
77

Implementing a Bibliography Processor in Scheme

Jean-Michel Hufflen
LIFC (FRE CNRS 2661)

University of Franche-Comté
16, route de Gray

25030 BESANÇON CEDEX
FRANCE

hufflen@lifc.univ-fcomte.fr

Abstract
We report an experience of implementing the MlBIBTEX bibliogra-
phy processor, a re-implementation of BIBTEX with particular fo-
cus on multilingual features. First we describe the behaviour of this
software and explain why we chose Scheme to implement the first
public version. Then we give the broad outlines of our implemen-
tation and show how we took as much advantage as possible of the
main features of Scheme. We also explain what we really missed
and suggest some ways to improve these points.

Keywords MlB IBTEX, bibliography processor, medium-sized pro-
gramming in Scheme.

1. Introduction
This article reports an experience of implementing medium-sized
software in Scheme. The ‘philosophy’ related to the definition of
this programming language is that ‘a very small number of [basic]
rules [. . .] suffice to form a practical and efficient programming
language,’ as mentioned at the introduction of the current revision
of Scheme [24]. So this article is an attempt to show how software
can be developed using ‘a very small number of basic rules.’ Any-
way, we do not regret to have developed our software in Scheme,
but have some criticisms: we think they are constructive.

The program we have written using Scheme is abibliography
processor. More precisely, this is a re-implementation of BIBTEX
[36], the bibliography processor associated with the LATEX word
processor [29]. Reading this paper does not require preciseknowl-
edge of LATEX and BIBTEX, but we provide a brief introduction in
order to make our purpose more precise. LATEX is not an interactive
word processor: first, users type asource file, then LATEX processess
this source file and produces an output file that can be displayed on
a screen or printed on a laser printer. LATEX, which uses TEX as type-
set engine1 [28], produces high-quality print outputs. In particular,
it is able to hyphenate words correctly [28, App. H].

1 TEX, defined by Donald E. Knuth [28], provides a general framework to
format texts. To be fit for use, the definitions of this framework need to be
organised in aformat. There are several formats, the most well-known being
LATEX.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Sixth Workshop on Scheme and Functional Programming.September 24, 2005,
Tallinn, Estonia.
Copyright c© 2005 Jean-Michel Hufflen.

Items of the bibliographical information cited throughoutan
article typeset with LATEX can be denoted by an identifier, e.g.:

\cite{ziemianski2002a}

[33, § 12.2.1]—from a syntactic point of view, LATEX commands
begin with ‘\’ and braces are used to surround arguments—and
when BIBTEX is used to build the ‘References’ section of the article,
it searchesbibliography filescontainingentries, e.g.:

@INPROCEEDINGS{ziemianski2002a,
...}

[33, § 13.2] and generates a file containing bibliographicalrefer-
encescited throughout the article. When LATEX runs again, such
references are typeset and appear as part of this article.

LATEX’s recent versions have greatly improved multilingual ca-
pabilities. For example, the command for specifying the beginning
of a chapter and its title is:

\chapter{...}

[33, § 2.2] and the keyword put by LATEX defaults to the English
one, i.e., ‘Chapter,’ but can be ‘Chapitre’ (resp. ‘Kapitel, . . .) for a
book written in French (resp. German, . . .) In addition, LATEX is able
to switch to accurate patterns for hyphenating non-Englishwords.
Thebabel package2 [33, Ch. 9] provides multilungal operations for
LATEX. Other packages do that, too, but the most multilingual one
is babel, in the sense that this package processes all the natural
languages it knows, without giving any privilege to a particular
one. Therefore this package is especially suitable for mixing several
languages within the same document. For example, if we want
to write an article in Polish with some fragments in German, we
declare:

\usepackage[german,polish]{babel}

the last option—here, ‘polish’—gives the default language of the
document. If we want to write ‘Bus to Poznán,’ the words ‘bus to’
being translated in German, we can use the\foreignlanguage
command of thebabel package:

\foreignlanguage{german}{Autobus nach} Pozna\’{n}

Besides, LATEX is able to deal with ‘foreign’ characters, that is,
accented letters (e.g., ‘ń’) and other diacritics, but in this paper,
we do not go thoroughly into that, we just use LATEX commands to
produce such characters.

2 W.r.t. LATEX’s terminology, apackage is a collection of commands. Some-
thing belonging to the LISP world and close to this notion is the system of
modulesin COMMON L ISP, controlled by the*modules* variable and the
functionsprovide andrequire [47, § 11.8].

78

However, BIBTEX’s present version does not provide as many
multilingual features as LATEX’s, even if the insertion of some
multilingual aspects has been put into action [33, pp. 733–734
& § 13.5.2]. In fact, the commands of thebabel package can
be used within the values of BIBTEX fields—as we showed in
the previous example—and BIBTEX will copy these values onto
the files it generates. However, this method seems to us to be
bad, because users of such bibliographical entries have to load
thebabel package with all the accurate options in any document.
This package operates statically, that is, all the languages possi-
bly used throughout a document must be declared as options of
theusepackage command, located at the beginning of the docu-
ment. In other words, using languages that are not selected when
the babel package is loaded causes errors. That may be the case
if files of bibliographical references use such language identifiers,
put down in the bibliography data bases. In addition, using such
LATEX command in bibliography data bases is just a hack and obvi-
ously obstructs the generation of bibliographies for output formats
other than LATEX. Given these considerations, we started a new im-
plementation, called MlBIBTEX (for ‘ MultiLingual BIBTEX’). We
roughly describe the behaviour of this program in Section 2 and
explain why we have developed it in Scheme. Section 3 presents
MlB IBTEX’s architecture and gives the guidelines of its develop-
ment. Section 4 reviews what we enjoyed in Scheme and what we
missed.

2. MlBIBTEX
2.1 Purpose

We sketched BIBTEX’s behaviour in the introduction. Now we ex-
plain why MlBIBTEX can be viewed as a ‘better BIBTEX,’ especially
for multilingual features.

Let us consider the entry given in Figure 1, concerning a novella
included in an anthology. This novella, written in Polish bya Polish
writer, is entitled ‘Autobus nach Poznán,’ let us remark that two
words of this title belong to the German language. If this novella
is cited in an article written in Polish, the corresponding reference
should look like:

[1] Andrzej Ziemiánski, Autobus nach Poznań. [W:] Zajdel
2002. Fabryka słów; Lublin 2002; strony 165–238.

as an item belonging to athebibliography environment [33,
§ 12.1.2]. Aplain bibliography style is used above, that is, items
are labelled by numbers, and first names are not abbreviated.(Other
styles exist—for example, withinalphastyles, the label of an item
is formed from the author’s name and the year of publication—
various examples are given in [33, Table 13.4].) Besides, let us re-
call that this reference is supposed to be put at the end of a docu-
ment written in Polish. Let us have a look at the same reference,
but within the bibliography of a document in English and showing
the items of this bibliography according to English-speaking con-
ventions as far as possible:3

[1] Andrzej Ziemiánski. Autobus nach Poznań. In Zajdel
2002, pp. 165–238, Lublin, 2002. Fabryka słów. No
English translation.

That is, ‘[W:] ’ is replaced by ‘In,’ ‘strony’ by ‘pp.’ for ‘pages.’ It
is easy to see that such simple cases can be processed by means
of substitutions, that is, by means of LATEX commands for gener-
ating keywords—\bblin, \bblpp, . . . —whose effect is language-
dependent—‘in’ and ‘pp.’ in English. Other cases are subtler. First,
the order is not the same: for example, the address of the publisher

3 W.r.t. MlBIBTEX’s terminology, such a convention is calleddocument-
dependent approach[18, § 4].

@INPROCEEDINGS{ziemianski2002a,
AUTHOR = {Andrzej Ziemiański},
TITLE = {[Autobahn nach] : german {Poznań}},
BOOKTITLE = {Zajdel 2002},
EDITION = 1,
PAGES = {165--238},
PUBLISHER = {Fabryka Słów},
ADDRESS = {Lublin},
NOTE = {[No English translation] ! english},
YEAR = 2002,
LANGUAGE = polish}

Figure 1. Example of MlBIBTEX entry.

is given before its name in an English-speaking bibliography, af-
ter it in a Polish-speaking one. Second, the value associated with
the NOTE field (see Figure 1), the ‘[...] ! english’ notation
means that the string surrounded by square brackets is put only
if the language of the reference is ‘english.’ Users could build an
entry for a document, usable when the reference is to be put within
an English-speaking bibliography, another entry for the same doc-
ument, but usable within a French-speaking bibliography, and so
on. As a consequence, the information common to these entries
would be duplicated. The ‘[...] ! ...’ construct avoids such a
behaviour; more technical details about such switches are given in
[18, § 2.3].

To show some difficulty related to the generation of multilingual
bibliographies, let us go back to the Polish version of our reference
and recall that the title of thezemianski2002a entry uses some
German words, which are expressed by the ‘[...] : german’
notation. To ensure that these words will be properly hyphenated
if need be, we can generate the following text:4

\bibitem{zemianski2002}Andrzej Ziemia\’{n}ski,
\newblock \emph{\foreignlanguage{german}{Autobus
nach} {Pozna\’{n}}}. \bblin\ \emph{Zajdel 2002}.
\newblock Fabryka s{\l}\’{o}w; Lublin 2002;
\bblpp\ 165--238.

provided that the document uses thebabel package, with at least
thegerman option. This document’s author may think that he does
not need to write in German even if a work using German words
in its title is cited. In such a case—thegerman option has not
been selected—MlBIBTEX does not put the\foreignlanguage
command:

\bibitem{zemianski2002}Andrzej Ziemia\’{n}ski,
\newblock Autobus nach {Pozna\’{n}} ...

but some words might be hyphenated incorrectly. Besides, the
babel package is not the only way to write texts in Polish: there
exists apolski package [4, § F.7], in which case other commands
should be used. More precisely, here is the text that will cause the
‘foreign’ (non-Polish) words to be hyphenated correctly when this
package is loaded:

\bibitem{zemianski2002}Andrzej Ziemia\’{n}ski,
\newblock \emph{{\selecthyphenation{german}Autobus
nach} {Pozna\’{n}}} ...

These examples aim to give some idea about the complexity
of MlB IBTEX’s task. The management of the language specifica-
tions (LANGUAGE field, ‘[...] ...’) and multilingual packages
is explained in more detail in [21]. Of course, such problemsare

4 Notice the use of the commands\bblin and\bblpp for the keywords
used in bibliographies. We show how to manage them in [20]. The \emph
command is for texts to be emphasised, the\newblock command is used
by some document styles [33, Table 7.2, § 12.2.1].

79

unknown for ‘old’ BIBTEX. As shown in Figure 1, MlBIBTEX’s
syntax extends BIBTEX’s. Square brackets are syntatic markers in
MlB IBTEX, ‘normal’ characters in ‘classical’ BIBTEX. Likewise, the
LANGUAGE field, specifying the language of an entry for MlBIBTEX,
is ignored by BIBTEX since unused fields are ignored.

2.2 Requirements

When LATEX processes a document, it produces an output file and
puts the information about bibliographical citations in anauxiliary
file. For example, processing the ‘\cite{zemianski2002a}’ ci-
tation will cause the ‘\citation{zemianski2002a}’ string to be
put into an auxiliary file. This file should contain the specification
of the bibliography style to be used: e.g., ‘\bibstyle{plain}’ for
the ‘plain’ bibliography style. In fact, these auxiliary files are not
TEX source files in the sense that they do not contain texts to be
typeset, but the tokens these files use are the same from a syntactic
point of view (cf. [33, § 12.1.3] for more details). Here is what is
to be done by MlBIBTEX:

(i) look into an auxiliary file for the keys cited throughout adoc-
ument and the bibliography style to be used for this document;

(ii) search bibliography files for corresponding entries;

(iii) look into the beginning of the source file in order to get
information about the multilingual packages used and try to
determine the document’s language;5

(iv) sort them (the sort used depends on the bibliography style,6, it
may also depends on the document’s language);

(v) arrange them according to the bibliography style chosen.

Tasks (i) and (iii) require a TEX parser, whereas Task (ii) requires a
parser of bibliography files. (Because of the compatibilitymode for
‘old’ bibliography styles of BIBTEX [16], another parser is required
for such files, written using thebst language [35].) The directives
for Tasks (iv) and (v) are put in bibliography style files. We see that
such a bibliography processor has to manage several formalisms.

2.3 A bit of story

When we designed and implemented MlBIBTEX’s first version [13],
we decided to develop it in C [25], for sake of efficiency and
portability. In fact, we confess that we were surprised whenTEX
had been reimplemented as a new systemNTS

7 [43], programmed
in Java [23]: it resulted in a program over 100 times slower than
TEX [48]. We also were trying to propose an alternative for a
program with good reputation of efficiency. We put into action a
precise modular decomposition and a precise terminology toname
our functions and variables for this first version [14], so using C to
develop a program supported by precise methodology seemed to us
to be good compromise between efficiency and maintainability.

This first version—we reported the experience we got in [14]—
was able to deal with substitutions, that is, commands such as
\bblin and\bblpp (cf. § 2.1). It was also able to process con-
structs such as ‘[...] : ...’ and ‘[...] !’ But when
it was ready for use and when we were arranging the interface
files—the different values to give to the ‘\bbl...’ commands—
we became aware that this prototype was not multilingual enough.
As an example, putting the different field values concerningthe
zemianski2002a entry in the right order for documents in English
and Polish would have led to complicated bibliography styles, very

5 BIBTEX does not need this step, but MlBIBTEX does.
6 For example, theunsrt bibliography style of BIBTEX leaves the entries
unsorted: they are put according to the order of appearance within the
document.
7 NewTypesettingSystem.

hard to maintain. As we explained in [17], we decided to get rid
of the language used by BIBTEX for bibliography styles [35]: that
is an old-fashioned language, non-modular and only based onhan-
dling a stack, as it can be seen in [33, § 13.6]. As abovementioned, a
compatibility mode exists [16], but the best way for developing bib-
liography styles is given by a new language, callednbst, for ‘new
bibliographystyles’, close toXSLT [52], the language of transfor-
mations forXML 8 documents.

2.4 The nbst language

Within this new framework, parsing a bibliographical entryfrom a
.bib file results in anXML tree, that is, thezemianski2002a entry
given in Figure 1 can be viewed as theXML tree:

<inproceedings id="zemianski2002a"
language="polish">

<author>...</author>
<title>...</title>
...

</inproceedings>

Processing such a tree can be done this way by using atemplateof
thenbst language:

<nbst:template match="inproceedings">
<!-- Putting the reference’s label, text omitted.-->
<nbst:apply-templates select="author"/>
<nbst:apply-templates select="title"/>
...

</nbst:template>

Such a template is similar to those used inXSLT, it is invoked when
the entry we are processing is rooted by theinproceedings ele-
ment. The twonbst:apply-templates elements we mentioned
in that sketch aim to look for templates matching theauthor and
title elements respectively: if such templates exist, they are in-
voked. The main difference betweenXSLT andnbst: in the latter, a
template can be refined for a particular language:

<nbst:template match="inproceedings"
language="polish">

...
<nbst:apply-templates select="title"/>
...

</nbst:template>

a template with thelanguage attribute having higher priority than
a template without. So this template is invoked when we are pro-
cessing aninproceedings element for a Polish-speaking bibli-
ography, whereas the template withoutlanguage attribute is in-
voked in order to formatinproceedings elements for bibliogra-
phies written in languages other than Polish (more precisely, in lan-
guages other than those put in all thelanguage attributes of the
templates matchinginproceedings elements). This kind of in-
heritance is applied whenever we are looking for a template.For
example, let us consider the following statement:

<nbst:apply-templates select="title"/>

When it is run, we are looking for a template whosematch attribute
is title. First, we are looking for a template whoselanguage
attribute is associated with the current language. In particular, if
this apply-templates statement is run from the template with
thelanguage attribute associated withpolish, we are looking for
a template withlanguage="polish". If such a template exists,
it is invoked. If not, a template matchingtitle elements without

8 Reading this article does not require advanced knowledge about XML .
Readers interested in this metalanguage can refer to [38].

80

language attribute—that is, a default template—is invoked. Such
organisation allows us to build several variants, for English- and
Polish-speaking bibliographies, as shown in § 2.1. More technical
details are given in [18].

Like in XSLT, the values ofmatch attributes belong to the XPath
language, used to address parts of anXML document [51]. In fact,
our expressions selecting parts of a bibliographical item are very
close to XPath’s expressions, but we added some functions for op-
erations difficult to perform with the functions provided bythe first
version of XPath (1.0, the normative document being [51]). For ex-
ample, using the functions provided by standard XPath to capitalise
some words in a title is tedious. In addition, multilingual features
require some information included in TEX source files (cf. § 2.2),
and are implemented by means of calling external functions:we go
thoroughly into this choice in [21]. Obviously, it is preferable for
such external functions to be written in a high-level programming
language, more precisely, in a language that should ease operations
on strings. Such a criterium puts C at a disadvantage: plentyof suc-
cessful text-processing packages have been written in C, but the
memory management is explicit, such operations like concatena-
tion require functions whose use is far from obvious. We cannot
require a bibliography style designer to be an experienced pro-
grammer in C. So, as we report in [19], we decided to develop
MlB IBTEX’s first public version (1.3) using Scheme. In particular,
this choice allowed us to use the representation ofSXML [27] as a
Scheme implementation of ourXML trees. So the bibliographical
entry given in Figure 1 is represented as:

(inproceedings (@ (id "zemianski2002a")
(language "polish"))

(author ...) (title ...) ...)

In addition, let us recall thatnbst programs areXML texts. To
parse them, we useSSAX [26], its outputs beingSXML expres-
sions. Among other tools related toSXML, we have also gained
experience by studying the functions implementing SXPath [27],
but have given our own implementation, in order to ease the calls
of external functions. Likewise, we wholly put into action the im-
plementation ofnbst, as a ‘super-XSLT’ processor with a kind of
inheritance about thelanguage attribute.

2.5 A language accessible by end-users

The choice of a language withXML -like syntax for bibliography
styles opens a window towardsXML ’s world and some applications
become easier: for example, usingnbst to build aHTML file [53]
from a bibliography file in order to display its entries on theWeb.
Or generating bibliographies for documents in DocBook, anXML -
based system for writing structured documents [54]. But another
problem occurs: it is well-known that many end-users puts LATEX
commands inside values of BIBTEX fields, because ‘old’ BIBTEX it-
self does not have enough expressive power. We already mentioned
this fact in the introduction about commands from thebabel pack-
age. In fact, it does not matter if LATEX documents are generated—
although it can be told that such behaviour makes difficult the shar-
ing of bibliography files among several users because users have to
load the same packages as abovementioned—but may cause errors
on other cases. For example:

TITLE = {{\textsc{la}} Confidential}

In such a case—some letters to be typeset using small capitals—our
parser of bibliography files can easily process this title byusing an
element with accurate attributes:9

9 Hereafter theasitis element means that its contents should not be
capitalised or uncapitalised, even if the bibliography style requires that.
The emph element and its attributes specifies typographic effects, e.g.,
using small capitals in this example. Readers interested ina description of

<title>
<asitis>

<emph emf="no" scf="yes">la</emph>
</asitis>
Confidential

</title>

since the\textsc command is predefined in LATEX. The problem
is more complicated if end-users put commands they have defined
themselves, e.g.:

TITLE = {{\logo{la}} Confidential}

where\logo is a user-defined command meaning that its its argu-
ment is an acronym. Such a command may be defined as follows
[33, § A.1.2]:

\newcommand{\logo}[1]{\textsc{#1}}

that is, the\logo command has the same effect than the\textsc
command, but it is more readable about its meaning and can be
redefined if users wish to change the display of acronyms.

This example shows that if end-users have put some LATEX com-
mands inside values of BIBTEX fields and wish to use MlBIBTEX to
output files according to other formats than LATEX, they should be
able to specify how their commands have to be processed when bib-
liography files are parsed and transformed intoXML trees. They can
do that by means of thedefine-pattern function of MlBIBTEX,
some examples being given in Figure 2. The first example shows
how the previous\logo command can be processed: in this case, it
is processed like the\textsc command (see thetitle andemph
elements above).

Hereafter we sketch the effect of thedefine-pattern func-
tion, in order to show that end-users can easily customise the trans-
formation of bibliography files intoSXML trees. In particular, such
a customisation is easy since Scheme allows powerful operations
on strings nicely. If a language like C was still used for MlBIBTEX’s
implementation, this kind of specification would be tedious, or we
would have to define a mini-language to do that.

The define-pattern function has two arguments. The first
is a string viewed as apattern, following the conventions of TEX
for defining commands, that is, the arguments of a command are
denoted by ‘#1,’ ‘ #2,’ . . . (cf. [28, Ch. 20]). If the second argu-
ment is a string, it specifies a replacement, the arguments ofthe
corresponding command being processed recursively. The result—
that is, the second argument—could be given as anSXML expres-
sion, but we wish a particular representation not to occur inside the
Scheme code introduced by thedefine-pattern function: that is
why we give it as a string whose content is expressed by means of
‘usual’ XML syntax.

This simple form can deal with many cases, but not all. If
we look at the second example, we see how the\textbf com-
mand of LATEX is replaced by anemph element with accurate at-
tributes: using bold face and non-italicised characters. That may
be wrong, because\textit{\textbf{...}} produces both bold
face and italicised characters10 in LATEX. More expressive power
is needed to deal with such cases. In the developed form of
the define-pattern function, the second argument is a zero-
argument function that results in a string, which is the replacement
of the pattern. When this form is used, all the operations must be
explicit within the body of this zero-argument function. Infact, the
form:

elements and attributes used within theXML versions of bibliography files
can refer to [15]: that is an earlier version, but changes areslight.
10Readers interested in the font management in LATEX can refer to [33,
Ch. 7].

81

(define-pattern "\\logo{#1}" "<emph emf=’no’ scf=’yes’>#1</emph>") ; ‘scf’ is a flag for ‘small capitals.’

(define-pattern "\\textbf{#1}" "<emph emf=’no’ bff=’yes’>#1</emph>") ; ‘bff’ is for ‘boldface flag.’

(define-pattern "\\textit{#1}" (lambda ()
;; Notice that theemf attribute of theemph element—a switch between roman and italicised characters—
;; defaults toyes, the other attributes default tono.
(define-pattern "\\textbf{#2}" "<emph bff=’yes’>#2</emph>") ; Local pattern.
(string-append "<emph>" (pattern-process "#1") "</emph>")))

Figure 2. Patterns for LATEX commands in Scheme.

(define-pattern p s)

—wherep ands are strings—is equivalent to:

(define-pattern p
(lambda () (pattern-process s))

the pattern-process function belonging to MlBIBTEX’s pro-
gram. The body of the function that is the second argument of
define-pattern may include the specification oflocal patterns,
as shown in the third example given in Figure 2. Let us consider
the last two patterns shown in this figure: when an occurrenceof
a \textbf command is encountered, the local pattern of the third
example is applied inside the argument of a\textit command,
the ‘global’ pattern of the second example being applied anywhere
else.

3. The program
3.1 MlBIBTEX’s architecture

In the previous section, we introduced to the main modules of
MlB IBTEX; now we show how they are put together. Figure 3
pictures MlBIBTEX’s architecture. This figure emphasises the data
flow: given some citation keys extracted from an auxiliary (.aux)
file, some bibliography (.bib) files are searched and the result is
a list of bibliographical entries, given asSXML data. To do that,
MlB IBTEX’s parser is enriched with a module for dealing with pat-
terns. As shown in Figure 3, some patterns are predefined, some—
like the pattern matching the\logo command in Figure 2—can
be user-defined. The analysis of the.aux file also allows us to get
information about a bibliography style. If we do not consider the
compatibility mode for old.bst files, bibliography styles are writ-
ten using thenbst language. These files are parsed usingSSAX,
grouped and ‘semi-compiled,’ in the sense that templates are re-
arranged in order to ease the determination of the template to be
invoked when we are moving to a particular element. Each tem-
plate results in a Scheme function after this pre-processing, and the
bibliography processor applies such functions.

Like XSLT [52, § 16],nbst supports ‘text,’ ‘ xml’ and ‘html’
output modes.11 There is also aLaTeX mode, taking into account
some particular points of LATEX’s syntax. So, only the strings to be
output are concerned by the differences betweentext andLaTeX
modes. As examples—nbst:text is used to put a stringverbatim,
like thexsl:text element inXSLT—:

• <nbst:text>%</nbst/text> yields ‘%’ in text mode, ‘\%’
in LaTeX mode (in LATEX, ‘%’ introduces a comment [29,
§ 2.2.1], so it must be escaped to loose this property),

• <nbst:text>£</nbst:text>—the character numbered
163—yields this character (‘£’) intext mode and the com-
mand to produce it (‘\pounds’) [29, § 3.2.2] inLaTeX mode,
this command being suitable whatever the encoding used by the
word processor is.

11A html mode is needed sinceHTML texts do not fitXML ’s syntax, stricly
speaking.

As mentioned in § 2.4, the programs in.nbst files can use calls
to external functions written in Scheme. That is not heretic: this
feature—using external procedures—exists inXSLT. We use such
external functions in Scheme to implement operations on strings, to
program lexical ordering that depend on natural languages,and to
search.tex files for information about the multilingual capabilities
allowed by the user of the source files, as shown in Figure 3.

We can be asked for a question: ‘why two languages:nbst and
Scheme? why have we not used Scheme for the whole of a bibli-
ography style?’ Such a conventions would have made MlBIBTEX
close to the stylesheets written inDSSSL12 [22], associated with
SGML texts. But it was told that programming withDSSSLwas dif-
ficult for style designers that are not experienced programmers. In
fact, DSSSL is not declarative enough, if we compare it toXSLT or
nbst. Besides,nbst allows refinements to be put into action with-
out modifying an existing style directly. For example, if a Polish
style designer finds out that the default version for a style does
not fit the Polish requirements for the layout of a reference for
aninproceedings entry, such requirements can be implemented
by developing additional templates whose thelanguage attribute
is associated withpolish. External functions written in Scheme
should be used for low-level computation, for examples, foroper-
ations dealing with the different characters of a string. Infact, we
think that style designers will not have to develop such functions,
but they can do that if they wish.

Last but not least, Figure 3 makes precise the parts that are
finished presently: all, except that those pictured within adashed
box, they are planned for the next version.

3.2 Our programming

Working about natural languages is an open domain, in the sense
that there is no general framework, from a theoretical pointof view,
that would cover all the natural languages in the world. Whatis
suitable for a particular language may be unsuitable for another.
So even if we consider a wide range of natural languages, we have
to do experiments and other experiments, reprogram some parts if
they have been modelled insufficiently, that is, if some particular
cases made fail a general scheme. Only a high-level programming
language allows such approach. Besides, the ability for end-users
to enrich the program by means of patterns (cf. § 2.5) seemed to us
to be a decisive point for choosing Scheme. Let us compare this
feature with the Emacs editor, written inEmacs Lisp [31], and
customisable by user-defined functions written in this language.
Such issues seem to us to justify the choice of a LISP dialect. In
addition, when we decided to do a second implementation using
another language than C, we were familiar with LISP universe,
we have already developed a medium-sized program in COMMON
L ISP: a rewrite engine for an algebraic specification language [10].
But we noticed that COMMON L ISP was too big and heavy. We
did not want to accept its complexity, whereas we needed onlya

12DocumentStyle SemanticsSpecification. This formalism is a side-effect
free subset of Scheme, enriched by a library for formatting outputs.

82

.aux file

6

?

key citations and
name of data bases

bibliography
style

.bib file(s)
bibliographical entries

asSXML data
-

MlB IBTEX’s
parser MlB IBTEX’s output: file of

bibliographical references
-

bibliography
processor

bibliography style(s)
asSXML data

6

.nbst file(s) -
SSAX parser

.tex file(s)

?

Information about
multilingual
capability

external functions
in Scheme

(possibly user-defined)

interpretation of
.bst functions

������

HHHHHY

pattern processing

?

user-defined patterns

‘predefined’ patterns
(TEX commands for
accents and fonts)

�������������9

XXXXXXXXXXXXXy

‘A← B’ means thatA usesB. More precisely, functions or data put inA use functions ofB or data fromB.

Figure 3. Data flow in MlBIBTEX.

small part of it. We were interested in programming in a simpler
L ISP dialect, using only a few powerful constructs. In addition,we
already have taught Scheme to undergraduate [11] and graduate
[12] students.

Here are our rules of programming. Most of them aim to ease
maintainability.

• There are precise rules for naming global variables. MlBIBTEX
is organised into modules,13 each module defining a prefix for
naming variables. For example, ‘pattern-’ is the prefix of
the functions dealing with patterns (cf. § 2.5). Here are the
exceptions:

some general functions and macros, grouped into one file,

local variables, that is, variables defined in the body of the
special formsdefine, do, lambda, let, let*, andletrec,

protected variables, as we will see below, their names al-
ways end with ‘-pv;’ when they are used in several mod-
ules, they do not have any prefix.

13From our point of view, these modules only exist in connection toconcep-
tion, we do not use any syntactic feature—e.g., themodule specification of
the Scheme compilerbigloo [40, § 2.2] orPLT Scheme [6, § 5]—for them.

• Side effects are only allowed for local variables. In addition,
we have carefully followed the recommendation about naming
destructive functions in Scheme [24, § 1.3.5]: if a function
mutates any of its arguments, its name ends with ‘!’

• Information is retained locally, by means of lexical closure and
unlimited extent as far as possible. If several functionalities
share the same environment, they are put into action by one
function working bymessage-passing. This technique is used
for protected variables: they are protected since they are en-
closed within a lexical environment. For example, the bibliog-
raphy style, as a path to anbst program, is managed this way:

((bibliographystyle-pv ’see)) ; Get the value.
((bibliographystyle-pv ’set) ...) ; Update.

In fact, this technique can be viewed as object-oriented pro-
gramming in Scheme, as shown in [1, Ch. 2] and [39]. We could
have defined a global variable whose value is such a path and
setting it whilst MlBIBTEX is running. We could put a syntactic
sign inside its name to warn readers of our program that this
variable is supposed to be modified. But we have preferred for

83

(define (parsers-make-launching filename launcher)
;; launcher is the function that rules the analysis of the input file. Its arguments are the function going forward through
;; the file and the function managing errors.
(call-with-current-continuation (lambda (parser-exit-c)

(parsers-filename-rp-loop filename launcher parser-exit-c))))

(define (parsers-filename-rp-loop filename launcher parser-exit-c)
;; filename being an absolute path to an existing file, opens it, runs a read-and-process loop, and closes the
;; corresponding port.
(let ((input-p ’*dummy-value*))

(dynamic-wind
;; Even if thelauncher function encounters errors, the input port is closed. The side effect oninput-p is allowed
;; w.r.t. our conventions, because it is a local variable.
(lambda ()
;; Reenter the middle thunk causes the input file to be open again:
(set! input-p (open-input-file filename)))

(lambda () (launcher (make-r-thunk input-p) parser-exit-c))
(lambda () (close-input-port input-p)))))

(define (make-r-thunk input-p)
;; The result is a thunk—zero-argument function—that moves forward through the input file.
(lambda () (read-char input-p)))

(define (make-x-function parser-exit-c)
;; The result is an escape function—‘x’ is for ‘eXit’— that displays an error message, and stops reading through the input file.
(lambda (msg-idf)

(msg-manager msg-idf)
(parser-exit-c #f)))

Figure 4. Basic functions to build MlBIBTEX’s parsers.

all the ways to get the value of such information or update it to
be grouped into one function within our program.14

We did not use lexer and parser generator like those proposed
in [34], analogous toLEX andYACC, which generates C programs
[30]. In fact, we could have done that for thebst language, be-
cause lexical and syntactic analyses are clearly distinguished in
this case. However, there is no distinction between scannerand
parser in TEX’s language,15 also used in auxiliary files where in-
formation about bibliographies to be build are located (cf.§ 2.2).
For this language, there is only one analyser, which returnseither a
whitespace character, or another character, different from ‘\’, or the
complete name of a macro. Concerning bibliography files, we can
separate lexical and syntactic analysis—we did that in the first ver-
sion [13, Annex]—but that yields a two-level grammar: a firstlevel
for entries (‘@...{...}’), a second for values associated with field
names. So, we have preferred to developad hocparsers for these
languages. Last, we use theSSAX parser fornbst programs, since
they areXML documents.

We have defined a common framework for the parsers we have
built ourselves, the main functions are given in Figure 4. Bycon-
vention, the arguments of the parser’s functions include a zero-
argument function to move forward through the input file and an
escape function stopping reading through the input file.16 Since
this zero-argument function is our only way to get somethingfrom
the current input file inside the functions of our parser, we do not

14 In addition, if we consider a variable defined globally and updated at
run-time, it can be difficult to detect that it has not been assigned yet to its
‘actual’ value. We could define it by bounding it to a ‘dummy value’, but
there is no ‘universal dummy value.’
15That is the case for some early languages.
16 In particular, this function is called when an error is encountered. There
is no error recovery in MlBIBTEX—our parsers stop as soon as an error is
encountered—but there was not in ‘old’ BIBTEX, either.

‘unread’ a character.17 On the other hand, a parser is reading in
advance. The solution put into action is that the functions of our
parser return at least two values: the result of processing afrag-
ment of the input file, and the first character belonging to thetoken
after what has just been processed. A simple example is givenin
Figure 5. These parsers were easy to debug: we replaced the func-
tion moving forward through an input file by a function given in
Figure 6 and exploring successive characters of a string.18 as the
read-char function would do after opening a string port in the
sense ofSRFI19 Nr. 6 [3].

Concerning the management of multilinguism, the information
related to natural languages used throughout bibliographydata
bases is organised into atrie:20 see [21] for more details.

4. Scheme as an implementation language
First we developed MlBIBTEX’s present version withMIT Scheme
[2, 9]. Then we study how to put a portable implementation into
action with bigloo [40] and PLT Scheme [6, 37]. We carefully
grouped non-portable code in one file, so we knew which parts
could be difficult to adapt.

17 In fact, we could use thepeek-char function of Scheme [24, § 6.6.2] for
this operation, but we decided to proceed only ahead, homogeneously.
18Besides, this function is used in ‘final’ MlBIBTEX: when an abbre-
viation, defined by ‘@STRING{schw = {Scheme Workshop}}’—cf. [33,
§ 13.2.3]—is used, e.g., in ‘BOOKTITLE = schw’, MlB IBTEX’s parser in-
serts the contents of the string associated with ‘schw’ by means of the
make-r-string-thunk function.
19SchemeRequestFor Implementation. For more details, see the Web page
http://srfi.schemers.org.
20A trie is a particular case of a tree for storing strings: there is only one
node for every common prefix.

84

(define (s-parse-string-def r-thunk char x)
;; ‘s-’ is the prefix for functions parsing bibliography files. Parses ‘@STRING{<token-0> = <string-value>},’ ‘ @STRING’ being
;; recognised, char being the first character after. r-thunk is the 0-argument function that allows us to move forward through the
;; input file, x is the escape function that stops reading and returns#f as the global result of parsing.
(call-with-values (lambda ()

(s-next-bibtex-idf r-thunk
;; Checking that the token beginning withchar is ‘{’ and returning the first character
;; after, in case of success:
(s-recognise-left-brace r-thunk char x)
x))

(lambda (token-0 char-0)
:: token-0 is the abbreviation’s name, char-0 is supposed to be‘=.’
(call-with-values (lambda () (s-parse-value r-thunk (s-recognise= r-thunk char-0 x) x))
(lambda (string-value char-1)

((s-string-defs-pv ’add) token-0 string-value) ; Adds the bindingtoken-0 7→ string-value. Let us notice that
; s-string-defs-pv is a protected variable (cf. § 3).

;; First, recognising‘}’ and returning the first character after, then processing next entry, that is, next‘@{...}’ and
;; returning two values:
(s-next-entry r-thunk (s-recognise-right-brace r-thunk char-1 x)))))))

Figure 5. How our parsers use multiple values.

Our only error related to portability was an occurrence of the
false value inadvertently replaced by the empty list.21 Another
portability problem arose from accented letters typed by using an
encoding which extendsASCII:

(char-alphabetic? #\é) =⇒MIT Scheme #t
(char-alphabetic? #\é) =⇒bigloo, PLT Scheme #f

In reality, such a case is unspecified by the standard Scheme since
this standard does not specify whether or not a character like ‘#\é’
is a letter and since thechar-alphabetic? function can only be
applied to letters. Anyway, porting MlBIBTEX raises a very small
number of problems, but difficult, because they were relatedto fea-
tures outside the standard Scheme. In fact, most of the issues men-
tioned hereafter are not MlBIBTEX-specific and have already been
debated, but we mention them, as a short report of our experience
and as additional examples of these problems.

4.1 What we have liked

A common pitfall for Scheme programmers is the order of evalua-
tion of a function’s arguments: it is left unspecified by the Scheme
reports [24, § 4.1.3] and may vary from an interpreter to another
in practice. To be honest, the absence of a fixed order may look
strange at first glance, but we think that it is straightforward, it
forces programmers to emphasise what is sequential within their
programs, most often by using the special formslet or let*.

As far as possible, we use Scheme as a functional programming
language, in the sense that functions can be arguments or results
of other functions. Since Scheme has only one namespace, that is,
functions are particular values for variables, our programlooks ho-
mogeneous. In COMMON L ISP or other LISP dialects where func-
tions belongs to a particular namespace [47, § 5.2], distinct from the
‘other’ variables, we would have had to add many occurrencesof
thefunction special form and thefuncall function, what would
complicate the programming.

Advanced functions likecall/cc and dynamic-wind [24,
§ 6.4] are used in MlBIBTEX (cf. Figure 4). However, let us men-
tion that wherever we use these functions, simplified forms,as
they are provided by COMMON L ISP would have been sufficient:
dynamically-scoped exits, by means of the special formscatch
andthrow [47, § 7.11], and the special formunwind-protect.

21Let us recall that inMIT Scheme,#f and() are still the same object [9,
§ 1.2.5].

Dealing with multiple values is very common within the source
files of MlBIBTEX, an example being given in Figure 5, many other
examples existing for functions dealing with multilingualinforma-
tion. A new special form such aslet-values, as suggested by
SRFI 11 [8], would simplify these examples.

4.2 What we have missed

The functions dealing with input files,open-input-file and
call-with-input-file, signal an error if the file cannot be
opened. But by using only the forms of the Scheme standard, we
cannot know this information before trying this operation.The
same problem arises from the functions dealing with output files,
open-output-file andcall-with-output-file. This can be
solved by means ofconditions—this notion exists in COMMON

L ISP [47, Ch. 29], but not (yet?) in the standard Scheme22—as
suggested bySRFI 36 [44].

Some interpreters—MIT Scheme [9, § 5.7],bigloo [40, §§ 4.1.8
& 4.1.10]—allow characters to be processed using Unicode [49],
but only partially. That should be added in the future standard,
since more and more information will be encoded according to
some extensions of theASCII code: latin-1 (or ISO–8859–1) for
West-European languages,23 latin-2 for East-European ones, . . .
Unicode precisely redefines what letters, signs are. Proposals for
putting these definitions in Scheme areSRFI 14 [41] and 75 [7].
As mentioned at the beginning of this section, some interpreters
presently diverge about this point, which should be refined for
further versions of Scheme.

We especially missed an interface with the operating system, in
the sense of a function that would have launched a command of the
operating system, and be able to retain its result displayedon the
current output port, this result being a string usable by thefunctions
of Scheme. From a general point of view, we think that in the stan-
dard Scheme, such a function would be more useful than special
interfaces with specific programming languages like C orJava24

[40, §§ 15 & 16]. More specifically, software belonging to TEX’s
world usually call functions of thekpathsea library [50], used for
locating files. For example, the bibliography styles used by‘old’
BIBTEX can be located by means of thekpsewhich command:

22 . . . but some Scheme interpreters incorporate them: e.g.,MIT Scheme [9,
Ch. 16].
23 Internally used inMIT Scheme [9, § 5.5].
24Besides, this function could be used to run the compiled formof a
program written using these languages.

85

(define (make-r-string-thunk string-0)
;; Returns a thunk exploring each character ofstring-0, in
;; turn. When the end of this string is reached, #f is
;; returned.
(let ((string-length-0 (string-length string-0))

(index 0))
(lambda ()
(if (< index string-length-0)

(let ((result (string-ref string-0 index)))
(set! index (+ index 1))
result)

#f))))

Figure 6. Moving forward through a string.

kpsewhich plain.bst
.../texmf/bibtex/bst/base/plain.bst

In order to put a similar feature into action for MlBIBTEX, a
workaround was to implement a simplified version of this com-
mand in Scheme. This implementation is not wholly satisfactory
from a point of view related to portabiblity because this com-
mand usesenvironment variables, inaccessible directly from stan-
dard Scheme functions:BIBINPUTS, TEXBIB for ‘old’ B IBTEX,25.
MlB IBTEX uses first the environment variableMLBIBINPUTS, be-
fore considering those of BIBTEX [20].

Last, Scheme could includepackagesin the sense of COMMON
L ISP [47, § 11.2], a simpler version being sufficient. If we develop
software under the predefined functions of Scheme, a good disci-
pline for naming functions is sufficient to avoid name clashes. But
packages would ease software composition. For example, there is
no document explaining how functions and macros ofSXML have
been named. So we had to be very careful to this point when we
decided to use this software for dealing withXML documents.

4.3 Proposals

In [42], Dorai Sitaram writes that ‘the [IEEE] Scheme standard and
the Scheme reports do not define a useful programming language
for all platforms. Instead they [. . .] define a family of program-
ming languages that individual implementors can instantiate to a
concrete programming language for a specific platform.’ That is
true, but what does it mean in practice? That an ambitious program
rhas to rely on a particular dialect? Such dependence seems to us
to be acceptable for a program using special effects (e.g., graphical
parts), but is strange for functionalities related to a simple interface
with an operating system (e.g., file existence). Besides, each di-
alect obviously provides such a function, and most often under the
same name:file-exists? in MIT Scheme [9, § 15.3], inbigloo
[40, § 4.2.2], inPLT Scheme [6, § 11.3.3]. Naming them homo-
geneously should be possible. Other examples are subtler, because
functions are not known under the same name: if we wish to get the
values of environment variables set at the operating systemlevel
(cf. § 4.2), the function isget-environment-variable in MIT
Scheme [2, § 2.6],getenv in bigloo [40, § 4.2.1] andPLT Scheme
[6, § 15.4]. Analogous points can be noticed about the functions
passing a command to the operating system level.

In the foreword of [45], Guy L. Steele Jr. wrote: ‘[. . .] Small
is easy to understand. I like the Scheme programming language
because it is small.’ But Scheme can include a small interface with
basic services of operating systems and be still small. Sucha small
interface would not give COMMON L ISP’s complexity to Scheme.
It may be difficult to decide about the names to be given to the
functions of this interface, because some software alreadyuse some

25However, we had to consider these environment variables forsake of
compatibility with BIBTEX.

functions specific to particular interpreters, so it would be tedious
to rename them. A workaround could be an additional predefined
variable whose value would group the whole information about
the present interpreter, its name and version number, the running
operating system, etc. The purpose of the zero-argument function
identify-world of MIT Scheme [2, § 2.1] is close, but such
information is only displayed when the function is applied and
cannot be retained in a variable since this function does notreturn
any result. Such a variable had been defined in COMMON L ISP:
features returns a list offeaturescharacterising a particular
implementation [47, § 25.4.2]. Features have also been proposed in
SRFI0 [5], that seems to us to be a promised way. In particular, such
ways a variable would ease the writing of a tool likeSCMXLATE
[42], a software for porting Scheme programs from a dialect to
another.

5. Conclusion
When we teach Scheme to undergraduate students, some of them
asks us about using this language in ‘real’ situations. Our personal
opinion is that Scheme is certainly less used than an imperative
language like C, or a language in fashion likeJava. However, some
medium-sized projects have been programmed using Scheme, and
often the use of this language in such cases was successful. Agood
illustration of that is MlBIBTEX. Doing the second implementation
in Scheme was faster than doing the first in C, and performances
are comparable. Surely, it is well-known that the higher thepro-
gramming language’s level, the faster the development. Andto be
honest, many problems had already been specified and solved for
the first version, so often adapting C structures to Scheme ones was
sufficient. But on the other hand, the second implementationpro-
poses many more functionalities.

At the time of writing, we are working on MlBIBTEX’s instal-
lation, in order for this program to be able to work with a great
number of Scheme interpreters. We think that we could succeed by
usingGNU tools such asmake [46] andautoconf [32].

We enjoyed programming MlBIBTEX in Scheme. We hope
that we could go on with our implementation. We think that we
could do better for future versions, especially about processing
Unicode characters, according to an interpreter-independent way.
So Scheme will be a modern language, since the localisation of
software, including the use of several writing systems, is current
challenge. Likewise, we hope that installing software programmed
using Scheme will become easier. So Scheme will be not only ‘an
efficient and practical programming language’ [24], but it will be
more portable and more suitable for the modern types of strings.

Acknowledgements
I am very grateful to the anonymous referees, who allowed me to
improve the first version of this article substantially.Many thanks to
Michael Sperber, too, for his patience when he was waiting for this
article.

References
[1] Harold ABELSON and Gerald Jay SUSSMAN: Structure and Interpre-

tation of Computer Programs. The MIT Press, McGraw-Hill Book
Company. 1985.

[2] Stephen ADAMS, Chris HANSON andTHE MIT SCHEME TEAM: MIT

Scheme User’s Manual, 1st edition. June 2002.

[3] William D. CLINGER: Basic String Ports. July 1999. http:
//srfi.schemers.org/srfi-6/.

[4] Antoni DILLER: LATEX wiersz po wierszu. WydawnictwoHelio,
Gliwice. Polish translation ofLATEX Line by Linewith an additional
annex by Jan Jelowicki. 2001.

86

[5] Marc FEELEY: Feature-based Conditional Expansion Construct.
May 1999.http://srfi.schemers.org/srfi-0/.

[6] Matthew FLATT : PLT MzScheme: Language Manual. Version
299.100. March 2005. http://download.plt-scheme.org/
doc/299.100/mred.pdf.

[7] Matthew FLATT and Marc FEELEY: R6RS Unicode Data. July 2005.
http://srfi.schemers.org/srfi-75/.

[8] Lars T. HANSEN: Syntax for Receiving Multiple Values. March 2000.
http://srfi.schemers.org/srfi-11/.

[9] Chris HANSON, THE MIT SCHEME TEAM et al.: MIT Scheme
Reference Manual, 1st edition. March 2002. Massachusetts Institute
of Technology.

[10] Jean-Michel HUFFLEN : Fonctions et généricité dans un langage
de programmation parallèle. Thèse de doctorat, Institut National
Polytechnique de Grenoble. Juillet 1989.

[11] Jean-Michel HUFFLEN : Programmation fonctionnelle en Scheme. De
la conception à la mise en œuvre. Masson. Mars 1996.

[12] Jean-Michel HUFFLEN : Programmation fonctionnelle avancée. Notes
de cours et exercices. Polycopié. Besançon. Juillet 1997.

[13] Jean-Michel HUFFLEN: “MlB IBTEX: a New Implementation of
BIBTEX”. In: EuroTEX 2001, pp. 74–94. Kerkrade, The Netherlands.
September 2001.

[14] Jean-Michel HUFFLEN: “Lessons from a Bibliography Program’s
Reimplementation”. In:LDTA 2002, Vol. 65.3 of ENTCS. Elsevier,
Grenoble, France. April 2002.

[15] Jean-Michel HUFFLEN: “Multilingual Features for Bibliography
Programs: FromXML to MlBIBTEX”. In: EuroTEX 2002, pp. 46–59.
Bachotek, Poland. April 2002.

[16] Jean-Michel HUFFLEN: “Mixing Two Bibliography Style Lan-
guages”. In:LDTA 2003, Vol. 82.3 of ENTCS. Elsevier, Warsaw,
Poland. April 2003.

[17] Jean-Michel HUFFLEN: “European Bibliography Styles and
MlB IBTEX”. TUGboat, Vol. 24, no. 3, pp. 489–498. EuroTEX
2003, Brest, France. June 2003.

[18] Jean-Michel HUFFLEN: “MlB IBTEX’s Version 1.3”.TUGboat, Vol. 24,
no. 2, pp. 249–262. July 2003.

[19] Jean-Michel HUFFLEN: “A Tour around MlBIBTEX and Its Imple-
mentation(s)”.BiuletynGUST, Vol. 20, pp. 21–28. InBachoTEX 2004
conference. April 2004.

[20] Jean-Michel HUFFLEN: “Making MlB IBTEX Fit for a Particular
Language. Example of the Polish Language”.BiuletynGUST, Vol. 21,
pp. 14–26. 2004.

[21] Jean-Michel HUFFLEN: Managing Languages within MlBIBTEX. Will
be presented at PracTEX conference, Chapel Hill, North Carolina.
June 2005.

[22] International StandardISO/IEC 10179:1996(E): DSSSL. 1996.

[23] Java Technology. June 2005.http://java.sun.com.

[24] Richard KELSEY and William D. CLINGER, eds.: “Revised5 Report
on the Algorithmic Language Scheme”.HOSC, Vol. 11, no. 1, pp. 7–
105. August 1998.

[25] Brian W. KERNIGHAN and Denis M. RITCHIE: TheC Programming
Language. 2nd edition. Prentice Hall. 1988.

[26] Oleg KISELYOV: “A Better XML Parser through Functional Program-
ming”. In: 4th International Symposium on Practical Aspects of
Declarative Languages, Vol. 2257 ofLNCS. Springer. 2002.

[27] Oleg KISELYOV and Kirill L ISOVSKY: “ XML , XPath,XSLT Imple-
mentations asSXML, SXPath, andSXSLT”. In: International Lisp
Conference 2002. San Francisco, California. October 2002.

[28] Donald Ervin KNUTH: Computers & Typesetting. Vol. A: the
TEXbook. Addison-Wesley Publishing Company, Reading, Mas-
sachusetts. 1984.

[29] Leslie LAMPORT: LATEX. A Document Preparation System. User’s

Guide and Reference Manual. Addison-Wesley Publishing Company,
Reading, Massachusetts. 1994.

[30] John LEVINE, Tony MASON and Doug BROWN: lex & yacc. 2nd
edition. O’Reilly & Associates, Inc. October 1992.

[31] Bill L EWIS, Dan LAL IBERTE, Richard M. STALLMAND and THE

GNU MANUAL GROUP: GNU Emacs Lisp Reference Manual
for Emacs Version 21. Revision 2.8. January 2002. http:
//www.gnu.org.

[32] David MACKENZIE, Ben ELLISTON and Akim DEMAILLE : au-
toconf. Creating Automatic Configuration Scripts. Version 2.59.
November 2003.http://www.gnu.org/software/autoconf/
manual/.

[33] Frank MITTELBACH, Michel GOOSSENS, Joannes BRAAMS, David
CARLISLE, Chris A. ROWLEY, Christine DETIG and Joachim
SCHROD: The LATEX Companion. 2nd edition. Addison-Wesley
Publishing Company, Reading, Massachusetts. August 2004.

[34] Scott OWENS, MATTHEW FLATT , Olin SHIVERS and Benjamin
MCMULLAN : “Lexer and Parser Generators in Scheme”. In:Proc.
ACM SIGPLAN 2004 Scheme Workshop, pp. 41–52. Snowbird, Utah.
September 2004.

[35] Oren PATASHNIK : Designing BIBTEX Styles. February 1988. Part of
BIBTEX’s distribution.

[36] Oren PATASHNIK : BIBTEXing. February 1988. Part of BIBTEX’s
distribution.

[37] PLT: PLT MzLib: Libraries Manual. Version 299.100. March 2005.
http://download.plt-scheme.org/doc/299.100/mzlib.
pdf.

[38] Erik T. RAY : Learning XML . O’Reilly & Associates, Inc. January
2001.

[39] Jonathan A. REES and Norman I. ADAMS IV : “Object-Oriented
Programming in Scheme”. In:Proc. of the 1988ACM Conference
on Lisp and Functional Programming, pp. 277–288. Snowbird, Utah.
1988.

[40] Manuel SERRANO: Bigloo. A Practical Scheme Compiler. User
Manual for Version 2.6c. June 2004.

[41] Olin SHIVERS: Character-set Library. December 2000.http:
//srfi.schemers.org/srfi-14/.

[42] Dorai SITARAM : “Porting Scheme Programs”. In:Proc. of the 4th
Workshop on Scheme and Functional Programming, UUCS–03–
023, pp. 69–74. School of Computing, University of Utah, Boston,
Massachusetts. November 2003.

[43] Karel SKOUPÝ: “The Software Quality andNTS”. GUST, Vol. 16,
pp. 41–49. 2001.

[44] Michael SPERBER: I/O Conditions. June 2003. http://srfi.
schemers.org/srfi-36/.

[45] George SPRINGERand Daniel P. FRIEDMAN: Scheme and the Art of
Programming. TheMIT Press, McGraw-Hill Book Company. 1989.

[46] Richard M. STALLMAN , Roland MCGRATH and Paul SMITH : GNU

make. A Program for Directing Recompilation. Version 3.80. July
2002.http://www.gnu.org/software/make/manual/.

[47] Guy Lewis STEELE, JR.: COMMON L ISP. The Language. Second
Edition. Digital Press. 1990.

[48] Philip TAYLOR, Jǐri ZLATUŠKA and Karel SKOUPÝ: “The NTS

Project: from Conception to Implementation”.Cahiers GUTenberg,
Vol. 35–36, pp. 53–77. May 2000.

[49] THE UNICODE CONSORTIUM: The Unicode Standard Version 4.0.
Addison-Wesley. August 2003.

[50] TUG Working Group on a TEX Directory Structure:A Directory
Structure for TEX Files. Version 0.9995. CTAN:tex/archive/tds/
standard/tds-0.9995/tds.dvi. January 1998.

[51] W3C: XML Path Language (XPath). Version 1.0. W3C Recommen-
dation. Edited by James Clark and Steve DeRose. November 1999.
http://www.w3.org/TR/1999/REC-xpath-19991116.

87

[52] W3C: XSL Transformations (XSLT). Version 1.0. W3C Rec-
ommendation. Edited by James Clark. November 1999.http:
//www.w3.org/TR/1999/REC-xslt-19991116.

[53] W3C: HyperText Markup Language Home Page. May 2005.
http://www.w3.org/MarkUp/.

[54] Norman WALSH and Leonard MUELLNER: DocBook: The Definitive
Guide. O’Reilly & Associates, Inc. October 1999.

88

