
89

The Marriage of MrMathematica and MzScheme

Chongkai Zhu
mrmathematica@yahoo.com

Abstract
In this paper, I argue that the programming languages provided
in current mainstream CASes are not suitable for general pur-
pose programming. To address this problem, I developed MrMathe-
matica. MrMathematica is a connection between Mathematicaand
PLT-Scheme, which provides the ability to call Mathematicafrom
MzScheme. The two languages share some common ground, but
are mostly complementary to each other. MrMathematica enhances
Mathematica, and it helps to introduce Scheme to more people
(CAS users).

1. Introduction
A Computer Algebra System(CAS) is a type of software package
that is used in manipulation of mathematical formulae. The primary
goal of a CAS is to automate tedious and sometimes difficult alge-
braic manipulation tasks. The principal difference between a CAS
and a traditional calculator is the ability to deal with equations sym-
bolically rather than numerically. The specific uses and capabili-
ties of these systems vary greatly from one system to another, yet
the purpose remains the same: manipulation of symbolic equations.
CASes often include facilities for graphing equations and provide
a programming language for the user to define his/her own proce-
dures.

CASes began to appear in the early 1970s, and evolved out
of research into artificial intelligence (in Lisp), though the fields
are now regarded as largely separate. The first popular systems
were Reduce, Derive, and Macsyma. The current market leaders
are Maple and Mathematica; both are commonly used by research
mathematicians, scientists, and engineers.

The programming languages provided in all the current main-
stream CASes are not suitable for general purpose programming.
To address this problem, I developed MrMathematica, a Scheme
based system that keeps the repertoire of Mathematica.

The remainder of this article is organized as follows. Section 2
of this paper discusses why CAS programming language falls and
why a real language is needed; Section 3 introduces Mathematica
briefly; Section 4 gives details about MrMathematica; Section 5
concludes.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Sixth Workshop on Scheme and Functional Programming.September 24, 2005,
Tallinn, Estonia.
Copyright c© 2005 Chongkai Zhu.

2. CAS programmers need a real language
A key issue in the design of CAS is the resolution of what is meant
by “evaluation” – of expressions and programs in the embedded
programming language of the system.

Roughly speaking, evaluation is a mapping from an object (in-
put) and a specified context or environment to another objectthat
is a simpler or more specific object (output). Example: 2+3 evalu-
ates to 5. More specifically and somewhat pedantically, in a CAS,
evaluation involves the conventional programming language map-
ping of variables or names (e.g. x) to their bound values (e.g. 3), and
also the mapping of operators (e.g. +) to their actions. Lessconven-
tionally, CAS evaluation generally requires resolution ofsituations
in which a variable “has no value” but stands only for itself,or in
which a variable has a value that is “an expression”. For example,
given a context where x is bound to 3, y has no binding or is used
as a “free variable”, and z is a+2, a typical CAS would evaluate
x+y+z+1 to y+a+5.

In simple cases this model is intuitive for the user and efficiently
implemented by a computer. But a system design must also handle
cases that are not so simple or intuitive. CAS problem-solving
sessions abound in cases where the name and its value(s) in some
context(s) must coexist. Sometimes, values are not the onlyrelevant
attributes of a name: there may be a declaration of “type” or other
auxiliary information. For example it might evaluatesin2

x ≤ 1 to
“True” knowing only that x is of type “Real”.

CAS builders, either by tradition or specific intent, often im-
pose two criteria on their systems intended for use by a ”general”
audience. Unfortunately, the two criteria tend to conflict.

1. The notation and semantics of the CAS should correspond
closely to “common intuitive usage” in mathematics.

2. The notation and semantics of the CAS should be suitable for
algorithmic programming as well as (several levels) of description
of mathematical objects, ranging from the abstract to the relatively
concrete data representations of a computer system.

The need for this first requirement (intuitiveness) is rarely ar-
gued. If programs are going to be helpful to human users in a math-
ematical context, they must use an appropriate common language.
Unfortunately, a careful examination of common usage showsthe
semantics and notion of mathematics as commonly written is of-
ten ambiguous or context dependent. The lack of precision insuch
mathematics (or alternatively, the dependence of the semantics of
mathematical notation on context) is far more prevalent than one
might believe. While mathematics allegedly relies on rigorand for-
mality, a formal “automaton” reading the mathematical literature
would need to accumulate substantial context or else suffergreatly
from the substantial abuse of notation that is, for the most part,
totally accepted and even unnoticed by human readers. Consider
cos(n + 1)x sin nx.

Because the process of evaluation must make explicit the bind-
ing between notation and semantics, the design of the evaluation
program must consider these issues centrally. Furthermore, evalu-
ation typically is intertwined with “simplification” of results. Here



90

again, there is no entirely satisfactory resolution in the symbolic
computation programs or literature as to what the “simplest” form
of an expression means.

As for the second requirement, the need for programming and
data description facilities follows from the simple fact that com-
puter algebra systems are usually “open-ended”. It is not possible to
build-in a command to anticipate each and every user requirement.
Therefore, except for a few simple (or very specific, application-
oriented) systems, each CAS provides a language for the userto
program algorithms and to convey more detailed specifications of
operations of commands. This language must provide a bridgefor
a computer algebra system user to deal with the notations andse-
mantics of programming as well as mathematics. Often this means
including constructions which look like mathematics but have dif-
ferent meanings. For example, in Mathematica x = x+1 is program-
ming language assignment statement; x == x + 1 is an apparently
absurd assertion of equality. Furthermore, the programming lan-
guage must make distinctions between forms of expressions when
mathematicians normally do not make such istinctions. As anex-
ample, the language must deal with the apparently equal but not
identical expressions 2x and x + x.

Programming languages also may have notations of “storage
locations” that do not correspond simply to mathematical notations.
Changing the meaning (or value) of an expression by a side effect
is possible in most systems, and this is rather difficult to explain
without recourse to notions like “indirection” and how datais
stored. For example, in Mathematica, m[[1,1]]= b assigns value to
a position in the matrix m.

With respect to its evaluation strategy, each existing CAS
chooses its own twisting pathway, taking large and small some-
times controversial stands on different issues, along the way. Let’s
see an example in Mathematica:

i = 0;
g[x_] := x+i/;i++ > x

Or put in Scheme syntax:

(begin (Set i 0)
(SetDelayed (g (Pattern x (Blank)))

(Condition (+ x i)
(> (Increment i) x))))

The two allegedly equivalent expressions (list (g 0) (g 0)) and
(Table (g 0) (list 2)) result in (list (g 0) 2) and (list (g 0) (g0))
respectively.

Other CASes sufferes from similar problems. [4] From the au-
thor’s own experience, when writing big programs in Mathematica
(or some other major CAS), such problems can and will arise, re-
sulting in substantial debugging difficulty.

Providing a context for “all mathematics” without making that
unambiguous underpinning explicit is a recipe that ultimately leads
to dissatisfaction for sophisticated users.

Is there a way through the morass? A proposal (eloquently
championed some time ago by David R. Barton at MIT and more
recently at Berkeley) [4] goes something like this: Write inLisp
or similar suitable language and be done with it. This solvesthe
second criterion. As for the first criterion of naturalness –let the
mathematician/user learn the language, and make it explicit.

But there is nearly no CA library in Scheme, besides the
lightweight JACAL. Statistics shows that for those people who
want to do symbolic computation with a computer, nearly all are
using a CAS, and nearly none is using Lisp, although most of them
also want general purpose programming at the same time. What’s
worse, CASes that are in/with Lisp (such as MACSYMA, Axiom)
have only negligible market share.

So I wrote MrMathematica, which lifts and embeds a popular
CAS, Mathematica, into Scheme. Although the currently version
targets only MzScheme, its design is portable to any Lisp imple-
mentation that can be extended using C. Mathematica was chosen
because it has the most dynamic language among major CASes;
PLT Scheme was chosen because it has a good interface and a large
user group.

3. Introduction to Mathematica
In a typical CAS, an internal evaluation program (eval for short),
plays a key role in controlling the behavior of the system. Even
thougheval may not be explicitly available for the user to call, it
is implicitly involved in much that goes on. Typically,eval takes as
input the representation of the user commands, program directives,
and other “instructions” and combines them with the “state”of the
system to provide a result, plus sometimes a change in the “state”.
Mathematica is one CAS that has a singleeval.

The central data types of Mathematica are just the same as
Scheme: numbers, symbols, and lists. The abstract syntax ofthe
two languages is also congruent: every expression is a list-based
tree. To accommodate traditional mathematical expressionsyn-
tax, Mathematica defines several forms:InputForm, OutputForm,
TranditionalForm, FullForm, and so on. The FullForm is very
close to S-exp, and is the internal representation of expression. A
FrontEnd is used to convert between ordinary mathematical expres-
sion (InputForm, OutputForm, TranditionalForm) and FullForm.

Mathematica has two major difference compared with Lisp.
First, Mathematica doesn’t have quote. Second, Mathematica uses
array (of pointers) instead of Lisp’s linked-list.

The underlying strategy for evaluation in Mathematica is based
on the notion that when the user types in an expression, the system
should keep applying rules (and function evaluation means rule
application in Mathematica) until the expression stops changing.
(The example in the previous section just violate this strategy!)

To get a detailed introduction of Mathematica language,please
refer to part 2 of [2], or [6].

There are additional evaluation rules for numerical computation
in which Accuracy and Precision are carried along with each num-
ber. These are intended to automatically keep track of numerical
errors in computation.

Besides the rule-based language, Mathematica also offers many
mathematical functions and methods, including algebraic manipu-
lation, symbolic calculus, plotting, and so on. Part 3 of [2]describes
them in detail.

4. Structure and Interpretation of
MrMathematica

Scheme is a meta-language and MzScheme is actually an opera-
tion system [3], while Mathematica regards itself only as a sci-
entific computation tool. This determines the architectureof Mr-
Mathematica: It works as an extension to MzScheme, which calls
Mathematica.

Among all possible interface (between Scheme and Mathemat-
ica). I choose to implement the simpest one, MathEval, whichis
exactly theeval used by Mathematica. MathEval is provided as
a Scheme function, with input and output done in S-exp, making
use of the similarity between S-exp and FullForm. MathEval suf-
fices. Even if you want some “better” interface, the right wayto
implement it is first to define the same MathEval, and then to de-
fine your interface based on it. Another merit of MathEval is that
it needs explicit quote, which helps distinguighing between algebra
expression and other Scheme value.

Mathematica and MzScheme are both implemented in C, so it
is natural for MrMathematica to use C as transmitter. But thema-



91

Figure 1. MrMathematica session

jor part of MrMathematica was written not in C but in Scheme.
Bottom-up style was used: All needed MathLink (Mathematica’s
C interface) functions were raised into Scheme in a lower layer
implemented as a Scheme module. All the other parts of MrMath-
ematica are written in Scheme, and the final export is the Scheme
function MathEval. Compared with the interface provided byMath-
Link, nearly all the details about the call are encapsulated.

Although the structures of S-exp and Mathematica-expression
are similar, the actual keywords are different. The syntax of some
pre-defined functions is also distinct. To bridge the gap, I use a
separate module in MrMathematica to translate expressions. The
result is that a user can write expression just as a Scheme oneand
send it to Mathematica. In most cases, the output of Mathematica
can be directly feed into the Scheme functioneval or used directly
as a Scheme object. The default rules in the translate table are
conservative, only dealing with the (exact) common part of Scheme
and Mathematica. Programmers can customize the table by new
rules.

From the example in Figure 1, we can see that MrMathemat-
ica allows every Mathematica Input-Output done in “FullForm” of
Mathematica. So CAS users will lose no function from Mathemat-
ica, but get the unambiguous, aesthetically appealing, andconsis-

tent Scheme. The recommended way to use MrMathematica is, to
do all the other programming job in Scheme, and when dealing
with mathematical concepts, call the corresponding Mathematica
function using MathEval.

You can define your Scheme function that use MathEval, thus
using the power of Mathematica with almost no effort. For ex-
ample, the Mathematica function FactorInteger was raised into
Scheme, with exactly the same contract:

> (define (factorinteger n)
(eval (MathEval ‘(FactorInteger ,n))))

> (factorinteger 111111111111111111)
((3 2) (7 1) (11 1) (13 1) (19 1) (37 1)
(52579 1) (333667 1))

A more efficient version:

> (define-syntax factorinteger
(syntax-rules ()

((_ n)
(map cdr

(cdr (MathEval ‘(FactorInteger ,n)))))))



92

For computaion that involves algebra symol(s), explicit quote is
used. See the example about integration. To use the return value in
Scheme, a explicit call to Scheme’s eval is needed:

> (define f
(MathEval

’(Integrate (/ 1 (+ (expt x 2) 1)) x)))
> f
(atan x)
> (define s (eval ‘(lambda (x) ,f)))
> (s 0)
0

MrMathematica is designed to avoid providing too many fea-
tures, but also to avoid weaknesses or restrictions. For example,
calling multiple or remote Mathematica Kernel(s) is supported; par-
allel computation is available using PLT’s thread utility;variables
could all be put in Scheme and the quasi-quote will help transfer
their values into Mathematica; Windows, Unix (including Linux),
and MacOS are all supported; MrMathematica can render Graph-
ics from Mathematica in DrScheme (this feature needs Schemeand
Mathematica running on same machine, which needs further im-
provement).

Even if your favorite Scheme implementation is not PLT, port-
ing MrMathematica should be easy. There are only three points
that are not R5RS and SRFI: the Scheme to C interface, the mod-
ule system, and the Graphics renderer. MrMathematica uses “Inside
MzScheme”, the only official C interface for PLT Scheme v20x,as
its FFI. As mentioned before, all code that deals with C is in asep-
arate module whose only role is raising C functions. Changing it
into different FFI could be done as a routine. The same to module
system. To render Graphics from Mathematica in DrScheme, MrEd
is used. When using other Scheme implementation, you can easily
disable this feature, just as the light-weight version of MrMathe-
matica (designed for MzScheme only instead of full DrScheme)
does.

5. Conclusion and Future Work
With MrMathematica, you can use whatever feature you like either
from Scheme or from Mathematica. The recommended method to
use MrMathematica is to do mathematical compuation in Mathe-
matica and other programming in Scheme. This solves the problem
of major CASes: the lack of a good programming language.

Schemers can view MrMathematica as a Computer Algebra
library, or a build in term rewriting engine; Mathematica users
can view it as a Foreign Language Interface better than that of
Java, Perl or Python (string based). After all, the two languages
are homologous, thus making the symbiosis.

However, this is only a start of the project. To be really suc-
cessful, MrMathematica need more applications. Hence thispaper.
Enjoy hacking with MrMathematica!

For more information about MrMathematica, please visithttp:
//www.websamba.com/mrmathematica.

Acknowledgments
Thanks to LinPeng Huang, Matthew Flatt, and Shriram Krishna-
murthi for prereading the draft of this paper.

References
[1] PLT Scheme.http://www.plt-scheme.org/.

[2] Stephen Wolfram. The Mathematica Book. Wolfram Media, 5th
Edition, 2003.

[3] Matthew Flatt, Robert Bruce Findler, Shriram Krishnamurthi, and
Matthias Felleisen. Programming Languages as Operating Systems.
ICFP 1999.

[4] Richard J. Fateman. Symbolic Mathematics System Evaluators. ISSAC
1996.

[5] Geddes K.O., Czapor Stephen R., and Labahn George. Algorithms for
Computer Algebra.Kluwer Academic, 1992.

[6] John Gray. Mastering Mathematica. Academic Press,Inc,1994.

[7] G J Chaitin. Algorithmic Information Theory. CambridgeUniversity
Press, 2004.

[8] Stephen Wolfram. A New Kind of Science. Wolfram Media, 2002.

[9] Olin Shivers. A Scheme Shell.http://www.scsh.net/docu/
scsh-paper/scsh-paper.html

[10] Aubrey Jaffer. Jacal.http://swissnet.ai.mit.edu/jaffer/
JACAL.html

[11] Maxima.http://maxima.sourceforge.net/

[12] Axiom. http://savannah.nongnu.org/projects/axiom

[13] Reduce.http://www.reduce-algebra.com/

[14] Mapple.http://www.maplesoft.com/


