajdel 2002},
EDITION = 1,
PAGES = {165--238},
PUBLISHER = {Fabryka Stéw},
ADDRESS = {Lublin},
NOTE = {[No English translation] ! english},
YEAR = 2002,
LANGUAGE = polish}

Figure 1. Example of MIBBTEX entry.

the babel package is loaded causes errors. That may be the case

if files of bibliographical references use such languagetiflers,

put down in the bibliography data bases. In addition, usinchs
IATEX command in bibliography data bases is just a hack and obvi-
ously obstructs the generation of bibliographies for oufptmats
other thanAIpX. Given these considerations, we started a new im-
plementation, called MIBTEX (for * MultiLingual BBTEX). We
roughly describe the behaviour of this program in Sectiom@ a
explain why we have developed it in Scheme. Section 3 present
MIBIBTEX's architecture and gives the guidelines of its develop-
ment. Section 4 reviews what we enjoyed in Scheme and what we
missed.

2. MIBIBTEX
21 Purpose

We sketched BTEX's behaviour in the introduction. Now we ex-
plain why MIBIBTEX can be viewed as a ‘betterdIX,’ especially
for multilingual features.

Let us consider the entry given in Figure 1, concerning a it@ve
included in an anthology. This novella, written in Polisheblpolish
writer, is entitled Autobus nach Pozndret us remark that two
words of this title belong to the German language. If thisallay
is cited in an article written in Polish, the correspondiafgrence
should look like:

[1] Andrzej Ziemiaski, Autobus nach Poznafw:] Zajdel
2002 Fabryka stow; Lublin 2002; strony 165-238.

as an item belonging to @hebibliography environment [33,

§ 12.1.2]. Aplain bibliography style is used above, that is, items
are labelled by numbers, and first names are not abbrevi@#uer
styles exist—for example, withialphastyles, the label of an item
is formed from the author’'s name and the year of publication—
various examples are given in [33, Table 13.4].) Besidésidae-
call that this reference is supposed to be put at the end ota-do
ment written in Polish. Let us have a look at the same referenc
but within the bibliography of a document in English and shayv
the items of this bibliography according to English-spagkton-
ventions as far as possible:

[1] Andrzej Ziemiaski. Autobus nach Pozhaln Zajdel
2002 pp. 165-238, Lublin, 2002. Fabryka stéw. No
English translation.

That is, {W:]" is replaced by ‘In,’ strony by ‘pp.’ for ‘pages.’ It

is given before its name in an English-speaking bibliogyalf

ter it in a Polish-speaking one. Second, the value assdcigité

the NOTE field (see Figure 1), the["...] ! english’ notation
means that the string surrounded by square brackets is pyt on
if the language of the reference imglish.’ Users could build an
entry for a document, usable when the reference is to be phinwi
an English-speaking bibliography, another entry for thaesaoc-
ument, but usable within a French-speaking bibliography, so

on. As a consequence, the information common to these entrie

would be duplicated. The['...]1 ! ...’ construct avoids such a
behaviour; more technical details about such switchesiaes gn
[18, § 2.3].

To show some difficulty related to the generation of mulglial
bibliographies, let us go back to the Polish version of oference
and recall that the title of theemianski2002a entry uses some
German words, which are expressed by thie."] : german’
notation. To ensure that these words will be properly hypheth
if need be, we can generate the following téxt:

\bibitem{zemianski2002}Andrzej Ziemia\’{n}ski,
\newblock \emph{\foreignlanguage{german}{Autobus
nach} {Pozna\’{n}}}. \bblin\ \emph{Zajdel 2002}.
\newblock Fabryka s{\1}\’{o}w; Lublin 2002;
\bblpp\ 165--238.

provided that the document uses thebel package, with at least
thegerman option. This document’s author may think that he does
not need to write in German even if a work using German words
in its title is cited. In such a case—thgerman option has not
been selected—MIBTEX does not put the\foreignlanguage
command:

\bibitem{zemianski2002}Andrzej Ziemia\’{n}ski,
\newblock Autobus nach {Pozna\’{n}} ...

but some words might be hyphenated incorrectly. Besides, th
babel package is not the only way to write texts in Polish: there
exists apolski package [4, 8§ F.7], in which case other commands
should be used. More precisely, here is the text that wilseahe
‘foreign’ (non-Polish) words to be hyphenated correctlyanthis
package is loaded:

\bibitem{zemianski2002}Andrzej Ziemia\’{n}ski,
\newblock \emph{{\selecthyphenation{german}Autobus
nach} {Pozna\’{n}}} ...

These examples aim to give some idea about the complexity

is easy to see that such simple cases can be processed by meang Mmig |sT=X’s task. The management of the language specifica-

of substitutionsthat is, by means ofTgX commands for gener-
ating keywords—\bblin, \bblpp, ...—whose effect is language-
dependent—ih’ and ‘pp. in English. Other cases are subtler. First,
the order is not the same: for example, the address of théspebl

SW.r.t. MIBIBTEX's terminology, such a convention is calletbcument-
dependent approadis8, § 4].

78

tions LANGUAGE field, ‘[...] ...’") and multilingual packages
is explained in more detail in [21]. Of course, such problere

4Notice the use of the commandsblin and \bblpp for the keywords
used in bibliographies. We show how to manage them in [20¢ \mph
command is for texts to be emphasised, thewblock command is used
by some document styles [33, Table 7.2, § 12.2.1].

unknown for ‘old’ BIBTEX. As shown in Figure 1, MIBBTEX's
syntax extends BTEX's. Square brackets are syntatic markers in
MIBIBTEX, ‘normal’ characters in ‘classical’ BTX. Likewise, the
LANGUAGE field, specifying the language of an entry for MEBEX,

is ignored by BBTEX since unused fields are ignored.

2.2 Requirements

hard to maintain. As we explained in [17], we decided to geét ri
of the language used byBIEX for bibliography styles [35]: that
is an old-fashioned language, non-modular and only basédon
dling a stack, as it can be seen in [33, § 13.6]. As abovemeedixa
compatibility mode exists [16], but the best way for devéhggbib-
liography styles is given by a new language, caliédt, for ‘new
bibliographystyles’, close toxsLT [52], the language of transfor-

. . H 8
When ETEX processes a document, it produces an output file and Mmations forxmL® documents.

puts the information about bibliographical citations inaxiliary
file. For example, processing thecite{zemianski2002a}’ Ci-
tation will cause theNcitation{zemianski2002a}’ string to be
put into an aukxiliary file. This file should contain the spemwifion
of the bibliography style to be used: e.g\bibstyle{plain}’ for
the ‘plain’ bibliography style. In fact, these auxiliaryed are not

TeX source files in the sense that they do not contain texts to be

typeset, but the tokens these files use are the same fromacsgnt
point of view (cf. [33, § 12.1.3] for more details). Here is aths
to be done by MIBBTEX:

(i) look into an auxiliary file for the keys cited throughoutlac-
ument and the bibliography style to be used for this document

(i) search bibliography files for corresponding entries;

(iii) look into the beginning of the source file in order to get
information about the multilingual packages used and try to
determine the document’s languaye;

(iv) sortthem (the sort used depends on the bibliograpHg 8yt
may also depends on the document’s language);

(v) arrange them according to the bibliography style chosen

Tasks (i) and (iii) require agX parser, whereas Task (ii) requires a
parser of bibliography files. (Because of the compatibitityde for
‘old’ bibliography styles of BBTEX [16], another parser is required
for such files, written using thlest language [35].) The directives
for Tasks (iv) and (v) are putin bibliography style files. Véeghat
such a bibliography processor has to manage several famsli

2.3 A bit of story

When we designed and implemented MiB=Xs first version [13],
we decided to develop it in C [25], for sake of efficiency and
portability. In fact, we confess that we were surprised wigX
had been reimplemented as a new systérs’ [43], programmed
in Java [23]: it resulted in a program over 100 times slower than
TeX [48]. We also were trying to propose an alternative for a
program with good reputation of efficiency. We put into acti
precise modular decomposition and a precise terminologgioe
our functions and variables for this first version [14], son\g<C to
develop a program supported by precise methodology seemed t
to be good compromise between efficiency and maintaingbilit
This first version—we reported the experience we got in [14]—
was able to deal with substitutions, that is, commands ssch a
\bblin and\bblpp (cf. § 2.1). It was also able to process con-
structs such as[...] ..o and ‘[...] ' ...] But when

it was ready for use and when we were arranging the interface

files—the different values to give to th&bbl. ..’ commands—
we became aware that this prototype was not multilingualigho
As an example, putting the different field values concerrting
zemianski2002a entry in the right order for documents in English
and Polish would have led to complicated bibliography stylery

5 BIBTEX does not need this step, but MEEX does.

8For example, theinsrt bibliography style of BBTEX leaves the entries
unsorted: they are put according to the order of appearanitenwhe
document.

7 New TypesettingSystem.

79

2.4 Thenbst language

Within this new framework, parsing a bibliographical erfiiym a
.bib file results in arxmL tree, that is, theemianski2002a entry
given in Figure 1 can be viewed as theL tree:

<inproceedings id="zemianski2002a"
language="polish">
<author>...</author>
<title>...</title>

</inproceedings>

Processing such a tree can be done this way by usiegplateof
thenbst language:

<nbst:template match="inproceedings">
<!-- Putting the reference’s label, text omitted. -->
<nbst:apply-templates select="author"/>
<nbst:apply-templates select="title"/>

</nbst:template>

Such a template is similar to those used @17, it is invoked when
the entry we are processing is rooted by ihg@roceedings ele-
ment. The twanbst: apply-templates elements we mentioned
in that sketch aim to look for templates matching #whor and
title elements respectively: if such templates exist, they are in
voked. The main difference betwegBLT andnbst: in the latter, a
template can be refined for a particular language:

<nbst:template match="inproceedings"
language="polish">

<nbst:apply-templates select="title"/>

</nbst:template>

a template with thaanguage attribute having higher priority than
a template without. So this template is invoked when we ape pr
cessing aninproceedings element for a Polish-speaking bibli-
ography, whereas the template withdutnguage attribute is in-
voked in order to formainproceedings elements for bibliogra-
phies written in languages other than Polish (more pregiselan-
guages other than those put in all thenguage attributes of the
templates matchindnproceedings elements). This kind of in-
heritance is applied whenever we are looking for a tempkde.
example, let us consider the following statement:

<nbst:apply-templates select="title"/>

When itis run, we are looking for a template whase ch attribute

is title. First, we are looking for a template whosenguage
attribute is associated with the current language. In @asr, if
this apply-templates Statement is run from the template with
thelanguage attribute associated witpo1ish, we are looking for
a template withLanguage="polish". If such a template exists,
it is invoked. If not, a template matchingtle elements without

8Reading this article does not require advanced knowledgetabvL .
Readers interested in this metalanguage can refer to [38].

language attribute—that is, a default template—is invoked. Such <title>

organisation allows us to build several variants, for Esigliand <asitis>
Polish-speaking bibliographies, as shown in § 2.1. Morbrieal <emph emf="no" scf="yes">la</emph>
details are given in [18]. </asitis>
Like in xsLT, the values ohatch attributes belong to the XPath Confidential
language, used to address parts okan. document [51]. In fact, </title>

our expressions selecting parts of a bibliographical iteenvery
close to XPath’s expressions, but we added some functiorepfo
erations difficult to perform with the functions provided the first
version of XPath (1.0, the normative document being [514).4x-
ample, using the functions provided by standard XPath taalége TITLE = {{\logo{la}} Confidential}

some words in a title is tedious. In addition, multilinguaafures

require some information included inX source files (cf. § 2.2), where\logo is a user-defined command meaning that its its argu-
and are implemented by means of calling external functimesyo ment is an acronym. Such a command may be defined as follows
thoroughly into this choice in [21]. Obviously, it is preédle for [33,8 A.1.2]:

such external functions to be written in a high-level progmsing

language, more precisely, in a language that should easetimpes \newcomnand{\logo} [1] {\textsc{#1}}
on strings. Such a criterium puts C at a disadvantage: ptdrsiyc- that is, the\1ogo command has the same effect than thextsc
cessful text-processing packages have been written in ©thbu command, but it is more readable about its meaning and can be
memory management is explicit, such operations like cameat redefined if users wish to change the display of acronyms.

tion require functions whose use is far from obvious. We c&nn This example shows that if end-users have put séfpXIlcom-
require a bibliography style designer to be an experienged p mands inside values ofiBTEX fields and wish to use MIBTEX to
grammer in C. So, as we report in [19], we decided to develop output files according to other formats thafgX, they should be
MIBIBTEX's first public version (1.3) using Scheme. In particular, able to specify how their commands have to be processed vibken b

since the\textsc command is predefined iATEX. The problem
is more complicated if end-users put commands they haveetkfin
themselves, e.g.:

this choice allowed us to use the representatiomofiL [27] as a liography files are parsed and transformed xwa. trees. They can
Scheme implementation of oumL trees. So the bibliographical do that by means of théef ine-pattern function of MIBIBTEX,
entry given in Figure 1 is represented as: some examples being given in Figure 2. The first example shows

how the previouslogo command can be processed: in this case, it
is processed like thetextsc command (see theitle andemph
) elements above).

Hereafter we sketch the effect of tdefine-pattern func-
tion, in order to show that end-users can easily customéesa &ms-
formation of bibliography files intexmL trees. In particular, such
a customisation is easy since Scheme allows powerful dpesat
on strings nicely. If a language like C was still used for MiB=X"s
implementation, this kind of specification would be tediocorswe
would have to define a mini-language to do that.

The define-pattern function has two arguments. The first
is a string viewed as pattern, following the conventions of gx
25 A language accessible by end-users for defining commands, that is, the arguments of a command are

:)) . denoted by #1, ‘#2, ... (cf. [28, Ch. 20]). If the second argu-
The choice of a language witkmL -like syntax for bibliography — ment is a string, it specifies a replacement, the argumentiseof
styles opens a window towardsL 's world and some applications corresponding command being processed recursively. Bodtre

(inproceedings (@ (id "zemianski2002a")
(language "polish"))
(author ...) (title ...)

In addition, let us recall thatbst programs arexmL texts. To
parse them, we usesAX [26], its outputs beingsxML expres-
sions. Among other tools related 8XMmL, we have also gained
experience by studying the functions implementing SXPai, [
but have given our own implementation, in order to ease thie ca
of external functions. Likewise, we wholly put into actidmetim-
plementation ohbst, as a ‘supexsLT’ processor with a kind of
inheritance about theanguage attribute.

become easier: for example, usinlst to build aHTmL file [S3] that is, the second argument—could be given as)anL expres-
from a bibliography file in order to display its entries on tveb. sion, but we wish a particular representation not to occsidimthe
Or generating bibliographies for documents in DocBookxmn - Scheme code introduced by thef ine-pattern function: that is
based system for writing structured documents [54]. Buttlaio \\y we give it as a string whose content is expressed by means o
problem occurs: it is well-known that many end-users ptiigxL ‘usual’ XML syntax.

commands inside values of@X fields, because ‘old’ BTEX it- This simple form can deal with many cases, but not all. If
self does not have enough expressive power. We alreadyanenti we look at the second example, we see how \thextbf com-
this fact in the introduction about commands from Habel pack- mand of KTEX is replaced by al’e;nph element with accurate at-
age. In fact, it does not matter #TEX documents are generated— yipytes: using bold face and non-italicised charactersatTnay
although it can be told that such behaviour makes difficaisthar- be wrong, becausetextit{\textbf{. ..}} produces both bold
ing of bibliography files among several users because useesth face and italicised charactétsn IATEX. More expressive power

load the same packages as abovementioned—but may cause erfojs needed to deal with such cases. In the developed form of
on other cases. For example: the define-pattern function, the second argument is a zero-

TITLE = {{\textsc{la}} Confidential} argument function that results in a string, which is theaepment
h | . I . of the pattern. When this form is used, all the operationstrnas
In such a case—some letters to be typeset using small capicalr explicit within the body of this zero-argument function fact, the

parser of bibliography files can easily process this titleibyng an

. > form:
element with accurate attribut@s:

9Hereafter theasitis element means that its contents should not be €lements and attributes used within theL versions of bibliography files

capitalised or uncapitalised, even if the bibliographylestyequires that. can refer to [15]: that is an earlier version, but changestget.
The emph element and its attributes specifies typographic effects, e 10Readers interested in the font managemen®TgX{_can refer to [33,
using small capitals in this example. Readers interesteddescription of Ch. 7].

80

(define-pattern "\\logo{#1}" "<emph emf=’no’ scf=’yes’>#1</emph>")
(define-pattern "\\textbf{#1}" "<emph emf=’no’ bff=’yes’>#1</emph>")

(define-pattern "\\textit{#1}" (lambda ()

; ‘sct’ is aflag for ‘small capitals.’
; ‘bff’ is for ‘boldface flag.’

;3 Notice that theemf attribute of theemph element—a switch between roman and italicised characters—
;3 defaults toyes, the other attributes default tm.

(define-pattern "\\textbf{#2}" "<emph bff=’yes’>#2</emph>")

; Local pattern.

(string-append "<emph>" (pattern-process "#1") "</emph>")))

Figure 2. Patterns forAIpX commands in Scheme.

(define-pattern p s)
—wherep ands are strings—is equivalent to:

(define-pattern p
(lambda () (pattern-process s))

the pattern-process function belonging to MIBBTEX'S pro-
gram. The body of the function that is the second argument of
define-pattern may include the specification édcal patterns

as shown in the third example given in Figure 2. Let us comside
the last two patterns shown in this figure: when an occurredfice
a\textbf command is encountered, the local pattern of the third
example is applied inside the argument oftextit command,

the ‘global’ pattern of the second example being appliedvdrgye
else.

3. Theprogram
3.1 MIBIBTEX s architecture

In the previous section, we introduced to the main modules of
MIBIBTEX; now we show how they are put together. Figure 3
pictures MIBBTEX's architecture. This figure emphasises the data
flow: given some citation keys extracted from an auxiliaguk)

file, some bibliography.bib) files are searched and the result is
a list of bibliographical entries, given axML data. To do that,
MIBIBTEX's parser is enriched with a module for dealing with pat-
terns. As shown in Figure 3, some patterns are predefineds-som
like the pattern matching the€logo command in Figure 2—can
be user-defined. The analysis of thex file also allows us to get
information about a bibliography style. If we do not consitlee
compatibility mode for oldbst files, bibliography styles are writ-
ten using thenbst language. These files are parsed ussisgX,
grouped and ‘semi-compiled,’ in the sense that templateser
arranged in order to ease the determination of the tempdalte t
invoked when we are moving to a particular element. Each tem-
plate results in a Scheme function after this pre-procgssind the
bibliography processor applies such functions.

Like XsSLT [52, § 16],nbst supports text, ‘xml’ and ‘html’
output modes! There is also daTeX mode, taking into account
some particular points ofIeX’s syntax. So, only the strings to be
output are concerned by the differences betweert andLaTeX
modes. As examplesabst : text is used to put a stringerbatim
like thexsl:text element inxsSLT—:

e <nbst:text>),</nbst/text> yields %’ in text mode, \%’
in LaTeX mode (in &TEX, ‘%’ introduces a comment [29,
§ 2.2.1], so it must be escaped to loose this property),

® <nbst:text>£</nbst:text>—the character numbered
163—yields this character (‘£') irext mode and the com-
mand to produce it {pounds’) [29, § 3.2.2] inLaTeX mode,
this command being suitable whatever the encoding usedeby th
word processor is.

11 A html mode is needed sineerML texts do not fitxML 's syntax, stricly
speaking.

81

As mentioned in § 2.4, the programs .imbst files can use calls
to external functions written in Scheme. That is not herdtics
feature—using external procedures—existx&.7. We use such
external functions in Scheme to implement operations amgstyto
program lexical ordering that depend on natural languasysto
searchtex files for information about the multilingual capabilities
allowed by the user of the source files, as shown in Figure 3.
We can be asked for a question: ‘why two languagést and
Scheme? why have we not used Scheme for the whole of a bibli-
ography style?’ Such a conventions would have madeIBMEX
close to the stylesheets written irsssi? [22], associated with
SGML texts. But it was told that programming witissssLwas dif-
ficult for style designers that are not experienced prograranin
fact, DSssLis not declarative enough, if we compare it¢sLT or
nbst. Besidesnbst allows refinements to be put into action with-
out modifying an existing style directly. For example, if aliBh
style designer finds out that the default version for a styesd
not fit the Polish requirements for the layout of a referenme f
aninproceedings entry, such requirements can be implemented
by developing additional templates whose lk&guage attribute
is associated witlpolish. External functions written in Scheme
should be used for low-level computation, for examples ofoer-
ations dealing with the different characters of a stringfalet, we
think that style designers will not have to develop such fioms,
but they can do that if they wish.

Last but not least, Figure 3 makes precise the parts that are
finished presently: all, except that those pictured withitlaahed
box, they are planned for the next version.

3.2 Our programming

Working about natural languages is an open domain, in theesen
that there is no general framework, from a theoretical pafintew,
that would cover all the natural languages in the world. What
suitable for a particular language may be unsuitable foitharo
So even if we consider a wide range of natural languages, we ha
to do experiments and other experiments, reprogram sonipar
they have been modelled insufficiently, that is, if some ipalar
cases made fail a general scheme. Only a high-level progiagnm
language allows such approach. Besides, the ability forusmas

to enrich the program by means of patterns (cf. § 2.5) seemesl t
to be a decisive point for choosing Scheme. Let us compase thi
feature with the Emacs editor, written Emacs Lisp [31], and
customisable by user-defined functions written in this lsage.
Such issues seem to us to justify the choice ofigrldialect. In
addition, when we decided to do a second implementatiorgusin
another language than C, we were familiar witts universe,
we have already developed a medium-sized programari@oN
Lisp: a rewrite engine for an algebraic specification languagé [1
But we noticed that OMMON LiISP was too big and heavy. We
did not want to accept its complexity, whereas we needed anly

12pocumentStyle SemanticsSpecification. This formalism is a side-effect
free subset of Scheme, enriched by a library for formattinipiots.

pattern processing

—————————————————————

‘predefined’ patterns
(TeX commands for
accents and fonts)

MIBIBTEX'S
- parser bibliographical entries MIBIBTEX's output: file of
.bib file(s) — - .
assxmMmL data bibliography bibliographical references
processor
key citations and
name of data bases
tex file(s)
_aux file Information about

multilingual
capability

bibliography external functions

style in Scheme
/ (possibly user-defined)
nbst file(s) bibliography style(s)

SSAX parser assxML data
\ interpretation of \
1
1

.bst functions

,,,,,,,,,,,,,,,,,,,,,

‘A — B’ means thatd usesB. More precisely, functions or data putihuse functions o3 or data fromB.

Figure 3. Data flow in MIBIBTEX.

small part of it. We were interested in programming in a senpl
Lispdialect, using only a few powerful constructs. In additiose,
already have taught Scheme to undergraduate [11] and deadua
[12] students.

Here are our rules of programming. Most of them aim to ease
maintainability.

* There are precise rules for naming global variables. IBTBX
is organised into modulé$€,each module defining a prefix for
naming variables. For examplepattern-’ is the prefix of
the functions dealing with patterns (cf. § 2.5). Here are the
exceptions:

= some general functions and macros, grouped into one file,

= local variables, that is, variables defined in the body of the
special formslefine, do, lambda, let, let*, andletrec,

= protected variablesas we will see below, their names al-
ways end with “pv;" when they are used in several mod-
ules, they do not have any prefix.

13From our point of view, these modules only exist in connetticoncep-
tion, we do not use any syntactic feature—e.g. rihéule specification of
the Scheme compildsigloo [40, § 2.2] orPLT Scheme [6, § 5]—for them.

82

Side effects are only allowed for local variables. In additi
we have carefully followed the recommendation about naming
destructive functions in Scheme [24, § 1.3.5]: if a function
mutates any of its arguments, its name ends with

Information is retained locally, by means of lexical clasand
unlimited extent as far as possible. If several functidiedi
share the same environment, they are put into action by one
function working bymessage-passing his technique is used
for protected variablesthey are protected since they are en-
closed within a lexical environment. For example, the loigpi
raphy style, as a path torébst program, is managed this way:

((bibliographystyle-pv ’see)) ; Get the value.
((bibliographystyle-pv ’set) ...) ; Update.

In fact, this technique can be viewed as object-oriented pro
gramming in Scheme, as shown in [1, Ch. 2] and [39]. We could
have defined a global variable whose value is such a path and
setting it whilst MIBBTEX is running. We could put a syntactic
sign inside its name to warn readers of our program that this
variable is supposed to be modified. But we have preferred for

(define (parsers-make-launching filename launcher)

;3 launcher is the function that rules the analysis of the input file. igenents are the function going forward through

;; the file and the function managing errors.

(call-with-current-continuation (lambda (parser-exit-c)
(parsers-filename-rp-loop filename launcher parser-exit-c))))

(define (parsers-filename-rp-loop filename launcher parser-exit-c)

;; filename being an absolute path to an existing file, opens it,

;3 corresponding port.
(let ((input-p ’*dummy-valuex))
(dynamic-wind

runsa@aed-process loop, and closes the

;3 Even if thelauncher function encounters errors, the input port is closed. THe sffect oninput-p is allowed

;3 W.r.t. our conventions, because it is a local variable.
(lambda ()

;3 Reenter the middle thunk causes the input file to be open again

(set! input-p (open-input-file filename)))

(lambda () (launcher (make-r-thunk input-p) parser-exit-c))

(lambda () (close-input-port input-p)))))
(define (make-r-thunk input-p)

;3 The result is a thunk—zero-argument function—that movesdod through the input file.

(lambda () (read-char input-p)))

(define (make-x-function parser-exit-c)
;3 The result is an escape functionz=-is for ‘e Xit"
(lambda (msg-idf)
(msg-manager msg-idf)
(parser-exit-c #f)))

that displays an error message, and stops reading gifwrthe input file.

Figure 4. Basic functions to build MIBBTEX's parsers.

all the ways to get the value of such information or update it t
be grouped into one function within our prografn.

We did not use lexer and parser generator like those proposed

in [34], analogous taEX andYAcc, which generates C programs
[30]. In fact, we could have done that for thet language, be-
cause lexical and syntactic analyses are clearly distigai in
this case. However, there is no distinction between scaandr
parser in EX’s languagé'® also used in auxiliary files where in-
formation about bibliographies to be build are located §c?.2).
For this language, there is only one analyser, which reteither a
whitespace character, or another character, different fkg or the
complete name of a macro. Concerning bibliography files, are c
separate lexical and syntactic analysis—we did that in teevfer-
sion [13, Annex]—but that yields a two-level grammar: a fiesel
forentries (@...{...}'), a second for values associated with field
names. So, we have preferred to devedaphocparsers for these
languages. Last, we use tBsAX parser fombst programs, since
they arexmL documents.

‘unread’ a charactéf. On the other hand, a parser is reading in
advance. The solution put into action is that the functioheur
parser return at least two values: the result of processifigca
ment of the input file, and the first character belonging tadfen
after what has just been processed. A simple example is given
Figure 5. These parsers were easy to debug: we replacedrte fu
tion moving forward through an input file by a function given i
Figure 6 and exploring successive characters of a stfiag. the
read-char function would do after opening a string port in the
sense o5RFM Nr. 6 [3].

Concerning the management of multilinguism, the infororati
related to natural languages used throughout bibliogragdia
bases is organised intare: % see [21] for more details.

Scheme as an implementation language

First we developed MIBTEX's present version witiviT Scheme
[2, 9]. Then we study how to put a portable implementatioo int

We have defined a common framework for the parsers we have action with bigloo [40] and PLT Scheme [6, 37]. We carefully

built ourselves, the main functions are given in Figure 4.cBp-
vention, the arguments of the parser's functions includera-z
argument function to move forward through the input file and a
escape function stopping reading through the inputfil8ince
this zero-argument function is our only way to get sometliinogn
the current input file inside the functions of our parser, wendt

14|n addition, if we consider a variable defined globally andlaged at
run-time, it can be difficult to detect that it has not beengasd yet to its
‘actual’ value. We could define it by bounding it to a ‘dummylue, but
there is no ‘universal dummy value.

15That is the case for some early languages.

16|n particular, this function is called when an error is enteved. There
is no error recovery in MIBBTEX—our parsers stop as soon as an error is
encountered—but there was not in ‘old'eBgX, either.

83

grouped non-portable code in one file, so we knew which parts
could be difficult to adapt.

17In fact, we could use thgeek-char function of Scheme [24, § 6.6.2] for
this operation, but we decided to proceed only ahead, honeagesly.

18Besides, this function is used in ‘final’ MIBTEX: when an abbre-
viation, defined by ¢STRING{schw = {Scheme Workshop}}'—cf. [33,
§ 13.2.3]—is used, e.g., IBOOKTITLE = schw’, MIBIBTEX'S parser in-
serts the contents of the string associated wittht' by means of the
make-r-string-thunk function.

195chemerequesFor Implementation. For more details, see the Web page
http://srfi.schemers.org

204 trieis a particular case of a tree for storing strings: there Ig one
node for every common prefix.

(define (s-parse-string-def r-thunk char x)

;5 ‘s-' is the prefix for functions parsing bibliography files. ParssSTRING{<token-0> =

<string-value>}, ‘@STRING' being

;3 recognisegdchar being the first character after-thunk is the O-argument function that allows us to move forwarduigh the
;5 input file, x is the escape function that stops reading and retttress the global result of parsing.

(call-with-values (lambda ()
(s-next-bibtex-idf r-thunk

;3 Checking that the token beginning withar is ‘{’ and returning the first character
;3 after, in case of success:
(s-recognise-left-brace r-thunk char x)

x))
(lambda (token-0 char-0)
: token-0 is the abbreviation’s namehar-0 is supposed to be=.

(call-with-values (lambda () (s-parse-value r-thunk (s-recognise= r-thunk char-0 x) x))

(lambda (string-value char-1)
((s-string-defs-pv ’add) token-0 string-value)

; Adds the bindingtoken-0 +— string-value. Let us notice that

; s-string-defs-pv is a protected variable (cf. § 3).
;5 First, recognisind}’ and returning the first character after, then processingerdry, that is, nexte{. ..} and

;3 returning two values:

(s-next-entry r-thunk (s-recognise-right-brace r-thunk char-1 x)))))))

Figure 5. How our parsers use multiple values.

Our only error related to portability was an occurrence @& th
false value inadvertently replaced by the empty fstAnother
portability problem arose from accented letters typed bggian
encoding which extendsscii:

(char-alphabetic? #\&) = scheme #t
(char-alphabetic? #\&) == bigloo, PLT Scheme #f

In reality, such a case is unspecified by the standard Schiewwe s
this standard does not specify whether or not a characteriie’

is a letter and since thehar-alphabetic? function can only be
applied to letters. Anyway, porting MIBTEX raises a very small
number of problems, but difficult, because they were reltaidda-
tures outside the standard Scheme. In fact, most of thesissaa-
tioned hereafter are not MIBTeX-specific and have already been
debated, but we mention them, as a short report of our experie
and as additional examples of these problems.

4.1 What we haveliked

A common pitfall for Scheme programmers is the order of exalu
tion of a function’s arguments: it is left unspecified by treh&me
reports [24, § 4.1.3] and may vary from an interpreter to heot

Dealing with multiple values is very common within the saarc
files of MIBIBTEX, an example being given in Figure 5, many other
examples existing for functions dealing with multilingurslorma-
tion. A new special form such aket-values, as suggested by
SRFI11 [8], would simplify these examples.

4.2 What we have missed

The functions dealing with input filesypen-input-file and
call-with-input-file, signal an error if the file cannot be
opened. But by using only the forms of the Scheme standard, we
cannot know this information before trying this operatidine
same problem arises from the functions dealing with outpes.fi
open-output-file andcall-with-output-file. This can be
solved by means ofonditions—this notion exists in ©MMON
Lisp [47, Ch. 29], but not (yet?) in the standard Sch&meas
suggested bgRFI36 [44].

Some interpreters+T Scheme [9, § 5.7higloo [40, 8§ 4.1.8
& 4.1.10]—allow characters to be processed using Unico@§ [4
but only partially. That should be added in the future stadda
since more and more information will be encoded according to
some extensions of thescil code:latin-1 (or 1ISO-8859-1) for
West-European languag&s/atin-2 for East-European ones, ...

in practice. To be honest, the absence of a fixed order may look ynjcode precisely redefines what letters, signs are. Peadpdsr

strange at first glance, but we think that it is straightfaryat
forces programmers to emphasise what is sequential witigin t
programs, most often by using the special foias or let*.

putting these definitions in Scheme arFI 14 [41] and 75 [7].
As mentioned at the beginning of this section, some intéepse
presently diverge about this point, which should be refined f

As far as possible, we use Scheme as a functional programmingsyrther versions of Scheme.

language, in the sense that functions can be argumentsdtsres
of other functions. Since Scheme has only one namespacés tha
functions are particular values for variables, our progieoks ho-
mogeneous. In GMMON LIsP or other Lisp dialects where func-
tions belongs to a particular namespace [47, § 5.2], didtiom the
‘other’ variables, we would have had to add many occurrenfes
thefunction special form and théuncall function, what would
complicate the programming.

Advanced functions likecall/cc and dynamic-wind [24,
§ 6.4] are used in MIBTEX (cf. Figure 4). However, let us men-
tion that wherever we use these functions, simplified forass,
they are provided by GMMON LisP would have been sufficient:
dynamically-scoped exits, by means of the special fotaisch
andthrow [47, § 7.11], and the special formnwind-protect.

21| et us recall that imIT Scheme#t£ and () are still the same object [9,
§1.2.5].

84

We especially missed an interface with the operating system
the sense of a function that would have launched a commare of t
operating system, and be able to retain its result displayethe
current output port, this result being a string usable byuahetions
of Scheme. From a general point of view, we think that in tlast
dard Scheme, such a function would be more useful than dpecia
interfaces with specific programming languages like Clara®*
[40, 88 15 & 16]. More specifically, software belonging XS
world usually call functions of th&pathsea library [50], used for
locating files. For example, the bibliography styles useddy
BIBTEX can be located by means of thpsewhich command:

22_ . but some Scheme interpreters incorporate them:n.g.Scheme [9,
Ch. 16].

23|nternally used inIT Scheme [9, § 5.5].

24Besides, this function could be used to run the compiled fofma
program written using these languages.

(define (make-r-string-thunk string-0)
;3 Returns a thunk exploring each charactesofing-0, in
;3 turn. When the end of this string is reachetl is
;5 returned.
(let ((string-length-0 (string-length string-0))
(index 0))
(lambda ()
(if (< index string-length-0)
(let ((result (string-ref string-0 index)))
(set! index (+ index 1))
result)

#£))))

Figure 6. Moving forward through a string.

kpsewhich plain.bst
.../texmf/bibtex/bst/base/plain.bst

In order to put a similar feature into action for MEEX, a
workaround was to implement a simplified version of this com-
mand in Scheme. This implementation is not wholly satisfigct
from a point of view related to portabiblity because this eom
mand usegnvironment variablesnaccessible directly from stan-
dard Scheme function8IBINPUTS, TEXBIB for ‘old’ B IBTEX, .
MIBIBTEX uses first the environment varialMeBIBINPUTS, be-
fore considering those of IBTEX [20].

Last, Scheme could inclugmckagesn the sense of GMMON
Lisp[47, 8 11.2], a simpler version being sufficient. If we deyelo
software under the predefined functions of Scheme, a goait dis
pline for naming functions is sufficient to avoid name clashgut
packages would ease software composition. For examples the
no document explaining how functions and macrosxfL have
been named. So we had to be very careful to this point when we
decided to use this software for dealing witkiL documents.

4.3 Proposals

In [42], Dorai Sitaram writes that ‘thegeg] Scheme standard and
the Scheme reports do not define a useful programming laeguag
for all platforms. Instead they [...] define a family of pragr-
ming languages that individual implementors can instéatia a
concrete programming language for a specific platform.tTifa
true, but what does it mean in practice? That an ambitiougraro
rhas to rely on a particular dialect? Such dependence seeuss t
to be acceptable for a program using special effects (eaphical
parts), but is strange for functionalities related to a $eipterface
with an operating system (e.g., file existence). Besidesh el
alect obviously provides such a function, and most oftereutite
same namefile-exists? in MIT Scheme [9, § 15.3], ibigloo
[40, § 4.2.2], inPLT Scheme [6, § 11.3.3]. Naming them homo-
geneously should be possible. Other examples are sulglsaube
functions are not known under the same name: if we wish tdhget t
values of environment variables set at the operating systeat
(cf. 8 4.2), the function iget-environment-variable in MIT
Scheme [2, § 2.6Eetenv in bigloo [40, § 4.2.1] andPLT Scheme
[6, 8 15.4]. Analogous points can be noticed about the fonsti
passing a command to the operating system level.

In the foreword of [45], Guy L. Steele Jr. wrote: ‘[...] Small
is easy to understand. | like the Scheme programming largguag
because it is small.’ But Scheme can include a small interfeith
basic services of operating systems and be still small. Swrhall
interface would not give GMMON LI1SP's complexity to Scheme.

It may be difficult to decide about the names to be given to the
functions of this interface, because some software alraadgome

25However, we had to consider these environment variablesdie of
compatibility with BBTEX.

85

functions specific to particular interpreters, so it wousdtbdious

to rename them. A workaround could be an additional predgfine
variable whose value would group the whole information dbou
the present interpreter, its name and version number, th@nmg
operating system, etc. The purpose of the zero-argumentifum
identify-world of MIT Scheme [2, § 2.1] is close, but such
information is only displayed when the function is applietda
cannot be retained in a variable since this function doesetotn
any result. Such a variable had been defined GM®@0ON LISP:
xfeatures* returns a list offeaturescharacterising a particular
implementation [47, § 25.4.2]. Features have also beerogazpin
SRFIO0 [5], that seems to us to be a promised way. In particulah suc
ways a variable would ease the writing of a tool ligeMxLATE
[42], a software for porting Scheme programs from a dialect t
another.

5. Conclusion

When we teach Scheme to undergraduate students, some of them
asks us about using this language in ‘real’ situations. @usgnal
opinion is that Scheme is certainly less used than an imperat
language like C, or a language in fashion likeva. However, some
medium-sized projects have been programmed using Schewhe, a
often the use of this language in such cases was succesgfabd\
illustration of that is MIBBTEX. Doing the second implementation
in Scheme was faster than doing the first in C, and perforngance
are comparable. Surely, it is well-known that the higher phe-
gramming language’s level, the faster the development. tArizk
honest, many problems had already been specified and salved f
the first version, so often adapting C structures to Scheras was
sufficient. But on the other hand, the second implementation
poses many more functionalities.

At the time of writing, we are working on MIBTEX's instal-
lation, in order for this program to be able to work with a drea
number of Scheme interpreters. We think that we could suchge
usingGNU tools such asake [46] andautoconf [32].

We enjoyed programming MIBTEX in Scheme. We hope
that we could go on with our implementation. We think that we
could do better for future versions, especially about pssirey
Unicode characters, according to an interpreter-indepetngay.

So Scheme will be a modern language, since the localisafion o
software, including the use of several writing systems,uisant
challenge. Likewise, we hope that installing software paogmed
using Scheme will become easier. So Scheme will be not only ‘a
efficient and practical programming language’ [24], but il e
more portable and more suitable for the modern types ofgstrin

Acknowledgements

| am very grateful to the anonymous referees, who allowedane t
improve the first version of this article substantially. Mdhanks to
Michael Sperber, too, for his patience when he was waitinghiis
article.

References

[1] Harold ABeLsON and Gerald Jay $SSMAN: Structure and Interpre-
tation of Computer ProgramsThe MIT Press, McGraw-Hill Book
Company. 1985.

[2] Stephen AAMms, Chris HANSON andTHE MIT SCHEME TEAM: MIT
Scheme User’'s Manugalst edition. June 2002.

[3] William D. CLINGER: Basic String PortsJuly 1999. http:
//srfi.schemers.org/srfi-6/

[4] Antoni DILLER: IAEX wiersz po wierszu Wydawnictwo Helio,
Gliwice. Polish translation offIeX Line by Linewith an additional
annex by Jan Jelowicki. 2001.

[5] Marc FEeLEY: Feature-based Conditional Expansion Construct
May 1999.http://srfi.schemers.org/srfi-0/.

[6] Matthew FLATT: PLT MzScheme: Language Manual. Version
299.100 March 2005. http://download.plt-scheme.org/
doc/299.100/mred.pdf.

[7] Matthew FLATT and Marc FEELEY: R6RS Unicode Dataluly 2005.
http://srfi.schemers.org/srfi-75/.

[8] Lars T. HANSEN: Syntax for Receiving Multiple Valuddgarch 2000.
http://srfi.schemers.org/srfi-11/.

[9] Chris HANSON, THE MIT SCHEME TEAM et al: MIT Scheme
Reference Manuallst edition. March 2002. Massachusetts Institute
of Technology.

[10] Jean-Michel HUIFFLEN : Fonctions et généricité dans un langage
de programmation paralléle Thése de doctorat, Institut National
Polytechnique de Grenoble. Juillet 1989.

[11] Jean-Michel HUFFLEN : Programmation fonctionnelle en Scheme. De
la conception a la mise en ceuvidasson. Mars 1996.

[12] Jean-Michel HIFFLEN : Programmation fonctionnelle avancée. Notes
de cours et exercice®olycopié. Besancon. Juillet 1997.

[13] Jean-Michel HUFFLEN: “MIB IBTEX: a New Implementation of
BIBTEX". In: EuroEX 2001 pp. 74-94. Kerkrade, The Netherlands.
September 2001.

[14] Jean-Michel HIFFLEN: “Lessons from a Bibliography Program’s
Reimplementation”. InLDTA 2002 Vol. 65.3 ofENTCS Elsevier,
Grenoble, France. April 2002.

[15] Jean-Michel WIFFLEN: “Multilingual Features for Bibliography
Programs: FronxmL to MIBIBTEX". In: EuroEX 2002 pp. 46-59.
Bachotek, Poland. April 2002.

[16] Jean-Michel HUFFLEN: “Mixing Two Bibliography Style Lan-
guages”. IniLDTA 2003 \ol. 82.3 of ENTCS. Elsevier, Warsaw,
Poland. April 2003.

[17] Jean-Michel HUFFLEN: “European Bibliography Styles and
MIBIBTEX". TuGboat Vol. 24, no. 3, pp. 489-498. EurgX
2003, Brest, France. June 2003.

[18] Jean-Michel HUFFLEN: “MIB IBTEX's Version 1.3". TuGboat Vol. 24,
no. 2, pp. 249-262. July 2003.

[19] Jean-Michel HUFFLEN: “A Tour around MIBBTEX and Its Imple-
mentation(s)”.BiuletynGusT, Vol. 20, pp. 21-28. IBachoEX 2004
conferenceApril 2004.

[20] Jean-Michel HUFFLEN: “Making MIBIBTEX Fit for a Particular
Language. Example of the Polish LanguadggiuletyncusT, Vol. 21,
pp. 14-26. 2004.

[21] Jean-Michel HIFFLEN: Managing Languages within MIBTEX. Will
be presented at Prgeq conference, Chapel Hill, North Carolina.
June 2005.

[22] International Standango/iIEC 10179:1996£): DSSSL 1996.
[23] Java TechnologyJune 2005http://java.sun.com.

[24] Richard KeLSEY and William D. QLINGER, eds.: “Revise® Report
on the Algorithmic Language Schemediosc, Vol. 11, no. 1, pp. 7—
105. August 1998.

[25] Brian W. KERNIGHAN and Denis M. RrcHIE: The C Programming
Language 2nd edition. Prentice Hall. 1988.

[26] Oleg KiseLyov: “A Better xML Parser through Functional Program-
ming”. In: 4th International Symposium on Practical Aspects of
Declarative Languages/ol. 2257 ofLNCs. Springer. 2002.

[27] Oleg KiseLyov and Kirill LISovsKy: “XML, XPath,XsSLT Imple-
mentations asxML, SXPath, andsxsLT". In: International Lisp
Conference 200%5an Francisco, California. October 2002.

[28] Donald Ervin KNUTH: Computers & Typesetting. Vol. A: the
TexXbook Addison-Wesley Publishing Company, Reading, Mas-
sachusetts. 1984.

[29] Leslie LAMPORT: IAIEX. A Document Preparation System. User’s

86

Guide and Reference Manuaddison-Wesley Publishing Company,
Reading, Massachusetts. 1994.

[30] John LEVINE, Tony MASON and Doug BROWN: /ex & yacc. 2nd
edition. O'Reilly & Associates, Inc. October 1992.

[31] Bill L Ewis, Dan LALIBERTE, Richard M. SALLMAND and THE
GNU MANUAL GROUP. GNU Emacs Lisp Reference Manual
for Emacs Version 21. Revision 2.8)anuary 2002. http:
//www.gnu.org.

[32] David MACKENZIE, Ben B.LISTON and Akim DEMAILLE: au-
toconf. Creating Automatic Configuration Scripts. Version 2.59
November 2003.http://www.gnu.org/software/autoconf/
manual/.

[33] Frank MITTELBACH, Michel GOOSSENS Joannes BAaAMS, David
CARLISLE, Chris A. ROWLEY, Christine DETIG and Joachim
SCHROD: The AIpX Companion 2nd edition. Addison-Wesley
Publishing Company, Reading, Massachusetts. August 2004.

[34] Scott ONVENS, MATTHEW FLATT, Olin SHIVERS and Benjamin
MCcMULLAN: “Lexer and Parser Generators in Scheme”. Rroc.
ACM SIGPLAN 2004 Scheme Workshamp. 41-52. Snowbird, Utah.
September 2004.

[35] Oren RTASHNIK: Designing BBTEX Styles February 1988. Part of
BIBTEX's distribution.

[36] Oren RTASHNIK: BIBTEXing. February 1988. Part of IBTEX's
distribution.

[37] pPLT: PLT MzLib: Libraries Manual. Version 299.100arch 2005.
http://download.plt-scheme.org/doc/299.100/mz1ib.
pdf.

[38] Erik T. RAY: LearningxmL. O’Reilly & Associates, Inc. January
2001.

[39] Jonathan A. REs and Norman |. AAMS 1v: “Object-Oriented
Programming in Scheme”. IProc. of the 198&cm Conference
on Lisp and Functional Programmingp. 277—-288. Snowbird, Utah.
1988.

[40] Manuel SERRANO: Bigloo. A Practical Scheme Compiler. User
Manual for Version 2.6cJune 2004.

[41] Olin SHIVERS: Character-set Library December 2000.http:
//srfi.schemers.org/srfi-14/.

[42] Dorai STARAM: “Porting Scheme Programs”. Ifroc. of the 4th
Workshop on Scheme and Functional Programming, UUCS-03-
023 pp. 69-74. School of Computing, University of Utah, Boston
Massachusetts. November 2003.

[43] Karel SKouPY: “The Software Quality andv7S”. GUST, Vol. 16,
pp. 41-49. 2001.

[44] Michael SPERBER 1/O Conditions June 2003.http://srfi.
schemers.org/srfi-36/.

[45] George ®RINGERand Daniel P. RIEDMAN: Scheme and the Art of
Programming TheMIT Press, McGraw-Hill Book Company. 1989.

[46] Richard M. SALLMAN , Roland McGRATH and Paul $1ITH: GNU
make. A Program for Directing Recompilation. Version 3.8uly
2002.http://www.gnu.org/software/make/manual/.

[47] Guy Lewis STEELE, JR.: COMMON LIsp. The Language. Second
Edition. Digital Press. 1990.

[48] Philip TAYLOR, Jifi ZLATUSKA and Karel &oupY: “The AMfS
Project: from Conception to ImplementationCahiers GUTenberg
Vol. 35-36, pp. 53—77. May 2000.

[49] THE UNICODE CONSORTIUM: The Unicode Standard Version 4.0
Addison-Wesley. August 2003.

[50] TuG Working Group on a gX Directory Structure:A Directory
Structure for EX Files. Version 0.9995CTAN: tex/archive/tds/
standard/tds-0.9995/tds.dvi. January 1998.

[51] W3C: xmL Path Language (XPath). Version 1.v3c Recommen-
dation. Edited by James Clark and Steve DeRose. Novembé&r 199
http://www.w3.org/TR/1999/REC-xpath-19991116.

[52] W3C: xsL Transformations XsLT). Version 1.0 w3c Rec-
ommendation. Edited by James Clark. November 1989tp:
//www.w3.org/TR/1999/REC-xs1t-19991116.

[53] W3C: HyperText Markup Language Home Padday 2005.
http://wuw.w3.org/MarkUp/.

[54] Norman WALSH and Leonard MELLNER: DocBook: The Definitive
Guide O'Reilly & Associates, Inc. October 1999.

87

88

