
IN
D

IA
N

E
N

SI
S

UNIVERSITATIS
S

IG
IL

LU
MET VERITAS

LUX

M DCCCX X

Indiana University
Computer Science Department

Technical Report 619
http://www.cs.indiana.edu/cgi-bin/techreports/TRNNN.cgi?trnum=TR619

Scheme 2005

Proceedings of the Sixth Workshop
on Scheme and Functional Programming

September 24, 2005
Tallinn, Estonia

J. Michael Ashley and Michael Sperber, editors

Sponsored by the Association for Computing
Machinery’s Special Interest Group on

Programming Languages (ACM/SIGPLAN)

Preface

This report contains the papers presented at the Sixth Workshop on Scheme and
Functional Programming, on September 24, 2005, in Tallinn, Estonia.

The purpose of the workshop is to discuss experience with, and future de-
velopments of, the Scheme programming language, as well as general aspects of
Computer Science loosely centered on the general theme of Scheme. The intention
of the steering committee is that the workshop provide an annual focal point where
the Scheme community can gather and share ideas: researchers, educators, imple-
mentors, programmers, hobbyists, and enthusiasts of all stripes—all welcome.

Eleven papers were submitted in response to the workshop’s call for papers.
Paper submission and review was conducted via electronic mail. Each paper was
read by at least three reviewers including at least two members of the program com-
mittee. We are grateful to Matthias Neubauer for his service as outside reviewer.

Several others helped with the planning for the workshop. Olin Shivers pro-
vided tools that helped produce this technical report. Olivier Dancy, ICFP general
chairman, and Patricia Johann, ICFP workshop chairman, were consistently help-
ful throughout the process. Tarmo Uustalu helped with the local arrangements. We
are thankful for all of this support and assistance.

Some of the software described in the papers is available from or listed on the
permanent home page of the workshop:

http://www.deinprogramm.de/scheme-2005/

J. Michael Ashley and Michael Sperber,
For the program committee

Program committee

Martin Gasbichler (University of T̈ubingen)
Jonathan Rees (Millennium Pharmaceuticals)
Dorai Sitaram (Verizon)
Jonathan Sobel (SAS Institute)

Contents
Type Classes Without Types

Ronald Garcia and Andrew Lumsdaine. 1

Eager Comprehensions in Scheme: The design of SRFI-42
Sebastian Egner . 13

Abstraction and Performance from Explicit Monadic Reflection
Jonathan Sobel, Erik Hilsdale, R. Kent Dybvig, Daniel P. Friedman. 27

An Operational Semantics for R5RS Scheme
Jacob Matthews and Robert Bruce Findler. 41

Commander S - The shell as a browser
Martin Gasbichler and Eric Knauel 55

Ubiquitous Mails
Erick Gallesio and Manuel Serrano. 69

Implementing a Bibliography Processor in Scheme
Jean-Michel Hufflen . 77

The Marriage of MrMathematica and MzScheme
Chongkai Zhu . 89

ACT Parameterization Framework
Alan Pavicic and Niksa Bosnic. 93

Javascript to Scheme Compilation
Florian Loitsch . 101

1

Type Classes Without Types∗

Ronald Garcia Andrew Lumsdaine
Open Systems Lab
Indiana University

Bloomington, IN 47405
{garcia,lums}@cs.indiana.edu

Abstract
Data-directed programs consist of collections of generic functions,
functions whose underlying implementation differs depending on
properties of their arguments. Scheme’s flexibility lends itself to
developing generic functions, but the language has some shortcom-
ings in this regard. In particular, it lacks both facilitiesfor con-
veniently extending generic functions while preserving the flexi-
bility of ad-hoc overloading techniques and constructs forgroup-
ing related generic functions into coherent interfaces. This paper
describes and discusses a mechanism, inspired by Haskell type
classes, for implementing generic functions in Scheme thatdi-
rectly addresses the aforementioned concerns. Certain properties of
Scheme, namely dynamic typing and an emphasis on block struc-
ture, have guided the design toward an end that balances structure
and flexibility. We describe the system, demonstrate its function,
and argue that it implements an interesting approach to polymor-
phism and, more specifically, overloading.

1. Introduction
Data-directed programs consist of collections ofgeneric functions,
functions whose underlying implementation differs depending on
properties of their arguments. In other words, a generic function
is overloadedfor different argument types. Data-directed style ap-
pears often in Scheme programs, even in the Scheme standard li-
brary. The standard generic arithmetic operators include functions
such as+ and*, which exhibit different behavior depending on what
kind of arguments they are applied to. For example, applying+ to
two integers yields an integer value; adding two complex values, on
the other hand, yields a complex value. A binary version of+ could
be implemented with the following general form:

(define +
(lambda (a b)

(cond
[(and (integer? a) (integer? b))
(integer-+ a b)]
[(and (complex? a) (complex? b))
(complex-+ a b)]

∗ This material is based on work supported by NSF grant EIA-0131354 and
by a grant from the Lilly Endowment.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Sixth Workshop on Scheme and Functional Programming.September 24, 2005,
Tallinn, Estonia.
Copyright c© 2005 Ronald Garcia.

...
[else (error "invalid arguments")])))

The body of+ is simply acond expression that tests its operands
for various properties and dispatches to the implementation upon
finding a match. Assuming specific implementations of addition for
integers and complex numbers, the function dispatches to integer
addition when the operands are integers, and complex numbers
when the operands are complex.1

For all their benefits, generic functions implemented usingcond

as above have their shortcomings. Such functions are not meant to
be extended to support new types of arguments. Nonetheless,such
a function may be extended at the top-level using ad-hoc means as
in the following:

(define +
(let ([old-+ +])

(lambda (a b)
(cond
[(and (my-number? a) (my-number? b))
(my-+ a b)]
[else (old-+ a b)]))))

A function may also be extended in a manner that limits the exten-
sion to the current lexical scope, as in the following:

(let ([+
(let ([old-+ +])

(lambda (a b)
(cond
[(and (my-number? a) (my-number? b))
(my-+ a b)]
[else (old-+ a b)])))])

(+ my-number-1 my-number-2))

The above examples assume a user-defined number, of which
my-number-1 and my-number-2 are instances, and amy-number?
predicate that tests for such numbers. Both versions of+ can handle
these new numbers. Although the second example only introduces
the new+ in the scope of thelet expression, the function could be
returned as a value from the expression and subsequently used in
other contexts.

These methods of extending+ are ad-hoc. They don’t directly
capture the intent of the programmer, and much of the contentis
boiler-plate code. Another issue with this style of extending data-
directed functions is that it does not respect the grouping of related
functions. For example, the+ operator is just one of a group of
arithmetic operators that includes*, -, and/ as well, and in general
they should be introduced and extended together. Using the above
method of introducing overloads, one must manually duplicate the

1 This model disregards the possible coercion of arguments tomatch each
other because such a mechanism is outside the scope of this work.

2

idiom for each operator, resulting in duplicate boilerplate code and
no intentional structuring of the set of operators.

The Haskell [Pey03] language community has previously in-
vestigated overloading in the context of a statically typedlanguage
and as their answer to the problem produced thetype classfacil-
ity [WB89], which we describe later. Type classes are an elegant,
effective approach to overloading and have spawned significant re-
search that has advanced their capabilities [NT02, Jon00, CHO92].

This paper describes a language extension for Scheme that sup-
ports the implementation of groups of generic functions andtheir
overloads. This system is heavily inspired by Haskell’s type classes,
but is designed to function in a latently typed language, where types
appear as predicates on values. For that reason, we considerours to
be apredicate classsystem.

In order to fit with Scheme, this system differs from Haskell’s
type classes in some significant ways. Haskell is solely interested
in dispatch based on static type information. In contrast, the ad-
hoc method of constructing and extending generic functionscan
dispatch on arbitrary predicates, including standard predicates such
asnumber? andchar?, as well as user-defined predicates such as
my-number? from the earlier examples. The described system also
supports overloading based on arbitrary predicates. Also,whereas
Haskell emphasizes compile-time type checking, error-checking is
subservient to flexibility in this model. The overloading mechanism
described here eschews the conservative practice of signaling errors
before they are encountered at run time.

The combination of block structure, lexical scoping, and ref-
erential transparency plays a significant role in Scheme programs.
Some of the previously discussed ad-hoc methods show how over-
loading can be performed in Scheme and how those methods fall
short in lexical contexts. The predicate class system we present di-
rectly supports overloading functions under such circumstances.

Our overloading mechanism was implemented for Chez Scheme
using the syntax-case macro system [DHB92, Dyb92], an advanced
macro expansion system provided by some popular Scheme imple-
mentations that combines hygienic macro expansion [KFFD86]
with controlled identifier capture. Because our system is imple-
mented as macros, its semantics can be described in terms of how
the introduced language forms are expanded (See Section 6).

2. Contributions
The contributions of this paper are as follows:

• A language mechanism for overloading is described, inspired
by the type class model but modified to better match the ca-
pabilities and the philosophy of Scheme. Scoped classes and
instances that allow both classes and instances to be shad-
owed lexically is an interesting point in the design space. Fur-
thermore, expressing this facility in the context of a dynami-
cally typed language allows some interesting design options and
tradeoffs that are not available to statically typed languages.

• The described dynamic dispatch model combines the flexibility
of ad-hoc techniques available in Scheme with a more struc-
tured mechanism for overloading functions. Previous mecha-
nisms for overloading in Lisp and Scheme have pointed toward
a relationship to objects and object-oriented programming. Our
system supports dispatch based on arbitrary runtime properties.
Furthermore, the predicate class model groups related generic
functions into extensible interfaces.

• A point of comparison is provided between the overloading
mechanisms expressed in statically typed Haskell and dynami-
cally typed Common Lisp traditions.

3. A Brief overview of Haskell Type Classes
Haskell [Pey03] is a statically typed functional programming
language, featuring Hindley/Milner-style type inference[Mil78,
DM82] and its associated flavor of parametric polymorphism.
Haskell also, however, supports a form ofad-hocpolymorphism, or
overloading, in the form of type classes [WB89], which contribute
substantial expressive power to the language. In order to introduce
the concepts involved, and to provide a point of comparison,we
briefly describe the type class system.

class Eq a where
(==) :: a -> a -> Bool
(/=) :: a -> a -> Bool
x /= y = not (x == y)
x == y = not (x /= y)

instance Eq Integer where
x == y = x ‘integerEq ‘ y

instance Eq Float where
x == y = x ‘floatEq ‘ y

elem :: (Eq a) => a -> [a] -> Bool
x ‘elem ‘ [] = False
x ‘elem ‘ (y:ys) = x==y || (x ‘elem ‘ ys)

Figure 1. Haskell type classes in action

Consider the problem of specifying and using operators for nu-
meric types, specifically the equality operator. Figure 1 illustrates
how the equality operator is specified for Haskell in its Standard
Prelude. First atype classis introduced. A type class is an interface
that specifies a set ofclass operators, generic functions associated
with a particular type class. The above type class definitionessen-
tially says “for all typesa that belong to the classEq, the operators
== and/= are overloaded with values of the specified type signa-
tures.” TheEq class defines default implementations for== and/=,
however in order to use them, a type must be explicitly declared to
overload the type class functions. This role is played byinstance
declarations. An instance declaration declares membership in the
type class and implementsinstance methods, specialized overloads
of the class operators. For example, the first instance declaration
for Integers declares thatInteger is a member of theEq class, and
provides an explicit overload for==. The== operator forInteger
values is implemented in terms of a hypotheticalintegerEq oper-
ator defined solely for integers.2 An analogous instance for floats
is also presented. Both instance declarations inherit the default/=
method, which will call the specific== overload associated with
the type. In fact one may legally omit the== implementation as
well, but then a call to either operator yields an infinite recursion.
Finally, theelem function, analogous to Scheme’smember, is pre-
sented. This generic function is not part of theEq type class, yet
still relies upon it. Its type,(Eq a) => a -> [a] -> Bool is quali-
fiedwith Eq and essentially says “elem is overloaded for all typesa
that belong toEq, in which case its type isa -> [a] -> Bool.”

4. Language Description
The predicate class mechanism introduced in this paper forms an
embedded language for overloading in Scheme and thus purelyex-
tends the existing language. This section introduces and describes
the forms with which we extend Scheme to provide type class-like
functionality. The extended language syntax is summarizedin Fig-
ure 2.

2 In Haskell, a binary function can be called in infix position by enclosing it
in single back quotes

3

〈definition〉
+
→

(define-class (〈identifier〉 〈variable〉+)
〈op-spec〉+)

| (define-instance (〈identifier〉 〈expression〉+)
(〈method-name〉 〈expression〉)+)

| (define-qualified 〈identifier〉 (〈identifier〉+)
〈expression〉)

| (define-open-qualified 〈identifier〉 (〈identifier〉+)
〈expression〉)

〈expression〉
+
→

(let-class ([(〈identifier〉 〈variable〉+)
〈op-spec〉+])

〈body〉)

| (let-instance ([(〈identifier〉 〈expression〉+)
(〈method-name〉 〈expression〉)+])

〈body〉)

〈op-spec〉 → (〈operator-name〉 〈variable〉*)
| [(〈operator-name〉 〈variable〉*) 〈expression〉]

Figure 2. Syntax extensions for type classes in Scheme

4.1 Predicate Classes

A predicate class is a form that establishes an interface forover-
loading. Predicate classes are introduced using either thedefine-

class form, for top-level definitions, or thelet-class expression,
for lexically scoped definitions. The syntax that we use for these
constructs is as follows:3

(define-class (class-name pv ...)
op-spec
...)

(let-class ([(class-name pv ...)
op-spec ...])

expr ...)

Thedefine-class form introduces a new predicate class at the top-
level with the nameclass-name. Thelet-class form correspond-
ingly introduces a type class that is visible within the scope of its
enclosed body (expr ...). The name of the type class is followed
by a list ofpredicate variables(pv ...). A class’s predicate vari-
ables determine the number of predicate functions that willbe used
to establish an instance of a predicate class. The order of the pred-
icate variables matters, and corresponds directly to the order of the
predicates that are used to define an instance (as shown in thenext
section). Whereas Haskell type class instances are determined by
the type used in an instance definition, predicate classes are deter-
mined by a list of Scheme predicate functions. This corresponds
directly to the Haskell extension that supports multiple parameter
type classes [PJM97]. Following the name of the class and itslist
of predicate variables is a list ofclass operation specifications, sig-
nified above byop-spec. Each operation specification takes one of
the following two forms:

(op-name sym ...)

[(op-name sym ...) expr]

their purpose is to establish the names of the operators belonging to
the class, as well as to specify which arguments will be used to de-
termine dispatch based on which predicates. The second syntax for

3 Throughout the text, code uses square brackets ([]) and parentheses (())
interchangeably for readability. Several Scheme implementations, including
Chez Scheme, support this syntax.

operation specifications illustrates how to supply adefault instance
methodfor a class operation. Each symbolsym marks an argument
position for the operation. Any position marked with a predicate
variable will be used to determine dispatch to the proper instance
method. If a predicate variable is placed in an argument position,
then a call to that class operation will use that argument position
to test for instance membership: The instance predicate associated
with the given predicate variable will be applied to the passed ar-
gument. Instances of the class are tested until an instance is found
whose predicates return#t for each argument position marked with
a predicate variable. The dispatch algorithm implies that the order
in which instances are declared can affect the instance thata class
operator dispatches to. In this regard, the mechanics of dispatch are
analogous to thecond form of dispatch described earlier.

For example, consider the following rendition of theEq type
class in Scheme:

(define-class (Eq a)
[(== a a) (lambda (l r) (not (/= l r)))]
[(/= a a) (lambda (l r) (not (== l r)))])

This definition looks similar to the Haskell equivalent in Fig-
ure 1, but there are a few differences. A Haskell type class speci-
fication is used for type checking as well as dispatch. The class’s
type variable would be instantiated and used to ensure that code
that calls the class operators is type safe. In the case of theabove
Scheme code, however, the predicate variablea simply specifies
how to dispatch to the proper instance of a method. As written,
calls to the== method determine dispatch by applying the pred-
icate to both arguments. In some cases, however, the underlying
implementations all require both arguments to have the sametype.
Under that assumption, one can optimize dispatch by checking only
the first argument: the dispatched-to function is then expected to re-
port an error if the two values do not agree. The following example
shows how to implement such a single-argument dispatch:

(define-class (Eq a)
[(== a _) (lambda (l r) (not (/= l r)))]
[(/= a _) (lambda (l r) (not (== l r)))])

In the above code, the second reference toa in each of these
operations is replaced with the underscore symbol (_). Since the
underscore is not one of the specified predicate variables, it is
ignored. Symbols that do not represent predicates are most useful,
however, when dispatch is dependent on argument positions other
than the first. For example in the form:

(define-class (Eq a)
[(== _ a) (lambda (l r) (not (/= l r)))]
[(/= _ a) (lambda (l r) (not (== l r)))])

dispatch is determined by the second argument to the operations.
Under some conditions, it is useful to develop a class that dis-

patches on multiple predicates, rather than two. For example, con-
sider a type class that specifies overloaded operators that operate
on vector spaces. A vector space must take into consideration both
the sort of vector and scalar types used, and this can be done as
follows:

(define-class (Vector-Space v s)
[vector-add v v]
[scalar-mult s v])

Notice that in particular, scalar multiplication takes a scalar as its
first argument and a vector as its second. Classes that represent
multi-sorted algebras are bound to have one predicate for each sort.

4.2 Class Instances

A class instance is an implementation of overloads for a specified
predicate class that is associated with a particular list ofScheme

4

predicates. they are introduced using thedefine-instance form or
thelet-instance expression. The syntax for these constructs is as
follows:

(define-instance (class-name pred ...)
(method-name expr) ...)

(let-instance ([(class-name pred ...)
(method-name expr) ...])

expr ...)

Thedefine-instance form introduces a new top-level instance of
a previously declared class. Thelet-instance form correspond-
ingly introduces a new instance of a class for the scope of its
body (expr ...). An instance definition names the referent class
followed by a list of Scheme predicates–functions of one param-
eter that verify properties of objects. Built-in examples include
integer? andboolean?, but any function of one argument is ac-
ceptable (though not necessarily sensible). These predicates are
used during dispatch to find the proper overload.

Following the class name and list of predicates is a list of
method bindings for the class operations. The first component,
method-name specifies the name of an operation from the class
definition. The method binding,expr, should evaluate to a function
that is compatible with the operation specification from theclass
definition. The expressions that define instance methods become
suspended: the entire expression will be evaluated for eachcall
to the method, therefore any side-effects of the expressionwill
be repeated at each point of instantiation. Because this behavior
differs from that for traditional scheme definitions, the expression
that defines an instance method should simply be alambda form or
a variable. An instance declaration must have a method definition
for each class operation that has no default.

The following code shows an instance of the aboveEq class for
integers:

(define-instance (Eq integer ?)
(== =))

Following the above definition, applying== to integers will
dispatch to the standard= function. However, the class could be
redefined in a controlled context usinglet-instance as follows:

(let-instance ([(Eq integer ?)
(== eq ?)])

...)

Applications of== to integers in thelet-instance form body will
dispatch to the standardeq? function.

Class operations are not always open to additional overloads
in this system. As shown later, they are implemented as identifier
macros (also called symbolic macros), and when referenced expand
to an instantiation. When a class operation is instantiated, the
result is a function that may dispatch only to overloads of the
operation that are defined visible at the point of instantiation. In
particular, if a function definition calls a class operation, those
calls will recognize no new lexical instance declarations introduced
before the function itself is called. Continuing theEq class example,
consider the following program:

(define-instance (Eq char?) (== char =?))

(define elem
(lambda (m ls)

(cond
[(null? ls) #f]
[(== m (car ls)) #t]
[else (elem m (cdr ls))])))

(let-instance ([(Eq char?) (== char-ci =?)])
(elem #\x (list #\X #\Y #\Z)))

First an instance ofEq is defined for character types, usingchar=?.
Next, theelem function is implemented. This function is analogous
to the Haskell function from Figure 1. Theelem function imple-
ments the same functionality as its Haskell counterpart, but due
to the instantiation model of instance methods, calls to thefunc-
tion will dispatch based on the instances visible at the point that
elem is defined. Thus, even though the next expression shadows
the instance declaration for characters, usingchar-ci=? to imple-
ment==, the call toelem still dispatches to the first instance dec-
laration, which uses the case-sensitive comparator, and the expres-
sion yields the result#f. Had the new instance been defined using
define-instance, thenelem would have used the case-insensitive
comparator, and the above expression would have yielded#t.

4.3 Qualified Functions

The previous example illustrates how class operators andlet

-instance expressions preserve lexical scoping. Unfortunately, this
introduces a difference between generic functions implemented
as class operators and generic functions that are implemented as
Scheme functions that apply class operators. It is beneficial to also
have generic Scheme functions implemented in terms of classoper-
ators, that exhibit the same overloading behavior as class operators.

Haskell functions are overloaded by expressing their implemen-
tations in terms of class operators. When overloaded, a function
type is then qualified with the type classes that define the operations
used in the function body. Recall theelem function defined in Fig-
ure 1. It has qualified type(Eq a) => a -> [a] -> Bool, which
expresses its use of type class operators.

Scheme functions require no such qualification to call class
operators, but we borrow the notion to express our more dynamic
generic functions, which we callqualified functions. Qualified
functions take one of the following forms:

(define-qualified fn-name (class-name ...)
expr)

(define-open-qualified fn-name
(class-name ...)
expr)

The functionexpr defined by this form is qualified by the list
of classes(class-name...). Qualified functions have the same
overload model as class operators. When referenced inside a
let-instance form that overloads one of the qualifying classes,
a qualified function’s body can use the lexically introducedover-
loads. Qualified functions are also subject to instantiation. Inside a
qualified function, the operations from the list of qualifying classes
dispatch to the overloads visible at the point in the programwhere
the function isreferenced, rather than the point where the function
was defined. As such, the behavior of the function can be over-
loaded at or around call sites. Furthermore, the expressionthat
defines a qualified function is suspended in the same manner asfor
instance methods. It is thus expected that qualified functions will
be implemented withlambda forms. However, qualified functions
suffer this strange evaluation property in exchange for theability to
dynamically overload their behavior.

Revisiting theelem example from the previous section, the
function is now defined usingdefine-qualified:

(define-qualified elem (Eq)
(lambda (m ls)

(cond
[(null? ls) #f]
[(== m (car ls)) #t]
[else (elem m (cdr ls))])))

The call to== within the function body will now dispatch based
on the instances visible at the point thatelem is called, rather than
where it was defined. Using this definition ofelem, the expression:

5

(let-instance ([(Eq char?) (== char-ci =?)])
(elem #\x (list #\X #\Y #\Z)))

yields the value#t.
The following program illustrates a qualified function called in

two different instance contexts:

(define-qualified ==-3 (Eq)
(lambda (x y z) (and (== x y) (== y z))))

(cons (let-instance ([(Eq char?)
(== char-ci =?)])

(==-3 #\x #\X #\z))
(let-instance ([(Eq char?)

(== (lambda (a b)
#t))])

(==-3 #\x #\X #\z)))

The==-3 qualified function performs a 3-way equality comparison.
Both applications of==-3 take the same arguments, but each appli-
cation occurs within the scope of a different instance declaration.
This results in dispatch to two different implementations of the ==

method inside the body of the qualified function: the first perform-
ing a case-insensitive comparison and the second always yielding
#t. Evaluation of this expression yields the pair’(#f . #t).

A self-reference inside the body of a function defined with
define-qualified refers to the current instantiation of the func-
tion. However, if a function is defined withdefine-open-qualified,
then a self-reference results in a new instantiation of the qualified
function. Thus it is possible for such a qualified function tocall
itself with new instances in scope, as in the following (admittedly
bizarre) example:

(let-class ([(B p) (o p)])
(let-instance ([(B boolean ?)

(o (lambda (x)
’boolean))])

(define-open-qualified f (B)
(lambda (x)

(cons
(o x)
(if x

(let-instance ([(B boolean ?)
(o (lambda (x)

x))])
(f #f))

’()))))
(f #t)))

The above expression defines a class,B, that specifies one operation
of one argument. It then establishes an instance of the classfor
booleans and defines a functionf that is qualified over instances of
the class. Callingf with the value#t results in a call to the instance
method in the scope of only the outerlet-instance definition. The
result of this call, the symbol’boolean, is paired with the result of
recurring onf, this time in the scope of an instance that implements
the instance methodo as the identity. The final result of these
gymnastics is the list’(boolean #f). Whether this functionality
serves a useful purpose is a subject of future investigation.

5. Examples
Under some circumstances, a set of instance methods will be im-
plemented such that each applies its own associated class operator.
This makes sense especially when defining class instances for data
structures that contain values for which instances of the same class
exist. For instance, consider the following implementation of Eq for
Scheme lists:

(define-instance (Eq list?)
[== (lambda (a b)

(cond
[(and (null? a) (null? b)) #t]
[(or (null? a) (null? b)) #f]
[else (and (== (car a) (car b))

(== (cdr a) (cdr b)))]))])

This instance ofEq requires that== be overloaded for every element
of the list. The nested calls to== in the Scheme implementation are
resolved at runtime and will fail if the arguments are not members
of theEq class.

Scheme lists result simply from disciplined use of pairs and
the null object (’()). As such, a more fitting implementation of
equality would handle pairs and the null object separately,as in the
following:

(define-instance (Eq null?)
[== (lambda (a b) (eq? a b))])

(define-instance (Eq pair?)
[== (lambda (a b)

(and (== (car a) (car b))
(== (cdr a) (cdr b))))])

Scheme programs often use lists as their primary data structure,
and operate upon them with higher order functions, especially
the standardmap function. Nonetheless, lists are only one data
structure among others, trees for instance, and it may be desirable
to map a function over other such data structures. The Haskell
standard library specifies an overloaded implementation ofmap,
calledfmap, which varies its implementation depending on the data
structure over which it maps. Haskell supports overloadingon type
constructors[Jon93], and this functionality is used to implement
generalized mapping.

In Haskell, thefmap function is the sole operator of theFunctor
constructor class, which is defined as follows:

class Functor f where
fmap :: (a -> b) -> f a -> f b

The proper implementation offmap for lists is the standardmap
function, and the instance for lists is simple:

instance Functor [] where
fmap = map

where[] is the type constructor for lists.
What follows is a Scheme implementation offmap in the same

style as the Haskell version:

(define-class (Functor p)
(fmap fn p))

(define-instance (Functor list?)
(fmap map))

In order to match standard Schememap, fmap is not curried. The
analogous instance declaration for Scheme lists is shown above.
Scheme has no notion of type constructor analogous to that in
Haskell. This is especially clear in that Scheme lists are hetero-
geneous: any given list can contain any Scheme value, regardless
of its type. Though Haskell considers type constructor to bedistinct
from types, Scheme has no such distinction, and a simple predicate,
such aslist? for lists, suffices.

Given the above definition ofFunctor, one might define a tree
data type and an overload offmap for it as follows:

(define-record tree-branch (left right))
(define-record tree-leaf (item))

(define-instance (Functor tree-branch?)
(fmap

(lambda (fn branch)
(make-tree-branch

6

(fmap fn (tree-branch-left branch))
(fmap fn

(tree-branch-right branch))))))

(define-instance (Functor tree-leaf?)
(fmap

(lambda (fn leaf)
(make-tree-leaf
(fn (tree-leaf-item leaf))))))

(fmap add1 (list 1 2 3))

(fmap (lambda (x) (fmap add1 x))
(make-tree-branch
(make-tree-leaf (list 1 2 3))
(make-tree-leaf (list 4 5 6))))

This example uses Chez Scheme’s record facility for definingdata
types. The syntax:

(define-record rname (slotn ...))

defines a new data type and along with it a constructormake-rname,
a type predicatername? that returns#f for any other scheme type,
and accessors of the formrname-slotn for each element. Most
Scheme implementations supply similar facilities.

First, two data types with which trees can be described,tree-

branch and tree-leaf, are defined. Then for each of these data
types an instance ofFunctor is defined. Each instance’s implemen-
tation offmap constructs a new record from the result of recursively
applyingfmap to its components. Finally, two examples of calls to
fmap are shown. They yield the expected results: a data structureof
the same shape with each number incremented by one.

The Common Lisp Object System (CLOS) [GWB91] is another
example of a LISP system that provides support for generic func-
tions and overloading. CLOS is an object-oriented system whose
dispatch is primarily based on class identity, but it also supports the
overloading of generic functions on based on specific values. For
example, the CLOS method:

(defmethod == ((x number) (y (eql 7)))
’never)

defines an overload of the== generic function that is called when-
ever the first argument is a number and the second argument is ex-
actly equal to the number 7.

Since the system described here supports arbitrary predicates,
it too can implement such overloads. The following Scheme code
mimics the above:

(define-class (Eq a b)
(== a b))

(define is-seven? (lambda (x) (eq? x 7)))
(define-instance (Eq number? is-seven?)

[== (lambda (x y) ’never)])

A new version of theEq class uses two predicate variables in order
to establish the two separate overloads. Then an instance ofEq is
declared using thenumber? predicate and a hand-crafted predicate
that checks for equality to7.

6. Translating Predicate Classes to Standard
Scheme

Since the predicate class facility that we describe here is imple-
mented using Scheme macros, programs that use them correspond
directly to traditional Scheme code, the output of macro expansion.
In this section, we illustrate how programs written using this sys-
tem can be understood in terms of the resulting Scheme code.

The system implementation relies on the syntax-case macro
expander’s controlled variable capture, as well asdefine-syntax

macro definitions scoped within function bodies. However, forms
like let-class andlet-instance could be similarly implemented
in terms ofletrec-syntax.

A class definition form,define-class or let-class, introduces
two artifacts to the final program. First, an empty class table is
created. In this system, a class table is a list of entries, one for each
instance of a class. Each entry in the table is a pair of vectors: a
vector of predicates, and a vector of instance methods.

The class definition form also introduces a predicate dispatch
function for each operation specified. Based on the operation spec-
ification, a function is created that searches the class table, trying
to find a set of predicates that match the arguments passed to the
function.

For example, consider again theEq class:

(define-class (Eq a)
[(== a _) (lambda (l r) (not (/= l r)))]
[(/= _ a) (lambda (l r) (not (== l r)))])

For illustration purposes, the== operation dispatches on its first
argument but the/= operation dispatches based on its second.
The code resulting from this form is similar to what is shown in
Figure 3.

The class definition introduces a class table, namedEq-table,
which starts out empty. Next, the default instance methods are
defined. Each default becomes the body of a lambda expression
that takes a class table in order to implement recursion among
the instance methods. Then for each class operation,== and /=,
a dispatch function is introduced. This function is curried, first
accepting a class table and then an arbitrary list of arguments. The
bodies of the dispatch functions traverse the instance entries in the
class table, searching for a match between the predicatea and the
dispatch argument. Both dispatch functions access the predicatea
as the first element of the vector of predicates. Since== dispatches
based on its first argument,==-dispatch runs the predicate on
(car args), the first argument to the function, but/=-dispatch
runs the same predicate on(cadr args), its second argument.
If the class had more than one predicate, each predicate would
be tried on its corresponding argument in an attempt to detect a
matching instance. Finally,==-dispatch applies to its arguments
the first method in the method vector,op-vec, whereas/= applies
the second method. Each instance is passed the current classtable
in order to properly support recursion among instance methods.

The instance definition forms,define-instance and let-

instance, introduce new methods to the class instance table and
ensure that those instances are visible. To do so, an instance defini-
tion produces code that updates the class instance table anddefines
identifier macros for each class operation. These macros, which
are not shown for they are implementation details, cause class op-
erations to recognize the new instance. For example, consider the
following expression:

(let-instance ([(Eq integer?)
(== =)])

(cons
(list (== 5 6) (/= 5 6))
(list == /=)))

This program introduces an instance of theEq class based on the
standardinteger? predicate, assuming the previously described
definition of the class. The= function is named as the implementa-
tion of the== operator, and the/= is left undefined, thereby relying
upon the default method. Within the scope of this instance defi-
nition, both== and/= are called with integer arguments, and the
results are collected alongside their instantiations.

7

(define Eq-table ’())

(define ==- default
(lambda (Eq-table)

(lambda (l r) (not ((/=- dispatch Eq-table) l r)))))

(define /=- default
(lambda (Eq-table)

(lambda (l r) (not ((==- dispatch Eq-table) l r)))))

(define ==- dispatch
(lambda (Eq-table)

(lambda args
(letrec ([loop

(lambda (table)
(let ([pred-vec (caar table)]

[op-vec (cdar table)])
(cond
[(null? table) (error "No matching instance...")]
[((vector-ref pred-vec 0) (car args))
(apply ((vector-ref op-vec 0) Eq-table) args)]

[else (loop (cdr table))])))])
(loop Eq-table)))))

(define /=- dispatch
(lambda (Eq-table)

(lambda args
(letrec ([loop

(lambda (table)
(let ([pred-vec (caar table)]

[op-vec (cdar table)])
(cond
[(null? table) (error "No matching instance...")]
[((vector-ref pred-vec 0) (cadr args))
(apply ((vector-ref op-vec 1) Eq-table) args)]

[else (loop (cdr table))])))])
(loop Eq-table)))))

Figure 3. Expansion of theEq class

The following roughly illustrates the expansion of the above
expression:

(let ([Eq-table
(cons
(cons (vector integer ?)

(vector (lambda (Eq-table) =)
/=-default))

Eq-table)])
(cons

(list ((==- dispatch Eq-table) 5 6)
((/=- dispatch Eq-table) 5 6))

(list (==- dispatch Eq-table)
(/=- dispatch Eq-table))))

First the above code adds a new entry to the instance table reflect-
ing the structure of the supplied instance. The entry is acons of
two vectors. The first contains theinteger? predicate, or more
generally all the predicates needed to describe the instance. The
second vector holds the operators, in the same order as specified
in define-class (instance operators may be specified in any or-
der and they will be appropriately reordered). This entry isthen
added to the front of the table and bound to a new lexical variable
Eq-table. As with the default method implementations, the user-
supplied implementation of the== method becomes the body of a
lambda. Since no implementation is provided for/=, the default
implementation is substituted.

In this new lexical scope, identifier macros for the operators ==
and/= are introduced. These macros handle instantiation of class
operators when they are referenced. Thus, following all macro ex-

pansion, the calls to the operators in the original code are trans-
formed to calls to the dispatch functions, passing along theproper
class table, and then applying the result to the intended arguments.
As previously mentioned, class operations are not first class enti-
ties. Class operations are implemented using identifier macros, so
each class operation expands to replace any reference to it with an
expression that applies its associated dispatch function to the class
table.

Thedefine-instance form differs from its lexical counterpart
in that it updates the class table in place. For example, the instance
illustrated above could also be written as follows:

(define-instance (Eq integer ?)
(== =))

And its expansion is as follows:

(set! Eq-table
(cons
(cons (vector integer ?)

(vector (lambda (Eq-table) =)
/=-default))

Eq-table))

Rather than lexically binding a new table to extend the old one, it
applies side effects to the existing table to add the new instance
entry.

Thedefine-qualified form introduces functions that look up
class operation overloads visible at the point where the function is
referenced, rather than where the function is defined. To implement

8

such functionality, this form introduces an implementation function
that takes one class table argument for each class that qualifies it.
Consider, for example, the following qualified function:

(define-qualified assert-equal (Eq)
(lambda (a b)

(if (/= a b)
(error "Not equal!"))))

This function uses whatever instance ofEq matches its arguments
at its instantiation point to test them for inequality. Thisprogram
expands to the following:

(define assert-equal-impl
(lambda (Eq-table)

(letrec
([assert-equal

(lambda (a b)
(if ((/=- dispatch Eq-table) a b)

(error "Not equal!")))])
assert-equal)))

The define-qualified form generates the above function, which
takes a class instance table and uses it to dispatch to the proper
implementation of the/= method, as reflected by the call to
/=-dispatch. The body of assert-equal is wrapped within a
letrec form and bound to the nameassert-equal so that self-
references refer to the current instantiation. At the top-level, the
nameassert-equal is bound to a macro whose expansion applies
the implementation function to the class table. For example, con-
sider the following expression:

(cons (assert-equal 5 5)
assert-equal)

Its expansion takes the following form:

(cons ((assert-equal-impl Eq-table) 5 5)
(assert-equal-impl Eq-table))

The references toassert-equal expand to apply the implemen-
tation function,assert-equal-impl, to the newly extended class
table.

Theassert-equal qualified function can be implemented using
thedefine-open-qualified form as follows:

(define-open-qualified assert-equal (Eq)
(lambda (a b)

(if (/= a b)
(error "Not equal!"))))

Then only the expansion of the implementation function differs, as
shown in the following:

(define assert-equal-impl
(lambda (Eq-table)

(lambda (a b)
(if ((/=- dispatch Eq-table) a b)

(error "Not equal!")))))

In this case, the body of the function is no longer wrapped within
a letrec form. Thus, calls toasset-equal within the body of the
function refer to the aforementioned macro and are expandedas
described above.

7. Related Work
Although type classes in particular have been studied in thestat-
ically typed functional programming languages, overloading in
general has also been added to dynamically typed programming
languages.As mentioned earlier, for example, the Common Lisp
Object System (CLOS) provides many of the benefits of an object-
oriented programming language. Its design differs from other

object-oriented languages in that operations are implemented using
generic functionsin the form of overloaded methods. These meth-
ods differ from the methods of most object-oriented languages
in that they are not represented as messages passed to an object.
Rather they are applied like Lisp functions, but each generic func-
tion name can refer to multiple method definitions, each supplied
with a different set ofparameter specializers. This mechanism
applies to more than user-defined Lisp classes. Lisp methodscan
also be overloaded based on native Lisp types as well as equal-
ity requirements. Furthermore, specialization can be determined
based on arbitrary argument positions in a method. As such, some
consider the CLOS generic functions to be a generalization of the
typical object-oriented style.

The following code illustrates the implementation of generic
methods in Common Lisp:

(defmethod == ((x number) (y number))
(= x y))

(defmethod == ((x string) (y string))
(string-equal x y))

(defmethod != (x y)
(not (== x y)))

(defmethod == ((x number) (y (eql 7)))
’never)

Thedefmethod special form is the means by which Common Lisp
code expresses generic functions. Each call todefmethod intro-
duces an overload. The first two lines establish overloads for the
== function, one for numbers and one for strings. Each indicates
its overload by listing the types of its arguments, and uses the ap-
propriate concrete function to implement the overload. Next, a !=

generic function is implemented with one overload that places no
constraints on its arguments. Its body is expressed in termsof the
previously defined== function. Finally, a curious overload of the
== function specifies different behavior if its second argument is
the number7. Given this definition, the expression(== 7 7) yields
the symbol’never.

Although standard Scheme does not specify a mechanism for
implementing overloaded functions, rewrites of the CLOS mecha-
nism are available for certain Scheme implementations [Xer, Bar]).

Overloading functions in Scheme has been the subject of pre-
vious research. In [Cox97], a language extension for Schemeis
described that adds a mechanism for overloading function defini-
tions. The formslambda++ anddefine++ extend the definition of
an existing function, using either user-supplied predicates or an in-
ferred predicate to determine the proper implementation. In this
regard it is similar to the Common Lisp Object System. However,
it differs from CLOS in that the implementation combines allover-
loads at compile time and generates a single function with all dis-
patch functionality inline. Our design is fully implemented within
a macro system, whereas this extension requires modifications to
the underlying Scheme implementation.

Other programming languages have also investigated models
of overloading. Cecil [Cha93] is a prototype based (or classless)
object-oriented programming language that features support for
multi-methods [Cha92]. It differs from systems like CLOS inthat
each method overload is considered to be a member of all the ob-
jects that determine its dispatch. These methods thus have privi-
leged access to the private fields of those objects. Cecil hasa very
flexible notion of objects, and since objects, not types, determine
dispatch for Cecil multi-methods, it can capture the full capability
of CLOS generic functions, including value equality-basedparam-
eter specializers. Furthermore, Cecil resolves multi-method calls
using a symmetric dispatch algorithm; CLOS uses a linear model,
considering the arguments to a call based on their order in the ar-
gument list.

9

MultiJava [CLCM00] is an extension to the Java [GJSB00]
programming language that adds support for symmetric multi-
ple dispatch, as used in Cecil. This work emphasizes backward-
compatibility with Java, including support for Java’s static method
overloading mechanism alongside dynamic multi-method dispatch.

Recently, the languageF G [SL05], an extension of the poly-
morphic typed lambda calculi of Girard and Reynolds [Gir72,
Rey74], introduced mechanisms similar to the design described
here. It introducesconcept andmodel expressions, which are anal-
ogous tolet-class and let-instance. It also adds a notion of
generic functions, which are analogous to our qualified functions,
as well as closely related to Haskell overloaded functions.Generic
functions can have qualified type parameters much like Haskell,
but the dispatch to its equivalent of instance operators is also based
on the instances visible at the point of a function call. Generic
functions do not have a notion of instantiation however: they have
first class status and can be called elsewhere yet still exhibit their
dynamic properties. The languageF G is statically typed but its
type system does not perform type inference. In this language, in-
stances of a class that have overlapping types cannot exist in the
same lexical scope. Our system allows them, but recognizes that
they may lead to undesirable results. Furthermore,F G does not
have top-level equivalents todefine-class anddefine-instance.

In [OWW95], an alternative facility for overloading in the con-
text of Hindley/Milner type inference is described. The language,
named System O, differs from Haskell type classes in that over-
loading is based on individual identifiers rather than type classes.
A function may then be qualified with a set of identifiers and signa-
tures instead of a set of type class constraints. Compared toHaskell
type classes, System O restricts overloading to only occur based
on the arguments to a function. Haskell, in contrast, supports over-
loading on the return type of a function. As a result of SystemO’s
restrictions, it has a dynamic semantics that can be used to reason
about System O programs apart from type checking. Haskell type
class semantics, on the other hand, are intimately tied to the type
inference process. Because of this, it is also possible to prove a
soundness result with respect to the type of System O programs.
Furthermore, every typeable term in a System O program has a
principal type that can be recovered by type inferencing (types must
be explicitly used to establish overloads however).

System O’s dynamic semantics are very similar to those of the
system we describe. Overloaded functions are introduced using the
form:

inst o : s = e in p

whereo is an overloaded identifier,s is a polymorphic type,e is the
body of the overload, andp is a System O expression in which the
overload is visible. This form is analogous to ourlet-instance

form. However,inst introduces an overload only on identifiero,
whereaslet-instance defines a set of overloaded operators as
described by the specified class.

Overload resolution in System O searches the instances lexi-
cally for a fitting overload, much like our system does. As such,
System O’s dynamic semantics allow shadowing of overloads,as
our system does, but the type system forbids this: overloadsmust
be unique. System O’s overloaded operators are always dispatched
based on the type of the first argument to the function. Our system,
however, can dispatch based on any argument position, and uses ar-
bitrary predication to select the proper overload. Also, our system
can use multiple arguments to determine dispatch. Finally,though
System O’s dynamic semantics closely match those of our system,
it can be still be implemented as a transformation to the moreeffi-
cient dictionary-passing style that is often used to describe Haskell
type classes.

Some Scheme implementations provide thefluid-let form,
which supports controlled side-effects over some dynamic extent.
To understand howfluid-let behaves, consider the following
program and its result:

(let ([x 5])
(let ([get-x (lambda () x)])

(cons (fluid-let ([x 4]) (get-x))
(get-x))))

=> (4 . 5)

The code above lexically bindsx to the value5, and bindsget-x
to a function that yieldsx. Then, two calls toget-x are combined
to form a pair. The first is enclosed within afluid-let form. The
fluid-let form side-effectsx, setting its value to4 for the dynamic
extent of its body. The result of thefluid-let form is the result
of its body, but before yielding its value,fluid-let side-effectsx
again, restoring its original value. Thus, the code:

(fluid-let ([x 4]) (get-x))

is equivalent to the following:

(let ([old-x x] [t #f])
(set! x 4)
(set! t (get-x))
(set! x old-x)
t)

The value of x is stored before assigning4 to it. Thenget-x is called
and its value stored before restoringx to its old value. Finally the
expression yields the result of(get-x).

This mechanism is in some respects comparable to our predicate
class mechanism. For example, consider the following program:

(let ([== #f])
(define is-equal?

(lambda (a b) (== a b)))
(fluid-let ([==

(lambda (a b)
(if (number? a)

(= a b)))])
(is-equal? 5 5))))

It binds the lexical variable== to a dummy value,#f. Then a
function is-equal? is implemented in terms of==. Finally == is
effected viafluid-let, and within its extent,is-equal? is called.
This entire expression evaluates to#t. Compare the above program
to the following, which is implemented using predicate classes:

(let-class ([(Eq a) (== a _)])
(define-qualified is-equal? (Eq)

(lambda (a b) (== a b)))
(let-instance ([(Eq number?) (== =)])

(is-equal? 5 5)))

It yields the same result as thefluid-let example. Here,== is
introduced using thelet-class form. Also, is-equal? is now
implemented as a qualified function. Thenlet-instance replaces
the fluid-let form. Due to this example’s simplicity, the extra
machinery of predicate classes exhibits some syntactic overhead,
but programs involving more structure and content may be better
formulated using type classes than usingfluid-let to manually
implement the same functionality.

8. Conclusion
Predicate classes loosely determine what properties may guide
function dispatch. Traditional object-orientation determines dis-
patch based on one entity involved in a method call: the classto
which the method belongs. Some operations, however, require dis-
patch based on more than the type of one entity. Idioms such as

10

the Visitor pattern [GHJV95] have been invented to support dis-
patch based on multiple types in object-oriented languages. Haskell
type classes support dispatch based on all the arguments to afunc-
tion. However, they specifically rely upon the types of function ar-
guments to guide dispatch. Types can encode some sophisticated
properties of objects, including relationships between them, but
they cannot capture all runtime properties of programs. Common
Lisp generic functions also dispatch on the types of arguments, but
as shown earlier, they also support predication based on thepartic-
ular value of an argument. In this regard, some runtime properties
of values are available for dispatch. In our system, any Scheme
predicate, meaning any function of one argument that might yield
#f, can be used to define an instance. Thus, any predicate that is
writable in the Scheme language can be used to guide dispatch.
Predicates may mimic types, as in the standard Scheme predicates
like integer?, and one may also compare an argument to some
constant Scheme value, just as in Common Lisp. As such the mech-
anism described here can subsume much of the generic function
mechanism in Common Lisp. The Common Lisp Object System,
however, orders function specializations based on the inheritance
hierarchy of any objects passed as arguments as well as theiror-
dering in the function call. This differs from the Scheme system,
which matches symmetrically across all predicates but alsorelies
upon the ordering of and lexical distance to instance definitions.
Thus, one may mimic this behavior, but such simulation depends
upon the ordering of instance definitions.

The structure imposed by predicate classes provides a means
to capture relationships between operations. Related functional-
ity can be described as a unit using a class and subsequently im-
plemented as instances of that class. Applications can thususe
predicate classes to organize problem domain abstractionssystem-
atically and render them in program text. Such is the organiza-
tional power commonly associated with object-orientation; how-
ever, CLOS implements an object-oriented system that places less
emphasis on the discipline of grouping functionality, preferring to
focus on the expressiveness of generic function dispatch. The pred-
icate class mechanism expresses the organization of objects but re-
tains the emphasis on functions, rather than objects, generally as-
sociated with functional programming.

The flexibility of dynamic typing must, however, be weighed
against the limitations imposed by a lack of static information dur-
ing compilation. A static type system imposes some limitations on
how programs can be written, but this rigidity in turn yieldsthe abil-
ity for the language implementation to infer more properties from
programs and use this extra information to increase expressiveness.
For example, consider the following sketch of the standard Haskell
Num type class:

class Num a where
...
fromInteger :: Integer -> a
...

TheNum type class has operations whose arguments do not con-
tain enough information to determine how dispatch will proceed.
Specifically, thefromInteger method, when applied to anInteger
value, yields a value of typea, wherea is the overload type. Since
this method always takes only an integer, it relies on the return type
to distinguish overloads, a feature that our system does notsupport.
In order to implement something like the above in Scheme, theop-
erations must take an additional argument that determines dispatch:

(define-class (Num a)
...

(fromInteger a i)
...)

Here, thefromInteger method has an extra parameter, which must
be the type to which the supplied integer is converted. Such acon-
tortion is significantly less expressive than the Haskell analogue: a
value of the proper type must be available in order to convertan-
otherInteger to it. This value’s sole purpose is to guide dispatch.
The change gives theNum class an object-oriented feel and muddies
the abstraction with implementation details.

In the case of multiple parameter classes, operations need not
be dependent upon all the class predicates. Despite interest in and
known uses for multiple parameter type classes for Haskell,as
well as support for them in several implementations, type checking
of programs that make use of them is undecidable in the general
case. Nonetheless they are considered useful, and various means
have been proposed to make them tractable [Jon00, PJM97, DO02,
CKPM05]. In the Scheme system, lack of dispatch informationcan
also be problematic, especially if multiple instances of the class
have overlapping predicates. A call to an operation with this sort
of ambiguity results in the most recent instance’s operation being
called. An implementation of this system could recognize such
ambiguities and report them as warnings at compile-time andas
errors at runtime, but the system we describe here does not.

In Haskell, a class instance method can be overloaded for some
other class. In this manner, even a particular method can utilize
ad-hoc polymorphism in its implementation. Since methods in the
Scheme system are implemented using macros, it is not possible
to implement an instance method as a qualified function. One may
use such a function as a class method, but it will be bound to a
particular class table at the point of its definition so it will not be
dynamic over its class qualifications.

As with Haskell, classes that qualify a function must not have
overlapping operation names. However, multiple classes whose op-
eration names overlap can be defined, but the behavior for this situ-
ation is rather idiosyncratic. Suppose two predicate classes share an
operation name. Then at any point in the program, the method name
corresponds to the class with the instance that is most recently de-
fined (at the top level usingdefine-instance) or most closely de-
fined (usinglet-instance). Thus, instance definitions introduce,
or re-introduce, their method names and in doing so shadow the
value most recently associated with those names. One may still use
commonly-named methods from multiple classes, but this requires
the lexical capture of one class’s instance method prior to defining
an instance of the other class.

Haskell type classes model more of the functionality typical
of object-oriented mechanisms than the described Scheme system.
For example, type classes can derive from other type classes, much
as an object-oriented class can be derived from another using inher-
itance. The predicate class mechanism does not support the deriva-
tion of one type class from another, but this functionality could be
added to the system.

Combining the top-level class and instance definitions of Haskell
with lexically scoped class and instance definitions increases ex-
pressive power. The ability to override an instance declaration as
needed lends flexibility to how applications are designed. For ex-
ample, an application may establish some problem-specific abstrac-
tions using classes and provide some default instances for them to
handle the common cases. Nonetheless, any portion of the appli-
cation that uses instance methods or qualified functions maynow
override the default instances in a controlled fashion as needed.
Haskell could also benefit from this capability, though we are un-
aware of any investigation of such functionality for Haskell.

9. Acknowledgments
This work benefited from discussions with R. Kent Dybvig, Jeremy
Siek, and Abdulaziz Ghuloum as well as collaborations with the
latter two.

11

References
[Bar] Eli Barzilay. Swindle. http://www.barzilay.org/Swindle/.

[Cha92] Craig Chambers. Object-oriented multi-methods inCecil. In
ECOOP ’92: Proceedings of the European Conference on
Object-Oriented Programming, volume 615 ofLecture Notes
in Computer Science, pages 33–56, 1992.

[Cha93] C. Chambers. The Cecil language: Specification and
rationale. Technical Report TR-93-03-05, 1993.

[CHO92] Kung Chen, Paul Hudak, and Martin Odersky. Parametric
type classes (extended abstract). In1992 ACM Conference
on Lisp and Functional Programming, pages 170–181. ACM,
ACM, August 1992.

[CKPM05] Manuel M. T. Chakravarty, Gabrielle Keller, SimonPeyton
Jones, and Simon Marlow. Associated types with class. In
POPL ’05: Proceedings of the 32nd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages
1–13, New York, NY, USA, 2005. ACM Press.

[CLCM00] Curtis Clifton, Gary T. Leavens, Craig Chambers, and Todd
Millstein. MultiJava: modular open classes and symmetric
multiple dispatch for Java. InOOPSLA ’00: Proceedings
of the 15th ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, pages
130–145, New York, NY, USA, 2000. ACM Press.

[Cox97] Anthony Cox. Simulated overloading using generic functions
in Scheme. Master’s thesis, University of Waterloo, 1997.

[DHB92] R. Kent Dybvig, Robert Hieb, and Carl Bruggeman. Syntactic
abstraction in Scheme.Lisp and Symbolic Computation,
5(4):295–326, dec 1992.

[DM82] Luis Damas and Robin Milner. Principal type-schemesfor
functional programs. InPOPL ’82: Proceedings of the
9th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 207–212, New York, NY,
USA, 1982. ACM Press.

[DO02] Dominic Duggan and John Ophel. Type-checking multi-
parameter type classes.J. Funct. Program., 12(2):133–158,
2002.

[Dyb92] R. Kent Dybvig. Writing hygienic macros in Scheme with
syntax-case. Computer Science Department Technical Report
#356, Indiana University, Bloomington, Indiana, June 1992.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. Design Patterns: Elements of Reusable Object-
Oriented Software. Professional Computing Series. Addison-
Wesley, 1995.

[Gir72] Jean-Yves Girard.Interprétation Fonctionnelle et́Elimination
des Coupures de l’Arithḿetique d’Ordre Suṕerieur. Thse de
doctorat d’́etat, Universit́e Paris VII, Paris, France, 1972.

[GJSB00] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The
Java Language Specification, Second Edition. Addison-
Wesley, 2000.

[GWB91] Richard P. Gabriel, Jon L. White, and Daniel G. Bobrow.

CLOS: integrating object-oriented and functional program-
ming. Commun. ACM, 34(9):29–38, 1991.

[Jon93] Mark P. Jones. A system of constructor classes: overloading
and implicit higher-order polymorphism. InFPCA ’93:
Proceedings of the conference on Functional programming
languages and computer architecture, pages 52–61, New
York, NY, USA, 1993. ACM Press.

[Jon00] M. P. Jones. Type classes with functional dependencies. In
Proc. 9th European Symp. on Prog. (ESOP 2000), volume
1782 ofLecture Notes in Computer Science, pages 230–244,
New York, NY, March 2000. Springer-Verlag.

[KFFD86] Eugene Kohlbecker, Daniel P. Friedman, Matthias Felleisen,
and Bruce Duba. Hygienic macro expansion. InLFP ’86:
Proceedings of the 1986 ACM conference on LISP and
functional programming, pages 151–161, New York, NY,
USA, 1986. ACM Press.

[Mil78] Robin Milner. A theory of type polymorphism in program-
ming. Journal of Computer and System Sciences, 17:348–
375, August 1978.

[NT02] Matthias Neubauer and Peter Thiemann. Type classes with
more higher-order polymorphism. InICFP ’02: Proceedings
of the seventh ACM SIGPLAN international conference on
Functional programming, pages 179–190, New York, NY,
USA, 2002. ACM Press.

[OWW95] Martin Odersky, Philip Wadler, and Martin Wehr. A second
look at overloading. InFPCA ’95: Proceedings of the
seventh international conference on Functional programming
languages and computer architecture, pages 135–146, New
York, NY, USA, 1995. ACM Press.

[Pey03] Simon Peyton Jones. The Haskell 98 language.Journal of
Functional Programming, 13:103–124, January 2003.

[PJM97] Simon Peyton Jones, Mark Jones, and Erik Meijer. Type
classes: Exploring the design space. InProceedings of the
1997 Haskell Workshop, June 1997.

[Rey74] John C. Reynolds. Towards a theory of type structure. In
B. Robinet, editor,Programming Symposium, volume 19 of
Lecture Notes in Computer Science, pages 408–425, New
York, NY, 1974. Springer-Verlag.

[SL05] Jeremy Siek and Andrew Lumsdaine. Essential language
support for generic programming. InPLDI ’05: Proceedings
of the 2005 ACM SIGPLAN conference on Programming
language design and implementation, pages 73–84, New
York, NY, USA, 2005. ACM Press.

[WB89] P. Wadler and S. Blott. How to make ad-hoc polymorphism
less ad hoc. InPOPL ’89: Proceedings of the 16th ACM
SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 60–76, New York, NY, USA, 1989. ACM
Press.

[Xer] Xerox PARC.Tiny-CLOS.
ftp://ftp.parc.xerox.com/pub/mops/tiny/.

12

13

Eager Comprehensions in Scheme
The design of SRFI 42

Sebastian Egner
Philips Research Laboratories, The Netherlands

sebastian.egner@philips.com

Abstract
This article is about a certain style of programming iterative pro-
grams. It is based on a concept we have named “eager compre-
hension,” which is a convenient and efficient alternative totail re-
cursion,do-loops, and lazy list comprehensions (aka “ZF expres-
sions”). Eager comprehensions are syntactic forms that encapsulate
the details of an accumulation process (counting elements,creating
a list, etc.). Within these forms, expressions called generators hide
the details of enumerating basic sequences (running through a list,
through a range of integers, etc.). By combining these elements in
a clearly structured and well-defined way, a concise and powerful
notation for writing loops emerges.

Of course, this style of programming is not new—it is implicitly
present in any form ofloop-macro already—and so we discuss
several concrete designs that aim for the same goal. Surprisingly,
however, none of these designs has had much impact on Scheme,
despite the fact that their common floor plan has been around for
decades. A particularly clean new design, SRFI 42, on the other
hand has already made some friends in the first few years of its
existence. Explaining the design and implementation of SRFI 42
constitutes the main part of this article.

1. Introduction
The original motivation for working on a library for comprehen-
sions in Scheme was my dissatisfaction with the available mech-
anisms for writing trivial loops. In addition, I wanted to create
an efficient mechanism for converting data structures without a
quadratically increasing number of conversion operationsnamed
chalk->cheese.

The most basic example for a trivial loop is the construction
of a list of the firstn non-negative integers, using the constructs
available in the Revised5 Report on the Algorithmic Language
Scheme (R5RS) [1] only. Maybe the shortest1 and clearest (!?)
expression for this is

(do ((k (- n 1) (- k 1))
(x ’() (cons k x)))

((< k 0) x))

1 Please let me know if you can do shorter than this inR5RS.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Sixth Workshop on Scheme and Functional Programming.September 24, 2005,
Tallinn, Estonia.
Copyright c© 2005 Sebastian Egner.

This is terrible, not so much for the number of key strokes butas an
example where details obscure intention.

In SRFI 42 that would be(list-ec (: k n) k), for inter-
active use, or(list-ec (:range k n) k) if speed is worth an-
other five key strokes. Since this article is not about the specifica-
tion of SRFI 42, but about the design principles, a basic familiarity
with the following document will be assumed from now on:

http://srfi.schemers.org/srfi-42/srfi-42.html

(Alternatively, there is a brief introduction in the appendix.) While
initially the goal was adapting the comprehensions found inHaskell
to Scheme, a number of insights turned this enterprise into awhole
new direction and eventually led to the concept later coined“eager
comprehensions.” These ideas can be summarized as follows:

1. Truly lazy comprehensions are not an attractive option in
Scheme because the overhead for non-strict data structuresand
explicit handling of continuations is high. Moreover, lazycom-
prehensions can be confusing in the presence of side-effects.

2. While list comprehensions and list generators are sufficient
for comprehensions in lazy languages, in eager languages it
is essential to be able to add application-specific comprehen-
sions and generators easily—and without modifying the exist-
ing ones.

3. While simple comprehensions resemble mathematical set com-
prehensions, more complex expressions increasingly look like
nested and parallel loops with accumulation of the results.In
fact, that is what they are.

4. The fundamental eager comprehension has nothing to do with
lists, but executes a command repeatedly according to its gen-
erators. The fundamental eager generator repeatedly modifies a
state explicitly.

After these insights it was obvious that “bringing Haskell’s compre-
hensions to Scheme” is the wrong goal to pursue. The more inter-
esting question is “What would be a useful corresponding concept
in an eager programming language?” The answer is quite surpris-
ing:

Eager comprehension:A convenient style of programming
nested and parallel loops with accumulation of results. Ide-
ally, scope and syntax are easy to remember and the irrele-
vant details of the iteration are hidden from the user.

The concept can also be interpreted as an (essentially syntactic)
abstraction mechanism from details of iteration: if you have a new
data structure that has given rise to some natural iteration, then
it might pay to encapsulate the details of this iteration process in
a generator. Similarly, if there is a natural way of constructing a
data structure from a sequence of states—a comprehension might
be useful to applications.

14

Structure of this article. The remainder of this article is orga-
nized as follows. In Section 2 different notions of “comprehension”
are introduced. These notions are related but must not be confused.
In particular the term “eager comprehension” is being used as a re-
minder that this concept has in fact very little to do with lazy list
comprehension.

Section 3 continues with stating the major design issues for(ea-
ger or lazy) comprehensions as a general and practically useful lan-
guage construct. Section 4 discusses a number of concrete designs
of loop facilities and comprehensions for the Lisp family oflan-
guages, and related work. The implementation of SRFI 42 is the
subject of Section 5. It explains the overall structure and implemen-
tation strategy used in the reference implementation (which, un-
fortunately performance-wise, is the only one available till today).
In Section 6 the performance of the portable reference implemen-
tation is compared with other libraries. Finally, for entertainment,
Section 7 presents a modular way of addinglazycomprehensions
to SRFI 42.

2. Concepts of comprehensions
In this section we briefly review different concepts of comprehen-
sion. For the sake of clarity we will always refer to them by a longer
name than just “comprehension.”

Set comprehension. The mathematical notation2

“{f(x) | P (x), x ∈ S}”

denotes the set of all values of the functionf for arguments in
the setS and satisfying the predicateP . The notation explicitly
refers to a candidate elementx, a predicateP , a universeS, and a
mappingf . This notation is called aset comprehension.

The stated form is maybe the most frequently seen, but it is not
the most fundamental. The most basic form of set comprehension
is {y | Q(y)}, wherey = f(x), P (x), andx ∈ S have been
combined intoQ(y). This concept, i.e. denoting a set defined by a
predicate (formula), is the core of what is meant by “comprehen-
sion.” While this concept has been in use for a long time already,
it was not before the development of axiomatic set theory by Zer-
melo, Fraenkel and others in the 1920s that the idea was studied
systematically. The notion of set comprehension, and its notation,
is so natural that it has gradually become a mathematical standard,
i.e. the reader of a mathematical article is expected to understand it
without definition.

Comprehensions in programming languages.The notational
convenience of set comprehension has inspired programminglan-
guage constructs with similar intent: name the data structure de-
fined by an expression for its elements. For example, in the SETL
language [19, 20]

{n**2 : n in {0..9}}

denotes the set of the first ten integer squares. This construct,
however, does not only specify the result but also analgorithm for
constructing the result (“execute a loop overn, square the values,
collected them in a data structure”). It is often convenientto ignore
the algorithmic aspect, but most of the time this is not possible—
after all, algorithms do take time, or may not terminate at all. For
this reason, set comprehension in mathematics and in programming
languages should never be confused.

Lazy comprehensions. While comprehensions were contained in
some eager (aka call-by-value) programming languages for along
time, they only became popular once they were introduced forlazy
lists in lazy (aka call-by-need) functional programming languages

2 Instead of “|” also “:” and “,” are in use.

primitive purpose
set set denote a set by properties
lazy lazy list sequence processing
eager side-effect writing nested and parallel loops

with accumulation of results

Table 1. Different concepts of “comprehension.”

(mostly based on a typedλ-calculus with normal order reduction)
in the early 1980s. In contemporary syntax (Haskell), for example,

[x*x | x <- [0..]]

denotes the (infinite) lazy list of all integer squares. Its elements
will be made explicit once they are needed.

Such alazy comprehensionprovides a convenient notation for
processing lazy lists by means of mapping, filtering, and concate-
nation. The primitive lazy comprehension (written[exp|qual+] in
Haskell) constructs a lazy list, and the primitive lazy generator (<-,
read ‘drawn from’) binds a variable3 to the elements of a lazy list.
In addition, several generators can be nested, elements canbe fil-
tered from the sequence, and local variables can be defined.

Lazy list comprehensions are widely accepted due to their con-
cise notation, and good readability in most cases. Their efficiency is
as good as any (lazy) alternative. Their primary shortcoming is an
implicit tendency to overuse them, i.e. to write complicated nested
lazy comprehensions where an appropriate abstraction had better
been introduced. The decreasing readability of more complicated
lazy comprehensions is probably due to the use of infix operators
and the “[expr|outer..inner]” scoping rule, which is not simply
left to right.

From the point of view of programming language design, it
is most informative to recall the historical development oflazy
comprehensions [18, Chapter 7]—in particular that their true nature
was not fully understood for a long time: lazy comprehensions
were first introduced as part of the NPL language (Burstall, 1977)
[25]. In NPL, however, comprehensions construct a set of objects.
While this construct is closest to the mathematical notion,lazy sets
are not nearly as useful aslazy listsare. It appears that lists and
graphs are more fundamental to programming than sets (unordered
collections); in addition, lists (in particular lazy lists) are a universal
and natural mechanism of communication between different parts
of a program. Consequently, set comprehensions were not essential
and when NPL evolved into the Hope language (Burstall, 1980)
[26] lazy comprehensions where not included.

Lazy list comprehensions made their debut in the KRC language
(Turner, 1981) [27] as “ZF expressions.” Later they were included
in several other functional programming languages like Miranda
[28, 29] (Turner, 1985). But still mathematical beauty has distracted
the mind from proper programming pragmatics for some time: gen-
erators in lazy list comprehensions can denote infinite iterations.
Hence, from a mathematical point of view the most natural way
of advancing nested generators is by (Cantorian) diagonalization,
also known as “dove-tailing.” This is the only way of reaching ev-
ery pair eventually in the case of an infinite inner generator. While
diagonalization looks like a good idea at first, it is not. Mathemati-
cal “eventually” can be a long time, and in practice diagonalization
is not worth a lot. Thus lazy list comprehensions evolved to run
the generators in the straight-forward way, i.e. exhausting the in-
ner loop before advancing the outer loop, while the diagonalizing
variants slowly went out of fashion (not without constantlybeing
reinvented).

3 A pattern possibly containing variables to be precise.

15

Specialized eager comprehensions.Encouraged by the success
of lazy comprehensions, designers of eager programming lan-
guages recently started to include comprehensions again. E.g. Python
[11] contains list comprehensions. While theseeager comprehen-
sionscan be quite useful, in particular for interactive use and script-
ing, they are much less universal in nature than their lazy counter-
parts. This is explained in greater detail in Section 3.3.

Eager comprehension as abstraction of iteration.Surprisingly,
this perceived limitation is again due to a lack of understanding for
the true nature of comprehensions, eager comprehensions this time.
As explained above, lazy comprehensions for lists are fundamental.
For eager comprehensions, however,side-effect(state) is the most
basic concept4.

As indirect evidence of this fact consider that any eager com-
prehension can be implemented in terms of

(do-ec qualifier∗ command),

which executescommandfor each state in the sequence defined by
the generators and testsqualifier∗. Similarly, each eager generator
can be implemented in some form of state-transforming iterator, in
the sense ofdo. Amazingly, this insight—which is made explicit
here—is already implicit in the design of nearly any loop facility
for the Lisp family of languages, but it has not been acknowledged
as such.

While the “can be implemented by”-relation usually does not
lead to the most fundamental concept, it does so in this case.Con-
sider the alternative of implementing the eager comprehensions in
terms of (eager) lists: the resulting implementation will be horrible!
An accumulation process (e.g. counting) cannot start untilthe last
element of the enumerated sequence has been produced and stored
in a data structure. The resulting loss in performance, as a function
of sequence length, is in fact unbounded.

Being built on this insight, SRFI 42 eventually reduces any com-
prehension todo-ec, and any generator to:do—which is some
flexible but fixed loop structure (Section 5.2) based on explicit state
transformation. In combination with a number of rules simplifying
the syntax and introducing a clean scoping rule, this results in a
facility for iteration that is both efficient and convenient.

3. Design considerations
In this section we discuss the main issues that affect the usefulness
of a programming language construct for eager comprehensions,
or for writing nested and parallel loops with accumulation of the
result. We approach these issues by exploring design alternatives:
which design decisions exist and what are their implications? Our
primary goal is not a coherent and complete theory, but rather an
informal discussion of the relative benefits of various designs in
terms of convenience and effectiveness of the language construct
for writing programs.

3.1 Mental complexity

Maybe the most important consideration is what could be called
“mental complexity.” As an anecdotal quantitative measureof men-
tal complexity we propose to count the number of times the refer-
ence manual of a loop construct was consulted when reading other
people’s loops, multiplied by the years of experience of thereader
with that particular construct.

More seriously, we would like to point out that any concept
for eager comprehensions, or loops, represents a trade-offbetween

4 We use the term ‘state’ here in an informal way, refering to the status of all
bits that could possibly alter the future of an iteration. Later, in Section 3.5,
we will clarify that a sequence of states may actually mean a sequence of
binding environments.

simplicity and flexibility. This follows from the fact that loops
cover a large scale of complexity in programs, from simple repeti-
tion to complicated nested and parallel actions with several condi-
tions in between and numerous invariants. In effect, designing “the”
loop construct might not be the right goal to aim for, and it might
also be necessary to predefine frequent idioms of loops. An import
tool for flexibility is orthogonality—for example in SRFI 42every
generator can be modified by adding another termination condition.

While the orthogonality idea is strong in Scheme, the iterative
part of it has been somewhat neglected. (More on that in Sec-
tion 4.1.) Nevertheless, the looping constructs thatare available
in R5RS are not too complicated to remember, i.e. mental com-
plexity is relatively low. At the other extreme end, Common Lisp’s
loop might be found—highly flexible but also highly complicated.
(Refer to Section 4.5.)

3.2 Interactive use vs. batch mode

Scheme can be used as an interactive system or for writing batch
programs. Although these modes are just two extremes of an entire
spectrum of human-computer interaction they are useful abstrac-
tions for evaluating designs. The two modes impose conflicting re-
quirements: concise notation and flexibility is most important to in-
teractivity, while robustness, efficiency, and readability are primary
concerns for batch mode.

In the case of eager comprehensions, the key to efficiency is the
use of typed state-based generators, i.e. programs that enumerate
a sequence by modifying a local state (values of variables),the
state being of statically known type (e.g. an integer counter). Note
that this does not necessarily mean the state is updated by using
set!, it could also mean that the state is updated by rebinding
(as with tail-recursive procedures). If the state is represented in
boxed data structures, or if each loop iteration requires dispatching,
performance usually suffers. For this reason, most loop constructs
for Scheme (or Lisp in general) concentrate on the batch mode,
only. In SRFI 42, on the other hand, the requirements of interactive
and batch mode are addressed by two different mechanisms (typed
and dispatched generators) which can be mixed freely.

3.3 Modularity

Modularity for comprehensions means that new types of generators
and new types of comprehensions can be added without modifying
the already existing generators or comprehensions. For thesake of
illustration, let us assume the new type “Fooziset” is yearning for
comprehension.

In lazy comprehensions modularity is for free: adding a gener-
ator means writing a function returning a lazy list to be usedon
the right-hand side of the single binding and enumeration construct
(“<-” in Haskell). Adding a comprehension means writing a func-
tion processing a lazy list, possibly constructed by a comprehen-
sion. In effect, the comprehension

foozi of list [x | x <- list of foozi s]

produces an element-wise copy of a Fooziset, whatever that actu-
ally means.

For eager comprehensions, on the other hand, modularity is a
challenge. And what is more important, modularity is the keyfor
creating an abstraction that goes beyond a mere idiom for frequent
programs! Unfortunately, the importance of modularity foreager
comprehensions has long been underestimated. Most designsmake
it either outright impossible to add new generators and comprehen-
sions, or this is inconvenient and cumbersome. In effect, the users
of the mechanism do not take the trouble of adding the comprehen-
sions and generators they really require in the application—wasting
a great opportunity for useful abstraction.

16

scoping convention examples
[expr|inner..outer] Magma
[expr|outer..inner] Haskell, Python, Erlang,

(Mathematica), Swindle, . . .
[inner..outer|expr] —
[outer..inner|expr] SRFI 42
[[expr|inner]|..outer] Mathematica
[outer|..[inner|expr]] Ruby, Perl, GAP

Table 2. Possible scoping conventions

For example, a library for number theory would include a gen-
erator enumerating the prime divisors of an integer, together with
its multiplicity, because that is what is needed in many places. A
library for graphs, on the other hand, would provide generators for
enumerating the vertices of a graph, or the edges leaving a particu-
lar vertex. All this is only possible through modularity.

For the design of SRFI 42 modularity has always been one of
the top priorities (right after efficiency), and the biggestchallenge.
The breakthrough came when I learned about the technique of
using hygienic macros in continuation-passing style (CPS)[8]. This
mechanism allows fully modular definition of eager generators, and
it has prompted me to start the design again from scratch. Theresult
will be explained in greater detail in Section 5.

3.4 Scope

Eager comprehensions are programming language constructsfor
writing loops. As such they include syntactic binding formsfor the
loop variables. Where there is binding, there is scope. Thismeans
a loop variable is visible to some parts of the program but not
to others—irrespective of whether this scope is specified ornot,
or whether there are simple rules to remember it. We emphasize
this trivial fact because a conscious design of the scope is another
critical factor for useful eager comprehensions.

In order to be able to talk about scoping, a language is needed
to represent different approaches. For this consider the following
simplified view of a comprehension: a comprehension consists of
an expressionexpr and zero or more nested qualifiersinner, . . . ,
outer. If the qualifiers are generators,inner denotes the one spin-
ning fastest andouter the one spinning slowest. Clearly, this ter-
minology only makes sense ifinner is in the scope of all bindings
introduced byouter, and if expr is in the scope of bothinner and
outer. In other words,expr, inner, outer are pieces of code with a
certain scoping relation (and control flow) with respect to one an-
other. These pieces can then be composed into a comprehension
syntax using ‘[’, ‘]’, and ‘|’. All possibilities, together with exam-
ples, are listed in Table 2. Some arguments are:

1. It is an advantage to have eager comprehensions mimic the
notation of set comprehensions because it is widely known. Set
comprehensions use the[expr|qualifier∗] convention, where the
nesting of the qualifiers is not fixed and must be deduced from
the context. For simple comprehensions, this is no problem and
the mathematical notation looks extremely familiar.

2. The most simple conventions nest scope in one direction,
i.e. [expr|inner..outer] or [outer..inner|expr]. In a syntac-
tically impoverished language like Scheme this is particularly
attractive.

3. More complicated comprehensions will increasingly looklike
explicitly nested loops (do, named-let), and possibly be mixed
with them. In Scheme, bindings are always introducedbefore
the body, so it is an advantage to have outer bindings appear
first.

These contradicting preferences naturally lead to the mostpop-
ular choice[expr|outer..inner] because it looks like a set com-
prehension (1.) while introducing bindings left-to-right(3.); refer
to Table 2.

For SRFI 42 linearity in scope was considered most impor-
tant (2.), which together with Scheme’s preference for left-to-right
binding (3.) leads to[outer..inner|expr]. In effect, SRFI 42 sports
an extremely simple scoping rule:

The bindings introduced by a generator are visible to all
subsequent expressions (qualifier or other) of the same com-
prehension, and only to these5.

While in principle it would also be possible to have a compiler
derive the nesting of the qualifiers from the dependency graph, this
is a fundamentally bad idea. It would allow reordering the control
flow by renaming variables, hashing readability in the process.

3.5 The meaning of state

As the Scheme language supports genuine state and destructive
modification of data structures, it is important to clarify what is
actually meant by ‘iteration state.’ More precisely, the designer of
eager comprehensions needs to take position with respect tothe
following questions:

1. What is it supposed to mean if the payload of a generator
retains (a reference to) an iteration variable, and uses it in later
iterations or even outside the loop?

2. If the payload modifies an iteration variable?
3. If the payload modifies the loop-defining arguments or defining

data structures while a loop is in progress?

Before considering possible approaches to these questions, recall
that Scheme uses the following model of ’variable’ [1, Section 3.1]:

An identifier that names a location is called a variable and
is said to be bound to that location. The set of all visible
bindings in effect at some point in a program is known as the
environment in effect at that point. The value stored in the
location to which a variable is bound is called the variable’s
value.

Concerning the first semantic question, consider the following pro-
gram (in SRFI 42 syntax):

((cadr (list-ec (:range n 3) (lambda () n))))

The result of this expression depends on how:range updates its
loop variable: by rebinding or by state modification?

In the state modification model, the variablen is bound to a
single location, andset! is used during the iteration to store the
integer for that iteration. In effect, the three proceduresin the list
constructed bylist-ec contain a reference to thesamelocation—
and the result of calling any of these procedures will be the state
after the entire loop. So the result will be either2 or 3, depending
on the way the loop modifiesn. In this model, iteration enumerates
a sequence of states stored in a given set of locations.

In the rebinding model,n is bound to a new location for every
iteration. In this case, the three procedures each retain a different
location, and the result is1. The rebinding model has been adopted
for the iteration constructs of Scheme [1, Section 4.2.4], probably
due to a desire for conceptual simplicity. Consequently, itis also
the choice for SRFI 42. It should be mentioned that the overhead of
rebinding is the same as for any other tail-recursive procedure, and
these are supposed to be efficient in Scheme.

5 As with everything in Scheme there is no way to enforce this, but SRFI 42
is built on this rule; users may have reason to deviate from this but it is not
encouraged.

17

Concerning the second semantic question, consider the follow-
ing program (again in SRFI 42 syntax):

(list-ec (:range n 3) (begin (set! n 2) n))

The result of this expression depends on whether:range uses the
variablen itself to hold the state of the iteration (in which case the
result is’(2)), or if n is just a copy of the (hidden) state of the
iteration (in which case the result is’(2 2 2)).

In Scheme [1, Section 4.2.4], named-let anddo provide access
to the state of the iteration itself. This allows arbitrary modification
of the state, which can sometimes simplify termination conditions.
For eager comprehensions, however, the variables visible to the
payload might not hold the state at all (e.g.:list hides the rest
list still to be enumerated). Hence, for eager comprehensions only
two approaches make sense: Either define that the variables visible
are always a copy, or define the effect of assigning to a loop variable
as unspecified. The latter approach was chosen for SRFI 42 in the
name of efficiency.

Concerning the third semantic question, consider:

(let ((n 3))
(list-ec (:range k n) (begin (set! n 2) k)))

Here, the question is whether:range does access the variablen for
every termination test, or just readsn once to set up the loop. Again,
different solutions are possible, but the choice becomes easier once
it is understood thatn could be replaced by an arbitrary expression.
If :range would evaluate its argument expressions repeatedly,
this could unintentionally come at a hight price. For this reason,
SRFI 42 specifies that the argument expressions of generators are
evaluated exactly once: before the loop is set up.

Related to the question what happens if the loop-defining argu-
ment is modified is the question what happens if the loop-defining
data structure is modified. As there is no way of enforcing anything
in Scheme, and copying entire data structure (even if desired) could
become costly, the result of modifying a data structure while it is
being traversed is better defined unspecified.

3.6 Parallel loops

Often several loops must be executed in lockstep, e.g. counting the
lines while reading a file. We will call this “parallel loops,” but this
does not mean that the processing steps are executed concurrently.
Several mechanisms for comprehensions do support such a com-
bination, for example Glasgow Haskell’s extension of Haskell98’s
lazy comprehensions [17], Swindle [7], and SRFI 42 [2].

In the case of lazy comprehensions, parallel generators arerela-
tively straight-forward. Since lazy comprehensions require exactly
one type of generator (running through a lazy list), it is sufficient to
provide “zipping” two or more lazy lists before enumeratingthem.
In effect, the usefulness of parallel lazy generators is primarily de-
termined by their notation.

Parallel eager generators, on the other hand, are a greater chal-
lenge. While the concept of eager comprehensions often allows
the user to ignore the details of a loop (i.e. setup, iteration, and
termination of the generator), parallel generators can only be con-
structed by interleaving the different parts of the component gener-
ators. Clearly, for this interleaving to be modular it is necessary that
every generators is represented by some fixed pattern givingaccess
to the code for setup, iteration, and termination.

In Scheme, the natural solution for this is representing a gen-
erator by a procedure computing the next element, and eventually
indicating termination. The setup part of a generator constructs the
procedure. This approach is used for example in Swindle and for
the dispatching generator (:) of SRFI 42.

A different approach is to reduce each generator to some fixed
“standard loop structure,” which provides access to the individual
parts of the generator. Then the parts can be combined syntacti-

cally for merging two or more component generators into a single
parallel generator. This is exactly what the:parallel generator
of SRFI 42 does, i.e. merging “fully decorated:do-loops” (Sec-
tion 5.2).

3.7 Index variables

A frequent special case of a parallel loop is with an additional index
variable, i.e. a variable running through0, 1, . . . while the elements
of another sequence are enumerated. There are two ways of sup-
porting this: by using:parallel for combining an unbounded in-
teger counter (with generator:integer) with any other generator,
and by adding an index variable to the other generator itself.

The first method is universally applicable to any generator,
and as such fully modular. The second method provides a more
concise notation (important for interactive use), and it can be a little
more efficient in case the other generator uses an index anyhow
(e.g.:vector). SRFI 42 supports both methods.

3.8 Early stopping

An important factor determining the flexibility of a loopingcon-
struct is a facility for terminating generators or comprehensions
early. This is a different mechanism than testing qualifiers(aka
guards or filters). The difference is best illustrated by an example.

Consider a predicate for testing if a positive integer is thesum
of its proper divisors:

(define (perfect? n)
(= (sum-ec (:range d 1 n)

(if (= (modulo n d) 0))
d)

n))

Theif-qualifier prevents the inclusion of non-divisors into the sum
but it does not stop the:range-generator. Now we start investigat-
ing perfect numbers:

(first-ec #f (: n 1 100) (if (perfect? n)) n)
⇒ 6

This time the entire comprehension was finished after computing
the first perfect number. But assume we need the numbers up to
and including the first perfect number:

(list-ec (:until (: n 1 100) (perfect? n)) n)
⇒ ’(1 2 3 4 5 6)

In this case the generator(: n 1 100) is modified to terminate
after producing the element for which the additional condition
(perfect? n) became true. (Note also that the scoping rule of
SRFI 42 stated in Section 3.4 dictates that the condition comes
after the generator in the:until expression.) Alternatively, the
generator is to terminatebeforeproducing the element violating an
additional condition.

Both forms of early-stopping generators are needed frequently.
For example, consider reading a line of text by reading individual
characters from a port. Since the last line may or may not havea
trailing newline, it is important to append each character read to the
string, including newline. This requires the use of:until:

(define (read-line port)
(string-ec (:until (:port c port read-char)

(char=? c #\newline))
c))

(In fact, this was the motivating example for including both:while
and:until in SRFI 42.) The:while form of early termination is
even more frequent since it derives directly from a precondition of
the payload of a comprehension.

Coming back tofirst-ec, the two most useful and frequent
early-stopping comprehensions test a predicate on a sequence of

18

values, stopping as soon as a violation is found. These comprehen-
sions, namedany?-ec andevery?-ec in SRFI 42, can in fact be
derived fromfirst-ec.

3.9 Prefix vs. infix syntax

A trivial but highly visible matter is to what extent the syntax makes
use of syntactic keywords in infix position (i.e. in a position not
being the first after the opening parenthesis). Ultimately,this comes
down to personal preference in the form of a compromise between
simplicity and similarity with a natural language (which tends to
be English). Most designs of comprehensions use an infix operator
for the generators (‘<-’ is most popular) and possibly more infix
operators for other qualifiers and options. This approach has the
definitive advantage of reducing the number of parentheses.

In SRFI 42, on the contrary, no infix operators are used at all
for the sake of (reducing) mental complexity. A comprehension
definingsomethingis probably namedsomething-ec, and a gen-
erator defined by an object of typetype is probably named:type.
All generators are used in the syntax(:type var arg∗), wherevar
is a variable, optionally followed by an index variablei specified as
(index i).

For illustration, Table 3 shows expressions for the same nested
loop in different programming languages supporting some form of
comprehension. Keep in mind, though, that this is an extremely
simple example where the meaning can be guessed at once. For
more complicated expressions, infix notation, potentiallyeven with
precedences, adds to mental complexity.

4. Concrete designs
In this section we consider existing concrete designs for program-
ming language constructs that enable or simplify (or obfuscate)
loops in the Lisp-family of languages. Related constructs for other
programming languages are beyond the scope of this article—but
with the exception of lazy comprehensions, and loops with genuine
parallel semantics as present in Erlang and Occam, they are also
not very interesting.

The list does cover some loop-macros from other Lisp dialects,
most notably Common Lisp, because these constructs represent se-
rious efforts to provide what is called eager comprehensions in this
article. It should be noted, however, that none of the Lisp looping
constructs ever came to popularity in the Scheme community,un-
like SRFI 42 which surprisingly has gathered quite some friends
already in the first few years of its existence. (My earliest sketches
date from late 2000; the SRFI got published in the beginning of
2003.)

4.1 Lambda, named-let, and do (R5RS)

In Scheme the most important construct for writing loops arerecur-
sive procedures, often in a tail recursive form. AsR5RS requires
implementations to provide proper tail recursion [1, Section 3.5],
recursion also serves as an idiom for iteration. A particularly con-
venient notation for defining and immediately executing recursive
procedures is named-let [1, Section 4.2.4]. In addition, Scheme
contains thedo-syntax for defining a single loop, based on explicit
state [1, Section 4.2.4].

This design represents a careful choice for including only a
few clean and powerful constructs into the language, conforming
to the overall minimalistic design philosophy of Scheme. Regret-
tably, there are two major shortcomings in practice. Firstly, it is
already complicated to write the ubiquitous simple loops (refer
to the example in the beginning). And secondly, the components
of a loop (startup, iteration, termination) are often scattered over
large amounts of source code—even if this would be unnecessary.
Yet, maybe surprising, no other mechanism for writing loopshas

achieved considerable acceptance in the Scheme community,leav-
ing the programmer to her own devices.

4.2 “Macros for writing loops” (Kelsey)

The “Macros for writing loops” library [4] is distributed with the
Scheme 48 system [3] as thereduce package.

It provides the syntactic formsiterate and reduce imple-
menting the fundamental state based eager comprehension. There
are predefined generators running through lists, vectors, strings, in-
teger ranges, reading from a port, and executing a generatorpro-
cedure (called stream). Other generators can be added fullymod-
ularly by defining a hygienic macro in continuation-passingstyle
(CPS) [4, Paragraph “Defining sequence types”]. The comprehen-
sions (iterate, reduce) define a single, possibly parallel, loop
based on explicit state modification.

“Macros for writing loops” is the probably first new loop con-
struct to be proposed for a long time. Moreover, the implementation
technique of CPS macros is the key to modularity of comprehen-
sions. In effect, “Macros for writing loops” was most influential to
the design of SRFI 42, even though the resulting mechanisms and
notations bear little resemblance.

4.3 Swindle (Barzilay)

The Swindle library [7] is a collection of modules extendingthe
PLT Scheme system [5]. It is written for and in PLT. The module
“misc.ss” of Swindle contains macros for defining eager compre-
hensions in the sense of this article.

More precisely, there are predefined comprehensions for side-
effect, making a list, numeric summation, numeric products, count-
ing, and general reduction (collect-of). Generators are prede-
fined for (integer) ranges, lists, vectors, strings, integers, execut-
ing generator procedures, and hash-tables. Swindle allowsparallel
execution of generators, early termination of comprehensions, has
local bindings and side-effects. Generators can be added fully mod-
ularly using the generator procedure interface. Swindle makes ex-
tensive use of infix notation for expressing generators (e.g. (n <-
0 .. 10), qualifiers, options, and other constructs (infixand for
parallel execution).

The mechanisms specified in Swindle and for SRFI 42 are very
closely related in their principles, but differ considerably in the
details. Both acknowledge the need for modularity and well defined
scope.

4.4 SRFI 40 “A library of streams” (Berwig)

Although the final form of SRFI 40 [9] does not contain compre-
hensions anymore, its draft versions did. These comprehensions
were of course lazy. During the discussion of SRFI 40, it was de-
cided to split the standard into a lower level part (which became the
final SRFI 40) and a higher level part, including lazy comprehen-
sions, which was to become SRFI 41.

The lazy comprehensions of SRFI 40 provided the same bene-
fits as other lazy comprehensions, that is modularity and simplic-
ity. The downside of lazy comprehensions in Scheme is a substan-
tial loss in performance due to the overhead of constructinglazy
streams correctly and reliably.

Recall that a lazy stream is something much more sophisticated
than a generator procedure (accessing a state hidden in its closure).
This implies that lazy comprehensions really require efficient non-
strict evaluation, or strictness analysis. While these methods are
being used in lazy languages, they are usually not availablein
Scheme because most programs do not require it.

4.5 Common Lisp

The Common Lisp language [10] contains several constructs for
writing loops, and nested eager comprehensions in the senseof this

19

language example
Haskell [k*k | n <- [0..9], k <- [0..n-1]]
Python [k*k for n in range(10) for k in range(n)]
Ruby (0..9).collect {|n| (0..n-1).collect {|k| k*k}}.flatten!
Erlang [K*K || N <- lists:seq(0,9), N >= 1, K <- lists:seq(0,N-1)]
Mathematica Join @@ Table[Table[k*k, {k, 0, n-1}], {n, 0, 9}]
Magma [k*k : k in [0..n-1], n in [0..9]]
GAP Concatenation(List([0..9], n -> List([0..n-1], k -> k*k)))
PLT, Swindle (list-of (* k k) (n <- 0 ..< 10) (k <- 0 ..< n))

R5RS, SRFI 42 (list-ec (: n 10) (: k n) (* k k)), or with typed generators:
(list-ec (:range n 10) (:range k n) (* k k))

Scheme48, reduce (reduce ((count* n 0 10)) ((r ’()))
(reduce ((count* k 0 n)) ((r r))

(cons (* k k) r))
(reverse r))

Table 3. Examples of a simple nested loop.

article. These constructs includedo/do*, dotimes, dolist, and
loop.

Do is essentially the same as in Scheme, apart from the fact
that Common Lisp also allows dynamic binding of variables (using
special). Do* is a sequential-binding variant ofdo. Dotimes
iterates over integer ranges, andDolist over lists; these are rather
specialized control structures.

Theloop facility, on the other hand, could be interpreted as a
general programming language in its own right (34 EBNF defini-
tions, [10, Section 6.2 “LOOP”]). It is an extremely flexiblemecha-
nism for writing nested and parallel loops, possibly with early stop-
ping, saving intermediate results, goto and labels, and several other
features. Since it also supports various forms of accumulation of
results, it should be seen as a syntactic form for eager comprehen-
sions. These include comprehensions for making lists, appending,
counting, max, min, summation, and general reduction. The syn-
tax is mostly based on infix notation with syntactic keywordsfor
clauses, options, and qualifiers.

Theloop-syntax is one of the work horses of Common Lisp. It
has evolved over a very long time towards higher and higher flexi-
bility, often through the use of infix syntactic keywords. The men-
tal complexity this has produced, however, is a big disadvantage in
practice. In effect, the construct does not enjoy large popularity in
the Scheme community.

4.6 Other iteration packages for Common Lisp

The “MIT LOOP” [35] is the predecessor of the Common Lisp
loop facility. The “SLOOP package” (Schelter) [33] is an iteration
facility generalizing MIT Lisp’sloop. The “Yale LOOP Macro”
(Ritter and Panagos) [34] is an implementation of the Yaleyloop
macro as described in [37]. All these loop facilities have incom-
mon that only the fundamental (side-effect) comprehensionis im-
plemented. The syntax is based on syntactic keywords in infixno-
tation and the expressive power varies. Often new types of genera-
tors can be added, using the underlying macro facility (procedures
as first class citizens did not exist in the language).

The “Series Macro Package” (Waters) [30, 31] implements a
concept closely related to lazy comprehensions in the senseof
this article. A “series” is essentially a data structure fora lazy
list. The package contains operations for producing, processing,
and consuming these data structures, or acting on their elements.
The implementation is often able to transform the lazy operations
into eager evaluation, producing efficient code for frequent loop
structures.

The “Lisp comprehensions” (Lapalme) [32] is an adaptation
of lazy comprehensions from Miranda into Common Lisp. In this

work, Wadler’s transformation of lazy list comprehensions[18,
Chapter 7] is translated one to one into Lisp in order to mimicthe
(infix) notation of lazy list comprehensions in Miranda. As the es-
sential conceptual difference between lazy and eager comprehen-
sions is ignored, the resulting mechanism is only of limiteduseful-
ness in practice.

4.7 “The anatomy of a loop” (Shivers)

Recently, Shivers defined a new loop mechanism [22, 23, 24] for
Scheme (in fact more generally), underpinned by a theory based on
the notion of “control dominance.” In a nutshell, control dominance
is the static property that every access to a variable occurswithin
an explicit binding construct for that variable. This can beenforced
by a type system restricting the control flow graph of the program.

In practice, this concept comes down to the following: all loops
are reduced to a primitive loop template consisting of 8 parts, with
the control flow graph being made explicit. On top of this resides
a programming language very much in the style of aloop-macro
with predefined generators, guards, and accumulators for the most
common data structures. The single outer macro (namedloop) can
be seen as the fundamental eager comprehension, the 8-part loop as
the fundamental eager generator (corresponding todo-ec and:do
in SRFI 42).

Since the control flow is made explicit in Shiver’s proposal,
the looping construct is extremely flexible. However, at present
it is not known whether it is also inherently more powerful than
the mechanism defined in SRFI 42, or essentially equivalent.This
question comes down to whether the fundamental generators (8-
part loop vs.:do) can be expressed in terms of each other. In
addition, it is too early to judge if the additional flexibility is
worth the associated mental complexity (8-part loop definedby
an explicit control flow graph), and what the impact of the minor
design decisions (e.g. infix notation) is on usability. Either way,
Shivers’ work has potential for further clarifying the truenature of
iteration in functional programs.

4.8 SRFI 42 “Eager comprehensions”

The term “eager comprehension” was coined for SRFI 42 [2] in
order to make sure the mechanism is never confused with the well-
known lazy comprehensions. The reference implementation asso-
ciated with SRFI 42 is portable underR5RS with hygienic macros.
As the SRFI found some acceptance in the community, implemen-
tations are included into several Scheme systems, including PLT
[5] and Scheme 48 [3].

The SRFI specifies an extensive set of predefined comprehen-
sions based on what makes sense inR5RS. Some infrequent com-

20

prehensions are left out (e.g.gcd-ec), while others have been
added for convenience (e.g.any?-ec). The predefined typed gen-
erators enumerate the standard data structuresR5RS. In addition, a
dispatching generator (“:”, read “run through”) selects a generator
based on the type of arguments given, e.g. the range{0, . . . , n−1}
when given an exact integern. Generators can be run in parallel
and terminated early. Other qualifiers include tests (guards), local
bindings, and side-effects.

The syntax is based on a simple naming convention and pre-
fix notation without exception. The uniform and simple scoping
rule “scope extends to the right until the enclosing comprehension
ends” is used (Section 3.4). Generators can be added fully mod-
ularly by defining a (hygienic) macro using continuation-passing
style (CPS), or by providing a suitable generator procedure. Com-
prehensions can be added as (hygienic) macros. An introduction to
SRFI 42 from the perspective of a user, together with some exam-
ples, is provided in the appendix.

5. The implementation of SRFI 42
In this section the overall structure of the reference implementation
for eager comprehensions in Scheme is explained. The readeris
assumed familiar with the specification as laid down in SRFI 42 [2].
Moreover, it is assumed that the reader is familiar with Scheme’s
hygienic macro facility [1, Sections 4.3, 5.3, 7.1.5], because it is
the primary tool for the reference implementation of SRFI 42.

5.1 A skeleton of eager comprehensions

The following is a simplified but self-contained (R5RS) working
skeleton of eager comprehensions:

(define-syntax do-ec
(syntax-rules (if :do)
((do-ec q1 q2 r1 r ...)
(do-ec q1 (do-ec q2 r1 r ...)))

((do-ec (if test) cmd)
(if test cmd))

((do-ec (:do lbs ne? lss) cmd)
(do-ec:do cmd (:do lbs ne? lss)))

; call g in CPS, reentry at (*)
((do-ec (g arg1 arg ...) cmd)
(g (do-ec:do cmd) arg1 arg ...))))

(define-syntax do-ec:do
(syntax-rules (:do) ; reentry point (*)
((do-ec:do cmd (:do (lb ...) ne? (ls ...)))

(let loop (lb ...)
(if ne?

(begin cmd
(loop ls ...)))))))

(define-syntax :do
(syntax-rules ()
((:do (cc ...) lbs ne? lss)
(cc ... (:do lbs ne? lss)))))

This code defines the primitive eager comprehensiondo-ec and the
primitive eager generator:do, utilizing a helper macrodo-ec:do
for generating code for:do.

Other generators can now be added without modifying the ex-
isting macros. E.g. after defining

(define-syntax :range
(syntax-rules ()
((:range cc var n)
(:do cc ((var 0)) (< var n) ((+ var 1))))))

the following comprehension is operational:

(do-ec (:range n 5) (:range k n) (display k))
⇒ prints: 0010120123

The critical issue is the flexibility of the generator:do to which
all other generators are being reduced. In the skeleton above (refer
to do-ec:do), the generator:do can produce a single namedlet
with an arbitrary number of variables (lb ...) and a singleif
guarding payload (cmd) and next iteration.

5.2 Fully decorated:do

In practice, the simple loop structure of the previous section is too
restricted. In particular it is not possible to derive the variables
visible to the payload from other state variables, to pre-process the
arguments, or to terminate after executing the payload. On the other
hand, complexity must be kept down.

The particular trade-off chosen for SRFI 42 is based on a fair
amount of experimentation. It turned out that the followingstruc-
ture (“fully decorated:do”) covers most relevant generators:

(let (outer-binding ...)
outer-command...
(let loop (loop-binding ...)

(if not-end-1?
(let (inner-binding ...)

inner-command...
≪payload≫
(if not-end-2?

(loop loop-step...))))))

The :do generator specifies all variable parts, except for≪pay-
load≫ of course. It allows termination of the loop before or af-
ter the payload has been executed. Since many generators do not
require “full decoration,” a simple transforming optimizer simpli-
fies boolean conditions, eliminates redundantif andlet, and turns
let without bindings intobegin.

Note that the use of named-let allows iteration by rebinding
(Section 3.5), usingloop-bindingand inner-binding. Updating by
state modification is also possible by storing the iterationstate in
outer-binding, and modifying it usingset! within loop. In fact,
:do is the only generator in SRFI 42 that allows updating by state
modification because no other generator passes the names of this
variables inouter-bindingto its≪payload≫.

The chosen structure for:do is powerful enough, and yet still
restricted enough, to support the following important constructions
on generators:

• Any generator can be modified to terminate early, based on
some additional condition, either before (:while6) or after
(:until) the payload is executed.

• Two or more:do-generators can be merged into a single gener-
ator (:parallel) enumerating all sequences simultaneously.

For the sake of illustration, here is the complete implementation
of the generator:list in SRFI 42 running a variablevar through
the concatenation of one or more lists, possibly with an additional
index variablei.

(define-syntax :list
(syntax-rules (index)

((:list cc var (index i) arg ...)
(:parallel cc (:list var arg ...)

(:integers i)))
((:list cc var arg1 arg2 arg ...)
(:list cc var (append arg1 arg2 arg ...)))
((:list cc var arg)
(:do cc (let ())

((t arg))
(not (null? t))

6 The implementation is complicated by the fact that the scopes of the
variables bound must be preserved while adding the termination condition.
This means it isnot sufficient to add a condition tonot-end-1?.

21

(let ((var (car t))))
#t
((cdr t))))))

The generator:integers runs through the infinite sequence of
non-negative integers. The expressions supplied to:do correspond
to the “fully decorated” structure given above, i.e.(t arg) is the
loop-bindingand(var (car t)) is theinner-binding.

Note that the multiple-argument case cannot easily be converted
into a nested loop because:do can only produce asingle loop;
nested loops would prevent generator-merging.

5.3 The dispatching generator

As an alternative to typed generators (:range, :list etc.) the dis-
patching generator: (read ‘run through’) of SRFI 42 first evaluates
its argument expressions and then dispatches on the type of the
values. In other words,: is a polymorphic generator. For exam-
ple, (list-ec (: x 3) x) produces’(0 1 2) and(list-ec
(: x "abc") x) produces’(#\a #\b #\c). The purpose of the
dispatching generator is making interactive use of comprehensions
more convenient.

The implementation of: evaluates the arguments and calls
a global dispatching procedure. The dispatcher is to construct a
generator procedure which is then run to enumerate the sequence. A
generator procedureg has a single argument. When called,g either
returns the next value of the sequence, or, when the sequenceran
out, it returns its argument. In the implementation, the argument
given to a generator procedure is(list #f), i.e. an object only
eq? to itself.

For the sake of modularity, the dispatcher procedure can be
retrieved and changed. Moreover, there is a macro producinga
generator procedure from a typed generator; this greatly simplifies
the definition of dispatching generators.

5.4 Grouping qualifiers with nested

In addition to defining new generators in a modular way it is also
important to define new comprehensions. While in principle there is
no problem (after all every eager comprehension can be reduced to
do-ec), the fact that there can be an arbitrary number of qualifiers
complicates the definition of new comprehensions. In the worst
case, a variation ofdo-ec must be provided every time.

A simple trick being used in SRFI 42 keeps the amount of code
for a new comprehension low. The syntactic keywordnested can
be used for grouping an arbitrary number of qualifiers into a single
equivalent qualifier understood bydo-ec. This is illustrated by the
definition of a folding comprehension:

(define-syntax fold-ec
(syntax-rules (nested)
((fold-ec x0 (nested q1 ...) q r1 r2 r ...)
(fold-ec x0 (nested q1 ... q) r1 r2 r ...))

((fold-ec x0 q1 q2 r1 r2 r ...)
(fold-ec x0 (nested q1 q2) r1 r2 r ...))

((fold-ec x0 expr f)
(fold-ec x0 (nested) expr f))

((fold-ec x0 qualifier expr f)
(let ((result x0))
(do-ec qualifier

(set! result (f expr result)))
result))))

The last case of the macro implements the functionality for the
case that there is exactly one qualifier; the other cases of the macro
collect all qualifiers into a single one. Now the list comprehension
can be defined as

(define-syntax list-ec
(syntax-rules ()

((list-ec r1 r ...)
(reverse (fold-ec ’() r1 r ... cons)))))

Alternatively, the list could beset-cdr!’ed together, which may
be faster (or not).

5.5 Early-stopping comprehensions

The early-stopping comprehensions of SRFI 42, that isany?-ec
and every?-ec, are reduced to the fundamental early-stopping
comprehensionfirst-ec with the syntax

(first-ec default qualifier∗ expr).

This comprehension evaluates the sequence of values specified by
the qualifiers, stopping after the first value ofexpr. If the sequence
is found empty, the result isdefault.

Call-with-current-continuation could be used for a non-
local exit, but the reference implementation does not. Withan eye
on performance it is implemented by introducing an additional
stopping variable and modifying each generator to stop oncethis
variable is found true (which is made happen when control reaches
expr).

6. Performance
The top priority for eager comprehensions is combining conve-
nience and performance. In this section, the performance aspect is
investigated more quantitatively.

The Sieve of EratosthenesAs an example we consider comput-
ing the primes in{2, . . . , n − 1}, n ≥ 0, by the algorithm known
as the “Sieve of Eratosthenes.” The algorithm (200 BC) ticksoff
all true multiples of the next not yet ticked off number—and the
primes are left over. The following program represents the ticks in
a string7, and uses SRFI 42 for the loops.

(define (primes n)
(let ((p (make-string n #\1)))

(do-ec (:range k 2 n)
(if (char=? (string-ref p k) #\1))
(:range i (* 2 k) n k)
(string-set! p i #\0))

(list-ec (:range k 2 n)
(if (char=? (string-ref p k) #\1))
k)))

This program is compared with three alternatives:

• The typed generators:range are replaced by the dispatching
generator: of SRFI 42.

• The comprehensions are implemented in Swindle.
• Thedo-ec is replaced by two nesteddo-loops, and thelist-ec

is replaced by a tail-recursive named-let constructing the re-
sult list.

Figure 1 shows the execution time, divided byn. A number of
things can be observed.

Firstly, all four alternatives have reasonable performance and
are able to compute the primes below106 in less than10 s. Sec-
ondly, only the “DO loop” variant shows the slow increase expected
for thisΘ(n ln ln n)-algorithm. The other curves exhibit lower or-
der terms, probably due to the overhead of setting up a loop—which
is most pronounced for the procedure-based variants (“SRFI42 (:)”
and “Swindle”).

Linear model of execution time The preceeding example is based
on a meaningful algorithm, which is important for a realistic im-
pression. Now we turn to synthetic algorithms with the goal of

7 A wasteful but practical alternative to arrays of bits, which are absent in
Scheme itself and its portable libraries.

22

0

2

4

6

8

10

12

14

16

10 100 1000 10000 100000 1e+06

us
[c

pu
 in

cl
. g

c]
/n

n

SRFI 42 (:)
Swindle

SRFI 42 (:range)
DO loop

Figure 1. The “Sieve of Eratosthenes.” MzScheme 208, Intel Pen-
tium III Mobile, 1 GHz, Win2k.

obtaining quantitative information using an abstract model of the
execution time.

It is reasonable to assume that the overhead of a loop grows
according to a linear model consisting of a fixed startup overhead
t0 and some constant overhead∆t per iteration. The objective is to
determinet0 and∆t from measured execution times. For this we
execute different implementations of the following nestedloop:

for k = 1..n do for i = 1..m do payloadod od,

wheren andm integer parameters. In order to observe both startup-
and iteration-overhead, the numberm of inner iterations is varied,
while fixing nm for obtaining sufficient total time. The data points
in Figure 2 show the result.

Ignoring the time spent on the inner payload, startup- and
iteration-overhead can readily be read off the curves as their start
and end value. By fitting

t(n, m) = (1 + n)t0 + (n + nm)∆t

to the data points in Figure 2, slightly more accurate estimates are
obtained:

t0/µs ∆t/µs
Swindle 9.99 1.24
SRFI 42 (:) 6.59 1.21
DO loop 1.36 1.15
SRFI 42 (:range) 1.38 0.60

The curves associated with these parameters are shown in Figure 2.
The particular values obtained here should be taken as an indi-

cation, only. They are heavily dependent on the execution model of
the underlying Scheme system (interpreted, byte-code, or native).
Nevertheless, there is a remarkable gap between the eager com-
prehensions based on procedures and on direct state modification
(“SRFI 42 (:range)”). As a rule of thumb, procedures cost a factor
of two per iteration and five to ten in startup. We expect this gap
to widen for Scheme systems with more sophisticated compilation
but did not investigate this quantitatively.

7. Eager comprehensions “lazified”
For what it is worth, eager comprehensions can be turned lazy
in a fully modular way. More precisely, it is possible to define
the fundamental lazy list comprehension (stream-ec that is) in a
such way that anyeagergenerator can be used with it—without
modifying the macros for the generators. Conversely, the eager

1

10

1 10 100 1000

us
[c

pu
 in

cl
. g

c]
/(

n
m

)

m

Swindle
SRFI 42 (:)

DO loop
SRFI 42 (:range)

Figure 2. Two nested loops (n times outer,m times inner,nm =
224). MzScheme 208, Intel Pentium III Mobile, 1 GHz, Win2k.

generator:stream enumerates a lazy stream, i.e. runs a variable
through the elements. For the streams we use SRFI 40 [9], which
provides (even) lazy lists called “streams” as new data structures.
With modification, it would also be possible to use simpler odd
streams, for example those presented in [36].

The comprehension expression

(stream-ec qualifier∗ expr)

constructs a stream for the sequence that a correspondinglist-ec
would create. The use ofstream-ec is best explained by example:

(define s
(stream-ec (: x 10) (begin (display x) x)))

(stream-null? s)
⇒ [prints: 0] #f

(stream-null? (stream-cdr s))
⇒ [prints: 1] #f

(list-ec (:stream x s) x)
⇒ [prints: 23456789] ’(0 1 .. 9)

In other words, the payload expression(begin (display x) x)
is to be evaluated on demand, resulting in the digits being printed
as shown.

It is an impressive illustration of the powerful mechanisms
available in Scheme thatstream-ec can in fact be defined in a
modular way. A possible implementation:

(define-syntax stream-ec
(syntax-rules (nested)
((stream-ec (nested q1 ...) q etc1 etc ...)
(stream-ec (nested q1 ... q) etc1 etc ...))
((stream-ec q1 q2 etc1 etc ...)
(stream-ec (nested q1 q2) etc1 etc ...))
((stream-ec expression)
(stream-ec (nested) expression))
((stream-ec qualifier expression)
(let ((value #f)

(produce-value #f)
(next-value #f))

(define (tail)
(stream-delay
(if (call-with-current-continuation

(lambda (cc)
(set! produce-value cc)
(next-value #f)

23

#f))
(stream-cons value (tail))
stream-null)))

(define (make-stream)
(stream-delay
(if (call-with-current-continuation

(lambda (cc)
(set! produce-value cc)
(do-ec
qualifier
(call-with-current-continuation
(lambda (cc)

(set! next-value cc)
(set! value expression)
(produce-value #t))))

(produce-value #f)))
(stream-cons value (tail))
stream-null)))

(make-stream)))))

The macro combines all qualifiers into a single one usingnested
(Section 5.4) and uses the fundamental eager comprehension
do-ec for enumerating the sequence defined by the qualifiers.
Call-with-current-continuation is used to exitdo-ec non-
locally after producing a value and possibly resuming the very
same loop again later.

The eager generator exhausting a stream can be defined as
follows:

(define-syntax :stream
(syntax-rules ()
((:stream cc var arg)
(:do cc (let ())

((s arg))
(not (stream-null? s))
(let ((var (stream-car s))))
#t
((stream-cdr t))))))

Since:stream is just another generator, it can of course be used in
stream-ec—where it is executed lazily. And sincedo-ec under-
stands guards and local definitions, we have implemented allthere
is to implement forlazycomprehensions in Scheme.

The bad news iscall-with-current-continuation and the
streams of SRFI 40 have a rather high price in terms of time
and space consumption in most major Scheme systems. For this
reason, the lazy comprehensions defined in this section should not
be understood as a serious proposal for a programming language
construct—but rather as of great educational and entertaining value.
It should be emphasized, though, that lazy comprehensions can be
very efficient, provided they are compiled properly.

8. Conclusions
Comprehensions are a particularly concise notation for writing
nested and parallel loops with accumulation of results. In the past
few years they have come to popularity in many programming lan-
guages, including Python and Erlang. When used wisely, compre-
hensions can improve readability, modularity, and possibly perfor-
mance.

However, unlike the lazy list comprehensions (ZF expressions)
of call-by-need functional languages (like Haskell), a correspond-
ing concept in a call-by-value setting (like Scheme) has substan-
tially different requirements in order to qualify for a generally use-
ful programming construct. SRFI 42 is a specific design aiming at
this goal. It is an impressive demonstration of Scheme’s ownflex-
ibility that that the mechanism specified in SRFI 42 can be imple-
mented naturally without extending the language itself.

Acknowledgements Mike Sperber has provided important input
for eager comprehensions in Scheme, in particular he pointed me

to the idea of “CPS macros.” Without the discussions with Mike,
SRFI 42 would probably not exist. Also I would like to thank Phil
Berwig, the author of SRFI 40 (‘A library of streams’) for use-
ful discussions on his lazy comprehensions for Scheme. Proba-
bly the biggest source of inspiration for my work presented here
were Richard Kelsey’s “Macros for writing loops”—even though
the casual reader might not suspect this. I would like to thank
Philips Research for making this work possible, and in particular
my colleagues Philippe Coucaud, Zbigniew Chamski, and Kerovan
Gelder for their valuable remarks. Finally, I would like to thank the
anonymous referees for their corrections and discussion. In partic-
ular the third referee brought up the important issue of semantics,
and provided an example exposing the ’update by rebind vs. by
side-effect’ choice.

References
[1] R. Kelsey, W. Clinger, and J. Rees (eds.): Revised5 Report on the

Algorithmic Language Scheme. 20 February 1998.www.schemers.
org/Documents/Standards/R5RS

[2] S. Egner: SRFI 42 “Eager Comprehensions”. Finalized July 7, 2003.
srfi.schemers.org/srfi-42

[3] R. Kelsey and J. Rees: The Scheme 48 System.s48.org

[4] R. Kelsey and J. Rees: “Macros for Writing Loops.” Thereduce
library of Scheme 48 [3].s48.org/1.2/manual/s48manual_53.
html

[5] The PLT Team: PLT Scheme.www.plt-scheme.org
[6] PLT MzScheme.www.plt-scheme.org/software/mzscheme
[7] E. Barzilay: The Swindle Library for PLT Scheme [5]. Thecollect-

macro of the module “misc.ss.” www.cs.cornell.edu/eli/
Swindle/misc-doc.html#collect

[8] E. Hilsdale, D. P. Friedman: Writing Macros in Continuation-Passing
Style. Scheme and Functional Programming 2000. September 2000.

[9] P. L. Bewig: SRFI 40 “A Library of Streams.” Finalized August 22,
2004.srfi.schemers.org/srfi-40

[10] LispWorks Ltd.: The Common Lisp HyperSpec (1996–2005),
Chapter 6 “Iteration.”www.lispworks.com/documentation/
HyperSpec/Body/06_.htm

[11] G. van Rossum: Python Reference Manual, Release 2.4.1,30 March
2005. Section 5.2.4 “List Displays”.www.python.org/doc/2.4.
1/ref/lists.html

[12] Wolfram Research: Mathematica Version 5.0, Documentation of
Table. documents.wolfram.com/mathematica/functions/
Table

[13] W. Bosma, J. Cannon: Magma (V2.11, May 2004) Documentation
of “Sets” and “Sequences”.magma.maths.usyd.edu.au/magma/
htmlhelp/part2.htm

[14] Ericsson AB: Erlang, Reference Manual (Version 5.4.3). Section 6.22
“List Comprehensions.”www.erlang.se/doc/doc-5.4.3/doc/
reference_manual/expressions.html#6.22

[15] Martin Scḧonert et. al.: GAP—Groups, Algorithms, and Program-
ming, (Version 3 Release 4 Patchlevel 4) Lehrstuhl D für Mathematik,
Rheinisch Westf̈alische Technische Hochschule, Aachen, Germany,
1997.

[16] S. L. Peyton Jones (ed.): Haskell 98 Language and Libraries, The Re-
vised Report, December 2002. Section 3.11 “List Comprehensions.”
www.haskell.org/onlinereport/exps.html

[17] The Glorious Glasgow Haskell Compilation System User’s Guide,
Version 6.4. Section 7.3.4. “Parallel List Comprehensions.” www.
haskell.org/ghc/docs/latest/html/users_guide/syntax-
extns.html#parallel-list-comprehensions

[18] S. L. Peyton Jones: The Implementation of Functional Programming
Languages. In particular, Chapter 7 “List Comprehensions”(Philip
Wadler). Prentice-Hall, Hemel Hempstead, 1987.

[19] R. B. K. Dewar: The SETL Programming Language. 1979.
[20] Schwartz, J.T., Dewar, R.B.K., Dubinsky, E., and Schonberg, E.:

Programming with Sets: An Introduction to SETL. Springer-Verlag,

24

New York, 1986.
[21] R. K. Dybvig: The Scheme Programming Language, 3rd edition.

MIT Press 2003. Section 9.3. “A Set Constructor.”www.scheme.
com/tspl3/examples.html#./examples:h3

[22] O. Shivers: “The Anatomy of a Loop: a Story of Scope and
Control.” Presentation given atDaniel P. Friedman: A Celebration
(Bloomington (IN), December 3, 2004).www.cs.indiana.edu/
dfried_celebration.html

[23] O. Shivers: “The Anatomy of a Loop: a Story of Scope and Control.”
Presentation given at Laboratoire d’Informatique de Paris6 (Paris,
January 24, 2005).www.lip6.fr/fr/liens/organise-fiche.
php?theme=5&RECORD_KEY(organise)=id&id(organise)=98

[24] O. Shivers: “The Anatomy of a Loop: a Story of Scope and Control.”
To be published at ICFP 2005, Tallinn, Estonia.

[25] R.M. Burstall: Design Considerations for a FunctionalProgramming
Language. Infotech State of the Art Conference: The Software
Revolution, Copenhagen, October, 1977.

[26] R. M. Burstall, D. B. MacQueen, and D. T. Sannella: Hope:An
Experimental Applicative Language (1980). Conference on LISP
and Functional Programming archive Proceedings of the 1980ACM
Conference on LISP and Functional Programming, pp. 136–143,
Stanford University, California, United States.

[27] D.A. Turner: The Semantic Elegance of Applicative Languages, in
Proceedings of the 1981 Conference on Functional Programming
Languages and Computer Architecture 1981, Portsmouth, New
Hampshire, USA.

[28] D.A. Turner: Miranda: A Non-strict Functional Language with
Polymorphic Type. Proceedings of a Conference on Functional
Programming Languages and Computer Architecture, pp. 1–16,
Nancy, France, 1985.

[29] D.A. Turner: An Overview of Miranda. ACM SIGPLAN Notices,
Volume 21, Issue 12, December 1986.

[30] R. C. Waters: The Series Macro Package. ACM SIGPLAN Lisp
Pointers, Volume III, Issue 1, July 1989.

[31] R. C. Waters: The Series Macro Package for Common Lisp.
series.sourceforge.net

[32] G. Lapalme: Implementation of a “Lisp Comprehension” Macro.
ACM SIGPLAN Lisp Pointers, Volume IV, Issue 2, April 1991.

[33] W. Schelter: The SLOOP Iteration Facility (1985).www-cgi.cs.
cmu.edu/afs/cs/project/ai-repository/ai/lang/lisp/
code/iter/loop/sloop/0.html

[34] F. Ritter, J. Panagos: YLOOP: Portable Implementationof the Yale
LOOP Macro (1986).www-cgi.cs.cmu.edu/afs/cs/project/
ai-repository/ai/lang/lisp/code/iter/loop/yloop/0.
html

[35] Massachusetts Institute of Technology: The MIT LOOP Macro (1980,
1986)www-cgi.cs.cmu.edu/afs/cs/project/ai-repository/
ai/lang/lisp/code/iter/loop/mit/mit_loop.cl

[36] H. Abelson, G. J.Sussman, J. Sussman: Structure and Interpretation
of Computer Programs. 2nd ed., MIT Press, Cambridge (MA), 1996.

[37] E. Charniak, C. K. Riesbeck, D. McDermott, and J. R. Meehan:
Artificial Intelligence Programming, 2nd ed. Lawrence Erlbaum
Associates, 1987.

Appendix: Summary of SRFI 42
For illustration, this appendix contains a brief introduction to
SRFI 42 from a user’s perspective, together with examples. The
actual specification is available at

http://srfi.schemers.org/srfi-42/srfi-42.html

In its most simple form, a comprehension according to SRFI 42
looks like this (its value after=>):

(list-ec (: i 5) (* i i)) => ’(0 1 4 9 16).

Here,i is a local variable sequentially having the values0, 1, . . . , 4,
and the squares of these numbers are collected in a list, which is
the result. The following example illustrates most conventions of
SRFI 42 with respect to nesting and syntax:

(list-ec (: n 1 4) (: i n) (list n i))
=> ’((1 0) (2 0) (2 1) (3 0) (3 1) (3 2)).

In this example, the variablen first has value 1 then 2 and finally 3.
For each value ofn, the variablei assumes the values0, 1, . . . , n−
1 in turn. The expression(list n i) constructs a two-element
list for each binding, and the comprehensionlist-ec collects all
these results in a list.

Eager comprehensions in the sense of SRFI 42 are just hygienic
macros. The basic syntactic form of a comprehension is

(do-ec qualifier∗ command),

i.e. zero or morequalifierarguments and acommandargument. The
do-ec comprehension enumerates the sequence of binding envi-
ronments specified by the qualifiers and for each such environment
evaluatescommandfor side-effects. In a similar fashion,(sum-ec
qualifier∗ expression) sums the values obtained by evaluatingex-
pressionfor the sequence of binding environments specified by
qualifier∗. If qualifier∗ is empty (i.e. no qualifiers at all) thenex-
pressionis evaluated once. The eager comprehensionlist-ec
constructs a list of the values of its expression.

The most common qualifiers are generators. For example,
(:range i 5) runs variablei through0, 1, . . . , 4. The genera-
tor (: i 5) does the same but uses the type of its argument (i.e.5)
to decide that it is a range of exact integers that is to be enumerated.
In every iteration,i is bound to a new location where the integer
for that iteration is stored. Other qualifiers are for filtering, e.g.(if
condition), or for side-effect, e.g.(begin command). The full
syntax of SRFI 42 is listed with comments in Table 4.

Checklist for adding comprehensions and generators

The following checklists can if the user wants to add application-
specific comprehensions and generators in the style of SRFI 42.

For adding an application-specific comprehension:

1. Use the syntax(accu-ec ≪outer≫ qualifier∗ ≪inner≫), with
≪outer≫ being a fixed list of parameter expressions (e.g. for
default values),≪inner≫ being a fixed list inner expressions
(usually justexpression), andaccurefering to the accumulation
process that is being executed.

2. Use the left-to-right scoping rule as much as possible.
3. Avoid syntactic keywords, in particular in infix position.
4. Evaluate parameter expressions exactly once, or at most once

if their evaluation is control-flow dependent. Implement this by
insertinglet.

5. Make sure the implementation does not copy macro arguments,
because that might lead to exponential growth in code size when
nested.

For adding an application-specific typed generator:

25

expression→ comprehension| . . .
comprehension→

(ordinary-ec qualifier∗ expression) evaluateexpressionfor the sequence of binding
environments (or states) specified by the qualifiers

| (vector-of-length-ec k qualifier∗ expression) vector-length of result known to bek
| (fold-ec x0 qualifier∗ expressionf2) f2(xn, f2(xn−1, · · · f2(x1, x0) · · ·)) for x1..n from expression
| (fold3-ec x0 qualifier∗ expressionf1 f2) f2(xn, f2(xn−1, · · · f2(x2, f1(x1)) · · ·)), or x0 if n = 0
| (do-ec qualifier∗ command) evaluatecommandfor side-effect
| application-specific-comprehension define using hygienic macro, use checklist

ordinary-ec→
list-ec | append-ec | string-ec | string-append-ec
| vector-ec | sum-ec | product-ec | min-ec | max-ec
| any?-ec | every?-ec | first-ec | last-ec early stopping (aka short evaluation)

qualifier→
generator
| (if expression) insert test (aka guard or filter)
| (not expression) | (and expression∗) | (or expression∗) abbreviate(if (not expression)) etc.
| (begin command∗ expression) insert side-effect
| (nested qualifier∗) syntactic grouping of qualifiers

generator→
(: variables expression+) dispatch on type (list,string,vector,integer,real,char,port)
| (:list variables expression+) elements of a (proper) list
| (:string variables expression+) characters of a string
| (:vector variables expression+) elements of a vector
| (:integers variables) the infinite sequence0, 1, . . .
| (:range variables range-limits) exact integer range
| (:real-range variables range-limits) real (either all exact, or all inexact) range
| (:char-range variables min max) character range up to and includingmax
| (:port variables expression[read]) readdefaults toread
| (:dispatched variables dispatch expression+) callsdispatchto construct generator procedure to run
| (:let variables expression) single value sequence (for introducing intermediate variable)
| (:parallel generator∗) interleaved execution, until one a generators is exhausted
| (:while generator expression) executegeneratorwhile expressionis non-#f
| (:until generator expression) executegeneratoruntil (and incl.)expressionis non-#f
| (:do [(let (ob∗) oc∗)] (lb∗) ne1?

[(let (ib∗) ic∗) ne2?] (ls∗)) loop by named-let, possibly decorated
| application-specific-typed-generator define as hygienic macro in CPS, use checklist

range-limits→ stop| start stop| start stop step from start (default0) to stop(excl.) bystep(default1)
variables→ identifier [(index identifier)] index variable runs through0, 1, . . .
x0, f1, f2 min, max, read, dispatch, start, stop, step→ expression

Table 4. Syntax of SRFI 42.

1. Use the syntax(:type var [(index i)] ≪args≫), with
≪args≫ being the argument expression(s) defining the loop.
Heretypeindicates the type of object to enumerate through.

2. Use the syntax(:type var1· · · varn [(index i)] ≪args≫)
if there are always exactlyn variables to iterate through.

3. Use the syntax(:type (var∗) [(index i)] ≪args≫) if
there is a variable number of variables to iterate through.

4. Use the left-to-right scoping rule as much as possible.
5. Avoid syntactic keywords, in particular in infix position.
6. Make sure argument expressions are evaluated exactly once.
7. Update the iteration state by rebinding, i.e. make sure all vari-

ables visible to the payload (var, i) are bound either inlb∗ (loop
bindings) or inib∗ (inner bindings).

8. Support multiple arguments if that makes sense, but avoidzero
arguments.

Examples

The factorial of a non-negative integer:

(define (factorial n)

(product-ec (:range k 2 (+ n 1)) k))

The sum of the divisors of a positive integer:

(define (sigma n)
(sum-ec (:range d 1 (+ n 1))

(if (zero? (modulo n d)))
d))

Pythagorean Triples with entries not exceedingn, i.e.(a, b, c) such
thata2 + b2 = c2 and integer1 ≤ a ≤ b ≤ c ≤ n:

(define (pythagoras n)
(list-ec (:let sqr-n (* n n))

(:range a 1 (+ n 1))
(:let sqr-a (* a a))
(:range b a (+ n 1))
(:let sqr-c (+ sqr-a (* b b)))
(if (<= sqr-c sqr-n))
(:range c b (+ n 1))
(if (= (* c c) sqr-c))
(list a b c)))

Quicksort with naive choice of pivots (stable):

26

(define (qsort xs)
(if (null? xs)

’()
(let ((pivot (car xs)))
(append
(qsort (list-ec (:list x (cdr xs))

(if (< x pivot))
x))

(list pivot)
(qsort (list-ec (:list x (cdr xs))

(if (>= x pivot))
x))))))

Approximation ofπ by Bailey-Borwein-Plouffe’s hex-digit extrac-
tion formula, i.e.|(pi-BBP m)− π| ≤ 16−m for m ≥ 1.

(define (pi-BBP m)
(sum-ec (:range n 0 (+ m 1))

(:let n8 (* n 8))
(* (- (/ 4 (+ n8 1))

(+ (/ 2 (+ n8 4))
(/ 1 (+ n8 5))
(/ 1 (+ n8 6))))

(/ 1 (expt 16 n)))))

Adding two vectors of equal length (simple program):

(define (vector+ x y)
(vector-ec (:parallel (:vector xi x) (:vector yi y))

(+ xi yi)))

Adding two vectors of equal length (no intermediate lists):

(define (vector+ x y)
(vector-of-length-ec (vector-length x)
(:range i (vector-length x))
(+ (vector-ref x i) (vector-ref y i))))

Reading a line from an input port, returning all characters read
(including newline if present), or returning the eof object:

(define (read-line port)
(let ((line

(string-ec
(:until (:port c port read-char)

(char=? c #\newline))
c)))

(if (string=? line "")
(read-char port) ; eof-object
line)))

Reading a file, returning a list of the lines:

(define (read-lines filename)
(call-with-input-file
filename
(lambda (port)
(list-ec (:port line port read-line) line))))

27

Abstraction and Performance from Explicit Monadic Reflection

Jonathan Sobel

SAS Institute

jsobel@acm.org

Erik Hilsdale

Google Inc.

eh@acm.org

R. Kent Dybvig
Daniel P. Friedman∗

Indiana University

{dyb,dfried}@cs.indiana.edu

Abstract
Most of the existing literature about monadic programming
focuses on theory but does not address issues of software
engineering. Using monadic parsing as a running example,
we demonstrate monadic programs written in a typical style,
recognize how they violate abstraction boundaries, and re-
cover clean abstraction crossings through monadic reflec-
tion. Once monadic reflection is made explicit, it is possi-
ble to construct a grammar for monadic programming that is
independent of domain-specific operations. This grammar,
in turn, enables the redefinition of the monadic operators as
macros that eliminate at expansion time the overhead im-
posed by functional representations. The results are very ef-
ficient monadic programs; for parsing, the output code is
competitive with good hand-crafted parsers.

1. Introduction
The use of monads to model effect-laden computation has
become commonplace. This work aims to show that a fuller
appreciation of the theory of monads can improve the cor-
rectness and efficiency of such implementations. We ex-
plore this through a single application domain: parsing. First,
we approach parsing from the functional perspective. Next,
we observe some of the shortcomings of overly simplistic
monadic programming and observe what happens when we
change our language to fit the theory more closely. We then
explore the efficiency improvements such a foundation al-
lows us. Finally, we point toward how the parsing example
we use may be generalized.

Most of the presentation in the following section is not
new. Using monads for parsing has been discussed in detail

∗ This work was supported in part by the National Science Foundation under
grant CCR-9633109.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Sixth Workshop on Scheme and Functional Programming.September 24, 2005,
Tallinn, Estonia.
Copyright c© 2005 Jonathan Sobel, Erik Hilsdale, R. Kent Dybvig, Daniel P. Fried-
man.

by Wadler [18], Hutton [7] and Meijer [8, 9], and Bird [1]. In
a change from these presentations, however, the programs in
this paper are written in the strict language Scheme [10] and
include uses of Scheme’s syntactic-extension mechanism
(macros). We paraphrase the material from these other texts
in order to familiarize the reader with our terminology and
notation.

One might reasonably ask why, when exploring a topic
that involves very typeful monads and their associated op-
erators, would the presentation use the dynamically-typed
language Scheme? The answer is two-fold. First, the goals
of this work are more in the realm of software engineer-
ing than theory. The monads and types are useful vehi-
cles for understanding the programs, but the true target is
easy-to-write, easy-to-maintain, efficient software. Choos-
ing Scheme should notpreventthe use of monads for struc-
turing programs. Second, this presentation relies heavilyon
syntactic abstraction as a means of turning programming
patterns into language extensions, which can then be re-
implemented as more efficient patterns. Such an approach is
sadly impossible in any common statically-typed language.

In Section 3 we draw an analogy between monads and
abstract data types. Such an analogy is not new; the exam-
ple of the simple state monad with “get” and “set” opera-
tions is often presented as an abstract data type. The prob-
lem is that in larger, more realistic examples—such as func-
tional parsing—the number of operations that requires ac-
cess to the monad’s underlying representation is much larger.
When seen in this light, it becomes clear that a significant
portion of the typical monadic-style program is treated as
if it falls inside the abstraction boundary of the abstract
data type. To complicate matters, it is very difficult for the
provider of the monad data type to guess every operation
that real client code might need. A review of the defini-
tion of monads leads us to monadic reflection, which pro-
vides the right tools to draw a new boundary between the
very few core monad operations and the many operations
that need to be partially aware of the monad’s underlying
representation. We rewrite portions of the code from Sec-
tion 2 in a cleaner style using monadic reflection. The re-
flection operators, together with the standard monadic pro-
gramming operators, provide enough expressiveness for us

28

to construct a grammar for the sublanguage of monadic
programs. This grammar supports three-layer monadic pro-
gramming: the monad definition itself, representation-aware
operators, and representation-independent client code. The
three-layer model stands in contrast to the typical two-layer
model where everything other than the client code is treated
as part of the core monad definition.

Once we have a specification of monadic programs, we
are in a good position to optimize them. This we do by
changing the definitions of the monadic operators in Sec-
tion 4 while leaving their interfaces intact. All unnecessary
closure creation is eliminated, and the work of threading
store/token-stream values through the computation is han-
dled entirely at expansion time in the new definitions. Pro-
grams that conform to our monadic-programming grammar
need not be rewritten at all to benefit from the optimizations.
Furthermore, all the optimizations are handled at the source
level by user-defined macros, not by a new compiler pass.
The approach described here is relevant for any composition
of store-like monads, possibly composed with a lifting or er-
ror monad.

2. Parsing
Parsers are often described as functions from token streams
to abstract syntax trees:

Parser = Tokens → Tree

This characterization does not account for parsers modifying
the token stream. That is, by the time the parser produces
a tree, the token stream no longer has its original contents.
Thus, the type needs to be revised:

Parser = Tokens → Tree × Tokens

It could be the case, though, that the parser fails to construct
a tree (for example, if the input is malformed). To handle this
possibility, we lift theTree type toTree + ErrMsg :

Parser = Tokens → (Tree + ErrMsg) × Tokens

(This compact type will continue to appear in the remainder
of this article, but for efficiency the programs actually use

Parser =
Tokens → (Tree × Tokens) + (ErrMsg × Tokens)

which is isomorphic to the prior type by the distributive
property.)

The preceding paragraph follows the standard sequence
of types and justifications to arrive at a desirable type for
parsers,1 but we find that the effect is to direct one’s attention

1 Allowing a failed parse to return a new token stream is not really standard
in the literature. Why do we allow it here? Because implementations based
on real imperative input streams often modify the stream even on a failed
parse. In fact, such behavior is often desirable in a robust parser, to eliminate
nonsense tokens from the input and continue to make progress.

the wrong way. We want primarily to think about the parser’s
results. Parsers, however they operate, produce trees. Yet
most of the type we specified for parsers is not about trees;
it’s about the wiring that gives us the trees. Instead, let’sjust
say thatparsing (not parsers) is one way to describe tree-
producing computation. Henceforth, we shall refer to tree-
producing computations (or justtree producers) instead of
parsers.

Trying to talk about computations presents us with a
problem: how do we manipulate computations in programs?
We need something to act as a “representation of a tree pro-
ducer.” Exactly how we represent these computations de-
pends on what aspects we want to model. Above, in the
context of traditional parsing technology, we arrived at func-
tions of a certain shape as our representations. Specifically,
our representation modeled the threading of a token stream
through the computation [16], as well as the possibility of
failure. We call this athreaded functional representationof
a tree producer. Let’s express this abstraction in the type con-
structorProducer :

Producer(α) = Tokens → (α + ErrMsg) × Tokens

Thus,Producer(Tree) is our representation for computa-
tions that produce trees.

The sum type can be represented in many ways in
Scheme. For injecting values into the left and right sides
of the sum, we use the operatorsinl andinr, respectively.
These operators are polymorphic over the number of injected
values, so(inl x y z) is acceptable usage. For dispatch-
ing on the two sum cases, we use thesum-case form.

〈example ofsum-case〉≡
(sum-case (inl 5 2)

((x y) (+ x y))

((a b) (- a b)))

The value of this expression is7. A portable implementation
of inl, inr, andsum-case appears in the appendix. Addi-
tional options for representing sums and a discussion of their
performance implications appears in Section 4.3.

It would be inconvenient to write parsers if we had to
explicitly manage values of theProducer types. Monads
provide just the right additional structure for manipulating
these values, so that programs have a consistent style, and
so that the details of theProducer types are abstracted
away [13, 14, 19].

To make this claim more concrete, let us construct a
little program in Scheme for parsing natural numbers (non-
negative integers). We begin with a version writtenwithout
the benefit of monadic operators. Even those readers who are
already quite familiar with monads may find it interesting
to follow the derivation of monadic structure as a kind of
“pattern-mining” via syntactic abstraction.

29

2.1 Parsing Natural Numbers

A program that reads the digits in its input and parses num-
bers would be more typically described as scanning, not
parsing, but if we take individual characters as our tokens,
the distinction becomes largely moot. Here is a grammar for
natural numbers:

〈natural〉 → 〈digit〉 〈more digits〉
〈more digits〉 → 〈digit〉 〈more digits〉

| 〈empty〉

The entry point for our program is the procedurenatural,2

which is intended to instantiate an integer-producing com-
putation:
〈long version ofnatural〉≡

(define natural

(lambda ()

〈integer producer fornatural〉))

Using our representation scheme for computations, this
means thatnatural should return a value of type

Producer(Int) = Tokens → (Int + ErrMsg) × Tokens

Now let’s assume the existence of a nullary procedure
digit, which returns a character producer that gets a nu-
meric character from the token stream. It fails (i.e., returns
an error message) if the next available character is not a digit
or if no characters are available. Since a natural number be-
gins with at least one digit, we get:
〈integer producer fornatural〉≡

(lambda (ts1)

(sum-case ((digit) ts1)

((d ts2) (〈integer producer, given first digit〉 ts2))
((msg ts2) (inr msg ts2))))

The values returned bydigit are of the sum type, so we
must usesum-case to determine whetherdigit failed
or not. If so, thennatural itself must also fail, return-
ing the bottom value and the new tokensts2. (Failures
get to eat tokens, too.) The rest of the number comes from
more-digits—to be defined shortly—which instantiates a
list-producing computation, giving us a list of all the digits
(numeric characters) it can extract from the front of the to-
ken stream. The portion that reads the remaining digits, then,
looks much like what we already have:
〈integer producer, given first digit〉≡

(lambda (ts1)

(sum-case ((more-digits) ts1)

((ds ts2) (〈integer producer, given all digits〉 ts2))

((msg ts2) (inr msg ts2))))

Finally, we have to return the answer. For this, we need an
integer producer that represents a constant value (modulo
free variables), an especially simple sort of computation:

2 It may seem unnatural (no pun intended) to definenatural as a nullary
procedure instead of a value, but it will later take additional arguments and
possibly become a macro.

〈integer producer, given all digits〉≡
(lambda (ts)

(inl (string->number

(list->string (cons d ds)))

ts))

Naturally, the token stream is guaranteed to be unchanged in
a simple computation.

Having completed the definition that handles the first pro-
duction in the grammar, we move on to defining a procedure
that handles the〈more digits〉 non-terminal. More specifi-
cally, we definemore-digits to be a nullary procedure—
like natural—that gives us a producer. Whereasnatural

makes an integer-producing computation,more-digits in-
stantiates a computation that produces a list of characters.

The grammar for〈more digits〉 specifies two alternative
productions: one like〈natural〉 and one empty. Assuming
that we want to absorb as many contiguous digits as possible
into the number, we begin by trying the first alternative. If
it fails, we accept the empty production (with the original
token stream). Thus,more-digits begins this way:

〈long version ofmore-digits〉≡
(define more-digits

(lambda ()

(lambda (ts1)

(sum-case (〈list producer formore-digits〉 ts1)

((ds ts2) (inl ds ts2))

((msg ts2) (〈empty-list producer〉 ts1))))))

Let’s write the producer for the empty production first. It
represents a constant-valued computation, similar to the one
that returns the number innatural:

〈empty-list producer〉≡
(lambda (ts)

(inl ’() ts))

Most of the remaining code is identical to the body of
natural, as it should be, considering that the grammar pro-
duction is identical. The difference is in the return type:

〈list producer formore-digits〉≡
(lambda (ts1)

(sum-case ((digit) ts1)

((d ts2)

((lambda (ts1)

(sum-case ((more-digits) ts1)

((ds ts2)

(〈list producer, given all digits〉 ts2))

((msg ts2) (inr msg ts2))))

ts2))

((msg ts2) (inr msg ts2))))

Of course, one would usuallyβ-reduce the innerlambda
application, but we leave it in for consistency.

The code that returns the final value is like the corre-
sponding code innatural, except that it does not convert
the list of characters into a number:

〈list producer, given all digits〉≡
(lambda (ts)

(inl (cons d ds) ts))

30

This completes the code for parsing natural numbers, as
written by following the types rather blindly.

2.2 Becoming More Abstract

There were two distinct patterns in the code fornatural and
more-digits. One represents simple computations, like re-
turning the empty list, the list of digits, or the integer value
of such a list. In each case, the code looked like this:
〈producer pattern for returning an answer〉≡

(lambda (ts)

(inl 〈answer〉 ts))

The other pattern was more complicated. It consisted of

1. invoking another producer,

2. receiving its return values (the result or error message and
the new token stream),

3. checking for failure, and

4. either

(a) sending the new token stream to a second producer, or

(b) propagating the failure, skipping the second producer.

Abstracting over such code in the preceding section, the
pattern looks like this:
〈producer pattern for sequencing two producers〉≡

(lambda (ts1)

(sum-case (〈producer #1〉 ts1)

((〈var〉 ts2) (〈producer #2〉 ts2))

((msg ts2) (inr msg ts2))))

These two patterns correspond to the two operations used in
monadic programming:return (also calledunit) andbind
(also calledmonadic let). As promised, we make coding
patterns concrete by defining them as macros. Procedural
definitions would be more conventional, but these macro
definitions change in Section 4 to perform code rewrites that
could not be accomplished with procedural abstractions.

Now return implements the simple answer-returning
pattern:
〈implementation of thereturn pattern〉≡

(define-syntax return

(syntax-rules ()

((return ?answer)

(lambda (ts)

(inl ?answer ts)))))

andbind implements the producer-sequencing pattern:
〈implementation of thebind pattern〉≡

(define-syntax bind

(syntax-rules ()

((bind (?var ?producer1)

?producer2)

(lambda (ts1)

(sum-case (?producer1 ts1)

((?var ts2) (?producer2 ts2))

((msg ts2) (inr msg ts2)))))))

The type constructorProducer , together withreturn and
bind, form aKleisli triple [11]. (Actually, the third element

of the Kleisli triple is notbind; it is extend, defined in
Section 3.1. We findextend to be more convenient for
mathematical manipulation andbind to be more convenient
for monadic programming.) A Kleisli triple is equivalent toa
monad; in fact, many authors drop the distinction altogether.
Also, not all definitions forProducer , return, andbind
form a Kleisli triple. The necessary properties are spelled
out in detail in Section 3.

Using the monad operations, we can rewritenatural to
bemuchmore concise and readable:

〈definition ofnatural〉≡
(define natural

(lambda ()

(bind (d (digit))

(bind (ds (more-digits))

(return (string->number

(list->string

(cons d ds))))))))

The syntactic abstraction technique we just used appears
repeatedly in the following sections: find a syntactic pattern,
abstract it with a macro definition, and rewrite the original
code more concisely using the macro definition.

One way to think about programming withreturn and
bind is that theProducer types form a family of abstract
data types, andreturn andbind are the public operations
that construct and combine producers. When we have a sim-
ple (non-producer) value and we want to instantiate a rep-
resentation of a computation that produces that value, we
usereturn. When we have representations for two com-
putations and we want to sequence them, we usebind to
construct a representation for the computation that feeds the
result of the first into the second.

2.3 Monadic Combinators

We can writemore-digits in a monadic style, but the
patterns abstracted byreturn andbind do not completely
absorb the code inmore-digits. The part that checks to see
if the first alternative failed, and if so proceeds to the second,
does not fit either pattern.

〈unsatisfactory definition ofmore-digits〉≡
(define more-digits

(lambda ()

(lambda (ts1)

(sum-case ((bind (d (digit))

(bind (ds (more-digits))

(return (cons d ds))))

ts1)

((ds ts2) (inl ds ts2))

((msg ts2) ((return ’()) ts1))))))

While the code that implements alternate productions in a
grammar does not fit the pattern of one of the core monad
operations, it is clearly a pattern that will appear any time
we need to check for the failure of one computation and
perform another instead. Abstracting over the pattern gives
usorelse, amonadic combinator:

31

〈unsatisfactory definition oforelse〉≡
(define-syntax orelse

(syntax-rules ()

((orelse ?producer1 ?producer2)

(lambda (ts1)

(sum-case (?producer1 ts1)

((ds ts2) (inl ds ts2))

((msg ts2) (?producer2 ts1)))))))

If we rewritemore-digits one more time, usingorelse,
we get:

〈definition ofmore-digits〉≡
(define more-digits

(lambda ()

(orelse (bind (d (digit))

(bind (ds (more-digits))

(return (cons d ds))))

(return ’()))))

The definitions of bothnatural and more-digits now
correspond very directly to the grammar for natural num-
bers. Furthermore, neither procedure deals explicitly with
producer types except throughreturn andbind.

We have, until now, simply assumed the existence of
digit. Let’s write it now. A call todigit creates a char-
acter producer that examines the first character in the token
stream. If that character is numeric, it returns the character,
“removing” it from the token stream. Otherwise, the compu-
tation fails and leaves the token stream unchanged:

〈unsatisfactory definition ofdigit〉≡
(define digit

(lambda ()

(lambda (ts)

(if (or (null? ts)

(not (char-numeric? (car ts))))

(inr "not a digit" ts)

(inl (car ts) (cdr ts))))))

(We represent our token streams in this article as lists of
characters for simplicity.) Again, neitherreturn nor bind
helps simplify or clarify this code, becausedigit must
access the token stream, which is not visible in procedures
like natural that are written only in terms of the monadic
operations.

3. Monads as Abstract Data Types
When we first introduced theProducer type constructor, we
presented it as an abstract means of representing computa-
tions by values. When we defined thereturn andbind op-
erations, we provided a uniform interface to the abstraction.
Ideally, all the other definitions would inhabit a space outside
this abstraction boundary, even combinators likeorelse. In
the preceding section, though, we broke theProducer ab-
straction in two ways.

First, inorelse, we took the results of producer expres-
sions (constructed withreturn andbind, presumably) and
applied them to token streams. This violation of the abstrac-
tion boundary is similar to taking a stack (a classic ADT) and

performing a vector reference on it, just because we happen
to know that the stack is represented as a vector. While our
current representations for computations are, in fact, proce-
dures that expect token streams, it is wrong for arbitrary code
to assume such a representation. Instead, programmers need
some explicit means of reifying computations as values of
Producer types in order to pass their own token streams (or
whatever is appropriate to the specified representation types)
to them and examine the results.

Second, in bothorelse anddigit we cobbled together
arbitrary code—which happened to be of the proper type to
generateProducer values—and we expected to be allowed
to treat those values as valid representations of computa-
tions. This violation of the abstraction boundary is similar
to constructing our own vector to represent a stack and pass-
ing it to a procedure that expects a stack. This, too, is wrong.
We did it because we needed to have access to the current
token stream in the computation, but instead we need some
explicit means of constructing a representation of a compu-
tation and reflecting it into the system so that it is accepted
as something that has access to the threaded values.

The usual way to avoid violating the monad abstraction
boundary is to move the offending operations—likeorelse

anddigit—inside the boundary and treat them as funda-
mental monadic operators, having nearly the same status as
return andbind. The weakness of such a solution is that it
is often necessary to create operators likedigit while writ-
ing a parser, not while creating a parser monad. A better so-
lution is to create a small abstract data type for the monad
and its most basic operators and to provide an interface for
users of the monad to access the underlying representation of
the monad (or at least a constructed view of it) in a limited
way.

Monadic reflection, as introduced by Moggi [14] (though
he does not use the phrase “monadic reflection”) and am-
plified by Filinski [5], provides a means of crossing the
monadic abstraction boundary with mathematically founded
operators. Neither of these authors actually extends the idea
of monadic reflection into the space of exposing and hiding
representations in the sense of “reflective interpreters” and
the like. Such an extension is new in this work, but related
to the discussions by Chen and Hudak of monadic abstract
data types [2].

3.1 Foundations

A monad consists of four things [12]:

1. a type constructor,T , for lifting a typeα to a type that
represents computations that produce values of typeα,

2. a higher-order, polymorphic function (themapping func-
tion of the monad) for lifting functions so that they take
and returnT types,

(α → β)
map
−−−→ (T (α) → T (β))

32

3. a polymorphic function (called theunit of the monad) for
lifting a value of typeα to the corresponding value of
typeT (α),

α
unitα−−−→ T (α)

and

4. a polymorphic function (called themultiplication of the
monad) for “un-lifting” a doubly-lifted value of type
T (T (α)) to the corresponding value of typeT (α).

T (T (α))
multα−−−−→ T (α)

(In category theory, the first two elements of the monad are
combined into a functor.) The possibility of iterating theT

type constructor creates a sequence of “levels.” The unit of
the monad shifts up a level (more nesting or wrapping), and
the multiplication shifts down (less nesting or wrapping).To
guarantee that all the level shifting is coherent, the mapping
function, unit, and multiplication must obey three equations:

multα ◦ map(unitα) = idT(α)

multα ◦ unitT(α) = idT(α)

multα ◦ map(multα) = multα ◦ multT(α)

A Kleisli triple for the monad consists of the type con-
structor, the unit (that is,return), and anextensionopera-
tion:

(α → T (β))
extendα,β

−−−−−−→ (T (α) → T (β))

Thebind form is simply a convenient notation for the com-
mon usage pattern ofextend :

((extend (lambda (v) N)) M) = (bind (v M) N)

While it is possible to define the mapping function and
multiplication of each monad directly, it is also possible
to define both in terms of thereturn andbind. Only the
indirect forms of the definitions follow.

For theProducer type constructor we are using in our
parsing examples, the mapping function—when applied to
some proceduref—returns a procedure that takes a producer
for one type and returns a producer for another. It usesf to
get a value of the second type.
〈indirect definition ofproducer-map〉≡

(define producer-map

(lambda (f)

(lambda (producer)

(bind (a producer)

(return (f a))))))

The multiplication of the monad takes a value that represents
a producer-producing computation. In other words, when
it is applied to a token stream, it either fails or returns a
producer and a new token stream. We can usebind for a
very concise definition, and writemult this way:
〈indirect definition ofmult〉≡

(define mult

(lambda (producer-producer)

(bind (producer producer-producer)

producer)))

The unit of the monad is actually the same thing asreturn:
〈indirect definition ofunit〉≡

(define unit

(lambda (a)

(return a)))

We see, then, that a monad can be defined completely in
terms of a Kleisli triple. The equivalence is bidirectional;
we shall not demonstrate it here, but the Kleisli triple can be
defined in terms of the monad, too.

3.2 Monadic Reflection

If Kleisli triples and monads are equivalent, why would we
choose one over the other? As was evident in Section 2.2,
Kleisli triples are excellent tools for monadic-style program-
ming. That is to say, they provide an appropriate means of
abstractly manipulating the values that we use to represent
computations.

The unit and multiplication of a monad, on the other hand,
succeed in just the place where Kleisli triples failed. They
provide the appropriate means for crossing the monadic ab-
straction boundary via level-shifting. In other words, the
unit andmult are excellent tools formonadic reflection.

In order to talk about “clean” reflective level crossings, it
is necessary to have some notion ofopaqueandtransparent
types. A simple mathematical understanding of the defini-
tion of Producer

Producer(α) = Tokens → (α + ErrMsg) × Tokens

treats the two sides of the equation as synonyms. From a
software engineering perspective, however, there is a signif-
icant difference between the type constructor being defined
and the body of its definition. To exploit this difference, let
us rewrite the types ofunit andmult, treating the outermost
level as opaque and the inner levels as transparent whenever
there are nested applications of the type constructor. They
become

P(α)
unitP(α)
−−−−−→ P(T (α))

and
P(T (α))

multα−−−−→ P(α)

whereP represents an opaque version ofT . Using these
types, the outer “interface” of the type always remains
opaque. The types forreturn andextend (and thusbind)
refer only to the opaque version of the type constructor:

α
returnα−−−−−→ P(α)

and
(α → P(β))

extendα,β

−−−−−−→ (P(α) → P(β))

It might seem that these operations allow no means of
“reaching through” the opaque type to do anything inter-
esting with the transparent version, but in fact, they provide

33

plenty of power when the operations are used in conjunction
with each other.

Let us return to our unsatisfactory definitions ofdigit

and orelse to see how judicious use ofunit and mult

create clean and explicit abstraction-boundary crossings. We
begin withdigit, where we want to construct a representa-
tion for a non-standard computation (i.e., one that cannot be
constructed byreturn or bind). Furthermore, we want our
hand-constructed procedure to be accepted as a valid digit
(numeric character) producer. Here is the code that we want
to act as a digit producer; it is taken straight from the old
definition ofdigit:

〈custom digit producer〉≡
(lambda (ts)

(if (or (null? ts)

(not (char-numeric? (car ts))))

(inr "not a digit" ts)

(inl (car ts) (cdr ts))))

Just as we do for42 or (car ’(1 2 3)), we usereturn
to construct a computation that produces this value:

〈digit-producer producer〉≡
(return 〈custom digit producer〉)

Finally, we usemult to “shift down a level.” That is,mult
will turn the digit-producer producer into a plain digit pro-
ducer, explicitly coercing our hand-constructed value into a
valid instance of the abstract data type.

〈definition ofdigit, usingmult〉≡
(define digit

(lambda ()

(mult 〈digit-producer producer〉)))

Although orelse is longer and more complicated, the
same kind of techniques work for rewriting it in a more
satisfactory style. This time, we use bothunit andmult,
becauseorelse needs to shift up (lift the representation
of the underlying computation into a value the user can
manipulate) as well as down. We begin by lifting both of
the incoming producers:

〈definition oforelse, usingunit andmult〉≡
(define-syntax orelse

(syntax-rules ()

((orelse ?producer1 ?producer2)

(bind (p1 (unit ?producer1))

(bind (p2 (unit ?producer2))

〈producer that performs alternation〉)))))

As in digit, we need a producer that cannot be written
usingreturn andbind, so we construct one by hand and
usemult to reflect it into the system:

〈producer that performs alternation〉≡
(mult (return (lambda (ts1)

(sum-case (p1 ts1)

((ds ts2) (inl ds ts2))

((msg ts2) (p2 ts1))))))

The difference between this code and what appeared in the
body of the original version oforelse is that we have used

p1 andp2 in place of the producers to whichorelse was
applied. Explicitly applyingp1 andp2 to token streams is
a valid thing to do, becauseunit yields transparent values
wrapped in an opaque coating, andbind strips away the
coating.

3.3 Abstracter and Abstracter

Just asreturn andbind are syntactic abstractions of the
patterns for simple construction and sequencing of producer
values, we can formulate patterns that abstract the common
usage ofunit andmult. We assert that, if we were to go
out and write hundreds of procedures usingunit andmult,
we would see the same patterns over and over: the ones used
in digit andorelse. The pattern for usingunit looks like
this:
〈producer pattern for reifying a producer〉≡

(bind (〈var〉 (unit 〈producer #1〉))
〈producer #2〉)

And whenever we usemult, we applyreturn to alambda
expression:
〈producer pattern for reflecting a constructed producer〉≡

(mult (return (lambda (〈var〉)
〈expression〉)))

The effect of these compositions is even more evident when
the constituent operations are written as arrows. Assume
that〈producer #1〉 has opaque typeP(α) but 〈producer #2〉
treats〈var〉 as the transparentT (α), returning a value of
opaque typeP(β). In terms ofextend, this means that the
body is like a function

T (α)
g
−→ P(β)

and the whole reification composition is:

P(α)
unitP(α)
−−−−−→ P(T (α))

extendT(α),β(g)
−−−−−−−−−−→ P(β)

The reflection composition yields a simple conversion from
transparent to opaque types:

T (α)
returnT(α)
−−−−−−−→ P(T (α))

multα−−−−→ P(α)

As is our wont, we turn these patterns into macros. The first
we callreify:
〈definition ofreify〉≡

(define-syntax reify

(syntax-rules ()

((reify (?var ?producer1)

?producer2)

(bind (?var (unit ?producer1))

?producer2))))

The second we callreflect:
〈definition ofreflect〉≡

(define-syntax reflect

(syntax-rules ()

((reflect (?var) ?expression)

(mult

(return (lambda (?var) ?expression))))))

34

Effectively, reflect exposes the threaded token stream to
the expression in its body.

We can now usereflect to simplify digit one more
time:

〈definition ofdigit〉≡
(define digit

(lambda ()

(reflect (ts)

(if (or (null? ts)

(not (char-numeric? (car ts))))

(inr "not a digit" ts)

(inl (car ts) (cdr ts))))))

Usingreflect andreify together, we get a new definition
of orelse:

〈definition oforelse〉≡
(define-syntax orelse

(syntax-rules ()

((orelse ?producer1 ?producer2)

(reify (p1 ?producer1)

(reify (p2 ?producer2)

(reflect (ts1)

(sum-case (p1 ts1)

((ds ts2) (inl ds ts2))

((msg ts2) (p2 ts1)))))))))

These are our final definitions ofdigit andorelse. They
are now completely explicit in their crossings of abstraction
boundaries. Also, the representation of computations is re-
markably abstract. We need know only that producers can
be applied to token streams and that they return a sum value
and a new token stream. We never uselambda to construct
producers directly.

3.4 A Grammar for Monadic Programming

When we decried the original code fordigit andorelse,
we were appealing to what we hoped was a shared implicit
intuition, which we now make explicit. What is it that makes
us uncomfortable with the following code?

〈bad code〉≡
(bind (x (natural))

(lambda (ts)

(inl (+ x 2) (cdr ts))))

What bothers us is that we expect the body of thebind

expression to be anotherbind or a return, or maybe a
reify or a reflect, but certainly not alambda. In other
words, programs written in a “monadic style” are really
written in a particular sublanguage in which only certain
forms are allowable.

We make the language of monadic programming explicit
by presenting a grammar for it. This grammar requires both
the right-hand side and the body ofbind expressions to be
other monadic expressions, and so on.

〈program〉 → D . . . (run M E)
D → (define VM R)
R → (lambda+ (V . . .) M)
M → (return E)

| (bind (V M) M)
| (reflect (V) E)
| (reify (V M) M)
| (VM E . . .)
| derived monadic expression

E → arbitrary Scheme expression

By “derived monadic expression,” we mean user-defined
syntactic forms—likeorelse—that expand into monadic
expressions. By “arbitrary Scheme expression,” we mean
code that doesnot contain monadic subexpressions.

The relationships amongreturn, bind, reflect, and
reify might be better understood by examining typing rules
for them. The rules in Figure 1, for the sake of brevity, ab-
breviateProducer asP . No rules are given for arbitrary ex-
pressionsE. Instead, these four rules are meant to augment
the typing rules for standard expressions.

There are two additional forms introduced in this gram-
mar:run andlambda+. Without lambda+, there would be
no “roots” for the portion of the grammar that deals with
monadic expressions, nowhere to get started with monadic
programming. For now, we letlambda+ be synonymous
with lambda. To conform to this grammar,digit, natural,
andmore-digits should be modified to uselambda+.

Therun form simply starts a computation by passing the
initial token stream (or other store-like value) to a producer:

〈definition ofrun〉≡
(define-syntax run

(syntax-rules ()

((run ?producer ?exp)

(?producer ?exp))))

For example, this use ofrun:

(run (natural) (string->list "123abc"))

would run our natural-number parsing program and return
123 (left-injected) and the remaining characters(#\a #\b

#\c).

4. Optimizing Monadic Programs
With both the parsing operators likedigit and the simple
client code likenatural written in terms ofreturn, bind,
reflect, andreify, the inner abstraction boundary around
the monad is satisfyingly small. The performance, though,
is inadequate for use in a real compiler or interpreter. The
largest source of overhead expense is all the closure creation,
which a compiler may or may not eliminate. To provide a
stronger guarantee than “we hope the compiler cleans this
up for us,” it is possible to create new closure-free versions
of the macros for the core operators.

35

(return)
Γ ⊢ E : τ

Γ ⊢ (returnE) : P (τ)

(bind)
Γ ⊢ M1 : P (τ1) Γ, v :τ1 ⊢ M2 : P (τ2)

Γ ⊢ (bind (v M1) M2) : P (τ2)

(reify)
Γ ⊢ M1 : P (τ1) Γ, v : (S → (τ1 + ErrMsg)× S) ⊢ M2 : P (τ2)

Γ ⊢ (reify (v M1) M2) : P (τ2)

(reflect)
Γ, v :S ⊢ E : (τ + ErrMsg) × S

Γ ⊢ (reflect (v) E) : P (τ)

Figure 1. Typing Rules

Let’s look at the expansion of a small part of our natural
number parser, the first of the alternatives inmore-digits:

〈more-digits fragment〉≡
(bind (ds (more-digits))

(return (cons d ds)))

Using the most recent versions ofbind and return, this
code expands into:

〈more-digits-fragment expansion〉≡
(lambda (ts1)

(sum-case ((more-digits) ts1)

((ds ts2) ((lambda (ts)

(inl (cons d ds) ts))

ts2))

((msg ts2) (inr msg ts2))))

In the expansion, every subexpression that denotes a pro-
ducer value, be it a call like(more-digits) or a lambda
expression, is applied to a token stream. This property will
hold in all such programs, as it is guaranteed by our gram-
mar.

4.1 Eliminating the Closures

According to the implementation from the preceding sec-
tions, every producer expression will construct a closure,
either directly (by expanding into alambda expression)
or indirectly (by invoking a procedure that returns a clo-
sure). These closures are then immediately applied to to-
ken streams. Of course, the direct expansion intolambda

and immediate application (as in the preceding example)
becomeslet in nearly every Scheme implementation, but
the sites where closures are returned by procedure calls are
much harder for a compiler to optimize. One way to im-
prove both the memory and space use of the code is to re-
move the need for the two-stage application. Since, in the
expansion, the token stream is always available to finish off
the application, we never need to partially apply procedures
like digit. Instead, we can modify the definitions of our

monadic-programming macros so the token stream is passed
as an extra argument to the existing procedures.

Thelambda+ form, which we introduced in the preceding
section, is the starting point for the extra arguments:

〈improved definition oflambda+〉≡
(define-syntax lambda+

(syntax-rules ()

((lambda+ (?formal ...) ?body)

(lambda (?formal ... ts)

〈body of token-accepting function〉))))

We now need to thread the token-stream argument appropri-
ately into the body. Since we know that this body must be
a monadic expression, we need only change the implemen-
tation of those forms consistently with the new “un-curried”
lambda+ form.

The simplest case is if the body is an application of a
user-defined procedure, such as a call todigit. In this case,
we need to make sure to thread our store through as the last
argument to the call. We accomplish this with the helper
form with-args:

〈definition ofwith-args〉≡
(define-syntax with-args

(syntax-rules ()

((with-args (?extra-arg ...)

(?operator ?arg ...))

(?operator ?arg ... ?extra-arg ...))))

It may seem thatwith-args is more general than necessary,
since it can handle multiple extra arguments, but this gener-
ality offers us a great deal of leverage, as we shall see later.
Usingwith-args, we can finish the definition oflambda+
like this:

〈body of token-accepting function〉≡
(with-args (ts) ?body)

This code is well-formed only if the body is in the form
of an operator and some arguments. If we look back at the
grammar, we see that this is indeed the case.

36

The definitions ofbind and return must now handle
extra input in their patterns. Inbind, these extra arguments
must be threaded into the subforms:
〈improved definition ofbind〉≡

(define-syntax bind

(syntax-rules ()

((bind (?var ?rhs) ?body ?ts ...)

(sum-case (with-args (?ts ...) ?rhs)

((?var ?ts ...)

(with-args (?ts ...) ?body))

((msg ?ts ...) (inr msg ?ts ...))))))

The token-stream parameter(s) used in the right-hand side
are the same ones (i.e., the same names as those) bound by
let-values in the body. We need not worry about shadow-
ing, though, since the token stream is necessarily threaded,
and there can be no free references to it in the body.

In return, the extra arguments need to be threaded back
out, along with the desired return value.
〈improved definition ofreturn〉≡

(define-syntax return

(syntax-rules ()

((return ?answer ?ts ...)

(inl ?answer ?ts ...))))

Thus,return becomes an alias forinl, as it should be.
Since we no longer run a computation by first evaluating

it and then passing the result a token stream, we must modify
run to follow the new protocol:
〈improved definition ofrun〉≡

(define-syntax run

(syntax-rules ()

((run ?producer ?exp ...)

(with-args (?exp ...) ?producer))))

The new version converts the initial stream(s) into argu-
ment(s) to the producer. The grammar in the preceding sec-
tion supported only a single “hidden” argument. In order for
it to support the generality that is included in the new ver-
sions of these operators, it should be modified to allow ad-
ditional arguments torun. The same sort of modification is
necessary in the grammar rule forreflect. It should allow
additional variables to be bound to the current values of the
additional store-like parameters.

Thereflect andreify forms require a bit more anal-
ysis before they can be optimized. We begin withreflect.
There are two ways to proceed here. One is to recognize
that while the added syntax we have imposed withreflect

is good for software engineering, thereflect form is still
mathematically equivalent to what we started with: a directly
constructedlambda expression for a producer. (This math-
ematical equivalence, which comes from the monad equa-
tions, is a good thing. It validates our sequence of abstrac-
tions and transformations.) The other approach is simply to
begin with the macro definition forreflect and follow all
the definitions andβ-reductions, eventually concluding that
reflect is merely an alias forlambda. Either way, the re-
sult is the same. Applying areflect form to a token stream

is the same as applying the correspondinglambda expres-
sion. In other words, under our new protocol,reflect ex-
pands into alet.
〈improved definition ofreflect〉≡

(define-syntax reflect

(syntax-rules ()

((reflect (?var ...) ?expression ?ts ...)

(let ((?var ?ts) ...)

?expression))))

We have carried the potential for threading multiple values
throughreflect, just as we did forwith-args. This gen-
eralizes the version ofreflect in the preceding sections.
Of course, thelet we just introduced merely renames the
token-stream parameter(s).

More mechanism is required to implementreify well.
If we continue to reify computations as values, using the
threaded functional representations, we must pay for first-
class procedures:
〈improved definition ofreify, first try〉≡

(define-syntax reify

(syntax-rules ()

((reify (?var ?rhs) ?body ?ts ...)

(let ((?var (lambda (?ts ...)

(with-args (?ts ...) ?rhs))))

(with-args (?ts ...) ?body)))))

While this works, it creates the first-class procedures we
were trying to avoid. The point ofreify is to allow the code
in the body to poke at the reified producer by passing it token
streams and examining the results explicitly. We can support
this functionality without forming a closure by constructing
the expansion-time equivalent of a locally-applicable clo-
sure: a local macro. We bind (at compile time) the variable
to a syntax transformer that generates the right code:
〈improved definition ofreify〉≡

(define-syntax reify

(syntax-rules ()

((reify (?var ?rhs) ?body ?ts ...)

(let-syntax

((?var (syntax-rules ()

((?var ?ts ...)

(with-args (?ts ...) ?rhs)))))

(with-args (?ts ...) ?body)))))

This new definition has a certain constraint that was not
present in the procedural version: the bound variable must
appear in the?body only in operator position. This is due,
in part, to the inability to do macro-like replacement of
plain identifiers in Scheme’s standardized syntactic exten-
sion mechanisms,3 but the restriction boosts efficiency any-
way. It prevents us from leaking unwanted computational ef-
fort into the runtime.

The new definition ofreify is backed by a mathemat-
ical equivalence, too. The original definition ofreify was
mathematically equivalent (again by the monad equations) to

3 Some implementations, such as Chez Scheme [3], do support substitution
for all identifiers in the scope of the macro binding.

37

substituting the right-hand side for the variable in the body.
Our new definition does just this.

4.2 The Closure-Free Expansion

Using the new definitions forreturn, bind, etc., we get
wonderfully improved expansions for monadic programs.
For instance, the fragment of code at the beginning of this
section, which used to contain five different closure-creation
sites, now expands into the following:

〈more-digits-fragment expansion, improved〉≡
(sum-case (more-digits ts)

((ds ts) (inl (cons d ds) ts))

((msg ts) (inr msg ts)))

The new code creates no closures at all. The lack of rampant
anonymous procedures also makes the new code much more
amenable to compiler optimizations. For example, if all the
code for parsing is put in a single mutually recursive block
(i.e., a singleletrec), we would expect a good compiler to
turn all the calls into direct calls to known code addresses.

4.3 Alternative Sum-Type Representations

The representation we have used for sum-type values re-
quires a dispatch at every return site (see the appendix).
There are two useful alternatives to this approach.

One alternative is simply to return no value for failure,
and one value for success. This is no faster in the abstract
than returning a boolean value, since there remains a dis-
patch at every return site, but some implementations of
Scheme provide especially fast ways to dispatch on argu-
ment count [4]. Thus, while this technique does not decrease
the number of steps, it may decrease the absolute running
time of the program.

The second alternative is the only one that really elimi-
nates the return-site dispatch. One provable property of our
monad definition is that, in the absence of reification, failures
are propagated up through the entire extent of the computa-
tion. In other words, it is only in operators likeorelse that
failures may be caught and acted upon. We could capture a
continuation at each such dispatch point and pass it down
into the subcomputations. When we want to signal a failure
(as indigit), we invoke the most recently captured continu-
ation. This is close in both spirit and theory to the direct-style
monadic programming of Filinski [5]. In this implementa-
tion, no checks have to be made at each normal return point,
but the overhead for continuation creation may outweigh this
savings. (Actually, this technique does not require full con-
tinuations; it needs only escapes, which may be implemented
more cheaply than full first-class continuations.)

Näıvely implemented parsing routines, like the one we
wrote for natural numbers, will make heavy use oforelse.
Thus, depending on the expense of the second alternative, it
may not be worthwhile. On the other hand, if a grammar is
made very deterministic through the use of pre-calculation
(of “first” and “follow” sets, for example), then failures may

be truly exceptional, and the continuation-based alternative
could eliminate a significant amount of overhead.

5. Conclusions
The example in this paper has been exclusively about pars-
ing, but the results extend across a much broader scope: any
composition of store-like monads, possibly composed with
an error or lifting monad. The macros in the preceding sec-
tion are defined in such a way that it is easy to support the
threading of multiple store-like parameters through compu-
tations. In fact, the only form that must be changed to add
a parameter islambda+. For example, if we want to thread
three stores through the computation, we rewritelambda+

this way:

〈definition oflambda+ with 3 stores〉≡
(define-syntax lambda+

(syntax-rules ()

((lambda+ (?formal ...) ?body)

(lambda (?formal ... s1 s2 s3)

(with-args (s1 s2 s3) ?body)))))

The use ofwith-args in all the other forms will drive
them to expand in ways that propagate the store parameters
correctly. With our current definitions, any user-level code
that usesreflect must be rewritten to accept the extra store
parameters, and any code that usesreify must apply the
reified values to additional arguments. One way that this
work could be extended is to implement a mechanism by
which user-level code would be able to refer to only those
“hidden” parameters that they need to see at any point. This
is possible with more sophisticated macros.

At the end of Section 4.3 we alluded to the possibility
of preprocessing the grammar and/or parser to boost its
performance. Another possible direction we see for research
in this area is to combine the “fast LR parsing via partial
evaluation” techniques of Sperber and Thiemann [17] with
our expansion-time optimizations. The primary goal of most
functional parsing research is to make parsers easier for
people to write, but the same results should simplify the
work of parser generators.

Even if our goal had been to compile monadic programs
directly into a lower-level language, the more rigorous style
afforded by explicit monadic reflection would make the
compilation process more tractable. For example, a typi-
cal parser written in Haskell or Scheme will be much easier
to convert to C without arbitrary anonymous functions in the
user code, which the user expects to be treated as represen-
tations of computations.

The measurable performance benefit from the optimized
(store-threaded) macros varies depending on the Scheme
implementation. One production-grade parser that uses the
macros from this article is used to parse a kind of annotated
table-definition language for databases. The parser is split
into modules that do lexical analysis and phrasal analysis,
with the output of the first serving as the token stream for

38

the second. One of the regular inputs to this parser contains
about 150 tables, at a total file length of about 3000 lines.
Running on Chez Scheme [3], the total time to parse the
input and construct the parse tree is less than 2 tenths of a
second on typical personal computer hardware. There is no
measurable difference between the different versions of the
macros, implying that Chez Scheme is already eliminating
all the overhead that might be introduced by closure creation,
even across procedure calls. Running on DrScheme [15,
6], the total parse time on the same hardware is about 1.5
seconds. There is a 10% to 12% decrease in the parse time
using the improved macros from Section 4.

Thus, the benefits of following a grammar for monadic
programming—even for operators that depend somewhat
on the monad’s representation—are two-fold: First, the pro-
grams written in a stricter monadic style are more elegant,
lessad hoc. While it is possible to write well-typed monadic
programs without using explicit reflection operators, they
violate abstractions in the same ways that ill-typed (but
runnable) programs do in C when they cast a file pointer
to be an integer and add 18 to it, just because some program-
mer happens to know that the result will be meaningful.
Second, the rigor that makes programsfeel better can also
make themrun better. While a sufficiently “smart” compiler
or partial evaluator might eliminate the closure overhead just
as well as our rewritten operators, there is an element of cer-
tainty that comes from shifting the work even earlier than
compile time. By making sure that the optimization happens
at expansion time, we depend less on the the analysis phase
of a compiler and more on our own mathematics.

Acknowledgments
The authors appreciate the comments and recommendations
provided by anonymous referees. Kevin Millikin was in-
volved in many discussions as the paper was initially writ-
ten. Michael Sperber offered several valuable suggestions,
including the recommendation that this work be shared in the
context of the Scheme Workshop. A special thanks goes to
Mitch Wand for extensive comments, careful readings, and
pointed demands for a better treatment of the types of the
basic operators.

References
[1] Richard Bird.Introduction to Functional Programming Using

Haskell. Prentice Hall Series in Computer Science. Prentice
Hall Europe, second edition, 1998.

[2] Chih-Ping Chen and Paul Hudak. Rolling your own mu-
table ADT: A connection between linear types and mon-
ads. InConference Record of POPL ’97: The 24TH ACM
SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pages 54–66, Paris, France, January 1997.
ACM Press.

[3] R. Kent Dybvig. Chez Scheme Version 7 User’s Guide.
Cadence Research Systems, 2005.

[4] R. Kent Dybvig and Robert Hieb. A new approach
to procedures with variable arity.Lisp and Symbolic
Computation, 3(3):229–244, 1990.

[5] Andrzej Filinski. Representing monads. InConference
Record of POPL ’94: 21st ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, pages
446–457, New York, January 1994. ACM Press.

[6] Matthew Flatt. PLT MzScheme: Language manual.
http://download.plt-scheme.org/doc/mzscheme/,
2005.

[7] Graham Hutton. Higher-order functions for parsing.Journal
of Functional Programming, 2(3):323–343, July 1992.

[8] Graham Hutton and Erik Meijer. Monadic parser combina-
tors. Technical Report NOTTCS-TR-96-4, Department of
Computer Science, University of Nottingham, 1996.

[9] Graham Hutton and Erik Meijer. Monadic parsing in Haskell.
Journal of Functional Programming, 8(4):437–444, July
1998.

[10] Richard Kelsey, William Clinger, and Jonathan Rees, editors.
Revised5 report on the algorithmic language Scheme.ACM
SIGPLAN Notices, 33(9):26–76, September 1998.

[11] Heinrich Kleisli. Every standard construction is induced by
a pair of adjoint functors. InProceedings of the American
Mathematical Society, volume 16, pages 544–546, 1965.

[12] Saunders Mac Lane.Categories for the Working Mathemati-
cian. Springer-Verlag, second edition, 1998.

[13] Eugenio Moggi. An abstract view of programming lan-
guages. Technical Report ECS-LFCS-90-113, Laboratory for
Foundations of Computer Science, University of Edinburgh,
Edinburgh, Scotland, April 1989.

[14] Eugenio Moggi. Notions of computation and monads.
Information and Computation, 93(1):55–92, July 1991.

[15] PLT. PLT DrScheme: Programming environment manual.
http://download.plt-scheme.org/doc/drscheme/,
2005.

[16] David A. Schmidt. Detecting global variables in denota-
tional specifications.ACM Transactions on Programming
Languages and Systems, 7(2):299–310, April 1985.

[17] Michael Sperber and Peter Thiemann. The essence of LR
parsing. InProceedings of the ACM SIGPLAN Symposium
on Partial Evaluation and Semantics-Based Program Manip-
ulation, pages 146–155, La Jolla, 1995. ACM Press.

[18] Philip Wadler. How to replace failure by a list of successes.
In Second International Conference on Functional Program-
ming Languages and Computer Architecture, Nancy, France,
September 1985. Springer-Verlag.

[19] Philip Wadler. Comprehending monads.Mathematical
Structures in Computer Science, 2(4):461–493, December
1992.

39

Appendix
As long as sum-type values never need to be stored in data
structures (and they do not, in this article), they can be
represented efficiently as “tagged” multiple values. The tag
is simply#t for left-injected values:

〈tag-basedinl〉≡
(define-syntax inl

(syntax-rules ()

((inl ?arg ...)

(values #t ?arg ...))))

and#f for right-injected values:

〈tag-basedinr〉≡
(define-syntax inr

(syntax-rules ()

((inr ?arg ...)

(values #f ?arg ...))))

For “casing” sum-type values, we use a new syntactic form
sum-case, as demonstrated in the following example:

〈sum type example〉≡
(define add1-or-zero

(lambda (thunk)

(sum-case (thunk)

((n) (+ n 1))

((z) 0))))

(list (add1-or-zero (lambda () (inl 42)))

(add1-or-zero (lambda () (inr 0))))

The last expression evaluates to the list(43 0).
Defining a macro forsum-case is relatively straightfor-

ward in a Scheme implementation that has a direct means
of generating temporary variables in macros. The portable
version of the macro is made much more complicated by the
need to generate a list of temporaries:

〈portable tag-basedsum-case〉≡
(define-syntax sum-case

(syntax-rules ()

((sum-case ?exp

((?left-var ...) ?left-result)

((?right-var ...) ?right-result))

(gen-var-list (?left-var ...)

(sum-case-help () ?exp

((?left-var ...) ?left-result)

((?right-var ...) ?right-result))))))

(define-syntax sum-case-help

(syntax-rules ()

((sum-case-help (?temp ...) ?exp

((?left-var ...) ?left-result)

((?right-var ...) ?right-result))

(call-with-values (lambda () ?exp)

(lambda (tag ?temp ...)

(if tag

(let ((?left-var ?temp) ...)

?left-result)

(let ((?right-var ?temp) ...)

?right-result)))))))

(define-syntax gen-var-list

(syntax-rules ()

((gen-var-list ()

(?head (?y ...) ?tail ...))

(?head (?y ...) ?tail ...))

((gen-var-list (?v0 ?v ...)

(?head (?y ...) ?tail ...))

(gen-var-list (?v ...)

(?head (?y ... temp) ?tail ...)))))

40

41

An operational semantics for R5RS Scheme

Jacob Matthews
University of Chicago

jacobm@cs.uchicago.edu

Robert Bruce Findler
University of Chicago

robby@cs.uchicago.edu

Abstract
This paper presents an operational semantics for the core of
Scheme. Our specification improves over the existing R5RS de-
notational specification in four ways. First, it is more complete,
since it containseval, quote, anddynamic-wind. Second, it models
multiple values in a way that does not require changes to unrelated
parts of the language. Third, it provides a more faithful model of
Scheme’s undefined order of evaluation. Finally, it is executable,
because it is encoded as a program in PLT Redex, a domain-specific
language for writing operational semantics. The executable spec-
ification allows others to experiment with our specificationand
allows us to build a specification test suite, which improvesour
confidence that our system is a faithful model of Scheme.

In addition to contributing a specification of Scheme, this paper
presents several novel modeling techniques for Felleisen Hieb-style
rewriting semantics that we discovered while developing our R5RS
Scheme semantics. All are applicable to a wider range of problems
than the specific uses we have for them, and the fact that they
combine seamlessly in our full R5RS model shows that they scale
to real languages.

1. Introduction
The Revised5 Report on the Algorithmic Language Scheme [15],
R5RS, provides an informal, English specification of Scheme and
a denotational model of a core Scheme language. The denota-
tional specification is more precise than the informal specification,
but is also incomplete with respect to it. For instance, the formal
specification does not present the top-level mentioned throughout
the informal specification, and is missing key procedures such as
dynamic-windand eval whose inclusion could have a significant
impact on the formalism. While that is not necessarily a problem
— the measure of a model is not its completeness but its ability to
clearly and accurately explain its subject — Gasbichler et al’s re-
cent explanation of the difficulties involving dynamic contexts and
threads [12], for instance, demonstrate that the formal model is in-
sufficient for some important questions.

In this paper we give a new treatment of the R5RS formal se-
mantics that models more of the language described in the informal
semantics section than the formal semantics section in the R5RS
Scheme document does. Rather than extending the denotational se-
mantics with extra constructs, we present an alternate specification
as a small-step operational semantics. We do this for two major rea-
sons. First, to make the semantics natively executable: operational
semantics are much more amenable to direct execution than deno-
tational semantics. Second, to allow for nondeterminism and non-
confluence: small-step operational semantics are particularly well-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Sixth Workshop on Scheme and Functional Programming.September 24, 2005,
Tallinn, Estonia.
Copyright c© 2005 Jacob Matthews and Robert Bruce Findler.

suited for modeling programming languages with nondeterministic
and nonconfluent behavior. We make important use of nondeter-
minism in our model, as we will explain in section 2.

As a side benefit of using a small-step operational encoding,we
can use PLT Redex [17], a domain-specific language for context-
sensitive term-rewriting systems, to give a directly executable op-
erational encoding for our model. PLT Redex provides a graphical
browser for exploring reduction graphs and allows us to maintain
a large test suite of terms and their expected normal forms that we
can run whenever we change any reduction rules. This test suite in-
creases our confidence that our model is a faithful representation of
Scheme.

While writing our model, we developed new techniques for
modeling some of Scheme’s features. In the rest of our paper we
first introduce those techniques in isolation to explain ourmodels
for particular Scheme features, and then combine them into asin-
gle unified model. In section 2 we show how to use nondeterminism
to model Scheme’s unspecified application order; in section3 we
show a novel technique for modeling multiple return values;in sec-
tion 4 we give a model forquoteandeval; and in section 5 we give
a model forcall/cc in the presence ofdynamic-wind. Finally in sec-
tion 6 we combine all those models along with several other more
straightforward features:if , consand cons-cell mutation, variable-
arity procedures,apply, and an object-identity-sensitive notion of
eqv?equality.

We will assume the reader has a basic familiarity with context-
sensitive reduction semantics. Readers unfamiliar with this system
may wish to consult Felleisen and Flatt’s monograph [5] or Wright
and Felleisen [24] for a thorough introduction or our previous work
with Flatt and Felleisen [17] for a somewhat lighter one. We should
also emphasize before we proceed that this semantics still leaves
out many important Scheme features — among them the numeric
tower, the top-level environment, and macros — but that it models
more features than the Report’s formal semantics does and ismore
suitable for extension.

2. Unspecified application order
In evaluating a procedure call, the R5RS document deliberately
leaves unspecified the order in which arguments are evaluated, but
section 4.1.3 specifies that

the effect of any concurrent evaluation of the operator and
operand expressions is constrained to be consistent with
somesequential order of evaluation. The order of evalua-
tion may be chosen differently for each procedure call.

In the formal semantics section, the authors explain how they model
this ambiguity:

[w]e mimic [the order of evaluation] by applying arbitrary
permutationspermuteandunpermute. . . to the arguments
in a call before and after they are evaluated. This is not quite

42

p ::= (store ((x v) · · ·) e)
e ::= (e e· · ·) | (set! x e) | (begin e e· · ·) | v
v ::= (lambda (x · · ·) e) | n

C ::= (v · · · C e· · ·) | (set!x C) | (begin C e e· · ·) | []
x ::= identifiers, store locations for mutable bindings
n ::= numbers

(store ((x1 v1) · · ·) C[((lambda (x2 · · ·) e) v2 · · ·)]) → (store ((x1 v1) · · · (x′
2

v2) · · ·) C[e[x′
2
· · · / x2 · · ·]]) (MA PP)

(#x2 = #v2, eachx′
2

fresh)
(store ((x1 v1) · · ·) C[((lambda (x2 · · ·) e) v2 · · ·)]) → error: wrong number of arguments (MAPPERR)

(#x2 6= #v2)
(store ((x1 v1) · · · (x v) (x2 v2) · · ·) C[(set! x v′)]) → (store ((x1 v1) · · · (x v′) (x2 v2)· · ·) C[0]) (MSET)
(store ((x1 v1) · · · (x v) (x2 v2) · · ·) C[x]) → (store ((x1 v1) · · · (x v) (x2 v2) · · ·) C[v]) (ML OOKUP)
(store ((x v) · · ·) C[(beginv e1 e2 · · ·)]) → (store ((x v) · · ·) C[(begine1 e2 · · ·)]) (MSEQ)
(store ((x v) · · ·) C[(begine)]) → (store ((x v) · · ·) C[e]) (MT RIVSEQ)
(store ((x v) · · ·) C[(− ⌈n⌉)]) → (store ((x v) · · ·) C[⌈-n⌉]) (MN EG)

Figure 1. Core Scheme with mutation

right since it suggests, incorrectly, that the order of evalua-
tion is constant throughout a program. . .. [section 7.2]

In this section we present an operational technique that captures
the intended semantics more faithfully. We begin by considering
a core Scheme with arbitrary arity procedures,set!, numbers, and
negation, but with a fixed left-to-right order of evaluationfor ap-
plications, as shown in figure 1. It is a minor variation of Felleisen
and Hieb’sΛS [6]. A program consists of a store that associates
variable names to values and an expression, where expressions are
built up of numbers, arbitrary-arity lambda terms and applications,
set!, andbeginexpressions, and a built-in negation operator. MAPP
gives the rule for application of a procedure to fully-evaluated ar-
guments: make one fresh identifierx′i for each formal parameterxi,
introduce a new binding in the store for eachx′i associating it with
the corresponding argumentvi in the application, and then rewrite
the application as the procedure’s body with each occurrence of an
xi rewritten into the correspondingx′i (in this figure as in all fig-
ures in this paper, we will use vertically-centered ellipses · · · to
indicate any number of occurences, including zero, of the preced-
ing element). MAPPERR gives the rule for procedures applied to
the wrong number of arguments: rewrite the term in its entirety to
an error message, which halts the program immediately because
it abandons the application’s original context. MSET rewrites to
the constant 0 but also replaces the value associated with the given
identifier in the store with the given replacement. (We choose to
haveset! return the constant 0 in this semantics as a “quick and
dirty” unique value; in the examples that follow 0 never appears in
any program term except as the result of assignment.) MLOOKUP
replaces an identifier with its associated value in the storewhen
that value becomes necessary (i.e., when it appears as a redex in an
evaluation context). MSEQ drops the first subexpression in abe-
gin when there are more expressions to evaluate, and MTRIVSEQ
drops thebeginwhen there is only one expression to evaluate. The
last rule, MNEG, simply negates its argument (the notation⌈n⌉ indi-
cates the syntactic representation corresponding to the mathemati-
cal numbern).

The order of evaluation is determined by the grammar for eval-
uation contexts (C). The first production of the grammar specifies
that evaluation of a sub-expression of an application only takes
place when all of the sub-expressions to its left are values (or have
been reduced to values). If we replace that first production with this
one:

C ::= (e · · · C v · · ·) | . . .

the semantics would specify a right-to-left order instead.
Either of these choices results in a system with unique decom-

position. That is, each term can only be split into an evaluation con-
text and a reducible sub-expression in one way (unless it is stuck

or an answer). Accordingly, there is at most one way to reduceany
expression.

To model a language with unspecified order of operations in-
stead, we can use a reduction system with non-unique decomposi-
tion to model the choice. We might be tempted to use this definition
of evaluation contexts:

C ::= (e · · · C e· · ·) | . . .

Since this definition allows the hole to appear in any subexpression
of an application, this simple program that negates 1, negates 2, and
then applies a trivial procedure to the results

((lambda (x y) y) (− 1) (− 2))

can be split into an evaluation context with either (− 1) or (− 2) as
the reducible expression.

At first glance, this appears to be a faithful model of R5RS
Scheme. It is not. Consider this application of twoset!expressions
in a store bindingx to 1.

(store ((x 1))
((set!x (− x))
(set!x (− x))))

In Scheme, this program should always reduce to the application
of zero to zero withx set to1 in the store (and then get stuck).
According to R5RS, no matter which of the application’s subterms
is reduced first, the result should be thatx is negated twice. If
we just modify evaluation contexts as above, however, we allow
other interleavings. The problem is that that definition of evaluation
contexts would allow a different argument of the same application
to take one step of computation every step of the way, which may
produce an outcome that could not be reached by any sequential
ordering.

We discovered this problem while experimenting with that re-
duction system in PLT Redex. We encoded the erroneous reduction
system in PLT Redex and automatically generated the reduction
sequence for the above term, shown in figure 2. The first term is
shown on the left. The top-most and the bottom-most paths corre-
spond to the two sequential orderings and result in the proper store.
In the middle section, the two assignments are interleaved,resulting
in −1 being left in the store.

With that in mind, we can design a more sophisticated strat-
egy that captures unspecified evaluation order but only allows se-
quential orderings. Figure 3 shows the necessary revisionsto core
Scheme to support R5RS-style procedure applications (each re-
places the appropriate rule from figure 1 — the other rules in that
figure are unchanged). The basic idea is to use non-deterministic
choice to pick a sub-expression to reduce only when we have not al-
ready committed to reducing some other subexpression. To achieve

43

(store ((x 1))

 ((set! x (- x))

 (set! x (- x))))

(store ((x 1))

 ((set! x (- x))

 (set! x (- 1))))

(store ((x 1))

 ((set! x (- 1))

 (set! x (- x))))

(store ((x 1))

 ((set! x (- 1))

 (set! x (- 1))))

(store ((x 1))

 ((set! x (- x))

 (set! x -1)))

(store ((x 1))

 ((set! x -1)

 (set! x (- x))))

(store ((x 1))

 ((set! x (- 1))

 (set! x -1)))

(store ((x 1))

 ((set! x -1)

 (set! x (- 1))))

(store ((x -1))

 ((set! x (- x))

 0))

(store ((x -1))

 (0

 (set! x (- x))))

(store ((x -1))

 ((set! x (- 1))

 0))

(store ((x 1))

 ((set! x -1)

 (set! x -1)))

(store ((x -1))

 (0

 (set! x (- 1))))

(store ((x -1))

 ((set! x (- -1))

 0))

(store ((x -1))

 (0

 (set! x (- -1))))

(store ((x -1))

 ((set! x -1)

 0))

(store ((x -1))

 (0

 (set! x -1)))

(store ((x -1))

 ((set! x 1)

 0))

(store ((x -1))

 (0

 (set! x 1)))

(store ((x -1))

 (0

 0))

(store ((x 1))

 (0

 0))

Figure 2. Interleavings possible with an erroneous unspecified-application-order model

inert ::= v◦ | e
C ::= (inert · · · C◦ inert · · ·) | . . .

(store (· · ·) C[(inert · · · e inert · · ·)]) → (store (· · ·) C[(inert · · · e◦ inert · · ·)]) (UM ARK)
(store (· · ·) C[((lambda (x · · ·) e)◦ v◦ · · ·)]) → (store (· · · (x′ v) · · ·) C[e[x′ · · · / x · · ·]]) (UA PP)

(#x = #v, eachx′ fresh)
(store (· · ·) C[(−◦ ⌈n⌉◦)]) → (store (· · ·) C[⌈-n⌉]) (UNEG)

Figure 3. Revisions to core Scheme to support unspecified applicationorder

that effect, we introduce the non-terminalinert and the notion of a
marked expression, denoted with the◦ superscript. (These marks
are not an extension to the general term-rewriting framework —
e◦ andC◦ are just alternate typesettings of (mark e) and (mark
C).) Marks identify chosen expressions: only marked expressions
may be reduced, and only one reducible marked expression may
appear in any application at one time. Theinert production stands
for terms in which evaluation may not occur,i.e., unmarked ex-
pressions (those expressions we have not tried to evaluate yet) and
marked values (those expressions we have already finished reduc-
ing). We add the UMARK reduction rule that marks an arbitrary
unmarked expression in an application on the condition thatevery
other expression is inert, and we modify the MAPP and MNEG
rules rules to apply only to fully-marked applications, becoming
the UAPPand UNEG rules.

Figure 4 (also generated by PLT Redex) shows how our new
system evaluates the term from figure 2. The initial term appears
in the center on the left. That term is an application, so the first
reduction either marks the first sub-expression or the second. If
the first subexpression is marked, evaluation continues down to the
bottom of the figure, over to the right and back up to the middle. If
the second is marked, evaluation proceeds up, over, and backto the
middle. In both paths there are a few other application expressions
to evaluate, leading to smaller separations. Eventually, all of the
terms join back together and the final result in the store is1, as
shown in the center on the right.

One should not take that example to mean that this language has
any kind of confluence property, however. Consider this program:

((lambda (choice)
((lambda (x y) choice)
(set!choice 1)
(set!choice 2)))

0)

It will either will return either1 or 2, depending on the order of
evaluation. This is the way we want it; the model’s nonconfluence
reflects the underspecification of R5RS Scheme rather than a tech-
nical bug in our model. It does, however, always make progress.
We formalize this with the following theorem statement:

THEOREM 2.1. For any closed programp in the language of fig-
ure 3, eitherp → p′, wherep′ is also closed,p → e wheree is
some error indicator, orp is of the form (store ((x v) · · ·) v).

Proof is contained in the first author’s master’s thesis [16].
This technique has other uses besides giving semantics for un-

specified application evaluation orders. In general, it is useful for
modeling any kind of delimited nondeterminism, where evaluation
may proceed arbitrarily but only at certain points in a program. This
is useful for modeling unspecified behaviors and for complexnon-
deterministic features such as threads.

3. Multiple return values

R5RS Scheme provides a facility for expressions to evaluate to
multiple or no values rather than just a single value. The procedure
valuesbuilds multiple values andcall-with-valuesaccepts multiple
values. Unlike tuples in SML and Haskell, multiple values are not
themselves values. For example, this program

(define(f x) (values(+ x x) (∗ x x)))
(define(g x y) y)
(g (f 3))

produces an error, since procedure application expects each of its
arguments to be a single value (and the result off is two values).
Instead, the programmer must usecall-with-valuesto catch multi-
ple values. It expects a thunk as its first argument, applies the thunk,
catches any number of values that thunk produces, and applies them

44

(store ((x 1))
 ((set! x (- x))
 (set! x (- x))))

(store ((x 1))
 ((set! x (- x))
 (set! x (- x)) °))

(store ((x 1))
 ((set! x (- x)) °
 (set! x (- x))))

(store ((x 1))
 ((set! x (- x))
 (set! x (- x°)) °))

(store ((x 1))
 ((set! x (- x))
 (set! x (-° x)) °))

(store ((x 1))
 ((set! x (- x°)) °
 (set! x (- x))))

(store ((x 1))
 ((set! x (-° x)) °
 (set! x (- x))))

(store ((x 1))
 ((set! x (- x))
 (set! x (- 1°)) °))

(store ((x 1))
 ((set! x (- x))
 (set! x (-° x°)) °))

(store ((x 1))
 ((set! x (- 1°)) °
 (set! x (- x))))

(store ((x 1))
 ((set! x (-° x°)) °
 (set! x (- x))))

(store ((x 1))
 ((set! x (- x))
 (set! x (-° 1°)) °))

(store ((x 1))
 ((set! x (-° 1°)) °
 (set! x (- x))))

(store ((x 1))
 ((set! x (- x))
 (set! x -1) °))

(store ((x 1))
 ((set! x -1) °
 (set! x (- x))))

(store ((x -1))
 ((set! x (- x))
 0°))

(store ((x -1))
 (0°
 (set! x (- x))))

(store ((x -1))
 ((set! x (- x)) °
 0°))

(store ((x -1))
 (0°
 (set! x (- x)) °))

(store ((x -1))
 ((set! x (- x°)) °
 0°))

(store ((x -1))
 ((set! x (-° x)) °
 0°))

(store ((x -1))
 (0°
 (set! x (- x°)) °))

(store ((x -1))
 (0°
 (set! x (-° x)) °))

(store ((x -1))
 ((set! x (- -1°)) °
 0°))

(store ((x -1))
 ((set! x (-° x°)) °
 0°))

(store ((x -1))
 (0°
 (set! x (- -1°)) °))

(store ((x -1))
 (0°
 (set! x (-° x°)) °))

(store ((x -1))
 ((set! x (-° -1°)) °
 0°))

(store ((x -1))
 (0°
 (set! x (-° -1°)) °))

(store ((x -1))
 ((set! x 1) °
 0°))

(store ((x -1))
 (0°
 (set! x 1) °))

(store ((x 1))
 (0°
 0°))

Figure 4. Evaluation in the unspecified-application-order model

to its second argument. So, a programmer could supplyf ’s results
to g like this:

(call-with-values(lambda () (f 3)) g)

In addition, there is no difference betweenvaluesapplied to a single
argument and that argument by itself, so (g (values 6) (values 9)) is
the same as (g 6 9).

To model multiple values, R5RS Scheme’s formal semantics
models continuations as functions from an arbitrary numberof val-
ues to a final answer. The informal semantics says that “except for
continuations created with thecall-with-valuesprocedure, all con-
tinuations take exactly one value” [15, section 6.4]. The formal se-
mantics reflects this by checking the opposite property: in every
context that expects a single value, it uses a helper function, single,
to ensure that only a single value appears. This indirect checking
impacts the entire semantics: it requires every continuation to ac-
cept any number of arguments initially and requires a call tosingle
at every point where a continuation would be restricted.

Our semantic model captures the difference between contexts
that accept multiple values and contexts that reject multiple values

directly. Our strategy is distilled in figure 5. That figure contains
a pure core Scheme extended withvalues, and apply-values, a
syntactic form that has as its operands an expression that must
evaluate to a procedure and another expression that may evaluate
to any number of values, and calls the procedure with those values
as arguments. We useapply-valuesin this section rather thancall-
with-valuesbecause the resulting model is clearer and bothapply-
valuesandcall-with-valuescan be defined simply in terms of each
other in R5RS Scheme:

(define(call-with-values thunk f)
(apply-valuesf (thunk)))

(define-syntax apply-values
(syntax-rules()

[(f vs-expr)
(call-with-values(lambda () vs-expr) f)]))

Our model uses a modest addition to the standard reduction-
semantics formalism. We extend the notation so that holes have
names (written as subscripts) but otherwise behave as unnamed

45

e ::= (e e· · ·) | x | v | (apply-valuese e)
v ::= (lambda (x · · ·) e) | values
C ::= []∗◦ | (v · · · C◦ e · · ·) | (apply-valuesC◦ e) | (apply-valuesv C∗)
C◦ ::= []◦ | C
C∗ ::= []∗ | C

C◦[((lambda (x · · ·) e) v · · ·)]∗◦ → C◦[e[x · · · /v · · ·]] (VA PP)
(#v = #x)

C◦[((lambda (x · · ·) e) v · · ·)]∗◦ → error: wrong number of arguments (VAPPERR)
(#v 6= #x)

C◦[(apply-valuesv1 (values v2 · · ·))]∗◦ → C◦[(v1 v2 · · ·)] (VA PPVALS)

C◦[v]∗ → C◦[(values v)] (VPROMOTE)

C◦[(values v)]◦ → C◦[v] (VD EMOTE)
C◦[(values v· · ·)]◦ → error: expected a single value (VDEMOTEERR)

(#v 6= 1)

Figure 5. Pure core Scheme with multiple values

holes do. The context-matching syntax is now annotated with
names as well, restricting legal decompositions to those where the
hole has the same name.

In figure 5 we use this feature to give three distinct names to
holes, indicated with subscripts.[]◦ indicates a hole in which any
expression should reduce to an element ofv, []∗ indicates a hole
in which any expression should reduce to (values v· · ·), and[]∗◦
indicates a hole in which either result is acceptable. Thereare three
parallel context nonterminals. The contextC◦ produces an element
of v, C∗ produces (values v· · ·), andC might produce either.

Since each subexpression of an application is expected to pro-
duce a single value, the evaluation context inside an application is
C◦. For the same reason, the evaluation context for the first subex-
pression ofapply-valuesis C◦. The evaluation context for the sec-
ond subexpression, however, isC∗ because it is expected to produce
multiple values.

Since procedure applications (defined by the VAPPand VAPP-
ERR reductions) andapply-values uses (defined by the VAPP-
VALS reduction) may produce a single value or (values v· · ·), they
take place in[]∗◦ holes. VPROMOTE, promotes a single valuev to
(values v). Because of the subscript * on the hole, it applies only
when multiple values are expected. VDEMOTE demotes a single
value insidevaluesto just the value, and VDEMOTEERR signals an
error if valuesdoes not return exactly one value. These two rules
apply only when avaluesexpression appears where a single value
is expected. All reductions take place inC◦ to ensure that the final
result of any program is a single value. If we wanted to allow any
number of values as the final result of a program we could replace
C◦ with C∗ in all rules.

To get a sense of how evaluation proceeds, consider this reduc-
tion sequence:

((lambda (y) y)
(apply-values(lambda (x) (values x)) 1))

→ ((lambda (y) y)
(apply-values(lambda (x) (values x))

(values 1))) (VPROMOTE)

→ ((lambda (y) y)
((lambda (x) (values x)) (values 1))) (VA PPVALS)

→ ((lambda (y) y)
((lambda (x) (values x)) 1)) (VDEMOTE)

→ ((lambda (y) y) (values 1)) (VA PP)

→ ((lambda (y) y) 1) (VDEMOTE)

→ 1 (VA PP)

First, the VPROMOTE applies and promotes 1 into (values 1)
because it appears as the second argument of anapply-values
expression. Then VAPPVALS applies, followed by VAPP. Then
the term (values 1) is used as an argument to a procedure, so
VDEMOTE applies and converts it to the single value1. Finally
VA PPapplies and the result is1.

The erroneous expression from the beginning of this section
signals an error due to the VDEMOTEERR rule.

(g (f 3))
→ · · ·
→ (g (values 3 9))
→ error: expected a single value

The evaluation contexts and the three promotion and demotion
rules are all that we need to add multiple values to the language.
Furthermore, the extension of adding names to holes does not
significantly complicate proof of progress for the system, and so we
can prove the following theorem reasonably straightforwardly [16]:

THEOREM 3.1. For any closed programp in the language of fig-
ure 5, eitherp → p′, wherep′ is also closed,p → e wheree is an
error indicator, orp is of the form (store ((x v) · · ·) v).

Proof is contained in the first author’s master’s thesis [16].
The strategy described in this section can be used whenever the

notion of a fully-evaluated subterm is different in different parts
of a program. For instance, it can be used to model embedded
sublanguages such as regular-expressions, format strings, and SQL
commands, which could help develop theoretical underpinnings
for work like Herman and Meunier’s static analysis of embedded
languages [14].

4. Quote and Eval
Scheme inherits the meta-programming facilitieseval and quote
from Lisp [22]. Thequote operator turns a program into data and
the eval procedure turns that data back into a program. When
quoted, a program is represented as a list of lists and symbols,
where lists represent parenthesized sequences and symbolsrepre-
sent identifiers. For example, (quote (lambda(x) x)) is a three el-

46

e ::= (e e· · ·) | v | x
E ::= [] | (v · · · E e· · ·)
v ::= (lambda (x · · ·) e)| (quotesy)

| p | null | n | prim | #t | #f

prim ::= eval| cons| car | cdr | eqv?
p ::= pointers
x ::= program variables

(members ofsyexceptlambda, quote, ccons)

s ::= (s · · ·) | n | sy
| (s · · · dot sy) | (s · · · dot n)

S ::= [] | (e · · · S s· · ·)
| (lambda (x · · ·) S)
| (cconsv S) | (cconsS s)

n ::= numbers
sf ::= (p (cons v v))
sy ::= names of symbols

(identifiers exceptdot)

(store (sf1 · · ·) E[(cons v1 v2)]) → (store (sf1 · · · (p (cons v1 v2))) E[p]) (ECONS)
(p fresh)

(store (sf1 · · · (p (cons va vd)) sf2 · · ·) E[(car p)]) → (store (sf1 · · · (p (cons va vd)) sf2 · · ·) E[va]) (ECAR)
(store (sf1 · · · (p (cons va vd)) sf2 · · ·) E[(cdr p)]) → (store (sf1 · · · (p (cons va vd)) sf2 · · ·) E[vd]) (ECDR)
(store (sf1 · · ·) E[(eqv? p p)]) → (store (sf1 · · ·) E[#t]) (EEQV1)
(store (sf1 · · ·) E[(eqv? p1 p2)]) → (store (sf1 · · ·) E[#f]) (EEQV2)

(p1 6= p2)
(store (sf · · ·) E[((lambda (x · · ·) e) v · · ·)]) → (store (sf · · ·) E[e[x · · · / v · · ·]]) (EA PP)

(#x = #v)

(store (sf · · ·) S[(quote sexp1 sexp2 · · ·)] → (store (sf · · ·) S[(cconssexp1 (quote sexp2)]) (EQUOTESEQ)
(store (sf · · ·) S[(quote ())] → (store (sf · · ·) S[null]) (EQUOTENULL)
(store (sf · · ·) S[(quote n)] → (store (sf · · ·) S[n]) (EQUOTENUM)
(store (sf · · ·) S[(cconsv1 v2]) → (store (sf · · · (p (cons v1 v2))) S[p]) (EQUOTEPAIR)

(p fresh)

(store (sf · · ·) E[(eval v)]) → (store (sf · · ·) E[R J (sf · · ·), v K]) (EEVAL)

R : (p 7→ (cons v v)) × v→ s
R J S, null K = ()
R J S, n K = n
R J S, #t K = #t
R J S, #f K = #f
R J S, (quote sy) K = sy
R J S, p K = C J R J va K, R J vd K K

whereSbindsp to (cons va vd)

C : s× s→ s
C J sexp1, (sexp2 · · ·) K = (sexp1 sexp2 · · ·)
C J sexp1, n K = (sexp1 dot n)
C J sexp1, syK = (sexp1 dot sy)
C J sexp1, #t K = (sexp1 dot #t)
C J sexp1, #f K = (sexp1 dot #f)

Figure 6. Core Scheme, extended with eval and quote

ement list whose first and third elements are symbols and whose
second element is a list of one element:

(cons(quote lambda)
(cons(cons(quotex) null)

(cons(quotex) null)))

R5RS suggests (but does not require) that quoted data be al-
located only once, before the program runs. In systems with that
behavior (including all Scheme implementations we tested), this
program returns#t:

((lambda (f) (eqv?(f) (f)))
(lambda () (quote (x))))

since the thunk passed asf returns the same result each time it is
called.

Our core Scheme calculus for modelingevalandquote is shown
in figure 6. (Note that this model simplifies R5RS Scheme’seval
procedure in that it does not accept an environment argument.) To
ensure that a datum behind aquote is inserted into the store only
once, the rewriting system is structured in two tiers roughly corre-
sponding to “compile-time” and “run-time.” Initially, programs are
just viewed as uncompiled s-expressions (elements of thes non-
terminal; note that we write dotted pairs withdot rather than a
period to avoid meta-circular confusion in our PLT Redex imple-
mentation), which in particular include programs with quoted lists.
Reduction rules that apply to these uncompiled expressionsdo not
evaluate them, but instead compile them into program expressions
that do not contain quoted lists (elements of thee nonterminal).

Evaluation reductions only apply to a program after it has been
completely compiled.

Each program consists of a store and an expression. Program
expressions (e) can be applications, values, or identifiers. Evalua-
tion contexts (E) dictate that evaluation takes place in a left to right
order inside application expressions. The values (v) are procedures,
quoted symbols, pointers (to cons cells), null, numbers, primitive
operations, and booleans.

The first group of evaluation rules (from ECONS to EAPP)
correspond to the language’s runtime semantics, and show how the
list primitives and procedure application behave. ECONS models
the application ofcons to arguments by allocating a new pair
in the store; andcar and cdr select the first and second values
in a pair by rules ECAR and ECDR. EEQV1 and EEQV2 give
eqv?’s semantics; it compares pointers for literal syntactic equality
(and, for this language, operates only on pairs). As in the previous
systems we have presented, procedure application is modeled by
rule EAPP as substitution. Since each reduction takes place in an
evaluation(rather thancompilation) context, they will only apply
to programs that are completely compiled.

The second group of rules (from EQUOTESEQ to EQUOTEPAIR)
apply at compile-time and show how to compile a program by
rewriting quoted constants into locations in the store. If those rules
used theE context and quoted s-expressions were legal expressions,
quote would merely be a short-hand notation for building lists at
run-time and the above program would return#f, which would not
capture our intended semantics.

47

p ::= (store ((x v) · · ·) (dw (dws· · ·) e))
e ::= . . . | (push (x e e)) | (pop)
v ::= . . . | dynamic-wind| call/cc
dws ::= (x e e)

PC ::= (store ((x v) · · ·) DC)
DC ::= (dw ((dws· · ·) C))
C ::= (as in figure 1)

PC[(dynamic-wind(lambda () e1)
(lambda () e2)
(lambda () e3))]

→ PC[(begine1
(push (x1 e1 e3))
((lambda (x2)

(begin (pop) e3 x2))
e2))]

(DWWIND)

(x1, x2 fresh)
PC[(dw (dws· · ·) C[(pushx2 e1 e2)])] → PC[(dw (dws· · · (x2 e1 e2)) C[0])] (DWPUSH)
PC[(dw (dws1 · · · dwsn) C[(pop)])] → PC[(dw (dws1 · · ·) C[0])] (DWPOP)
PC[(dw (dws1 · · ·) C[(call/cc v1)])] → PC[(dw (dws1 · · ·)

C[(v1 (lambda (x)
(throw (dws1 · · ·) C[x])))])]

(DWCALLCC)

(x fresh)
PC[(dw (dws1 · · ·) C[(throw (dws2 · · ·) e1)])] → PC[(dw (dws2 · · ·)

C[(beginT J (dws2 · · ·), (dws1 · · ·) K
e1)]))

(DWTHROW)

T J ((x1 e1 e2) dws1 · · ·), ((x1 e3 e4) dws2 · · ·) K = T J (dws1 · · ·), (dws2 · · ·) K
T J ((x1 e1 e2) · · ·), ((x2 e3 e4) · · ·) K = (begin e2 · · ·r e3 · · ·)

(x1 6= x2)

Figure 7. Additions to figure 1 to support call/cc and dynamic-wind

Instead, the second group of rewriting rules eliminatequote,
turning s-expressions into Scheme programs. Though we havepre-
sented them second, these rules will actually come first in reduction
sequences, making reduction sequences follow a two-phase pattern
where the EQUOTE rules apply in the first phase and the evaluation
rules apply in the second phase. Intuitively, programs in this first
phase are arbitrary s-expressions and values are Scheme programs,
whereas second-phase programs are Scheme expressions and val-
ues are Scheme values. This parallelism can be seen particularly
clearly in the definition of the evaluation contexts for application
expressions. InS, a rewrite may occur once all of the s-expressions
to the left have become Scheme programs. InE, a rewrite may oc-
cur once all of the expressions to the left have become values. So,
for the program above, the only rewriting rules that apply are those
that rewrite the thunk’s body. Once it contains only a pointer to a
store value, the outer application can proceed.

To modeleval, we use a technique similar to Muller’sreify [18].
TheR metafunction accepts a value and turns it back into a pro-
gram (theC function is used byR; it is just the syntactic analogue
of cons). OnceR completes, evaluation continues as usual. Of
course, reification may produce an s-expression containingquote.
In that case, the quote rules apply and put quoted date into the store
before evaluation continues.1

1 Most Scheme systems share quoted data even across calls to eval. For
example, our semantics produces#f for the following program, but most
Schemes produce#t.

((lambda (f)
(eqv?(f)

(eval(cons’quote(cons(f) ’())))))
(lambda () ’(x)))

We can adapt the definition ofR to handle this by special handling of
quoted forms during reification:

R J S, p1 K = v if Smapsp1 to (cons(quote quote) p2) and mapsp2

to (cons v’()).

which causes our semantics to produce#t for the above example, but this
technique does not scale to a full Scheme that includes macros.

As mentioned above, theevalwe present here and in section 6
is not as full-featured as theevalof the R5RS informal description
because it does not accept an environment argument. Modeling
an eval that took an environment argument would be somewhat
more involved but would essentially require only runningevaled
programs in an alternate store.

The technique used in this section applies generally to lan-
guages in which computation of a term proceeds in multiple phases
that must be considered together — it is not sufficient in our case to
write a preprocessor that moves quoted data in a program intothe
store because that program could calleval at runtime. Scheme’s
macros are similar in this respect, so the technique shown here
could be used as a basis for modeling them. Staged and partialeval-
uation could also be modeled using this technique.

5. Call/cc and dynamic-wind
Scheme’sdynamic-windfeature for annotating the dynamic extent
of a procedure call with entry and exit code that run wheneverthe
program flows into or out of that extent, either through normal pro-
gram evaluation or through the invocation of continuation objects
made bycall/cc (the latter situation being the more interesting one,
of course). Unfortunately, thoughdynamic-windhas a large impact
on the meaning of continuation objectscall/ccproduces, the R5RS
formal semantics does not include any mention of it and models
call/ccwithout respect to it. Here we will show how it works in the
context of the core Scheme with mutation presented in section 2.
Our strategy for modeling these new features is based heavily on
earlier treatments [4, 10, 12].

The language in figure 7 consists of the core Scheme with
mutation as shown in figure 1 augmented withcall/ccanddynamic-
wind. The basic strategy we take is to maintain a stack of all
dynamic-windcalls entered but not yet exited, which we call the
dynamic-wind stack. When we capture a continuation, we record
the current dynamic-wind stack. When we throw to a continuation
object, we use the difference between the current dynamic-wind
stack and that recorded dynamic-wind stack to determine which
pre andpostthunks need to be called.

48

p ::= (store ((ptr sv) · · ·) (dw (dws· · ·) e))
e ::= (e e· · ·) | (if e e e) | (if e e) | (set! x e) | (begin e e· · ·)

| (throw x dws· · · EC[e]) | (push (x e e) e) | (pop e)
| lam | mulam | v | x

lam ::= (lambda (x · · ·) e e· · ·)
mulam ::= (lambda (x · · · dot x) e e· · ·)
v ::= fun | nonfun
fun ::= cp | mp | #%cons | #%null? | #%pair?

| #%car | #%cdr | #%set−car! | #%set−cdr! | #%list
| #%+ | #%− | #%/ | #%∗ | #%call/cc
| #%dynamic−wind | #%values| #%call−with−values
| #%eqv?| #%apply | #%eval

nonfun ::= pp | number | #%null | #t | #f
| (quote symbol) | unspecified

PC ::= (store ((ptr sv) · · ·) DC)
DC ::= (dw (dws· · ·) EC◦)
EC ::= [] | (inert · · · EC◦

◦ inert · · ·)
| (if EC◦ e e) | (if EC◦ e) | (set! x EC◦)
| (begin EC e e· · ·)
| (#%call−with−values◦ (cwv-markEC∗) v◦)

EC◦ ::= []◦ | EC
EC∗ ::= []∗ | EC
inert ::= e | v◦

dws ::= (x cp cp)
sv ::= v | (#%cons v v) | lam | mulam
s ::= (s · · ·) | (s · · · dot nss) | nss
nss ::= number | #t | #f | [variable exceptdot]
SC ::= [] | (e · · · SCs · · ·)

| (if SCs s) | (if eSCs) | (if e eSC)
| (if SCs) | (if eSC)
| (set! x SC)
| (begin SCs · · ·) | (begine e· · · SCs · · ·)
| (throw x dws· · · SC) | (push (x SCs) s)
| (push (x eSC)s) | (push (x e e) SC) | (pop SC)
| (lambda (x · · ·) SCs · · ·)
| (lambda (x · · ·) e e· · · SCs · · ·)
| (lambda (x · · · dot x) SCs · · ·)
| (lambda (x · · · dot x) e e· · · SCs · · ·)
| (cconsSCs) | (cconsv SC)

var ::= [variable exceptdot and keywords]
x ::= [variable names]
pp ::= [pair pointers]
cp ::= [closure pointers]
mp ::= [µ closure pointers]
ptr ::= x | pp | cp | mp

Figure 8. Grammar for full Scheme semantics

That strategy is formally encoded in three parts. First, we add
a dynamic-wind stack to each program context. It contains one
dynamic context frame (dws) for each annotated dynamic extent
in which the current evaluation is taking place. A dynamic context
frame is a triple consisting of a unique identifier and thepre and
post thunks of the correspondingdynamic-windcall. The unique
identifier allows us to disambiguate multiple dynamic evaluations
of the same syntactic appearance of adynamic-windexpression.
Second, we add the primitive procedure valuedynamic-windto
the set of values, which expects each of its three arguments to
evaluate to a thunk. Then using the DWWIND rule it invokes its
pre thunk, pushes a dynamic context frame onto the stack with a
fresh identifier and its ownpreandpostthunks, evaluates its second
thunk, pops its dynamic context frame off the stack, evaluates its
postthunk, and finally returns the value its second thunk evaluated
to. To allow the program to manipulate the stack, we introduce the
pushandpop forms and their associated reduction rules DWPUSH
and DWPOP. The former pushes a new dynamic context frame onto
the end of the stack, and the latter pops the last context frame off
the stack (and then evaluates to the trivial value0, which is never
used). These two forms are intended to be used only bydynamic-
wind, never by the programmer directly.

The third piece iscall/cc. When call/cc is called, the DW-
CALLCC rule builds a continuation object that consists of a pro-
cedure of one argument, a fresh identifier we will callx. That pro-
cedure’s body is athrow form that consists of the current dynamic
stack and the expression formed by pluggingx into the hole of the
evaluation context where the application ofcall/cc itself was found.
A throw form is itself evaluated using the DWTHROW rule by dis-
carding the evaluation context in which it was found, replacing the
dynamic stack with its own stored dynamic stack, and replacing the
entire program body with a specially-constructedbeginexpression
built by theT metafunction (where T stands for “trim,” because
it trims away the common context frames leaving only the suffixes
whose pre- or post-thunks need to be executed). That function com-
pares its first argument, the dynamic-wind stack of the dynamic
context being exited, with its second argument, the dynamic-wind
stack of the context being entered. The first rule in its definition

simply discards any common prefix the two stacks may have, which
correspond to dynamic extents that were never left or entered dur-
ing the transitions from the time the continuation object was created
and the time it was invoked. Then, once the two stacks have been
trimmed to the point where they have distinct heads, the metafunc-
tion produces abegin expression consisting of applications of all
thepostthunks fromT ’s first argument, invoked in order, followed
by all thepre thunks fromT ’s second argument, invoked in reverse
order (which we indicate with the special notation· · ·r, indicating
a sequence being expanded out backwards).

6. Operational semantics for R5RS Scheme
This section combines the techniques from sections 2 through 5
with other known techniques for modeling programming languages
to build a model of R5RS Scheme that includes all the features from
those sections along withif and booleans, mathematical operations
(but not the numeric tower), list constructors, selectors,mutators
and predicates,µ-lambda procedures2, apply, and object identity-
based equivalence. Although this section appears large andcom-
plex at first, it is mostly just a simple combination of the previous
four sections.

This specification is executable, and the figures presented in
this section were automatically generated from the source code
that implements the specification. Since an executable specification
was an explicit goal of our work, we have made some modeling
choices that may not be obvious at first. For example, there are
many expressions whose return values are explicitly unspecified in
the R5RS Scheme document, such as the result of aset!expression.
A non-executable specification might model the evaluation of those
expressions using the rule schema

∀ v. PC[unspecified]→ PC[v]

2 Procedures declared with an improper list of formal arguments described
in section 4.1.4 of the Report that accept an arbitrary number of arguments
beyond a certain minimum. The name dates back at least to Indiana Univer-
sity’s Scheme 84 system whereMULAMBDA was a keyword used to declare
procedures that accepted any number of arguments and collected them in a
list [11].

49

meaning that an unspecified term reduces to any value. Instead, we
model unspecified results with a special valueunspecifiedthat has
no associated reduction rules and will cause programs that inspect it
to get stuck. We also chose to ignore out-of-memory errors. These
would be easy to add at the expense of a additional clutter when
visualizing traces: reductions from each allocation site to the out-
of-memory error would suffice.

6.1 Grammar

The grammar for R5RS Scheme programs is given in figure 8. In
that figure, a program (given by thep nonterminal) consists of a
store, a dynamic-wind stack, and an expression. Thee nontermi-
nal gives expressions, which in addition to standard Schemecore
forms can bethrow , push andpop, as in section 5. Values (v) are
either procedures or non-procedure values, but notice thatsyntactic
lambda terms are not values themselves. Instead, procedure val-
ues (fun) can be references to procedures in the store (cp andmp)
or the built-in procedures, while thelambda form, as we will see,
places new procedure values into the store when evaluated. Non-
procedure values (nonfun) include pair pointers, numbers,null,
booleans, symbols, and the unspecified value.

As in section 4, we write dotted pairs (as in the parameter list
of aµ-lambda) withdot rather than a period to avoid meta-circular
confusion in our PLT Redex implementation.

Section 6 of the R5RS Scheme specification indicates that prim-
itive procedures are bound to names in the initial environment, but
that those names can be mutated during the course of a program.
To model that, we use special names with#% prefixes to indicate
the actual built-in procedures, and we bind those values to their
#%-less names in the initial store:

(store ((list #%list) (cons #%cons) (car #%car) (cdr #%cdr)
(pair? #%pair?) (null #%null) (null? #%null?)
(set-car! #%set−car!) (set-cdr! #%set−cdr!)
(+ #%+) (− #%−) (/ #%/) (∗ #%∗)
(call/cc #%call/cc) (dynamic-wind #%dynamic−wind)
(values #%values) (call-with-values #%call−with−values)
(eqv? #%eqv?) (apply #%apply) (eval #%eval)) · · ·)

There are three different contexts we will make use of: program
evaluation contexts, dynamic-wind contexts, and expression con-
texts. Each program evaluation context (PC) contains a store, and
a dynamic-wind context. Each dynamic-wind context (DC) con-
tains a dynamic-wind stack and an expression context. Expression
contexts (EC) are the contexts in which program evaluation takes
place; they allow evaluation in marked sub-expressions of an ap-
plication (as in section 2), the test positions ofif expressions, in
set!expressions and in the first position in abegin (as long as there
are at least two expressions in thebegin). The evaluation context
for #%call−with−valuesis explained in section 6.7. The EC◦ and
EC∗ evaluation contexts andinert work like C◦ andC∗ and inert
from section 3.

The dws non-terminal corresponds to one frame of dynamic-
wind context information and its use is explained in section5. The
svnon-terminal generates values that appear in the store.

S-expressions (s andnss) and s-expression contexts (SC) cor-
respond to s-expressions and s-expression contexts from section 4.
There are more possible s-expression contexts in the full language
because there are more possible syntactic forms.

Finally, thex nonterminal represents both program variables and
binding locations, and thepp, cp, andmp nonterminals represent
pointers to pairs, fixed-arity procedures, and variable-arity proce-
dures, respectively. Theptr non-terminal is a short-hand for terms
that index into the store. One subtle point here is that thev pro-
duction producespp, cp, andmpbut notx. Those variables are not
included because free variables are not values and bound variables

have to be dereferenced before use, so neither qualifies as anirre-
ducible value.

6.2 Relations

In the remaining figures, we will make heavy use of various reduc-
tion relation symbols. The basic reduction relation we willuse is
→, which indicates that the program term on the left reduces in
one step to the term on the right. We also use two other relations to
aid in the system’s readability, defined in terms of the→ relation:

• (e1 · · · en) 7→◦ e′ iff PC[(e◦1 · · · e
◦

n)]→ PC[e′]
The application on the left reduces to the term on the right in
a program context, assuming that all of the expressions in the
application are marked.

• e→e error: s iff PC[e]→ error: s
The term on the left signals an error, halting the program imme-
diately.

6.3 Basic syntactic forms

Figure 9 shows rules for the basic syntactic forms. For theif form,
if the test position evaluates to anything other than#f, the term
rewrites to its “then” subexpression. If the test position evaluates
to #f, it rewrites to its “else” subexpression, if present,unspecified
otherwise. For thebegin form, the evaluation contexts defined in
figure 8 ensure that the first term of abegin expression containing
at least two expressions is evaluated fully; then these rules cause
begin expression that consists of a fully-evaluated value followed
by one or more expressions to rewrite to a newbegin expression
with the initial value dropped. These rules also specify that abegin
form with only a single expression reduces immediately to that
expression, even if that expression is not yet a value.

Because our model does not take into account R5RS Scheme’s
numeric tower, we model its numeric operations in terms of true
mathematical functions. We assume that we can identify the true
number represented by each numeric term and model each numeric
procedure by performing the appropriate mathematical operation
on those true numbers:+ is modeled by summation on the repre-
sented numbers,∗ is modeled by multiplication, and so on.

6.4 Cons and cons-cell mutation

The rules for constructing newconscells are given in figure 10.
Since all cons cells are mutable and therefore can be distinguished
even when they hold identical values, we cannot allow (#%cons v v)
to be a value itself. Instead, the#%consrule introduces a new pair
into the store and reduces to a pointer to that new pair. The (#%list
v1 · · ·) rule rewrites to ((lambda x x) v1 · · ·), taking advantage of
theµ-lambda application rules described in the next subsection.

Figure 11 gives rules forcar andcdr. Application of either pro-
cedure to a pair pointer rewrites to the contents of the appropriate
field in the pair being pointed to. If either selector is applied to a
non-pair value, the term rewrites to an error message.

The predicates in figure 12 are similarly simple. The#%pair?
procedure reduces to#t if its argument is identifiable as a pair
pointer and#f otherwise. The#%null? procedure reduces to#t if
and only if it is supplied with the built-in null value.

Figure 13 gives rules forset-car! and set-cdr!, for cons-cell
mutation. The#%set−car! and#%set−cdr! rules are the same as
thecar andcdr rules, respectively, except that instead of reducing
to the current value of appropriate component of the pair being
pointed to, they replace that component with the given replacement
then rewrite to an unspecified value.

6.5 Procedures and assignable variables

The rules in figure 14 handle variable lookup and variable assign-
ment: a binding pointer is replaced with its value in the store when

50

PC[(if v1 e1 e2)] → PC[e1]
(v1 6= #f)

PC[(if #f e1 e2)] → PC[e2]

PC[(if v1 e1)] → PC[e1]
(v1 6= #f)

PC[(if #f e1)] → PC[unspecified]

PC[(beginv e1 e2 · · ·)] → PC[(begine1 e2 · · ·)]

PC[(begine1)] → PC[e1]

(+ ⌈n⌉ · · ·) 7→◦ ⌈Σ n · · ·⌉

(− ⌈n1
⌉ ⌈n2

⌉ · · ·) 7→◦ ⌈n1 − (Σ n2 · · ·)⌉

(− ⌈n⌉) 7→◦ ⌈-n⌉

(∗ ⌈n⌉ · · ·) 7→◦ ⌈Π n · · ·⌉

(/ ⌈n1
⌉ ⌈n2

⌉ · · ·) 7→◦ ⌈n1 / (Π n2 · · ·)⌉

(/ ⌈n1
⌉) 7→◦ ⌈1 / n1⌉

Figure 9. Basic syntactic forms

(store ((ptr1 sv1) · · ·)
DC[(#%cons◦ vcar

◦ vcdr
◦)])

→ (store ((ptr1 sv1) · · · (pi (#%cons vcar vcdr)))
DC[pi])

(pi fresh)

PC[(#%list◦ v1◦ · · ·)] → PC[((lambda (dot l) l)◦ v1◦ · · ·)]

Figure 10. List constructors

(store ((ptr1 sv1) · · ·
(ppi (#%cons vcar vcdr))
(ptri+1 svi+1) · · ·)

DC[(#%car◦ ppi
◦)])

→ (store ((ptr1 sv1) · · ·
(ppi (#%cons vcar vcdr))
(ptri+1 svi+1) · · ·)

DC[vcar])

(#%car◦ vi
◦) →e error: can’t take car of non-pair

(vi 6∈ pp)

(store ((ptr1 sv1) · · ·
(ppi (#%cons vcar vcdr))
(ptri+1 svi+1) · · ·)

DC[(#%cdr◦ ppi
◦)])

→ (store ((ptr1 sv1) · · ·
(ppi (#%cons vcar vcdr))
(ptri+1 svi+1) · · ·)

DC[vcdr])

(#%cdr◦ vi
◦) →e error: can’t take cdr of non-pair

(vi 6∈ pp)

(#%null? #%null) 7→◦ #t

(#%null? vi) 7→◦ #f
(vi 6= #%null)

(#%pair? pp) 7→◦ #t

(#%pair? vi) 7→◦ #f
(vi 6∈ pp)

Figure 11. List accessors Figure 12. List predicates

dereferenced, and mutation of a binding pointer is represented by
replacing the value pointed to by the update.lambda is the only
binding form in this semantics, so the rules for procedure calls are
the only ones that introduce new bindings. Procedure calls are mod-
eled by two features: closure introduction and procedure applica-
tion.

The rules in figure 15 govern the introduction of closure val-
ues into the store. Like cons cells, procedures are not values, but
pointers to them are; procedures are modeled this way so thatwe
can modeleqv?more accurately. The allocation rule for fixed-arity
procedures is straightforward. The allocation forµ-lambda proce-
dures always puts two procedures into the store: a stubµ-lambda
procedure whose body contains a call to an ordinary procedure, and
an ordinary procedure that contains the originalµ-lambda’s body
expressions.

The reason for arranging the system this way is so that when a
µ-lambda procedure is applied, we can rewrite it into a correspond-
ing call to the fixed-arity code pointer and thereby use the same re-
duction for both kinds of applications. The rules in figure 16show
this and the rest of the rules for application in detail. The first rule
shows how marks are placed in applications, which is just as in
section 2. Application of a procedure pointer to arguments is mod-

eled by creating one new binding pointer in the store per formal
argument where the value being pointed to by each pointer is the
argument supplied in the appropriate position, and rewriting to the
procedure’s body with these new bound-variable pointers substi-
tuted for occurrences of the formal arguments.

Application of aµ-lambda allocates a list for its extra argu-
ments, applies the initial portion of the arguments as usual, and
applies the extra arguments into the last argument of the procedure
that actually contains the body expressions. The functionL used
here is a metafunction that builds the syntax of acons-list from its
arguments:

L J x y · · · K = (#%cons xL J y · · · K)
L J K = #%null

The last rules specify the behavior of Scheme’sapplyprocedure
which accepts a procedure and an arbitrary number of arguments,
the last of which must be a list. It calls the procedure with the
arguments and the contents of the list as subsequent arguments. To
model it, the first two#%applyrules flatten out the argument list
and, when the list is exhausted, reduce to a normal application.

51

(store ((ptr1 sv1) · · ·
(ppi (#%cons vcar vcdr))
(ptri+1 svi+1) · · ·)

DC[(#%set−car!◦ ppi
◦ vnew

◦)])

→ (store ((ptr1 sv1) · · ·
(ppi (#%cons vnew vcdr))
(ptri+1 svi+1) · · ·)

DC[unspecified])

(#%set−car!◦ v1◦ v◦) →e error: can’t set-car! on a non-pair
(v1 6∈ pp)

(store ((ptr1 sv1) · · ·
(ppi (#%cons vcar vcdr))
(ptri+1 svi+1) · · ·)

DC[(#%set−cdr!◦ ppi
◦ vnew

◦)])

→ (store ((ptr1 sv1) · · ·
(ppi (#%cons vcar vnew))
(ptri+1 svi+1) · · ·)

DC[unspecified])

(#%set−cdr!◦ v1◦ v◦) →e error: can’t set-cdr! on a non-pair
(v1 6∈ pp)

(store ((ptr1 sv1) · · ·
(xi svi)
(ptri+1 svi+1) · · ·)

DC[xi])

→ (store ((ptr1 sv1) · · ·
(xi svi)
(ptri+1 svi+1) · · ·)

DC[svi])

(store ((ptr1 sv1) · · ·
(xi svi)
(ptri+1 svi+1) · · ·)

DC[(set!xi vnew)])

→ (store ((ptr1 sv1) · · ·
(xi vnew)
(ptri+1 svi+1) · · ·)

DC[unspecified])

Figure 13. Cons cell mutation Figure 14. Variable mutation and lookup

(store ((ptr1 sv1) · · ·)
DC[lami])

→ (store ((ptr1 sv1) · · · (cpi lami))
DC[cpi])

(cpi fresh)

(store ((ptr1 sv1) · · ·)
DC[(lambda (x1 · · · dot xr) e1 e2 · · ·)])

→ (store ((ptr1 sv1) · · ·
(mpi (lambda (x1 · · · dot xr) (cpi x1 · · · xr)))
(cpi (lambda (x1 · · · xr) e1 e2 · · ·)))

(mpi , cpi fresh)

Figure 15. Procedure introduction

PC[(inert1 · · · ei inerti+1 · · ·)] → PC[(inert1 · · · ei
◦ inerti+1 · · ·)]

(store ((ptr1 sv1) · · ·
(cpi (lambda (x1 · · ·) ebody1 ebody2 · · ·))
(ptri+1 svi+1) · · ·)

DC[(cpi◦ varg1
◦ · · ·)])

→ (store ((ptr1 sv1) · · ·
(cpi (lambda (x1 · · ·) ebody1 ebody2 · · ·))
(ptri+1 svi+1) · · ·
(xarg2 varg1) · · ·)

DC[(beginebody1 ebody2 · · ·)[x1 · · · /xarg2 · · ·])])
(#xarg = #varg , xarg2 · · · fresh)

(store ((ptr sv) · · ·
(cpi (lambda (x1 · · ·) e e· · ·))
(ptr sv) · · ·)

DC[(cpi◦ varg1
◦ · · ·)])

→ error: arity mismatch
(#xarg 6= #varg)

(store ((ptr1 sv1) · · ·
(mpi (lambda (x1 · · · dot y) (cpt x1 · · · y)))
(ptri+1 svi+1) · · ·)

DC[(mpi vn1
◦ · · · vR

◦ · · ·)])

→ (store ((ptr1 sv1) · · ·
(mpi (lambda (x1 · · · dot y) (cpt x1 · · · y)))
(ptri+1 svi+1) · · ·)

DC[(cpt vn1
◦ · · · L J vR

◦ · · · K)])
(#x= #vn)

(store ((ptr sv) · · ·
(mpi (lambda (x1 · · · dot x) (cp x· · ·)))
(ptr sv) · · ·)

DC[(mpi◦ varg1
◦ · · ·)])

→ error: too few arguments
(#xarg < #varg)

(nonfun◦ v◦ · · ·) →e error: can’t apply non-function

(store ((ptr1 sv1) · · ·
(ppi (#%cons vcar vcdr))
(ptri+1 svi+1) · · ·)

DC[(#%apply◦ vf
◦ varg1

◦ · · · ppi
◦)])

→ (store ((ptr1 sv1) · · ·
(ppi (#%cons vcar vcdr))
(ptri+1 svi+1) · · ·)

DC[(#%apply◦ vf
◦ varg1

◦ · · · vcar
◦ vcdr

◦)])

(#%apply vf varg1 · · · #%null) 7→◦ (vf varg1 · · ·)

(#%apply◦ vf
◦ varg1

◦ · · · vlast
◦) →e error: apply must take a list as its last argument

(vlast 6∈ pp∪ {#%null})

Figure 16. Procedure application

52

(store ((ptrs svs) · · ·)
(dw (dws1 · · ·)

EC1[(#%call/cc◦ v1◦)]))
→ (store ((ptrs svs) · · ·)

(dw (dws1 · · ·)
EC1[(v1 (lambda (dot args)

(throw xk dws1 · · ·
EC1[(begin xk (#%apply #%values args))])))]))

(x, xk fresh)

(store ((ptrs svs) · · ·)
(dw (dws1 · · ·)

EC1[(#%dynamic−wind◦ cp1◦ cp2◦ cp3◦)]))
→ (store ((ptrs svs) · · ·)

(dw (dws1 · · ·)
EC1[(begin (cp1)

(push (x1 cp1 cp3)
((lambda (x2) (pop (begin (cp3) x2)))

(cp2))))]))
(x1, x2 fresh)

(store ((ptrs svs) · · ·)
(dw (dws1 · · ·)

EC1[(pushdws2 enext)]))
→ (store ((ptrs svs) · · ·)

(dw (dws2 dws1 · · ·)
EC1[enext]))

(store ((ptrs svs) · · ·)
(dw (dws1 dws2 · · ·)

EC1[(pop enext)]))
→ (store ((ptrs svs) · · ·)

(dw (dws2 · · ·)
EC1[enext]))

(store ((ptrs svs) · · ·)
(dw (dws1 · · ·)

EC1[(throw xk dws2 · · · EC2[e2])]))
→ (store ((ptrs svs) · · ·)

(dw (dws2 · · ·)
(beginT J(dws2 · · ·), (dws1 · · ·) K

EC2[e2]))

Figure 17. Call/cc and dynamic-wind Figure 18. Call/cc and dynamic-wind support

PC[v1]∗ → PC[(#%values◦ v1◦)]

PC[(#%values◦ v1◦)]◦ → PC[v1]

PC[(#%values◦ v1◦ · · ·)]◦ → error: wrong number of values
(#v1 6= 1)

(#%call−with−values vvals vfun) 7→◦ (#%call−with−values◦

(cwv-mark(vvals))
vfun

◦)

PC[(#%call−with−values◦

(cwv-mark(#%values◦ varg
◦ · · ·))

vfun
◦)]

→ PC[(vfun
◦ varg

◦ · · ·)]

(#%call−with−values◦ vi
◦ · · ·) →e error: arity mismatch

(#vi 6= 2)

(#%eqv? ppi ppi) 7→◦ #t

(#%eqv? cpi cpi) 7→◦ #t

(#%eqv? number1 number1) 7→◦ #t

(#%eqv? v1 v1) 7→◦ #t

PC[(#%eqv?◦ v1◦ v2◦)] → PC[#f]
(v1 6= v2)

(#%eqv?◦ v1◦ · · ·) →e error: arity mismatch
(#v1 6= 2)

Figure 19. Multiple values and call-with-values Figure 20. Eqv and equivalence

6.6 Call/cc

Our technique for modelingcall/cc anddynamic-wind, shown in
figures 17 and 18, is essentially the technique from section 5.
Apart from the change of using procedure pointers rather than the
literal source text of procedures as required to model equality (see
section 6.8), the only substantial change is that the continuation
procedures in this model accept any number of arguments. The
trimming metafunctionT is the same function defined in section 5.

6.7 Multiple values and call-with-values

Multiple values in the full language are nearly identical tomulti-
ple values in section 3, and in particular the context arrangement
and promotion and demotion rules are the same. Furthermore,even
though the present system is much larger than the system presented
in section 3, the rules for multiple values are still completely or-
thogonal to the rules that implement the other features.

There is one twist, though, since rather than theapply-values
primitive given in section 3, R5RS Scheme providescall-with-
values, so we model it directly. To do so, we have to use the mech-
anisms described in section 3, along with a new context containing
cwv-mark. A term of the form (#%call−with−values thunk f) re-
duces to (#%call−with−values(cwv-mark(thunk)) f); that is, it
places a special mark around the application of the thunk to no
arguments. At that point the evaluation contexts defined in fig-
ure 8 will apply and reduce the applied thunk in a multi-valuecon-
text. When that reduction sequence yields a result (which will be a
multiple-values expression), the entirecall-with-valuesexpression
reduces to the application of the second procedure to those pro-
duced values.

6.8 Eqv? and equivalence

Figure 20 shows the rules foreqv?. Since all mutable values (and
procedures) are allocated in the store,eqv? is a simple matter

53

(store ((ptr1 sv1) · · ·)
DC[(#%eval◦ v1◦)])

→ (store ((ptr1 sv1) · · ·)
DC[R J((ptr1 sv1) · · ·), v1K])

(store ((ptr1 sv1) · · ·)
(dw (dws1 · · ·)

EC1[SC1[(quote (s1 s2 · · ·))]]))

→ (store ((ptr1 sv1) · · ·)
(dw (dws1 · · ·)

EC1[SC1[(ccons(quote s1) (quote (s2 · · ·)))]]))

(store ((ptr1 sv1) · · ·)
(dw (dws1 · · ·)

EC1[SC1[(quote ())]]))

→ (store ((ptr1 sv1) · · ·)
(dw (dws1 · · ·)

EC1[SC1[#%null]]))

(store ((ptr1 sv1) · · ·)
(dw (dws1 · · ·)

EC1[SC1[(quote number1)]]))

→ (store ((ptr1 sv1) · · ·)
(dw (dws1 · · ·)

EC1[SC1[number1]]))

(store ((ptr1 sv1) · · ·)
(dw (dws1 · · ·)

EC1[SC1[(cconsv1 v2)]]))

→ (store ((ptr1 sv1) · · · (pp1 (#%cons v1 v2)))
(dw (dws1 · · ·)

EC1[SC1[pp1]]))
(pp1 fresh)

Figure 21. Quote and eval

of checking that the two values supplied have identical syntactic
structure (which we indicate here, as PLT Redex does, by repeating
the same subscript for both arguments to theeqv?procedure to
indicate that the two subterms must be identical).

6.9 Quote and eval

The rules for#%evalandquote in figure 21 are essentially the same
as the rules forevalandquote in section 4. The main difference is
that the rewriting rules for replacing quote are nested an SCcontext
inside an EC context. This only matters when using#%eval. In
particular, if the call to#%eval is in some marked context, SC
will not match properly, due to the marks. In the smaller calculus,
we could get away with just using SC, since it also encompassed
evaluation contexts, but here we must be explicit. The reifyfunction
(R) used here is as defined in section 4.

7. Related Work
Reduction semantics has been used to model large programming
languages many times and in many different ways. Felleisen’s dis-
sertation [3], which introduced context-sensitive reduction seman-
tics, gives a formulation of a substantially smaller language than
the one we present here that he calls “idealized Scheme,” and
Felleisen extends that model into theλ-v-CS calculus in later
work [4]. Since then, reduction semantics have been used to model
the cores of many languages including Emacs Lisp [19], MultiL-
isp [7], Java [9], ML [13, 24] and Concurrent ML [21] among many
others. Harper and Stone present a formal semantics for Standard
ML that includes a dynamic semantics encoded using a variation
on Wright and Felleisen’s notation; it is the largest example of a
programming language semantics given in a variant of reduction
semantics we have found in the literature (with the possibleexcep-
tion of our own semantics for R5RS Scheme).

There has also been extensive work on the semantics of Scheme.
Clinger presented an operational semantics for a core Scheme in
the development of the notion of space efficiency [2]. Gasbichler,
Knauel, Sperber, and Kelsey have presented operational andde-
notational semantics fordynamic-wind[12]. Ramsdell presented a
structural operational semantics for Scheme aimed at fixingthe un-
specified order of argument evaluation problem we discuss insub-
section 2 [20]. His model is less complete than ours (for instance,
it does not include multiple return values) and is tied much more
closely to the R5RS Scheme formal semantics. Van Straaten has
written an interpreter based on the R5RS Scheme denotational se-

mantics [23], but we know of no formal correspondence between
his program and the denotational semantics itself.

8. Conclusion
We have presented a semantics for R5RS Scheme using context-
sensitive reduction semantics developed using PLT Redex. To the
best of our knowledge, it formalizes more of the language than
any other semantics for the language. In addition it shows how
to model R5RS Scheme-style multiple return values in an small-
step operational semantics setting for the first time, and gives a
new model for unspecified sequential evaluation orders thatuses
nondeterministic choice. In the process, we have introduced several
new techniques for modeling programming language featureswith
term rewriting.

PLT Redex and the source code for all the models presented in
this paper, including our executable model of R5RS Scheme, are
available for download at

http://www.cs.uchicago.edu/˜jacobm/r5rs/

Acknowledgments
Thanks to Kent Dybvig and Matthew Flatt for helpful discussions
of the technical details presented here and the inner workings of
Chez Scheme [1] and MzScheme [8]. Thanks also to John Reppy
and Dave MacQueen and the anonymous reviewers for their helpful
suggestions.

References
[1] Cadence Research Systems.ChezScheme Reference Manual, 1994.
[2] William D Clinger. Proper tail recursion and space efficiency.

In Proceedings of ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 174–185, June 1998.

[3] Matthias Felleisen.The Calculi of Lambda-v-CS Conversion: A
Syntactic Theory of Control and State In Imperative Higher-Order
Programming Languages. PhD thesis, Indiana University, 1987.

[4] Matthias Felleisen. Lambda-v-CS: and extended lambda-calculus for
Scheme. InProceedings of the Conference on LISP and Functional
Programming, 1988.

[5] Matthias Felleisen and Matthew Flatt. Programming languages and
lambda calculi. Available online: http://www.cs.utah.edu/plt/

publications/pllc.pdf, 2003.
[6] Matthias Felleisen and Robert Hieb. The revised report on the

syntactic theories of sequential control and state.Theoretical

54

Computer Science, 102:235–271, 1992. Original version in: Technical
Report 89-100, Rice University, June 1989.

[7] Cormac Flanagan and Matthias Felleisen. The semantics of future
and an application.Journal of Functional Programming, 9:1–31,
1999.

[8] Matthew Flatt. PLT MzScheme: Language manual. Techni-
cal Report TR97-280, Rice University, 1997. http://www.plt-
scheme.org/software/mzscheme/.

[9] Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen. A
programmer’s reduction semantics for classes and mixins.Formal
Syntax and Semantics of Java, 1523:241–269, 1999. Preliminary
version appeared in proceedings ofPrinciples of Programming
Languages, 1998. Revised version is Rice University technical report
TR 97-293, June 1999.

[10] Daniel P. Friedman and Christopher T. Haynes. Constraining control.
In Proceedings of the ACM Conference Principles of Programming
Languages, 1985.

[11] Daniel P. Friedman, Christopher T. Haynes, Eugene Kohlbecker, and
Mitchell Wand. Scheme 84 interim reference manual. Technical
Report 153, Indiana University Computer Science, 1985.

[12] Martin Gasbichler, Eric Knauel, Michael Sperber, and Richard A.
Kelsey. How to add threads to a sequential language without getting
tangled up. InProceedings of the 2003 Scheme Workshop, 2003.

[13] Robert Harper and Mark Lillibridge. Explicit polymorphism and
CPS conversion. InProceedings of the ACM Conference Principles
of Programming Languages, 1993.

[14] David Herman and Philippe Meunier. Improving the static analysis of
embedded languages via partial evaluation. InProceedings of ACM
SIGPLAN International Conference on Functional Programming,
pages 16–27, New York, NY, USA, 2004. ACM Press.

[15] Rickard Kelsey, William Clinger, and Jonathan Rees (Editors).
Revised5 report of the algorithmic language Scheme.ACM SIGPLAN
Notices, 33(9):26–76, 1998.

[16] Jacob Matthews. Operational semantics for Scheme via term
rewriting. Technical Report TR-2005-02, University of Chicago,
2005.

[17] Jacob Matthews, Robert Bruce Finder, Matthew Flatt, and Matthias
Felleisen. A visual environment for developing context-sensitive term
rewriting systems. InProceedings of the International Conference on
Rewriting Techniques and Applications (RTA), 2004.

[18] Robert Muller. M-LISP: A representation-independentdialect of
LISP with reduction semantics.ACM Transactions on Programming
Languages and Systems, 14(4), 1992.

[19] Matthias Neubauer and Michael Sperber. Down with Emacs
Lisp: Dynamic scope analysis. InProceedings of ACM SIGPLAN
International Conference on Functional Programming, 2001.

[20] John D. Ramsdell. An operational semantics for Scheme.Lisp
Pointers, volume 2, April–June 1992.

[21] John Reppy.Concurrent Programming in ML. Cambridge University
Press, 1999.

[22] Gerald Jay Sussman and Jr Guy Lewis Steele. Scheme: An interpreter
for extended lambda calculus. Technical Report AI Lab Memo AIM-
349, MIT AI Lab, 1975.

[23] Anton van Straaten. An executable denotational semantics for
Scheme. http://www.appsolutions.com/SchemeDS/.

[24] Andrew Wright and Matthias Felleisen. A syntactic approach to type
soundness.Information and Computation, pages 38–94, 1994. First
appeared as Technical Report TR160, Rice University, 1991.

55

Commander S — The shell as a browser

Martin Gasbichler Eric Knauel
Universiẗat Tübingen

{gasbichl,knauel}@informatik.uni-tuebingen.de

Abstract
Commander S is a new approach to interactive Unix shells based
on interpretation of command output and cursor-oriented termi-
nal programs. The user can easily refer to the output of previous
commands when composing new command lines or use interactive
viewers to further explore the command results. Commander Sis
extensible by plug-ins for parsing command output and for view-
ing command results interactively. The included job control avoids
garbling of the terminal by informing the user in a separate widget
and running background processes in separate terminals. Comman-
der S is also an interactive front-end to scsh, the Scheme Shell, and
it closely integrates Scheme evaluation with command execution.
The paper also shows how Commander S employs techniques from
object-oriented programming, concurrent programming, and func-
tional programming techniques.

1. Introduction
Common Unix shells such astcsh or bash make no effort to
understand the output of the commands and built-in commands
they execute on the behalf of the user. Instead they simply direct
the output to the terminal and force the user to interpret thetext
own her own. As subsequent commands often build on the output
of previous commands, the user needs to enter text that has been
output by previous commands. As an example, consider a user that
wants to terminate her browser because it hangs once again. She
only knows the name of the executable (netscape) but not the
process ID. Hence she first executes theps command:

ps
PID TIME COMMAND
704 0:00.30 tcsh
1729 6:01.35 xemacs (xemacs-21.4.17)
1740 8:10.03 netscape
5823 0:00.07 tcsh

From the output, she learns that the process ID of the browseris
1740. Now she can issue thekill command:

kill 1740

Even though the previousps command already emitted the process
ID 1740, the user has to enter the number manually and double-
check to get the right one. Killing processes by name is so common
that there is a wide-spread Perl program calledkillall that termi-
nates all running processes with a given name. However,killall

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Sixth Workshop on Scheme and Functional Programming.September 24, 2005,
Tallinn, Estonia.
Copyright c© 2005 Martin Gasbichler, Eric Knauel.

Figure 1. Commander S

is not appropriate if multiple processes with the same name exist
but only one of them is to be terminated.

Commander S takes a different approach to the concept of
an interactive Unix shell: Commander S tries to understand the
output of the commands it executes and present it to the user in
such a way that the user can easily refer to the output of previous
commands. To that end, Commander S draws a user interface on
the terminal using the ncurses library. It divides the screen into
three areas as shown in Figure 1: The upper half of the screen
occupies thecommand windowwhere the user enters the command
line. The command line provides the usual line editing facilities
such as cursor movement. Below is a small window, called the
current command window, which shows the last command being
executed. Theresult windowcovers the rest of the screen and
contains the output of the last command. The crucial point ofthe
result window is that Commander S presents—for an extensible set
of known commands—the result of the commands not simply as
text but as structured data. The user can change the focus from the
command buffer to the result buffer andexplore the result. This
means that through various key-bindings, the user can invoke other
commands that apply to the data presented in the result window.
Furthermore, the user canpastethe data from the result window
into the command window to complete the next command line.

56

In the case of the example above, Commander S knows that the
result of theps command is a list of processes. It presents this list
in the result window as follows:

PID TIME COMMAND
704 0:00.30 tcsh

1729 6:01.35 xemacs (xemacs-21.4.17)
1740 8:10.03 netscape
5823 0:00.07 tcsh

The result window shows the first line with inverted colors because
it is the focus object. Some key-bindings modify the focus object
only, while others affect the entire result window. Of course, the
user can also change the focus object with key strikes. For the list
of processes, she needs to press the up and down arrows. To return
to the task of killing the browser, user needs to press the down key
twice and can then press the key for sending the focus object to the
command window. Now, she only needs to add thekill command
to the command line and press the return key to invoke it. If the
user were to kill several processes, she would have to mark them
for selection by making one after the other the focus object and
pressing the marking key. Then the key for pasting the selection will
send them to the command window. Sometimes it is desirable to
build the command line not only from the results for the most recent
command but from one or more commands that were executed
earlier. To support this, Commander S maintains a history for the
result buffer in which the user can go backwards and forwardsas
necessary. This history makes the old results immediately available
and the user does not need to use the scrolling facility of the
terminal if a command with a larger amount of output happenedto
be before the result the user is searching for. The current command
window always informs the user, which command line produced
the output in the result window.

Commander S is also an interactive front-end to scsh, the
Scheme Shell. This is realized by a second mode, calledScheme
mode, for the command window, to which the user can switch from
the standardcommand modewith a single key press. The interac-
tion between result window and command window also works for
the Scheme mode, but the representation of the pasted objects are
s-expressions in this case. The combination of both modes enables
the user to combine the power of Scheme with the brevity of shell
commands.

In addition, Commander S extends the job control features of
common Unix shells. First, the job control facility displays the
list of current jobs in the result buffer with key-bindings for the
common commands such as putting a job into foreground or back-
ground. Second, Commander S uses the ncurses library to contin-
uously display the status of the all current jobs. Finally, Comman-
der S can execute a background job with a separate terminal and
allows the user to switch to the terminal, view the running output,
or enter new input. To that end, Commander S provides a terminal
emulation which stores the output of the process.

1.1 Overview

Section 2 explains some programming techniques and particular li-
braries used for implementing Commander S. Section 3 gives an
overview on Commander S’s kernel and describes the implemen-
tation of some central features of the user interface. Section 4 de-
scribes the interface for writing new viewers. Section 5 pictures
some standard viewers such as the process viewer and the directory
viewer. Section 6 provides details on the job control implemented
by Commander S. Section 7 lists some related work, and Section 8
concludes and presents future work.

2. Preliminaries
This section explains some programming techniques and libraries
used to implement Commander S. A reader familiar with the par-
ticular techniques may choose to skip the corresponding sections.

2.1 Object-oriented Programming in Scheme

Theviewersdescribed in Section 5 and Section 4 undertake the task
of displaying the result of a command according to its structure.
Viewers are implemented in terms of object-oriented programming
(Section 4 motivates this design decision). We used the object sys-
tem proposed by Adams and Rees [2] as a foundation. This system
is elegant, easy to implement and very powerful. The complete ma-
chinery needed for the object system is given by functions shown
in Figure 2. The system represents an object as a procedure that
binds the instance variables in its closure and accepts a message (a
symbol) as its sole argument. It dispatches on the message and re-
turns the corresponding method as a procedure (seeget-method).
All methods accept the object as their first argument to ensure that
overridden methods always get the correct object. Hence,send, the
construct for calling a method, callsget-method first to acquire
the actual method and calls that method with the object itself plus
the arguments passed tosend.

2.2 Concurrent Programming using the Concurrent ML API

Commander S is implemented as a concurrent application spawn-
ing various threads. To synchronize the threads, CommanderS em-
ploys a Scheme implementation of the Concurrent ML (CML, for
short) concurrency functionality [7]. The implementationis given
as a library that is part ofSunterlib, the Scheme Untergrund Li-
brary [1]. This section provides a short introduction to thesubset
of the CML API used throughout the implementation of Comman-
der S.

CML offers a collection of data-structures for the communica-
tion between threads. For the implementation of Commander S,
synchronous channelsandplaceholdersare important. A channel
offers asend operation that posts a value to channel and areceive
operation that reads a value posted to the channel. The commu-
nication is synchronous, thus, asend operation returns exactly at
the time when another thread tries toreceive a value from the
channel (and vice versa). A placeholder is an updateable cell, al-
lowing exactly one assignment. A thread reading the value ofa
placeholder withplaceholder-value blocks until another thread
updates placeholder with a value usingplaceholder-set!. Up-
dating a placeholder already containing a value yields an error.

The CML frameworks allows the decoupling of describing a
synchronous operation from actually performing the operation.
Thus, synchronous operations become first-class values, called
rendezvousin the CML notation. Thereceive operation on a
synchronous channel, for example, is composed of generating a
rendezvous that describes synchronous operation (e. g. “receive a
message on a channel”) and waiting till the rendezvous actually
occurs. Thus,receive is implemented as follows:

(define (get-method object message)
(object message))

(define method? procedure?)

(define (send object message . args)
(let ((method (get-method object message)))
(if (method? method)

(apply method (cons object args))
(error "No method" message))))

Figure 2. Machinery for the object system.

57

(define (receive channel)
(sync (receive-rv channel)))

In whichreceive-rv is a constructor for rendezvous that describe
a receive operation on a synchronous channel andsync is the
function that blocks the thread until a rendezvous actuallytakes
place, or phrased in CML terminology, becomesenabled. Send and
placeholder-value may be decomposed in the very same way
usingsend-rv andplaceholder-value-rv.

CML provides combinators that combine multiple rendezvous
to a more complex rendezvous. The most important combinator
is choose, which waits for the first rendezvous from a given list
of rendezvous to become enabled. Commander S frequently uses
select, the synchronous variant ofchoose. Thewrap combinator
allows associating apost-synchronization actionin form of a func-
tion with a rendezvous. When the rendezvous becomes enabled,
the associated action is carried out. Function that serve asthe post-
synchronization actions accept one value — the value that becomes
available upon synchronization of the corresponding event. For a
receive operation, for example, the value given to the action func-
tion is the value received via the channel. The following example
code illustratesselect andwrap:

(select
(wrap (receive-rv channel-1)

(lambda (value)
(placeholder-set! p value)))

(wrap (placeholder-value-rv q)
(lambda (value)
(send channel-2 value))))

Here, select combines two rendezvous associated with post-
synchronization actions and blocks until the first rendezvous
becomes enabled. The first rendezvous in question describesa
receive-operation on a synchronous channel namedchannel-1.
Wrap associates a function with this rendezvous that places the
value received viachannel-1 in a placeholderp. The second ren-
dezvous describes the synchronous operation of waiting forthe
value of placeholderq becoming available. This rendezvous is also
associated with a post-synchronization function which takes the
value that just became on-hand and sends it tochannel-2.

2.3 The ncurses library

Ncurses [3] is a C library that provides a high-level interface to
terminal control. In practice a multiplicity of terminal emulations,
each having their own control sequences, is in use. Thus, even small
tasks like placing the cursor at a certain position on the screen be-
come complex. To assure that an application is portable, theap-
plications needs to know the escape codes of many terminal em-
ulations. Ncurses relieves the programmer of this task. Given a
standardized abstract description of a terminal emulation, a so-
called terminfoentry, usually provided by the maker of the oper-
ating system, ncurses learns a particular terminal emulation. The
high-level interface of ncurses provides functions for creating over-
lapping windows, outputting text, controlling the color ofoutput,
and placing the cursor. Ncurses also offers a functionwgetch for
reading input from the terminal that decodes the control sequences
the terminal emulation uses to encode special keys (such as cursor
movement), to a standard representation. We set aside a survey of
the ncurses functions used and instead explain their functionality
where occur in the following sections.

A separate library for scsh, calledscsh-ncurses, provides
Scheme bindings for all ncurses functions using scsh’s foreign
function interface. Writing the stubs needed to encode and de-
code C and Scheme values and calling the ncurses functions isal-
most straightforward. Justwgetch requires special attention. The
wgetch function reads a character from the terminal, decodes the
control sequence if necessary, and returns an integer key code. If
no input is available, the behavior ofwgetch depends on a global

mode: indelay mode, the function blocks the process until the in-
put becomes available, whereas innon-delay modethe functions
yields an error. From the perspective of a scsh user, either mode is
unfavorable. Callingwgetch in delay-mode blocks the whole scsh-
process and subsequently all Scheme threads.1 In non-delay mode,
a Scheme thread waiting for input would have to wait busily, thus
waste processor time. A preferable mode of operation is to block
solely the Scheme thread callingwgetch. To achieve this behavior,
scsh-ncurses callswgetch in non-delay mode at first. Ifwgetch
yields an error,scsh-ncurses calls scsh’sselect on the termi-
nal to block the Scheme thread callingselect until the terminal
becomes available for reading. Scsh uses the Unixselect call in-
ternally to wait for the file and socket descriptors associated with
Scheme ports to become ready for reading and writing. Scsh also
offers select as Scheme function, which adds the Scheme ports
supplied as arguments to the list of file descriptors to watchwith
the internalselect.

3. Commander S’s kernel
The introduction left unspecified how Commander S recognizes the
meaning of a command’s output. The idea is not to execute the pro-
gram directly, but hand over this task to a function that runsthe
program and parses its output. In the notion of Commander S this
function is acommand plug-in. A command plug-in registers itself
as a wrapper for the execution of a certain program. Displaying the
parsed output in the result buffer is not in the field of duty ofthe
command plug-in. Instead,viewer plug-inspresent the output in a
structured way. A viewer plug-in registers itself as the presenter for
results of a certain type. Command plug-ins are expected to pro-
duce a result value of a distinguishable type. Thus, Commander S
decouples command evaluation from presentation of the output.

The kernel of Commander S may be regarded as a read-eval-
print-loop. Basically, a central event loop processes the input, in-
vokes a command plug-in or executes an external program, and
chooses the viewer plug-in to present the result in the result buffer.
In Scheme mode, usual Scheme evaluation takes place, but there-
sult is displayed using viewer plug-ins as well. Thus, the evalu-
ation of Scheme expressions also benefits of the power of viewer
plug-ins. This section describes the crucial parts of Commander S’s
kernel.

3.1 Event loop

A central event loop receives all input of the terminal and decides
what to do. Basically, the decision depends on two factors: which
window has the focus and whether the key pressed has special
meaning.

Keys with special meaning, such as thereturn key, are treated
by the kernel. Thereturn key triggers the evaluation of a com-
mand.Cursor-up andpage-up or cursor-down andpage-down
keys move through the command history and result history, respec-
tively (see Section 3.6). The key sequenceControl-x is treated
as a prefix, and thus modifies the meaning of the next key press.
The sequenceControl-x o switches the buffer currently focused.
Control-x p andControl-x P paste the current selection and
the current focus value, respectively, into the command buffer (see
Section 3.3).

If the command window has the focus and the key has no special
meaning to the kernel, the key event is passed to the functionim-
plementing line-editing (see Section 3.5), which interprets the key
accordingly and updates the command buffer. Before continuing in
the event loop, the command window needs to be updated to reflect
the new state of the command buffer. Thus, the event loop calls a
function to repaint the affected part of the command window.

1 Scsh employs a user-level thread system

58

〈command-line〉 ::= 〈cmd〉 (〈comb〉 〈cmd〉)∗ 〈job〉?

〈cmd〉 ::= 〈prog〉 〈arg〉∗ 〈redir〉∗

〈redir〉 ::= (> | < | >>) 〈fname〉
| << 〈s-expr〉

〈comb〉 ::= | | && | || | ;
〈job〉 ::= & | &*
〈prog〉 ::= 〈str〉 | 〈unquote〉
〈fname〉 ::= 〈str〉 | 〈unquote〉
〈unquote〉 ::= ,〈s-expr〉 | ,@〈s-expr〉

〈str〉 ::= 〈scheme-string〉
| c+ c 6∈ {&, |, <, >, ,}

Figure 3. Command language

If the result window has the focus, the key event is passed to the
viewer currently visible in the result window. Thus, exceptfor the
key sequences listed above, a viewer gets all key events.

3.2 Executing commands

How Commander S executes a command depends on whether the
command has been entered in Scheme mode or command mode. If
the command buffer is in Scheme mode, the kernel expects the line
entered to be a Scheme expression and evaluates it usingeval. The
command mode, in contrast, works akin the prompt of a traditional
shell.

The commands entered in the command mode must conform
to the command languageof Commander S. Figure 3 shows a
grammar for the command language. Except for some minor dif-
ferences, this language largely accords to the syntax for commands
that users are accustomed to by traditional shells. A notable dif-
ference concerns strings, which Commander S models like scsh.
While a shell liketcsh distinguishes strings in single quotes,
double quotes, and backward quotes (for using the output of a
command as a string), strings in Commander S’s command lan-
guage are always Scheme strings. The command language is im-
plicitly quasiquoted. Thus, in contexts where a string is expected,
the user may use unquote and specify a Scheme expression to be
evaluated. Results of the evaluated expression may be a string, a
symbol, or an integer. This way, thetcsh commandkill ‘cat
/var/run/httpd.pid‘ that employs backward quotes to use the
contents of the file/var/run/httpd.pid as an argument forkill
may be written askill ,(run (cat /var/run/httpd.pid))
in Commander S’s command language.

Scsh already supplies a mechanism for running an external pro-
gram: therun macro. This macro expects a specification for the
program to run and the redirections of the input and output chan-
nels as its arguments. The specification has special syntactic no-
tions calledprocess formsandextended process forms[9]. Com-
mander S includes a little compiler, which translates a command
language command to a process form suitable for the usage with
run. Thus, when a user submits a command, the compiler gener-
ates a corresponding process form and Commander S callseval to
actually run the program as specified.

However, the compiled process form demands some prepara-
tions before it may be evaluated byeval: therun macro doesn’t
substitute shortcuts symbols widely-used by traditional shells.
These shortcuts include the tilde, which denotes the user’shome
directory, environment variable names, andglob-patterns. A glob-
pattern specifies a list of files by a regular expression. The glob
pattern{/var/tmp,/tmp}/*.scm, for example, specifies a list of
all files with names ending in.scm in the directories/var/tmp and
/tmp. Thus, Commander S inserts an expansion pass before evalu-
ating a command that searches the compiled command for shortcuts

symbols and replaces them. To implement globbing, Commander S
uses the C shell compatible implementation ofglob that is part of
the scsh API.

The evaluation of Scheme expressions takes place in a sepa-
rate environment called theshell environment. The basis for this
environment is the module definition of theshell modulewhich
importsscheme-with-scsh, a module providing R5RS and the
whole scsh API. The Scheme 48 module system facilitates turning
a module into an environment suitable as an argument for Scheme’s
eval function. Thus, evaluating Scheme expressions boils down to
calling eval and using the shell environment as the environment
for evaluation.

The shell module redefines a choice of scsh functions to return
a value with a distinguishable type.Directory-files serves as
an example; if called without arguments, this function returns the
contents of the current working directory as a list of strings. This
representation is very handy when writing scripts. However, this
representation of directory contents is indistinguishable from an ar-
bitrary list of strings. This poses a problem: the viewer to be used to
display a result is selected by examining the result. Thus, the shell
module introduces a new record typefs-object, which encapsu-
lates a file-system object, and redefinesdirectory-files to re-
turn a list offs-objects. The redefinition ofdirectory-files
calls the original definition ofdirectory-files, imported with
a different name, and wraps the resulting filenames infs-object
records. So far the shell module only redefines a few functions that
return filenames. An aim of future work is to apply this technique
to other parts of the scsh API as well.

3.3 Focus value table

Pasting values into the command window running in Scheme mode
requires an external representation of the value. This severely re-
stricts the set of values usable for pasting. For example in scsh
records, continuations, and procedures have no external representa-
tion. Thus, Commander S allows pasting objects as a reference into
a global table called thefocus value table. View plug-ins may regis-
ter a value in the table usingadd-focus-object which returns an
integer index. The functionfocus-value-ref returns the stored
value at a given index. Hence, the viewer plug-in may avoid con-
verting a value to an external representation and return a call to
focus-value-ref instead.

3.4 Command plug-ins

Command plug-ins undertake the task of running a particularex-
ternal program, parsing the program’s output and representing the
result as an distinguishable type. The command plug-in forps ex-
emplifies this. If a user entersps to see the list of running processes,
in the command mode of Commander S, this invokes theps plug-
in. Theps plug-in runs the actualps program provided by the op-
erating system and parses its output. The result is represented as a
list of process records, thereby making the result distinguishable
from an arbitrary list of strings and enabling viewers to recognize
the type of the result.

The functionregister-plugin! registers a new plug-in with
Commander S. The constructormake-command-plugin creates
a new command plug-in record which contains three entries: A
name for invoking the plug-in, a completion function that calcu-
lates completions for the arguments (see Section 3.7), and theplug-
in function. The kernel calls the plug-in function to run the com-
mand, parse the output, and produce the result value. Instead of
executing an external program, a plug-in function may also call a
scsh function. The following code shows the command plug-infor
printenv as example.Printenv returns a list of all environment
variables:

(register-plugin!
(make-command-plugin "printenv"

59

no-completer
(lambda (command args)
(env->alist))))

Theno-completer is a completion functions that offers no com-
pletions for a command (see Section 3.7). The scsh function
env->alist returns all environment variables as an association
list.

3.5 Line-editing

The feature users miss most when using scsh in an interactiveses-
sion is line-editing. Line-editing involves making the backspace
key work as expected, allowing the user to move the cursor using
the cursor keys, inserting text at an arbitrary position of the com-
mand line, and some extra features the user is accustomed to from
text editors. The scsh REPL does not provide line-editing because
it appliesread directly to standard input to read from the termi-
nal. However, the command buffer of Commander S offers a line-
editing functionality with the features mentioned above and feeds
the input intoread (or the parser for the command language) only
after the user has pressed thereturn key. The line-editing func-
tionality is implemented in terms of the ncurses (see Section 2.3),
thus is portable and involves no emulation specific code.

3.6 Command and result history

Like conventional shells, Commander S offers a so-calledcom-
mand history. A command history provides a way to access the
prior commands entered during the session. Most Unix shellsbind
the cursor keys to a function that cycles through the list of com-
mands and displays prior commands at the prompt. This feature is
especially useful when the user executes a series of similarcom-
mands.

Besides the command history Commander S also provides are-
sult history. The motivation for this novel feature is a limitation of
traditional Unix shells that don’t provide a method to access the
output or result of a prior command execution. In this case the user
falls back on a feature of her terminal emulation program. These
programs usually buffer the output of the terminal session,thus,
the user may scroll up and view the output of commands issued
afore. To reuse a prior result the user copies the text to the com-
mand prompt using a copy and paste mechanism provided by the
terminal program. This method, although exercised by numerous
users, has at least two drawbacks. First, it may be hard to findthe
wanted result — there may be lots of output to search through and
the wanted output may even be mingled with another processesout-
put (see Section 6). Second, there is only access to a textualrepre-
sentation of the result.

Commander S saves the result objects created during a session
in the result history. Thus, the user may go back in the resulthistory
at any time and continue to use a saved result object. The result
history facilitates the task of finding the desired result — each
command is associated clearly with the result it produced. While
cycling through the result history, the active command window
shows the command used to produce the result shown in the result
buffer.

In the notion of Commander S, a result history is easy to im-
plement. Having the viewer objects (see Section 4) instanced, the
kernel stores the object along with the corresponding command in
a list that serves as the history. Thus, going back and forth in the
history selects an existing viewer object that is set as the the current
result object. Subsequently, the kernel clears the result window and
sends apaint message to the new current result object to make the
object visible.

3.7 Programmable completion

Most shells offer an automatic completion for commands and argu-
ments entered partially at the prompt. Usually pressing thetabulator
key while editing a command line at the prompt triggers acomple-
tion function. This function considers the token of the command
line the user is currently editing (that is, the token where the cursor
is) and finds a set of strings to which the partially entered token is a
prefix. This set depicts the set of possible completion for the token.
If there is more than one possible completion, most shells simply
display the possible completions and expect the user to continue
editing the token until the prefix becomes unambiguous. Depend-
ing on the position of the token in the command line, the token
denotes a program to be executed or an argument to a program.
Thus, only executable files come into question as completions for
the command token, whereas, intuitively there no such constraint
for argument tokens. Most shells accommodate this observation by
using different completion functions for the particular tokens of a
command line.

Popular shells liketcsh, bash, andzsh offer aprogrammable
completion functionwhich allow users to write completion func-
tions tailored to syntax of arguments of a specific command. The
file transfer programftp, for example, expects a host name to con-
nect to as its first argument. The followingtcsh commands estab-
lishes an appropriate completion function forftp:

> set preferred_ftp_hosts=(ftp.gnu.org ftp.x.org)
> complete ftp ’p/1/\$preferred_ftp_hosts/’

This example specifies a completion for the first argument only.2

The possible completions for this argument are given as a list
specified in the variablepreferred ftp hosts.

Commander S provides a similar programmable completion
function for the command mode. If the user presses the tabulator
key a general completion function calls the parser for the com-
mand language and identifies the token the cursor is pointingat.
This token is considered for completion. Depending on the posi-
tion of this token a more specific completion function is selected.
The completion function for command tokens is a built into Com-
mander S and uses the union of executables available in the paths
listed in PATH and the set of registered command plug-in names
as possible completions. However, the user may wish to specify
an executable by entering a complete path. In this case the com-
mand completion function callscomplete-with-filesystem-
objects to build the list of completions. This function checks
whether there is a file or directory that matches the partially en-
tered path. If the token matches a directory name,complete-
with-filesystem-objects offers the contents of this directory
as possible completions. Otherwise the parent directory ofthe par-
tial names is searched for completions.

If a completion function returns a single possible completion,
Commander S may replace the token on the command line with
this completion and repaint the command prompt. However, ifthere
is more than one completion, Commander S uses the result buffer
to display the list of completions. The user may use the list as an
aide to memory and continue to type the token, or by pressing the
tabulator key a second time switch the buffer focus and select a
completion using the cursor keys directly.

The general completion functions also handles the comple-
tion of arguments. Unless a specific a completion function for
the current command token is specified, it callscomplete-with-
filesystem-objects to complete the argument. Specific com-
pletion functions are tied to command plug-ins. Thus, to provide a
special completion function, the user adds a command plug-in. The
following command plug-in for theftp command provides such a
completion function.

2p/1 stands for “position one”

60

(register-plugin!
(make-command-plugin
"ftp"
(let* ((hosts ’("ftp.gnu.org" "ftp.x.org"))

(cs (make-completion-set hosts)))
(lambda (command to-complete)
(completions-for
cs (or (to-complete-prefix to-complete) ""))))

just-run-in-foreground))

In this example, the second argument tomake-command-plugin
is the completion function. A completion function has two argu-
ments; the abstract syntax of the command line and the token to
completed. The completion function in question uses a built-in list
of host names as possible completions.Make-completion-set
creates a special caching data-structure which speeds up the com-
putation of matching completions. This is especially useful when
the set of possible completion is big, for example, when search-
ing the completions for file names. The procedurecompletions-
for searches and returns the matching completions for the prefix
returned byto-complete-prefix in the completion set.

4. Implementing Viewer Plug-ins
In the notion of Commander S aviewer plug-in(viewer for short)
undertakes the task of displaying the result value of a command
in a structured fashion. However, a viewer may go beyond just
displaying data and implement a small application running in the
result window. The predefined file system viewer (see Section5),
for example, not only displays files and directories but alsoallows
navigating through subdirectories.

Given a result value, Commander S tries to find the appropriate
viewer. Each viewer comes with a predicate that identifies the result
values the viewer handles. Commander S applies the predicates
provided by the registered viewers to the result value. The viewer
belonging to the first predicate to evaluate to true accepts the bid.
Now, Commander S instances a new viewer using the accordant
constructor and asks the viewer to paint itself to the resultwindow.

Viewers are implemented using object-oriented programming
(see Section 2.1 for an introduction of the object system used). A
viewer depicts an object that accepts the messages sent by kernel
and encapsulates a state. In this setting, an object-oriented approach
appeared to be a natural choice. Commander S sends the following
messages to viewer objects:

• paint The paint message asks the object to paint itself to
the result window. This message is sent to objects just created
or if an result object becomes the current result object. (i.e.,
if the user cycles through the result history, see Section 3.6).
As arguments, the objects receives the ncurses window to paint
in, a result buffer object which contains information aboutthe
result window’s size, and a boolean indicating whether the
result window has the focus.

• key-press If the result window has the focus, the current
result object receives akey-press message whenever the user
presses a key. The object receives the key code and a boolean
saying whether the special prefix key sequenceControl+x is
active as arguments. The kernel expects this method to return
an instance of the viewer and stores this instance in the history.
This is a clincher, since this allows a viewer to instantiateand
return a different viewer. The viewer responsible for displaying
the contents of a user record, for example, uses this case to
instance a directory viewer object if the user presses return key
on the line displaying the path to a user’s home directory.

• get-selection-as-ref This message asks the viewer to re-
turn the current selection as a reference intofocus-value-
table (see Section 3.3) received as an argument. The message

is only available if the command buffer is in Scheme mode,
thus, the return value of this method has to be a piece of Scheme
code (as a string).

• get-selection-as-text This message asks the viewer to
return the current selection in a textual representation. If selec-
tions don’t make sense in context of a result value, this method
may return false. A boolean delivered as an argument says
whether the selection is to be inserted into the command or
Scheme mode. Thus, a viewer may deliver an adequate string
(see Section 4.2 for an example). It is conceivable though that
representing the selection as a string makes no sense. In this
case a viewer may choose to understand theget-selection-
as-text message as aget-selection-as-ref message,
hence, requiring a reference to thefocus-value-table. To
facilitate this, thefocus-value-table is passed as a second
argument to theget-selection-as-text messages.

4.1 Selection lists

Before giving an example for the implementation of a viewer ob-
ject, we shall describeselection lists. Selection lists are an impor-
tant user interface widget, akin to menus, used by almost allviewer
objects. A selection list displays a given set of entries as sequential
lines at an arbitrary position inside an ncurses window. Using the
cursor keys, the user may move a selection bar over the lines to fo-
cus a particular entry, and mark and unmark entries. Most viewers
employ a selection list using marking to facilitate selecting items
which are to be processed together. The selection list also deter-
mines the area in view if the number of items to display exceeds
the space assigned to the selection list.

The constructormake-selection-list expects as its argu-
ment a list of records of typeelement that denote the items of
the selection list, and returns a Scheme record representing the se-
lection list. Anelement record consists of a field that carries the
object to be returned if the user marks the accordant line, a boolean
saying whether this entry may be marked at all, and the text tobe
displayed.

Thepaint-selection-list-at operation accepts a selection
list, window-based coordinates, and an ncurses window as its argu-
ments and paints the selection list in its current state at the given
coordinates to the window. To pass key events to a selection list,
viewer objects call the functionselection-list-handle-key-
press which updates and returns the state of selection list accord-
ingly.

Implementing aget-selection-as-text method in a viewer
frequently boils down to getting the list of marked entries from
a selection list usingselection-list-get-selection, or, if
this list is empty because no entries are marked, getting theentry
currently focused by the selection bar usingselection-list-
selected-entry. The selection list implementation offers the
functionmake-get-selection-as-ref-method which returns a
function suitable as an implementation of aget-selection-as-
ref method. The focus objects returned by methods implemented
using this function stand for the return object specified in the
accordantelement record.

4.2 Example: process viewer

As an example for the implementation of viewers, this section de-
scribes the implementation of the process viewer from the intro-
duction and sketches the implementation of the command plug-in
for ps.

The process viewer views the output of theps command. Theps
command is a command plug-in based on theportable ps library
from Sunterlib [1]. As theps command is not standardized, the li-
brary dispatches on the type of the host operating system andthen
issues theps command with options chosen to get all processes

61

and a set of additional information available on all supported plat-
forms. It then parses the output and stuffs it info a record oftype
process. Theps command plug-in does not currently support ad-
ditional options but returns this list unchanged. In the future, the
ps command should accept arguments to restrict the returned pro-
cesses and customize the additional information. While argument
parsing is certainly more work, a user who often switches operating
systems would certainly be happy to use the same set of options on
all platforms. Of course, the syntax of the options could easily be
made customizable.

Figure 4 contains the implementation of the viewer plug-in for
processes. The functionmake-process-viewer is the constructor
for process viewer objects. The constructor is called by theker-
nel, if the predicate for this viewer,list-of-processes?, iden-
tified a result value as a list of process objects. The kernel supplies
the result value in question and the buffer to draw to as arguments
to the constructor. The constructor returns a function thatgiven a
message name returns a function implementing the method. The in-
stance variables of the object are bound in the closure of this func-
tion. The process viewer employs a selection list (see Section 4.1)
to display a list of processes.Make-process-selection-list
formats the process objects and usesmake-selection-list to
create a selection list that fits into the result window leaving one
line free for a heading. On apaint message, the viewer displays
the header and calls the procedurepaint-selection-list-at to
draw the selection list beneath the header. Akey-press message
is also forwarded to the selection list. On aget-selection-as-
text message, it returns the PIDs of the selected processes for the
command mode and a list of PIDs in the Scheme mode.

Finally, the last two lines of the figure register the process
viewer plug-in registers as viewer for a list of records of type
process and hands out the constructor to the kernel.

5. Predefined viewers
The previous section already presented Commander S’s viewer for
processes. In this section, we present further viewers for filesystem
objects, user and group information and results of commandsre-
lated to AFS. In addition, a viewer for inspecting arbitraryScheme
values is described.

5.1 The filesystem viewer

Dealing with files is another common scenario where the user is
forced to re-enter text that appeared in the output of a previous
command. A common pattern is that the user first issues anls
command to list the files within a directory and then uses another
command to manipulate certain files. To view the most recent error
log file of an Apache web-server, the user could first usels -lat,
which prints the files sorted by date:

ls -lt
-rw-r--r-- 5543 Jun 15 02:00 error_log.1118275200
drwx--x--- 512 Jun 15 02:00 ./
-rw-r--r-- 49024 Jun 14 15:04 access_log.1118275200
-rw-r--r-- 66312 Jun 8 21:59 access_log.1117670400
-rw-r--r-- 11498 Jun 8 21:59 error_log.1117670400
-rw-r--r-- 140048 Jun 1 18:17 access_log.1117065600
-rw-r--r-- 4688 Jun 1 05:36 error_log.1117065600
drwx--x--- 512 Mar 25 2004 ../

Next, she would invoke a viewer such asless on the latest file
error log.1118275200:

less error_log.1118275200

Again, the user has to enter text that appeared in the output of a pre-
vious command. Modern shells such asbash or tcsh will help the
user to enter by providingcommand line completion. This means
that the shell examines the command line already typed and com-
pletes the last token as far as possible or presents the user aset of

(define (make-process-viewer processes buffer)
(let* ((processes processes)

(cols (result-buffer-num-cols buffer))
(lines (result-buffer-num-lines buffer))
(sel-list
(make-process-selection-list
cols (- lines 1) processes))

(header (make-header-line cols)))

(define (get-selection-as-text
self for-scheme-mode?
focus-object-table)

(let* ((marked
(selection-list-get-selection sel-list)))

(cond
((null? marked)
(number->string
(process-info-pid
(selection-list-selected-entry sel-list))))

(for-scheme-mode?
(string-append
"’" (exp->string

(map process-info-pid marked))))
(else
(string-join
(map process-info-pid marked))))))

(lambda (message)
(case message
((paint)
(lambda (self win buffer have-focus?)
(mvwaddstr win 0 0 header)
(paint-selection-list-at
sel-list 0 1 win buffer have-focus?)))

((key-press)
(lambda (self key control-x-pressed?)
(set! sel-list

(selection-list-handle-key-press
sel-list key))

self))
((get-selection-as-text) get-selection-as-text)
((get-selection-as-ref)
(make-get-selection-as-ref-method sel-list))
(else
(error "process-viewer unknown message"))))))

(register-plugin!
(make-viewer make-process-viewer list-of-processes?))

Figure 4. Implementation of the process viewer (excerpt).

possible completions. The shell derives the possible completions
from the leading command, the default mode is to complete theto-
ken as a filename. In the example above, the user could ask the shell
to complete the command lineless e. The shell will expand this
toless error log.111 and list all error files as possible comple-
tions. Now the user needs to inspect the output of the previous ls
-lt command to learn that the name of the most recent file contin-
ues with an8. After entering this character, the shell is able to fully
complete the filename. However, while command line completion
is certainly of great aid for the programmer, the shell againmakes
no use of the output of previous commands, which contains in our
example the files in chronological order. If the example takes place
within thetcsh shell, this is especially disappointing as therels
is a built-in command. This means, the output is not producedby
some external command but by the shell itself.

The user could try to save typing by combining entering a
command line that extracts the name of the newest error log for
the output ofls and callsless on it:

62

less ‘ls -1t err* | head -n 1‘

While this approach is close in the spirit of the Unix philosophy to
combine little tools to perform the work, the command line israther
long and fragile. We would not dare to use such a constructionon
the command-line for a command such asrm. It also requires the
user to know in advance that error logs (and only these) startwith
err.

Commander S knows that the result of thels -lat command
is a list of files. It presents this list in the result window asfollows:

Paths relative to /usr/local/svn/logs

-rw-r--r-- 5543 Jun 15 02:00 error_log.1118275200

drwx--x--- 512 Jun 15 02:00 ./
-rw-r--r-- 49024 Jun 14 15:04 access_log.1118275200
-rw-r--r-- 66312 Jun 8 21:59 access_log.1117670400
-rw-r--r-- 11498 Jun 8 21:59 error_log.1117670400
-rw-r--r-- 140048 Jun 1 18:17 access_log.1117065600
-rw-r--r-- 4688 Jun 1 05:36 error_log.1117065600
drwx--x--- 512 Mar 25 2004 ../

That is, the presentation of a list of files is the list of the file names
relative to a directory, which is displayed in the first line.If the
focus object is a directory and the user presses the return key, the
result window will display the contents of this directory. To return
to the task of viewing the latest log file, the user can immediately
press the key for sending the focus object to the command window,
as the focus object is already the most recent file. Now, she only
needs to add theless command to the command line and press the
return key to invoke it. Pasting files to the command window inserts
them as absolute filenames. If the command window is in Scheme
mode, pasting inserts filenames as strings.

If the user enters thels command, Commander S does not re-
ally invoke thels program and parse its output. Instead, it uses
the scsh functionfile-info to obtain the file status information and
the functiondirectory-files to get the contents of a directory.
From this information, it generates a list of records of typefs-
object. An fs-object combines a filename with file status infor-
mation. The filesystem viewer registers itself as the viewerfor fs-
objects and for lists offs-objects.

As Commander S provides its own binding for the scsh proce-
duredirectory-files, which returns a list offs-objects in-
stead of a list of strings, and extends the scsh functions which oper-
ate on filenames tofs-objects, the viewer is also able to present
the values of Scheme expressions returning lists of filenames.

The functionality of filesystem viewer could be extended in
various aspects: additional key-bindings for renaming, deleting, or
copying files, manipulation of file mode bits, invoking of a default
application based on the filename suffix, and so forth. However,
while we would certainly like to have these features, it is not the
focus of our current work as programs like midnight commander
or the dired plug-in for Emacs already show the merits of thisap-
proach. Instead, Commander S aims combine graphical presenta-
tion with command execution and shell programming. Unlike pure
front-ends for filesystem browsers, Commander S is also not lim-
ited to the presentation of filesystem objects.

5.2 User and group information viewer

User and group information are ubiquitous in Unix. For user in-
formation, scsh provides the procedureuser-info as wrapper
for the standard C functionsgetpwnam/getpwuid to return the
user information from a given login name or UID. It returns a
record user-info with the fieldsname, uid, gid, home-dir,
and shell which contain the corresponding entries form the
user database (usually/etc/passwd). For the group informa-
tion, scsh analogously provides a wrappergroup-info for the C
functionsgetgrnam/getgrgid. The fields of the returned record

group-info are name, gid, andmembers, the latter containing
the users of the group as a list of strings. Commander S contains
viewers for theuser-info andgroup-info records that present
the contents of the records in a selection list. The main feature of
these viewers is that the user may navigate through the presented
information by selecting an entry and pressing the return key: For
thegid field, Commander S presents the corresponding group in-
formation, for thehome-dir, it invokes the filesystem viewer from
Section 5.1 on the home directory, likewise for theshell field, and
for the members of a group, Commander S presents the associated
user information. Here is an example for the value of the expression
(user-info "gasbichl"):

[0: name] gasbichl
[uid] 666

[gid] 4711

[home-dir] /afs/wsi/home/gasbichl
[shell] /bin/tcsh

If the user presses the return key, Commander S presents the infor-
mation for GID 4711 as follows:

[name] PUstaff
[gid] 4711
members:
gasbichl
klaeren
knauel

The viewers are implemented in about 130 lines of code but al-
ready provide a nice tool for browsing user and group information.
We think that in this style a lot of information in the realm ofUnix
can be presented and thus enable the user to browse this informa-
tion very conveniently and fast.

5.3 AFS

This section presents two viewers related to the Andrew FileSys-
tem (AFS for short) as an example for using Commander S for
viewing the result of special purpose programs. AFS is a network
filesystem based on a client-server model. AFS stores the data
on the server in logical partitions calledvolumes. Each volume
is mounted at some directory below the global/afs root. On the
client, a local daemon transparently fetches and stores thecontents
of the volumes from the server and maps it into the local filesystem.
AFS also introduces permissions for directories based on access
control list (acl for short) and has its own user management.The
user views the permissions with thefs listacl command and
manipulates them with thefs setacl command. For example:

fs listacl .
Access list for . is
Normal rights:
system:administrators rlidwka
gasbichl rlidwka
knauel rl

fs setacl . knauel rli

adds the right to insert files into the current directory for the user
knauel. Commander S saves the user from entering the username
that already occurred in the output by displaying the resultof fs
listacl using a selection list:

Access list for . is
Normal rights:
system:administrators rlidwka
gasbichl rlidwka

knauel rl

63

By pressing the key for sending the selection, the user can paste the
string knauel rl to the command window running in command
mode behind afs setacl. Alternatively, the user may paste the
entry as a pair while in Scheme mode. This is especially useful to
set the rights of several users at once. For example, the following
expression grants the right to read, list and insert files to alist of
such entries which the user would paste from the result window at
the place of...:

(for-each (lambda (acl)
(fs setacl "." (car acl) "rli")) ...)

On the other hand, the viewer forfs listacl also supports di-
rect editing of the acl entries. Currently, pressing the deletion key
removes an entry from the acl. More features such as direct modi-
fication of the rights would be desirable but requires functionality
beyond the current capabilities of the selection list.

Commander S also supports management of volumes. The com-
mandfs listquota takes as argument a directory and prints the
quota information for the volume the directory resides in. This is
also a convenient way to obtain the name of the volume needed the
most volume-related commands. Commander S prints the result of
fs listquota as

Volume Name: home.gasbichl

Quota: 1000000
Used 899724
% Used 90%
Partition 28%

From here, the user can either paste the volume name into the com-
mand window or press the return key to execute thevos examine
command on the volume. A future version will also support direct
editing of the quota.

The commands for volume manipulation also have command
line completion for the volume name argument. Commander S
receives the list of all volumes from the commandvos listvldb.
Executing this command may take some time, therefore it is not
desirable to initialize this list during startup. Fortunately, command
completion is completely programmable in Scheme and during
startup the corresponding plug-in can simply spawn a threadwhich
issuesvos listvldb and initializes the volume list. This way, the
user has to wait only if she wants command completion forvos
before the thread finishes its work.

5.4 Value inspector

The domain of viewers is not limited to the results of Unix com-
mands. In fact, the user may add viewers for any kind of Scheme
value. Scheme 48 already comes with an inspection facility to
browse arbitrary Scheme values. We have lifted the inspection fa-
cility into our ncurses-based framework and use it as the default
viewer for exceptions which effectively implements a debugger.

We briefly review the inspection facility in Scheme 48: Its
command processor provides a command,inspect that takes as
its argument a Scheme expression, evaluates it and presentsthe
outermost structure of the resulting value in a menu. There is a
menu entry for every immediate sub-value. For a list, the sub-
values are the entries of the list, for a record the sub-values are
the components of the record, for a continuation the contents of the
stack frame makes up the sub-values. A menu entry consists ofa
number for selection by the user, an optional name for reference,
and the external representation of the sub-value. The source of the
name depends on the kind of value being inspected: for records it
is the name of the record field, for environment frames it is the
name of the variables. List or vector entries do not have names.
After the presentation of the menu, the user may enter the number
of a menu entry to continue inspection with the corresponding sub-

value or press theu key return form the inspection of a sub-value.
For continuations, thed key selects the parent continuation. If there
are more than 14 sub-values, them key switches the presentation
of the menu to the next 14 sub-values and so on. Finally, theq
key ends the inspector and sets the focus object of the command
processor to the last value that has been inspected. The command
processor also comes with a,debug command which inspects
the continuation of the last exception that occurred. As inspection
of a continuation displays an excerpt of the source code of the
corresponding function call before presenting the menu, this is
enough to implement a very useful debugger.

For Commander S we implemented a viewer, calledinspector,
which shows the sub-values of an arbitrary Scheme value in a
selection list. The user may select a sub-value by moving the
selection bar to it and pressing the return key. In addition,we have
adopted the key-bindings foru andd from Scheme 48.

For the implementation of the inspector, Commander S mainly
reverts to the procedureprepare-menu from the implementation
of the ,inspect command. The procedure takes as its argument
a Scheme value and returns the list of its sub-values as pairsof a
name (or#f) and the sub-value. Commander S turns these pairs
into element records for a selection list: The object to be returned
on marking is the sub-value itself, all elements are markable, and
the text is the external representation shortened to the width of the
window. For the latter, we make use oflimited-write, another
utility from Scheme 48 which is a variant ofwrite that limits
the output to a certain depth and output length. Unfortunately,
the single line within a selection list of often not enough space
to present complex data structures in a useful manner. Besides
the preparation of the selection list, there is not much to dofor
the inspector: As the,inspect command, it prints a source code
excerpt for continuation in a header line and being able to return
from a sub-value requires the viewer to maintain a stack of visited
values. Invoking the inspector on a sub-value pushes the current
value on the stack and theu key pops a value from the stack and
makes it the current value. The,inspect command in Scheme 48
proceeds likewise.

We could use the inspector to display any value but we have
currently only registered it for the continuations of exceptions, but
this may be extended for arbitrary values.

6. Job control
Most Unix shells allow the user to run multiple processes simul-
taneously. In shell terminology these processes are calledjobs. A
shell usually provides commands to stop and continue jobs, view
the list of jobs and their status, and the job’s access rightsto the ter-
minal. All processes share a single terminal as their standard output
and input. The POSIX job control interface [5] enables the shell
to control which process may read or write to a terminal. Tradi-
tional shells pursue the following policy: A single foreground job
has read and write access to the terminal and all background jobs
are allowed write to the terminal only. If a background job tries to
read from the terminal, the shell suspends the execution of the job
until the job becomes the foreground job.

Thus, running multiple background jobs, which write to the
terminal yield a mingled output. Basically, the user has twochoices
to avoid this: redirecting the output of each job to a separate file,
or make the shell’s job control stopping processes that attempt to
write to the terminal. However, both options are disadvantageous.
A job control policy with exclusive write access may stop the
computation of a background job completely just because there
is output available. This not appropriate in all cases, for example
when running a daemon from the command line. On the other
hand, redirecting the output requires extra effort for setting up the

64

redirections for standard output and standard error, viewing the file,
and deleting the temporary files afterwards.

Commander S adds a third method, not provided by traditional
shells, to the picture; so-calledconsole jobs. The standard input and
output of a console job are connected via a separate pseudo terminal
to Commander S. A thread continuously reads the pseudo terminal
to ensure that writing to the terminal does not block. Aconsole
record stores the pseudo terminals and the buffered output of a job.
The viewer plug-in for this record type displays the output of the
job in the result buffer and updates it continuously as new output
arrives. Thus, the user may review the output of a command at any
time. Section 6.3 discusses console jobs in detail and presents the
implementation at a glance.

Beside console jobs, Commander S offers job control as known
from traditional shells. The implementation, however, diverges
from traditional implementations. We present a elegant concurrent
implementation in the CML framework in the following sections.

Section 6.1 presents the POSIX job control facilities at a glance.
A reader familiar with these facilities and their mode of operation
may choose to skip this section. Section 6.2 describes how Com-
mander S runs jobs without a separate console. Section 6.3 explains
the execution of console jobs. Section 6.4 describes the implemen-
tation of the job list, a data structure that maintains the informations
on jobs centrally.

6.1 Traditional job control

The POSIX API contains functions for implementing job control
which are widely-used by traditional shells. Scsh already provides
bindings to these functions. Thus, it was not necessary extend scsh
to implement Commander S’s job control. This section explains
the basics of POSIX job control using scsh’s names for the POSIX
functions.

Process groups are the basis for job control — a process group
is a set of processes, which share a common process group id. Each
process is member of exactly one process group. When a process
forks, the child process inherits the process group id of thepar-
ent — the process is said tojoin the parent’s process group. A pro-
cess may alsoopena new process group by callingset-process-
group. Each terminal device is associated with one process group,
named theforeground process group, all other process groups are
called background process groups. A process group makes itself
to the foreground process by callingset-tty-process-group.
In contrast to processes of background process groups, processes
of the foreground process group are granted read and write ac-
cess to the terminal. If a background process tries to read from
the terminal, the kernel terminal driver suspends the job using the
SIGTTIN signal. Depending on the configuration of the terminal a
background job writing to the terminal may also be suspendedus-
ing theSIGTTOU signal. Usingwait, a parent process may watch
if a child gets suspended.

6.2 Jobs without console

Jobs without a separate console are either foreground or back-
ground jobs and work akin to jobs in a traditional shell. To execute
a foreground job, Commander S temporarily escapes the curses
mode and hands the control on the screen over to the foreground
job. Once the foreground jobs terminates (or gets suspendedby a
signal), Commander S reobtains control. Commander S expects a
background job neither to read from nor write to the terminal. If
the job tries to read or write, however, the job gets suspended and
Commander S notifies the user (see Section 6.4). In this case the
user may choose to continue the job in foreground. Vice versa, a
user may also explicitly stop a foreground job and continue the job
in background.

(define-syntax run/fg
(syntax-rules ()
((_ epf)
(run/fg* ’(exec-epf epf)))))

(define (run/fg* s-expr)
(debug-message "run/fg* " s-expr)
(save-tty-excursion
(current-input-port)
(lambda ()
(def-prog-mode)
(clear)
(endwin)
(restore-initial-tty-info! (current-input-port))
(drain-tty (current-output-port))
(obtain-lock paint-lock)
(let ((foreground-pgrp

(tty-process-group (current-output-port)))
(proc
(fork
(lambda ()
(set-process-group (pid) (pid))
(set-tty-process-group
(current-output-port) (pid))

(eval-shell-env s-expr)))))
(let* ((job (make-job-sans-console s-expr proc))

(status (job-status job)))
(set-tty-process-group
(current-output-port) foreground-pgrp)

(newline)
(display "Press any key to return...")
(wait-for-key)
(release-lock paint-lock)
job)))))

Figure 5. Running a job in foreground.

The machinery for running jobs is built on top of scsh’srun
form. The form (run/fg epf) executes the extended process
form epf as a foreground job. To specify a program to run and
the corresponding redirections of the input and output channels
scsh uses a special syntactic notation: process forms and extended
process forms. Thus,run andrun/fg are implemented as macros
not as functions.

Figure 5 shows the implementation ofrun/fg. Applications of
run/fg expand into a call torun/fg*; a function that expects
a piece of Scheme code as a s-expression as its argument. The
Scheme code is supposed to actually run the process using scsh’s
basicexec-epf facility. Unlike run, exec-epf does not fork the
process before running the program.Run/fg* callseval-shell-
env to evaluate the Scheme code in the shell environment. It is
important that the evaluation takes place in the shell environment
since an extended process form is implicitly backquoted, thus, by
using unquote, a user may embed Scheme code in an extended
process form. Carrying out the evaluation in the shell environment
ensures, for example, that the user may refer to variables defined
interactively in the Scheme mode or use focus values.

Before running the process usingeval-shell-env, run/fg*
calls a sequence of ncurses functions to save the current screen,
clear it and finally escapes the curses mode temporarily using
endwin. This yields an empty screen called theresult screen. This
avoids that the Commander S screen is garbled with the outputof
the process. To execute the process,run/fg* forks the process,
opens a new process group, and makes this process group the
new foreground process group. The parent process callsmake-
job-sans-console to create a new job record with the process
object returned byfork. The parent process usesjob-status;
a wrapper version ofwait for jobs. Thus, the parent waits until

65

the child process exits and makes itself the foreground process
group again. Afterwards, the parent process waits for a key press
to give the user time to read the child’s output. It is essential
to ensure that no output occurs during the time Commander S
is a background process — otherwise the terminal driver would
suspend Commander S. To enforce this conditionrun/bf obtains
thepaint-lock which prevents other threads, such as the thread
that updates the job status indicator (see Section 6.4), from painting
onto the screen.

Running jobs in background works alike using a function
run/bg*. There, the code for escaping from the curses mode and
setting the foreground process drops out. On start-up, Comman-
der S configures the terminal to stop background processes that try
to write to terminal, thus, a background cannot garble the screen.
Commander S offers two functions for continuing suspended jobs
without a console:Continue/fg puts a stopped job into the fore-
ground and continues the job,continue/bg, vice versa, continues
a job as a background job. The implementation of this functions is
derived from the implementation ofrun/fg* andrun/bg*. How-
ever, instead of forking and callingexec-epf, the functions send
the process group of the job aSIGCONT signal, thus, the processes
continue to execute.

6.3 Console jobs

The implementation of console jobs is more complex than the im-
plementation of jobs without console. While there is no extra effort
needed to display the output of job without console — it is only
visible on the separate result screen — the output of consolejobs
causes more effort. The output of a job must be read by Comman-
der S continuously to keep the job running. However, displaying
the output in the result buffer as it occurs is not reasonable— the
job would behave like an ordinary foreground job.

Here, the concept of viewer plug-ins comes into play. The out-
put of a console job is represented by aconsolerecord. An ac-
companying viewer plug-in for this record type displays theoutput
and updates the result buffer as new output arrives. To the kernel a
console is conceptually just another value with a predefinedviewer
plug-in. Each console is accompanied by a thread that reads the
pseudo terminal of the process and sends the characters readinto
a synchronous CML channel. Thus, this thread lifts I/O events into
the CML framework.

To actually paint the contents of the output buffer to the screen,
the console viewer plug-in uses a so-calledterminal buffer. The
heart of a terminal buffer is a thread spawned by the functionshown
in Figure 6. The terminal buffer is connected via the synchronous
pty-channel to the thread that reads the console’s output. De-
pending on whether the console is currently visible in the result
buffer or not, the terminal buffer either buffers the new output (by
calling terminal-buffer-add-char) or buffers it and immedi-
ately repaints the result buffer. The decision whether to update the
result buffer or not is left up to the console viewer plug-in,which
usesresume-console-output or pause-console-output to
stop and continue the updates, respectively.

The terminal buffer performs a second task hidden in the func-
tionterminal-buffer-add-char. Basically, this function imple-
ments a terminal emulator for a small subset of VT100 control
codes. The terminal emulation is necessary to restrict the effects
of terminal escape codes generated by the running job to the result
buffer only. Forwarding the escape codes rawly to terminal Com-
mander S is running on yields undesirable effects. If the running
job outputs the escape code to clear the screen, for example,this
escape code would be interpreted by the terminal emulator for the
terminal Commander S is running on, and clean the entire screen—
including the command buffer. Alas ncurses offers no solution to
this problem.

(define (spawn-console-loop
pause-channel resume-channel
window termbuf pty-channel)

(spawn (lambda ()
(let lp ((paint? #t))
(select
(wrap (receive-rv pause-channel)

(lambda (ignore)
(lp #f)))

(wrap (receive-rv resume-channel)
(lambda (ignore)
(lp #t)))

(wrap (receive-rv pty-channel)
(lambda (char)
(cond
((eof-object? char) (lp paint?))
(else
(terminal-buffer-add-char
termbuf char)

(if paint?
(begin

(curses-paint-terminal-buffer
termbuf window)
(wrefresh window)))

(lp paint?))))))))))

(define (pause-console-output console)
(send (console-pause-channel console) ’ignore))

(define (resume-console-output console)
(send (console-resume-channel console) ’ignore))

Figure 6. Updating aterminal-buffer and painting it.

6.4 Job status and job list

A job is in one of the following run states: running, finished,
stopped, waiting for input, or waiting with output (the latter applies
to background jobs without a console only). Traditional shells no-
tify the user either immediately or before drawing the next prompt
if the status of a job changes. Both methods have drawbacks: a
prompt notification means that the shell prints the notification di-
rectly to the terminal at point of time the status change occurs, thus
garbling the terminal output. Waiting for the next prompt avoids a
garbled screen, but the user has to issue (empty) commands from
time to time to see if a status change occurred. A graphical user
interface produces relief for this problem.

Commander S’s command buffer displays a small gauge, thejob
status indicator, in the lower right corner of the command window
(see figure 1). The job status indicator displays the currentnumber
of processes in each of the possible state. Whenever the status of a
jobs changes, a thread updates the job counts immediately without
disrupting the user.

Commander S uses a centraljob list to maintain a list of all
jobs. The job list serves two purposes. First of all, it is needed
to implement thejobs command, which prints a list of all jobs
and their current state. As a second task, the job list registers all
status changes of a job and informs the job status indicator about
the change.

The implementation of the job list was tricky — there are
several sources of events that modify the state of the job list: A
user may submit a new job at the prompt, stop or continue a job,
or a background job may interrupt or finish its execution. Thus,
the job list needs to observe several diverse sources for events at
once. First of all, user commands such as submitting, continuing,
or stopping a job need to inform the job list about the job status
changes. The termination or suspension of a background jobsis
the second source for events that trigger changes in the state of

66

the job list. To notice these changes the job list needs to call
wait for each background job and update the job list. Using the
CML framework these diverse sources for events may easily be
represented uniformly as rendezvous. Thus, one centralselect
synchronously waits for the occurrence of any of the named events.

Figure 7 shows an excerpt from the implementation of the job
list. The functionspawn-joblist-surveillant starts the thread
that maintains the job list and returns thestatistics-channel.
This channel connects the job list with the job status indicator —
whenever the state of the job list changes in a relevant way, the job
list posts the updated job counts to this channel and the thread ac-
companying the job status indicator updates the gage. The thread
spawned byspawn-joblist-surveillant executes an infinite
loop that usesselect to choose a rendezvous from the possible
sources of events affecting the job list. The job list consists of lists
for each run state that are bound locally in the thread. The loop
variablenotify? indicates whether an update of the job status in-
dicator is due. If this is the case, the thread sends the current job
counts tostatistics-channel. The constructor for jobsmake-
job-sans-console and make-job-with-console submit the
jobs just created to job list using theadd-job-channel. If a ren-
dezvous on theadd-job-channel is enabled, the function associ-
ated to this event by thewrap combinator adds the new job to the
list of running jobs and continues the loop. In this case an update of
the job status indicator is due, thus the loop function is called with
#t as the value fornotify?. Receive rendezvous on thenotify-
continue/foreground-channel indicate that the user issued a
continue/fg or continue/bg command. Thus, a job that is ei-
ther stopped, waiting with output, or waiting for input changes to
the running state. The accordant action for this events deletes the
job from the lists for stopped jobs, adds it to the list of running job,
and setsnotify? to true. Theget-job-list-channel is used by
thejobs command to get the list of all jobs.

The job list also monitors the status changes of the processes
using wait. The constructor for jobs spawns a thread that calls
wait on a job’s process object, and fills a CML placeholder with
the status value returned bywait. The functionjob-status-rv
returns the corresponding rendezvous. This way, the statuschange
of a process translates to a CML rendezvous suitable for integration
with the job list’s select call. Thus, the job list surveillance
thread includes thejob-status-rv for all running jobs into the
selection of rendezvous by mappingjob-status-rv on the list
of all running jobs. The function associated with each rendezvous
adds and removes the affected job to the corresponding listsof
jobs in a specific state. The scsh functionsstatus:exit-val,
status:stop-sig, andstatus:term-sig decode thestatus
value returned byjob-status-rv. Depending on whether the
process exited, was suspended or terminated abnormally, these
functions return#f or an integer providing further information
on the reason of state change. If the operating system suspend
the process, for example,status:stop-sig returns the signal
number that yielded to suspension.

7. Related Work
There is multiplicity of file managers available that followthe tradi-
tion of the abandoned Norton Commander, such as the GNU Mid-
nightCommander [6] or LFM [8]. These applications use most of
the screen to display one or two file lists which the user may nav-
igate, use to select files, and perform operations on them. The last
line of the screen shows the shell prompt of a traditional shell. Thus,
these applications are clearly committed to work with files solely.
To Commander S, working with files is just one facet of a more
holistic approach for easing the work with a shell. The GNU Mid-
nightCommander comes with job control for background jobs but
these “jobs” are merely running copying and moving operations.

XEmacs and GNU Emacs ship withdired, a special mode for
editing directory trees [10]. The GNU screen [4] terminal manager
allows users to detach from a terminal and reattach to it later, and
offers some text based copy and paste mechanism. This provides a
functionality akin to Commander S’s console jobs.

8. Conclusion and Future Work
This paper presented Commander S as a browser for UNIX. With
the aid of command plug-ins, Commander S parses the output of
commands and acquires the contained information. Viewer plug-ins
use the ncurses library to present the output information asinterac-
tive content. Commander S contains plug-ins for the most common
entities in shell interaction, processes, and filesystem contents. The
paper shows that it is possible with little effort to extend Comman-
der S to other domains. Through the use of the CML library, the
implementation of the job control is very short, even thoughit is
more powerful than in common UNIX shells and even contains a
small terminal emulator for running processes in the background
while saving their output.

The technique presented in this paper could be used to present
other information such as DNS result records, or the contents of
NIS or LDAP databases. As Commander S closely integrates an
evaluator for Scheme expressions, the user can always fall back to
writing small programs if the power of the command language or
the viewers does not suffice to accomplish a task.

One conceivable extension of Commander S is the integration
with the Orion window manager which is also based on Scsh.
In this combination, Orion would start several Commander S in-
stances concurrently, and assign every instance its own pseudo ter-
minal and Xterm window.

Acknowledgments Christoph de Mattia wrote thescsh-ncurses
bindings and an early prototype of Commander S calledscsh-
nuit.

References
[1] Sunterlib — the Scheme Untergrund library, 2005. Available at

http://www.scsh.net/resources/sunterlib.html.

[2] Norman Adams and Jonathan Rees. Object-oriented programming in
Scheme. InACM Conference on Lisp and Functional Programming,
pages 277–288, Snowbird, Utah, 1988. ACM Press.

[3] Eric Raymond, Zeyd Ben-Halim, and Thomas Dickey.Writing
programs with ncurses, 2004.

[4] Oliver Laumann et al. GNU Screen 4.0.2 user manual, 2005.
https://savannah.gnu.org/projects/screen/.

[5] Donald. A Lewine. POSIX Programmer’s Guide. O’Reilly &
Associates, Inc., 1994.

[6] Pavel Roskin and Miguel de Icaza. The GNU MidnightCommander,
2005.http://www.ibiblio.org/mc/.

[7] John H. Reppy. Concurrent Programming in ML. Cambridge
University Press, 1999.

[8] I ñigo Serna. lfm —last file manager, 2004.http://www.terra.
es/personal7/inigoserna/lfm/.

[9] Olin Shivers, Brian D. Carlstrom, Martin Gasbichler, and Mike
Sperber. Scsh Reference Manual, 2003. Available fromhttp:
//www.scsh.net/.

[10] Michael Sperber. Dired. http://www-pu.informatik.
uni-tuebingen.de/users/sperber/software/dired/%.

67

(define (spawn-joblist-surveillant)
(let ((statistics-channel (make-channel)))

(spawn (lambda ()
(let lp ((running ’()) (ready ’()) (stopped ’()) (new-output ’())

(waiting-for-input ’()) (notify? #f))
(cond
(notify?
(send statistics-channel ...)
(lp running ready stopped new-output waiting-for-input #f))
(else
(apply select
(append
(list
(wrap (receive-rv add-job-channel)

(lambda (new-job)
(lp (cons new-job running)

ready stopped new-output waiting-for-input #t)))
(wrap (receive-rv notify-continue/foreground-channel)

(lambda (job)
(lp (cons job running) ready

(delete job stopped) (delete job new-output)
(delete job waiting-for-input) #t)))

(wrap (receive-rv get-job-list-channel)
(lambda (answer-channel)

(send answer-channel ...)
(lp running ready stopped new-output waiting-for-input #f))))

(map
(lambda (job)
(wrap (job-status-rv job)

(lambda (status)
(cond
((status:exit-val status)
=> (lambda (ignore)

(lp (delete job running) (cons job ready) stopped
new-output waiting-for-input #t)))

((status:stop-sig status)
=> (lambda (signal)

(cond
((= signal signal/ttin)
(lp (delete job running) ready stopped new-output

(cons job waiting-for-input) #t))
((= signal signal/ttou)
(lp (delete job running) ready stopped

(cons job new-output) waiting-for-input #t))
((= signal signal/tstp)
(stop-job job)
(lp (delete job running) ready (cons job stopped)

new-output waiting-for-input #t))
(else (error "Unhandled signal" signal)))))

((status:term-sig status)
=> (lambda (signal)

(lp (delete job running) ready (cons job stopped)
new-output waiting-for-input #t)))))))

running))))))))
statistics-channel))

Figure 7. Excerpt from the implementation of a job list with asynchronous status indication.

68

69

Ubiquitous Mail

Erick Gallesio
Universit́e de Nice - Sophia Antipolis

930 route des Colles, BP 145, F-06903 Sophia
Antipolis, Cedex, France

Erick.Gallesio@essi.fr

Manuel Serrano
Inria Sophia Antipolis

2004 route des Lucioles - BP 93 F-06902 Sophia
Antipolis, Cedex, France

http://www.inria.fr/mimosa/Manuel.Serrano

ABSTRACT
Bimap is a tool for synchronizing IMAP servers. It enables two
or more IMAP mirrored servers to be modified independently
and later on, synchronized. Bimap is versatile so, in addition to
synchronizing emails, it can be used for filtering and classifying
emails. For the sake of the example, the paper shows automatic
emails classification and white-listing programmed with Bimap.

Bimap is implemented in Scheme. The most important parts of
its implementation are presented in this paper with the intended
goal to demonstrate that Scheme is suited for programming tasks
that are usually devoted to scripting languages such as Perlor
Python. With additional libraries, Scheme enables compactand
efficient implementation of this distributed networked application
because the main computations that require efficiency are executed
in compiled code and only the user configurations are executed in
interpreted code.

1. Introduction
Low cost computers, ADSL, and wireless connections have made
ubiquitous computing a reality. Because the Internet is nowavail-
able nearly everywhere on the planet, most of us are nearly per-
manently connected. Many of us use various computers (maybe,
one at home, one at work, and a roaming laptop). All these com-
puters ideally use the same synchronized data. Enforcing this syn-
chronization is not always so easy. Hopefully, some dedicated tools
such as Unison [4] allow two replicas of a collection of files and
directories to be stored on different hosts, modified separately, and
then brought up to date by propagating the changes in each replica
to the other. However, as convenient as these tools are for file and
directory synchronization, they are of little help when considering
email synchronization. In this paper, we address the specific prob-
lem of synchronizing email.

Bimap is a tool for synchronizing email. It enables emails tobe
manipulated from different computers and localizations. Auser can
read, answer, and delete emails from various computers amongst
which some can be momentarily disconnected. Bimap automati-
cally propagates the changes to all these computers. As demon-
strated in this paper, synchronizing email is a simple problem of
synchronizing lists. Functional languages are therefore candidates
of choice for implementing such algorithms. Bimap is implemented

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Sixth Workshop on Scheme and Functional Programming.September 24, 2005,
Tallinn, Estonia.
Copyright c© 2005 Erick Gallesio, Manuel Serrano.

in one of them, namely Scheme, our favorite programming lan-
guage.

The rest of this paper is organized as follows. Section 2 presents
the Internet Message Access Protocolwhich constitutes the foun-
dation of Bimap. Section 3 shows the limitations of IMAP and it
presents the general system architecture used by Bimap. Section 4
presents the synchronization algorithm and its implementation in
Scheme. Section 5 presentswhite-listing, a filtering application im-
plemented with Bimap.

2. IMAP
The Internet Message Access Protocol(IMAP [1]) allows a client
to access and manipulate electronic email messages on a server. It
permits manipulation of mailboxes (remote message folders) as it
also provides the capability for an offline client to resynchronize
with the server.

In contrast with other protocols such as thePost Office Proto-
col (POP3 [3]), IMAP includes operations for creating, deleting,
and renaming mailboxes, checking for new messages, permanently
removing messages, creating new ones, etc. Hence, IMAP is a per-
fect match for our email synchronizer architecture. We haveimple-
mented a simple library that binds IMAP facilities in Scheme. It is
briefly presented in this section.

Messages in IMAP are accessed by the use of numbers. These
numbers are either message sequence numbers or unique identi-
fiers. ¿From a programming point of view, the latter are much more
convenient than the former. Message sequence numbers evolve as
emails are created of deleted. On the other hand, each email is as-
sociated with a unique identifying number (UID henceforth)that
remains valid during an IMAP session. Note that while UIDs un-
ambiguously refer to messages in a given session, no provision is
made by IMAP to make UIDs pervasive, i.e., the UID associated
with an email may change from an IMAP session to another. Hence,
it is difficult to implement a synchronization mechanism that re-
lies on IMAP’s UIDs. As seen in Section 4 our synchronization
tool prefers to use the stamps allocated by the senders than IMAP’s
UIDs. These stamps are extremely likely to be unique and in prac-
tice we have never found a collision.

Instead of tediously presenting all the functions composing the
library, we present in Figure 1 a typical example that illustrates
the most important functions. The example shows an interactive
session where a user logs in and browses some folders and emails.

Note that contrary to some other protocols, IMAP is stateful.
The state of an IMAP connection describes the current directory.
The commandimap-folder-select sets it to a new value.

In addition to the functions used in the example, the library
offers various functions for accessing the header elements, the
attributes, and the body of the messages.

70

1: ;; establish an ssl connection with the IMAP server
2: (define sock (make-ssl-client-socket "imap.nohwere.org" 993))
3: ;; get logged in with user name and password
4: (imap-login sock "john doe" "eodjohn")
5: ;; get the folders list
6: (imap-folders sock)
7: -> ("INBOX" "INBOX.-Unknown" "INBOX.foo" ...)
8: ;; go into a folder
9: (imap-folder-select sock "INBOX.foo")

10: ;; get the list of messages in "INBOX.foo"
11: (imap-folder-uids sock)
12: -> (33612 32977 29895 29132 29018 28958 26938 26937 26129)
13: ;; get the message information about one email
14: (imap-message-info sock 33612)
15: -> ((message-id . <429F0564.9040400@foo.com>)
16: (date . 02-Jun-2005 15:16:09 +0200)
17: (size . 6025) (flags \Seen) (uid . 33612))
18: ;; remove one of these messages
19: (imap-message-delete! sock 33612)
20: ;; create a new folder
21: (imap-folder-create! sock "INBOX.bar")
22: ;; create a new message in the folder "INBOX.bar"
23: (imap-message-create! sock "INBOX.bar" "subject: foo\n\nFoo is not bar")
24: -> 32739
25: ;; get the whole header of message 32739
26: (imap-message-header sock 32739)
27: -> ’((subject . "foo"))
28: ;; get the message 32739 body
29: (imap-message-body sock 32739)
30: -> "Foo is not bar"
31: ;; copy a mail accross server (usually the servers differ)
32: (imap-message-copy! sock 29132 sock "INBOX.bar")
33: ;; move it into folder "INBOX.foo"
34: (imap-message-move! sock 32739 "INBOX.foo")
35: ;; log out
36: (imap-logout sock)

Figure 1. An IMAP session in Scheme

3. The general architecture
IMAP is a distributed platform that allows clients to accessemail
servers. IMAP is a big step in the direction of ubiquitous email
because IMAP servers can be accessed by basically any computer
connected to the Internet. In the first place, we have thoughtthat
one IMAP server would be sufficient to satisfy our needs. We
have discovered that it is not. The difficulties are two fold.First
we occasionally happen to manage our email using disconnected
computers such as in-flight laptops. Even if some IMAP-capable
email readers maintain a local copy of the emails and are ableto
work offline, we are seeking a neutral architecture that doesnot
impose a specific mail reader. Second, we also happen to access
our distant incoming IMAP server using Web email clients. These
clients directly run on the computer hosting the server, modifying
its state. This introduces a de-synchronization between the server
and the local state of a disconnected laptop.

Generally, IMAP providers enforce quotas and maximal sizes
for attachments. These IMAP servers do not provide enough re-
sources for storing all emails. In consequence some emails have
to be moved in local folders (e.g., user file system). The location
and the format used for these locally stored emails highly depend
on email readers. So, they are difficult to synchronize with general
synchronization tools.

We came up with a solution that uses several IMAP servers: a
main server (orincoming server) where the emails first arrive and
one local server per computer. All the email clients only access
the IMAP server that runs locally. Any modification to an email
(deletion, access, ...) is thus local. On a regular basis allthe servers

are synchronized which maintains a coherent global state. Note that
the emails on theincoming server, which is generally on a machine
which is not under our control, can be a subset of the emails that
are stored on our personal computers.

The Figure 2 illustrates a possible use of Bimap synchroniza-
tion. For the sake of the example let’s assume two servers receiv-
ing email (provider1.eduand provider2.com). Both servers only
offer IMAP accounts. Let’s also assume three machines used to
read email (Classic, DesktopandLaptop). Classicis not synchro-
nized. It remotely accessesprovider1.eduand provider2.comvia
a direct IMAP connection.DesktopandLaptophave local folders
that are synchronized with the servers. These two machines expose
a set of folders which is the union of the emails located on thetwo
servers and the local folders. In addition to synchronizingDesktop
andLaptopwith provider1.eduandprovider2.com, Bimap is also
in charge of synchronizingDesktopandLaptoptogether in order to
ensure a correct synchronization of the email stored locally (and to
back them up on another machine too).

4. The synchronization
In this section we present the synchronization algorithm. First, the
principles are exposed. Then the specific parts of the synchroniza-
tion are presented, as well as a sketchy presentation of their imple-
mentation.

71

Figure 2. General architecture

4.1 The synchronization principles

The email synchronization relies on theMESSAGE-ID header fields
[2]. Each of these fields contains a unique identifier which refers
to oneversion ofoneemail. The uniqueness of the email identifier
is guaranteed by the host which generates it. The email identifier
pertains to exactly one instantiation of a particular email. In the
synchronization process presented here, two emails are considered
equal (i.e., the same) if and only if theirMESSAGE-ID is the same.

MESSAGE-ID are not guaranteed to be globally unique hence
one could think to replace them with another identification mecha-
nism. As exposed in Section 2, we have decided not to use IMAP’s
UID because they are not pervasive. Alternatively we could have
used a checksum mechanism applied to the entire email. This
would have had the nasty drawback of enlarged network trafficbe-
cause the whole email body would need to be transfered for identi-
fication. Using theMESSAGE-ID, only one field is transfered.

The process of synchronizing email consists in switching from
one synchronization state (sync-statein short) to another. A sync-
state is an abstract notion. In Bimap, it is represented by a sync-
table which is made of a list containing theMESSAGE-ID of the
emails that have been synchronized. When a new synchronization
takes place between two serversS1 andS2with a sync-tableSYNCT,
first the listsL1 andL2 of emails present inS1 andS2 are computed.
Then the emails ofL1 are compared toSYNCT. An email present
in L1 and absent inSYNCT is a new email that has to be copied
in L2 (and vice-versa). An email present inSYNCT but absent in
either L1 or L2 is a deleted email. The implementation of this
synchronization is presented in figures 5 and 6.

For the sake of the example, here is an example of a sync-table:

(("INBOX"
("<OFBF04EB.82F939-O125705F@us.ibm.com>" ((\Seen)))
("<1000.4779.9924@gardenia.artisan.com>" ((\Seen)))
("<169.62.5348.1708@gardenia.artisan.com>" ((\Seen)))
("<11280737.6750.7.camel@localhost.localdomain>" ())
("<2508011658.j71GTF002229@sea.inria.fr>" ((\Seen)))))

The sync-table is an association list whosecar is a folder
name ("INBOX" in this example) and thecdr is the list of syn-
chronized messages. For each synchronized message, we retain its
MESSAGE-ID as well as the list of its IMAP flags. Usage of sync-
tables is explained in Section 4.5.

The synchronization only deletes emails that are present inthe
sync-table. So, if for any reason, such as network failures,the
sync-tables are lost, the synchronization algorithm will resurrect
emails deleted on only one server but it will never erroneously
delete emails. When a message is copied from a serverS1 to a
serverS2, it preserves itsMESSAGE-ID. Hence, if sync-tables are
missing, the synchronization will not erroneously duplicate emails.
Consequently, Bimap synchronization is conservative.

4.2 The synchronization state

Instead of being implemented as files in the user file space, sync-
tables are stored in the IMAP servers they describe. Hence, users
cannot easily modify sync-tables which are private to Bimap. This
ensures the coherence of the sync-tables with respect to theservers
they describe. In addition, this technique also avoids cluttering user

72

home space with various private files. Since IMAP servers only
contains emails, a sync table is implemented as an email. Since
only folders can be named in IMAP, the sync-table is stored asthe
single message of a well-known folder.

Here is the complete implementation of the sync-table shownin
Section 4.1:

Subject: bimap Tue Aug 23 06:27:37 2005

(("INBOX"
("<OFBF04EB.82F939-O125705F@us.ibm.com>" ((\Seen)))
("<1000.4779.9924@gardenia.artisan.com>" ((\Seen)))
("<169.62.5348.1708@gardenia.artisan.com>" ((\Seen)))
("<11280737.6750.7.camel@localhost.localdomain>" ())
("<2508011658.j71GTF002229@sea.inria.fr>" ((\Seen)))))

When synchronizing serversS1 and S2 which are both refer-
enced by a socket, the name of this folder onS1 is the name of
S2 concatenated with the user login name onS1. The function
sync-folder-name implements this naming:

(define (sync-folder-name s1 s2)
(let ((n (string-replace

(socket-hostname s1)
(string-ref (imap-separator s2) 0)
#\-)))

(string-append (bimap-folder-name)
(imap-separator s2)
n "+" (socket-login s1))))

Some special attention has been paid to produce a legal name for
the folder name. Since IMAP servers reserve one character ("." or
"/") as a folder separator, this character cannot be used in folder
names. The functionimap-separator returns the character used
on the server. The functionserver-sync-table-folder-select
goes into the folder ofS1 containing the sync-table ofS2.

(define (server-sync-table-folder-select s1 s2)
(let ((f (sync-folder-name s2 s1)))

(and (folder-exists? s1 f)
(and (= (folder-length s1 f) 1)

(imap-folder-select s1 f)))))

The functionserver-sync-table-get reads eitherS1’s sync-
table forS2 or S2’s sync-table forS1 if the former is absent.

(define (server-sync-table-get s1 s2)
(cond

((server-sync-table-folder-select s1 s2)
(with-input-from-string

(imap-message-body
s1 (car (imap-folder-uids s1)))

read))
((server-sync-table-folder-select s2 s1)
(with-input-from-string

(imap-message-body
s2 (car (imap-folder-uids s2)))

read))
(else
’())))

The default case ofserver-sync-table-get is to return an
empty sync-table. Remember from Section 4.1 that the algorithm
is conservative. That is, if it happens that the sync-table is lost on
both servers, the synchronization algorithm will resurrect emails
deleted on only one server but in no case will it erroneously delete
emails.

4.3 Synchronizing servers

The synchronization of two IMAP serversS1 andS2 is parameter-
ized byfolders, a list of folders to be synchronized. The function
synchronize-servers!, presented in Figure 3, scans all the fold-

ers in the list. For each folder it checks if the folder is new,deleted,
or to be synchronized in each server. This function updates the new
sync-table in order to reflect the synchronizations that took place.

When all folders are synchronized, the new sync-table is stored
on both servers. The functionserver-sync-table-store! ac-
cepts three parameters: the socketS1 andS2 accessing the servers
and the new sync-tablensync. It computes the name of the folder
where the sync-table on both servers (seesync-folder-name in
Section 4.2) is to be stored.

When a folderF is missing on one server, it has to be determined
first if F is a freshly created folder or an older one which has
been deleted. In order to simplify the understanding of the source
code, contrary to the actual implementation, we have duplicated
the cases where a folder is either absent onS1 or S2. The code,
here duplicated, can easily be merged into a single function. The
functionnew-folder? answers this question. A folder is new if at
least one of the following conditions is met:

• It is not present in the sync-table (see Figure 4, line3).

• It contains sub-folders. Since, synchronization first checks sub-
folders, if F is old, all its sub-folders would have been previ-
ously deleted (line4).

• In order to enforce conservativeness, a folder containing new
emails (i.e., at least one non-synchronized email) is also con-
sidered new (line5).

4.4 Synchronizing folders

When a folder is present in both servers (Figure 3, line25), each
email in this folder is inspected bysynchronize-folders! de-
fined Figure 5.

The functionsync-table-folders-find, whose code is not
given here, retrieves the information available in the sync-table
about the folderF. That is, it searches the association list presented
in Section 4.1. A hash table is built (line8) for improving the
performance of the algorithm. It enables fast access to the sync-
table.

4.5 Synchronizing messages

The last step of the algorithm is the synchronization of an email.
The functionsynchronize-message! synchronizes a messageM1
localized in the folderF on serverS1 according to the sync-table
synct. In addition to copying and deleting emails, this function
also propagates theflagsthat are associated with emails. As spec-
ified by IMAP these flags denote meta-informations about emails
such asan email is read, an email is answered, ... While not ab-
solutely required, synchronizing flags is important. It enables co-
herent views of the email on all servers. In order to synchronize
flags, Bimap stores the flags of synchronized emails in the sync-
tables. That is, for each synchronized email, the sync-table denotes
its flags on the servers at the moment of the last synchronization.
The functionhashtable-message-flags returns the flags stored
in the sync-table for a given email. It returns either the list of the
email flags or#f if it is out of synchronization. In the seldom sit-
uation where two servers have separately modified the flags ofone
email, Bimap randomly selects one server for synchronizingflags,
loosing the modifications applied on the other server.

5. Filtering and classifying emails
Email has escaped the professional IT sphere. One now emailsto
colleagues as he does to relatives. Electronic merchandising also
generates emails. Electronic billing and confirmation numbers are
frequently sent by email. Many administrative procedures can also
be completed with the Web and email. All in all this represents a
huge number of emails that are sent (and also received) everyday.

73

1: (define (synchronize-servers! s1 s2 folders)
2: (let ((sync (server-sync-table-get s1 s2))
3: (folders1 (imap-folders s1))
4: (folders2 (imap-folders s2)))
5: (let loop ((folders folders)
6: (nsync ’()))
7: (cond
8: ((null? folders)
9: (server-sync-table-store! s1 s2 nsync))

10: ((not (memq (car folders) folders1))
11: ;; folder absent in s1
12: (let ((f (car folders)))
13: (if (new-folder? sync s2 f)
14: (begin

15: (imap-folder-create! s1 f)
16: (let ((s (synchronize-folders! sync s1 s2 f)))
17: (loop (cdr folders) (cons s nsync))))
18: (begin

19: (imap-folder-delete! s2 f)
20: (loop (cdr folders) nsync)))))
21: ((not (memq (car folders) folders2))
22: ;; folder absent in s2, symmetric to absent in s1
23: ...)
24: (else
25: ;; the folder is present in both servers
26: (let* ((f (car folders))
27: (s (synchronize-folders! sync s1 s2 f)))
28: (loop (cdr folders) (cons s nsync))))))))

Figure 3. Server synchronization implementation

1: (define (new-folder? sync s f)
2: (let ((dsync (sync-table-folders-find sync f)))
3: (or (not dsync)
4: (pair? (imap-subfolders s f))
5: (any? (lambda (i) (not (assoc (message-id i) dsync)))
6: (begin

7: (imap-folder-select s f)
8: (map imap-message-infos (imap-folder-uids s)))))))

Figure 4. Is a folder new?

1: (define (synchronize-folders! sync s1 s2 f)
2: ;; go into the synchronized folders
3: (imap-folder-select s1 f)
4: (imap-folder-select s2 f)
5: (let* ((l1 (map imap-message-infos (imap-folder-uids s1)))
6: (l2 (map imap-message-infos (imap-folder-uids s2)))
7: (fsync (or (sync-table-folders-find sync f) ’()))
8: (synct (sync->hashtable fsync)))
9: ;; synchronize mails

10: (for-each (lambda (m1)
11: (let ((m2 (find-mid (message-id m1) l2)))
12: (synchronize-message! synct f m1 s1 m2 s2)))
13: l1)
14: (for-each (lambda (m2)
15: (let ((m1 (find-mid (message-id m2) l1)))
16: (synchronize-message! synct f m2 s2 m1 s1)))
17: l2)
18: ;; returns a new synchronization state
19: (let ((fsyncn (hashtable-map synct list)))
20: (cons f fsyncn))))

Figure 5. Folder synchronization implementation

74

1: (define (synchronize-message! synct f m1 s1 m2 s2)
2: (let* ((mid (message-id m1))
3: (uid1 (message-uid m1))
4: (flags1 (message-flags m1))
5: (flags (hashtable-message-flags synct mid)))
6: ;; if flags is false (the message is not in the sync table)
7: ;; then the message is un-synchronized
8: (cond
9: ((and (not flags) m2)

10: ;; an un-synchronized mail, presents in s1 and s2
11: ;; (e.g., sync-table lost)
12: (let ((flags2 (message-flags m2))
13: (uid2 (message-uid m2)))
14: (imap-message-flags-change! s2 uid2 flags1)
15: (hashtable-put! synct mid (list flags1))))
16: ((not flags)
17: ;; an un-synchronized mail which does not exists in s2
18: (imap-message-copy! s1 uid1 s2 f)
19: (hashtable-put! synct mid (list flags1)))
20: ((not m2)
21: ;; a synchronized mail, removed from s2
22: (imap-message-delete! s1 uid1)
23: (hashtable-remove! synct mid))
24: (else
25: ;; a synchronized mail, present in s1 and s2
26: ;; when flags differs they have to be synchronized
27: (synchronize-message-flags! sync m1 m2 s1 s2)))))

Figure 6. Message synchronization implementation

Those of us that are used to communicate via the Internet are so
overwhelmed by emails that tools are needed for reading, filtering,
and classifying emails. In addition to synchronizing email, Bimap
can easily be adapted to these tasks, in the spirit of tools such as
procmail.

Variables declared via the macrodefine-parameter are
calledBimap parameters. The puspose ofdefine-parameter is
threefold: it declares a variable, a function named after the param-
eter that returns the value of the variable, and a function that stores
a new value in the variable. Here is an example of a parameter
declaration and use:

(define-parameter bimap-verbose 0)

(for-each (lambda (o)
(if (string=? o "-v")

(bimap-verbose-set!
(+ 1 (bimap-verbose)))))

(command-line-arguments))

When started, Bimap loads a user configuration file that speci-
fies which IMAP servers and folders have to be synchronized. This
file can also contain various definitions that are used for email clas-
sification and email filtering. Instead of inventing a new little lan-
guage for implementing these customizations, Scheme augmented
with the IMAP binding library is used. In consequence, a Bimap ex-
ecution uses compiled Scheme code for running the synchroniza-
tion algorithm and interpreted Scheme code for running the user
configuration code. This blending of compilation and interpretation
enables high expressiveness without jeopardizing performance.

5.1 Classifying emails

Bimap can be adapted to enable automatic folder selection. Slightly
modifying Bimap enables user customizations that automatically
deliver incoming emails into dedicated folders. For instance, one
may choose to archive emails emitted for a mailing list into dedi-
cated folders or another user may choose to split professional email
from personal email. This customization is specified in the new

Bimap parameter,bimap-folder-rewrite. The value of this pa-
rameter is a procedure that accept four parameters: the connection
to the IMAP server, the folder in which the email is currentlystored,
the message info, and its header fields.

Email classification takes place when a new email is detected
on only one of two servers. Instead of copying the new email in
the folder of synchronization (line18, Figure 6) it is copied into a
folder whose name is computed bybimap-folder-rewrite. That
is, line18 is replaced with:

18: (let* ((hd1 (mail-header->list
19: (imap-message-header s1 uid1)))
20: (fdest ((bimap-folder-rewrite) s2 f2 m1 hd1)))
21: (imap-message-copy! s1 uid2 s2 fdest))

The new email is copied in theFDEST directory (which defaults
to F2). No other treatment is needed. Since this email is marked as
synchronized as any other email, the next time the two servers are
synchronized, the message will be moved inS1 from folderF1 to
Fdest.

The following user configuration example illustrates how the
parameterbimap-folder-rewrite is used to store the emails
sent to a mailing list into a dedicated folder.

(let ((old-rewrite (bimap-folder-rewrite)))
(bimap-folder-rewrite-set!
(lambda (sock folder msg header)

(let ((to (message-header-field header "to")))
(if (equal? to "bigloo@sophia.inria.fr")

"Bigloo"
(old-rewrite sock folder msg header))))))

The email classification requires no extra synchronizationtreat-
ment. That is, no provision is taken to ensure the synchronization
of an emaile that is stored into a re-written folderF. The next
time a synchronization takes place, if the folderF on the list of
synchronized folders, the messageewill be automatically synchro-
nized too. This framework require no implementation effortbut it
introduces a delay in synchronization. It takes two server synchro-

75

nizations to correctly classify such an email and propagatethe clas-
sification to the servers.

5.2 Surviving Spam

Spam email is a plague. They clutter our mailboxes, threatening
email usefulness. Spams are more and more numerous. The Google
Gmail accounts of the authors of this paper are cluttered with
approximatively 3000 to 6000 spam emails per month. That is,
between 100 and 200 spam emails are received each day! The 20
to 30 legitimate emails that are received are literally lostin this
ocean of ineptitude. Spam emails are terribly annoying because
they are cumbersome, distracting, and polluting. So, it is apopular
challenge to stop spams. Many research labs have started projects
on this topic. Anti-SPAM software is widely available. The best
of these systems do an impressively good job at stopping spams.
They use more and more clever methods to decide, according to
its content, if an email is spam or not. Bayesian filtering is one
of them. Unfortunately, as good as these systems are, as with
anti-viruses software, they are bound by their very nature to be
late on spam: anti-spam filters cannot anticipate new spamming
techniques. Even more pessimistically, we think that content-based
filtering is a partial solution that could only produce middling
results. What can be reasonably expected from such filters when
applied to emails like:

.oooo.o .ooooo. oooo ooo oo.ooooo.
d88("8 d88’ ‘88b ‘88b..8P’ 888’ ‘88b
‘"Y88b. 888ooo888 Y888’ 888 888
o.)88b 888 .o .o8"’88b 888 888
8""888P’ ‘Y8bod8P’ o88’ 888o 888bod8P’

888
o888o

Spammers can use other techniques for obfuscating emails. A
lot of them attempt to fool Bayesian filters by introducing mean-
ingless texts. This ranges from c*h*a*n*g*i*n*g the space charac-
ter to replacing letters with numb8rs and n0nsense 4ccents.Pre-
sumably the most intriguing fooling technique swaps the letters
composing the words. Aoccdrnig to rscheearch at Cmabrigde uin-
ervtisy, it deosn’t mttaer waht oredr the ltteers in a wrod are, the
olny iprmoetnt tihng is taht the frist and lsat ltteres are atthe rghit
pclae. The rset can be a tatol mses and you can sitll raed it wouthit
a porbelm. Tihs is bcuseae we do not raed ervey lteter by itslef but
the wrod as a whole.

Content-based filtering is not good enough, it lets too much
spams entering our mailboxes. To work around this problem, we
have coupled content-based filtering with a more drastic approach:
white-listing. This well known technique consists of accepting in-
coming emails only from authenticated users. We are using a very
straightforward technique. We save all the email address ofour cor-
respondents into in a big database which compose our white-list.
When a new email goes through the content-based filter, the address
of the email sender is checked against the white list. If the sender
is unknown, the email is moved into a special folder. Otherwise, it
is directly delivered to the regular mail box folder. This technique
is extremely effective. In our personal setting, white-listing suc-
ceeds in detecting 99.9% of spam and only a few legitimate emails
go into the spam-dedicated folder. A vast majority of legitimate
emails are correctly handled and are no longer lost in a forest of
spam. The dedicated folder of unknown senders can be checked
once in a while when time permits.

Implementing white-listing exercises email pre-filteringas de-
scribed above. White-listing is trivial to implement because it only
requires a hash table. In the following we assume that the email
addresses are stored in the local file~/.bbdb and are organized

according to the Emacs’ Big Brother Data Base format [5]. Since
this code takes place in the user configuration file, it can be easily
adapted to satisfy everyone’s needs.

(define *white* (load-bbdb "~/.bbdb"))

(define (unknown-mail? header)
(not (hashtable-get

white (header-field ’from header))))

(let ((old-filter (bimap-filter)))
(bimap-filter-set!
(lambda (sock folder msg header)
(if (unknown-mail? header)

(imap-message-move! sock msg "INBOX.-Unknown")
(old-filter sock folder msg header)))))

6. Summary and Conclusion
We have presented Bimap, a tool for synchronizing IMAP servers.
We have shown that with very few modifications to the synchro-
nization algorithm, Bimap is also able to filter and classifyemail.
As such, Bimap could be a potential replacement forprocmail.
This is highly convenient because it enables email filteringwith
simple small Scheme scripts. Two such scripts have been presented:
one for classifying emails that belong to mailing lists and asecond
one for implementing white-listing. Each of these scripts is no more
that a few lines of Scheme code.

In order to ease the reading of the present paper, a sim-
plified version of the synchronization algorithm has been pre-
sented. Contrary to the code presented here, the actual imple-
mentation supports folder re-writing. That is, it enables synchro-
nizing folder F1 of serverS1 with folder F2 of serverS2 with-
out imposing name equality betweenF1 and F2. This is conve-
nient for managing different IMAP accounts intended for differ-
ent purposes. This incurs a small additional implementation com-
plexity, such as an indexing with two folders name in the sync-
table (so the functionsnew-folder?, synchronize-folders!,
synchronize-message!, and sync-table-folders-find no
longer take only one folder name as parameter but two), but the
main principles of the implementation stay the sames.

We are now permanently using Bimap for our own email. We
have found that email classification and white listing coupled with
Bayesian filtering (that only runs on our incoming email server)
is highly effective to filter out nearly all illegitimate emails. With-
out pretending to have rediscovered the pleasure and excitement of
answering our first 80’s emails, we claim that Bimap significantly
reduces the modern burden of coping with email. We are no longer
disturbed by irrelevant emails arriving continuously in our mail-
boxes. This makes our professional life significantly nicer!

Bimap is not yet the perfect tool. It still needs improvement.
In particular, IMAP does not support locking. This is quite unfor-
tunate, because lacking locks makes it impossible to prevent sit-
uations where two servers simultaneously attempt to synchronize
against a shared third server. In such a situation, inconsistencies
might occur in the IMAP responses that cause Bimap to fail. As
stated in Section 4.1 this is not critical because the only conse-
quence of corrupted sync-tables is emails resurrection. Inno case
could it lead to erroneous email deletion.

Bimap is a realistic, yet simple, application written in Scheme.
It benefits from the expressiveness of this language and, more im-
portantly, it uses a feature that is frequently available inScheme im-
plementations: the blending of compiled and interpreted programs.
For efficiency, the tree comparisons are compiled. For usability and
convenience the user scripts are interpreted. Few other languages
present these capabilities.

76

[1] Crispin, M. –Internet Message Access Protocol– RFC 3501, The
Internet Society, 2003.

[2] Crocker, D. –Standard for the format of ARPA Internet text
messages– RFC 822, Dept. of Electrical Engineering, University of
Delaware, 1982.

[3] Myers, J. and Rose, M. –Post Office Protocol - Version 3– RFC
1939, Carnegie Mellon and Dover Beach Consulting, Inc., 1996.

[4] Pierce, B. and Vouillon, J. –What’s in Unison? A Formal
Specification and Reference Implementation of a File
Synchronizer– MS-CIS-03-36, Dept. of Computer and Information
Science, University of Pennsylvania, 2004.

[5] Zawinski, J. –The Insidious Big Brother Database– 20th century.

77

Implementing a Bibliography Processor in Scheme

Jean-Michel Hufflen
LIFC (FRE CNRS 2661)

University of Franche-Comté
16, route de Gray

25030 BESANÇON CEDEX
FRANCE

hufflen@lifc.univ-fcomte.fr

Abstract
We report an experience of implementing the MlBIBTEX bibliogra-
phy processor, a re-implementation of BIBTEX with particular fo-
cus on multilingual features. First we describe the behaviour of this
software and explain why we chose Scheme to implement the first
public version. Then we give the broad outlines of our implemen-
tation and show how we took as much advantage as possible of the
main features of Scheme. We also explain what we really missed
and suggest some ways to improve these points.

Keywords MlB IBTEX, bibliography processor, medium-sized pro-
gramming in Scheme.

1. Introduction
This article reports an experience of implementing medium-sized
software in Scheme. The ‘philosophy’ related to the definition of
this programming language is that ‘a very small number of [basic]
rules [. . .] suffice to form a practical and efficient programming
language,’ as mentioned at the introduction of the current revision
of Scheme [24]. So this article is an attempt to show how software
can be developed using ‘a very small number of basic rules.’ Any-
way, we do not regret to have developed our software in Scheme,
but have some criticisms: we think they are constructive.

The program we have written using Scheme is abibliography
processor. More precisely, this is a re-implementation of BIBTEX
[36], the bibliography processor associated with the LATEX word
processor [29]. Reading this paper does not require preciseknowl-
edge of LATEX and BIBTEX, but we provide a brief introduction in
order to make our purpose more precise. LATEX is not an interactive
word processor: first, users type asource file, then LATEX processess
this source file and produces an output file that can be displayed on
a screen or printed on a laser printer. LATEX, which uses TEX as type-
set engine1 [28], produces high-quality print outputs. In particular,
it is able to hyphenate words correctly [28, App. H].

1 TEX, defined by Donald E. Knuth [28], provides a general framework to
format texts. To be fit for use, the definitions of this framework need to be
organised in aformat. There are several formats, the most well-known being
LATEX.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Sixth Workshop on Scheme and Functional Programming.September 24, 2005,
Tallinn, Estonia.
Copyright c© 2005 Jean-Michel Hufflen.

Items of the bibliographical information cited throughoutan
article typeset with LATEX can be denoted by an identifier, e.g.:

\cite{ziemianski2002a}

[33, § 12.2.1]—from a syntactic point of view, LATEX commands
begin with ‘\’ and braces are used to surround arguments—and
when BIBTEX is used to build the ‘References’ section of the article,
it searchesbibliography filescontainingentries, e.g.:

@INPROCEEDINGS{ziemianski2002a,
...}

[33, § 13.2] and generates a file containing bibliographicalrefer-
encescited throughout the article. When LATEX runs again, such
references are typeset and appear as part of this article.

LATEX’s recent versions have greatly improved multilingual ca-
pabilities. For example, the command for specifying the beginning
of a chapter and its title is:

\chapter{...}

[33, § 2.2] and the keyword put by LATEX defaults to the English
one, i.e., ‘Chapter,’ but can be ‘Chapitre’ (resp. ‘Kapitel, . . .) for a
book written in French (resp. German, . . .) In addition, LATEX is able
to switch to accurate patterns for hyphenating non-Englishwords.
Thebabel package2 [33, Ch. 9] provides multilungal operations for
LATEX. Other packages do that, too, but the most multilingual one
is babel, in the sense that this package processes all the natural
languages it knows, without giving any privilege to a particular
one. Therefore this package is especially suitable for mixing several
languages within the same document. For example, if we want
to write an article in Polish with some fragments in German, we
declare:

\usepackage[german,polish]{babel}

the last option—here, ‘polish’—gives the default language of the
document. If we want to write ‘Bus to Poznán,’ the words ‘bus to’
being translated in German, we can use the\foreignlanguage
command of thebabel package:

\foreignlanguage{german}{Autobus nach} Pozna\’{n}

Besides, LATEX is able to deal with ‘foreign’ characters, that is,
accented letters (e.g., ‘ń’) and other diacritics, but in this paper,
we do not go thoroughly into that, we just use LATEX commands to
produce such characters.

2 W.r.t. LATEX’s terminology, apackageis a collection of commands. Some-
thing belonging to the LISP world and close to this notion is the system of
modulesin COMMON L ISP, controlled by the*modules* variable and the
functionsprovide andrequire [47, § 11.8].

78

However, BIBTEX’s present version does not provide as many
multilingual features as LATEX’s, even if the insertion of some
multilingual aspects has been put into action [33, pp. 733–734
& § 13.5.2]. In fact, the commands of thebabel package can
be used within the values of BIBTEX fields—as we showed in
the previous example—and BIBTEX will copy these values onto
the files it generates. However, this method seems to us to be
bad, because users of such bibliographical entries have to load
thebabel package with all the accurate options in any document.
This package operates statically, that is, all the languages possi-
bly used throughout a document must be declared as options of
theusepackage command, located at the beginning of the docu-
ment. In other words, using languages that are not selected when
the babel package is loaded causes errors. That may be the case
if files of bibliographical references use such language identifiers,
put down in the bibliography data bases. In addition, using such
LATEX command in bibliography data bases is just a hack and obvi-
ously obstructs the generation of bibliographies for output formats
other than LATEX. Given these considerations, we started a new im-
plementation, called MlBIBTEX (for ‘ MultiL ingual BIBTEX’). We
roughly describe the behaviour of this program in Section 2 and
explain why we have developed it in Scheme. Section 3 presents
MlB IBTEX’s architecture and gives the guidelines of its develop-
ment. Section 4 reviews what we enjoyed in Scheme and what we
missed.

2. MlBIBTEX
2.1 Purpose

We sketched BIBTEX’s behaviour in the introduction. Now we ex-
plain why MlBIBTEX can be viewed as a ‘better BIBTEX,’ especially
for multilingual features.

Let us consider the entry given in Figure 1, concerning a novella
included in an anthology. This novella, written in Polish bya Polish
writer, is entitled ‘Autobus nach Poznán,’ let us remark that two
words of this title belong to the German language. If this novella
is cited in an article written in Polish, the corresponding reference
should look like:

[1] Andrzej Ziemiánski, Autobus nach Poznań. [W:] Zajdel
2002. Fabryka słów; Lublin 2002; strony 165–238.

as an item belonging to athebibliography environment [33,
§ 12.1.2]. Aplain bibliography style is used above, that is, items
are labelled by numbers, and first names are not abbreviated.(Other
styles exist—for example, withinalphastyles, the label of an item
is formed from the author’s name and the year of publication—
various examples are given in [33, Table 13.4].) Besides, let us re-
call that this reference is supposed to be put at the end of a docu-
ment written in Polish. Let us have a look at the same reference,
but within the bibliography of a document in English and showing
the items of this bibliography according to English-speaking con-
ventions as far as possible:3

[1] Andrzej Ziemiánski. Autobus nach Poznań. In Zajdel
2002, pp. 165–238, Lublin, 2002. Fabryka słów. No
English translation.

That is, ‘[W:] ’ is replaced by ‘In,’ ‘strony’ by ‘pp.’ for ‘pages.’ It
is easy to see that such simple cases can be processed by means
of substitutions, that is, by means of LATEX commands for gener-
ating keywords—\bblin, \bblpp, . . . —whose effect is language-
dependent—‘in’ and ‘pp.’ in English. Other cases are subtler. First,
the order is not the same: for example, the address of the publisher

3 W.r.t. MlBIBTEX’s terminology, such a convention is calleddocument-
dependent approach[18, § 4].

@INPROCEEDINGS{ziemianski2002a,
AUTHOR = {Andrzej Ziemiański},
TITLE = {[Autobahn nach] : german {Poznań}},
BOOKTITLE = {Zajdel 2002},
EDITION = 1,
PAGES = {165--238},
PUBLISHER = {Fabryka Słów},
ADDRESS = {Lublin},
NOTE = {[No English translation] ! english},
YEAR = 2002,
LANGUAGE = polish}

Figure 1. Example of MlBIBTEX entry.

is given before its name in an English-speaking bibliography, af-
ter it in a Polish-speaking one. Second, the value associated with
the NOTE field (see Figure 1), the ‘[...] ! english’ notation
means that the string surrounded by square brackets is put only
if the language of the reference is ‘english.’ Users could build an
entry for a document, usable when the reference is to be put within
an English-speaking bibliography, another entry for the same doc-
ument, but usable within a French-speaking bibliography, and so
on. As a consequence, the information common to these entries
would be duplicated. The ‘[...] ! ...’ construct avoids such a
behaviour; more technical details about such switches are given in
[18, § 2.3].

To show some difficulty related to the generation of multilingual
bibliographies, let us go back to the Polish version of our reference
and recall that the title of thezemianski2002a entry uses some
German words, which are expressed by the ‘[...] : german’
notation. To ensure that these words will be properly hyphenated
if need be, we can generate the following text:4

\bibitem{zemianski2002}Andrzej Ziemia\’{n}ski,
\newblock \emph{\foreignlanguage{german}{Autobus
nach} {Pozna\’{n}}}. \bblin\ \emph{Zajdel 2002}.
\newblock Fabryka s{\l}\’{o}w; Lublin 2002;
\bblpp\ 165--238.

provided that the document uses thebabel package, with at least
thegerman option. This document’s author may think that he does
not need to write in German even if a work using German words
in its title is cited. In such a case—thegerman option has not
been selected—MlBIBTEX does not put the\foreignlanguage
command:

\bibitem{zemianski2002}Andrzej Ziemia\’{n}ski,
\newblock Autobus nach {Pozna\’{n}} ...

but some words might be hyphenated incorrectly. Besides, the
babel package is not the only way to write texts in Polish: there
exists apolski package [4, § F.7], in which case other commands
should be used. More precisely, here is the text that will cause the
‘foreign’ (non-Polish) words to be hyphenated correctly when this
package is loaded:

\bibitem{zemianski2002}Andrzej Ziemia\’{n}ski,
\newblock \emph{{\selecthyphenation{german}Autobus
nach} {Pozna\’{n}}} ...

These examples aim to give some idea about the complexity
of MlB IBTEX’s task. The management of the language specifica-
tions (LANGUAGE field, ‘[...] ...’) and multilingual packages
is explained in more detail in [21]. Of course, such problemsare

4 Notice the use of the commands\bblin and\bblpp for the keywords
used in bibliographies. We show how to manage them in [20]. The \emph
command is for texts to be emphasised, the\newblock command is used
by some document styles [33, Table 7.2, § 12.2.1].

79

unknown for ‘old’ BIBTEX. As shown in Figure 1, MlBIBTEX’s
syntax extends BIBTEX’s. Square brackets are syntatic markers in
MlB IBTEX, ‘normal’ characters in ‘classical’ BIBTEX. Likewise, the
LANGUAGE field, specifying the language of an entry for MlBIBTEX,
is ignored by BIBTEX since unused fields are ignored.

2.2 Requirements

When LATEX processes a document, it produces an output file and
puts the information about bibliographical citations in anauxiliary
file. For example, processing the ‘\cite{zemianski2002a}’ ci-
tation will cause the ‘\citation{zemianski2002a}’ string to be
put into an auxiliary file. This file should contain the specification
of the bibliography style to be used: e.g., ‘\bibstyle{plain}’ for
the ‘plain’ bibliography style. In fact, these auxiliary files are not
TEX source files in the sense that they do not contain texts to be
typeset, but the tokens these files use are the same from a syntactic
point of view (cf. [33, § 12.1.3] for more details). Here is what is
to be done by MlBIBTEX:

(i) look into an auxiliary file for the keys cited throughout adoc-
ument and the bibliography style to be used for this document;

(ii) search bibliography files for corresponding entries;

(iii) look into the beginning of the source file in order to get
information about the multilingual packages used and try to
determine the document’s language;5

(iv) sort them (the sort used depends on the bibliography style,6, it
may also depends on the document’s language);

(v) arrange them according to the bibliography style chosen.

Tasks (i) and (iii) require a TEX parser, whereas Task (ii) requires a
parser of bibliography files. (Because of the compatibilitymode for
‘old’ bibliography styles of BIBTEX [16], another parser is required
for such files, written using thebst language [35].) The directives
for Tasks (iv) and (v) are put in bibliography style files. We see that
such a bibliography processor has to manage several formalisms.

2.3 A bit of story

When we designed and implemented MlBIBTEX’s first version [13],
we decided to develop it in C [25], for sake of efficiency and
portability. In fact, we confess that we were surprised whenTEX
had been reimplemented as a new systemNTS

7 [43], programmed
in Java [23]: it resulted in a program over 100 times slower than
TEX [48]. We also were trying to propose an alternative for a
program with good reputation of efficiency. We put into action a
precise modular decomposition and a precise terminology toname
our functions and variables for this first version [14], so using C to
develop a program supported by precise methodology seemed to us
to be good compromise between efficiency and maintainability.

This first version—we reported the experience we got in [14]—
was able to deal with substitutions, that is, commands such as
\bblin and\bblpp (cf. § 2.1). It was also able to process con-
structs such as ‘[...] : ...’ and ‘[...] !’ But when
it was ready for use and when we were arranging the interface
files—the different values to give to the ‘\bbl...’ commands—
we became aware that this prototype was not multilingual enough.
As an example, putting the different field values concerningthe
zemianski2002a entry in the right order for documents in English
and Polish would have led to complicated bibliography styles, very

5 BIBTEX does not need this step, but MlBIBTEX does.
6 For example, theunsrt bibliography style of BIBTEX leaves the entries
unsorted: they are put according to the order of appearance within the
document.
7 NewTypesettingSystem.

hard to maintain. As we explained in [17], we decided to get rid
of the language used by BIBTEX for bibliography styles [35]: that
is an old-fashioned language, non-modular and only based onhan-
dling a stack, as it can be seen in [33, § 13.6]. As abovementioned, a
compatibility mode exists [16], but the best way for developing bib-
liography styles is given by a new language, callednbst, for ‘new
bibliographystyles’, close toXSLT [52], the language of transfor-
mations forXML 8 documents.

2.4 Thenbst language

Within this new framework, parsing a bibliographical entryfrom a
.bib file results in anXML tree, that is, thezemianski2002a entry
given in Figure 1 can be viewed as theXML tree:

<inproceedings id="zemianski2002a"
language="polish">

<author>...</author>
<title>...</title>
...

</inproceedings>

Processing such a tree can be done this way by using atemplateof
thenbst language:

<nbst:template match="inproceedings">
<!-- Putting the reference’s label, text omitted.-->
<nbst:apply-templates select="author"/>
<nbst:apply-templates select="title"/>
...

</nbst:template>

Such a template is similar to those used inXSLT, it is invoked when
the entry we are processing is rooted by theinproceedings ele-
ment. The twonbst:apply-templates elements we mentioned
in that sketch aim to look for templates matching theauthor and
title elements respectively: if such templates exist, they are in-
voked. The main difference betweenXSLT andnbst: in the latter, a
template can be refined for a particular language:

<nbst:template match="inproceedings"
language="polish">

...
<nbst:apply-templates select="title"/>
...

</nbst:template>

a template with thelanguage attribute having higher priority than
a template without. So this template is invoked when we are pro-
cessing aninproceedings element for a Polish-speaking bibli-
ography, whereas the template withoutlanguage attribute is in-
voked in order to formatinproceedings elements for bibliogra-
phies written in languages other than Polish (more precisely, in lan-
guages other than those put in all thelanguage attributes of the
templates matchinginproceedings elements). This kind of in-
heritance is applied whenever we are looking for a template.For
example, let us consider the following statement:

<nbst:apply-templates select="title"/>

When it is run, we are looking for a template whosematch attribute
is title. First, we are looking for a template whoselanguage
attribute is associated with the current language. In particular, if
this apply-templates statement is run from the template with
thelanguage attribute associated withpolish, we are looking for
a template withlanguage="polish". If such a template exists,
it is invoked. If not, a template matchingtitle elements without

8 Reading this article does not require advanced knowledge about XML .
Readers interested in this metalanguage can refer to [38].

80

language attribute—that is, a default template—is invoked. Such
organisation allows us to build several variants, for English- and
Polish-speaking bibliographies, as shown in § 2.1. More technical
details are given in [18].

Like in XSLT, the values ofmatch attributes belong to the XPath
language, used to address parts of anXML document [51]. In fact,
our expressions selecting parts of a bibliographical item are very
close to XPath’s expressions, but we added some functions for op-
erations difficult to perform with the functions provided bythe first
version of XPath (1.0, the normative document being [51]). For ex-
ample, using the functions provided by standard XPath to capitalise
some words in a title is tedious. In addition, multilingual features
require some information included in TEX source files (cf. § 2.2),
and are implemented by means of calling external functions:we go
thoroughly into this choice in [21]. Obviously, it is preferable for
such external functions to be written in a high-level programming
language, more precisely, in a language that should ease operations
on strings. Such a criterium puts C at a disadvantage: plentyof suc-
cessful text-processing packages have been written in C, but the
memory management is explicit, such operations like concatena-
tion require functions whose use is far from obvious. We cannot
require a bibliography style designer to be an experienced pro-
grammer in C. So, as we report in [19], we decided to develop
MlB IBTEX’s first public version (1.3) using Scheme. In particular,
this choice allowed us to use the representation ofSXML [27] as a
Scheme implementation of ourXML trees. So the bibliographical
entry given in Figure 1 is represented as:

(inproceedings (@ (id "zemianski2002a")
(language "polish"))

(author ...) (title ...) ...)

In addition, let us recall thatnbst programs areXML texts. To
parse them, we useSSAX [26], its outputs beingSXML expres-
sions. Among other tools related toSXML, we have also gained
experience by studying the functions implementing SXPath [27],
but have given our own implementation, in order to ease the calls
of external functions. Likewise, we wholly put into action the im-
plementation ofnbst, as a ‘super-XSLT’ processor with a kind of
inheritance about thelanguage attribute.

2.5 A language accessible by end-users

The choice of a language withXML -like syntax for bibliography
styles opens a window towardsXML ’s world and some applications
become easier: for example, usingnbst to build aHTML file [53]
from a bibliography file in order to display its entries on theWeb.
Or generating bibliographies for documents in DocBook, anXML -
based system for writing structured documents [54]. But another
problem occurs: it is well-known that many end-users puts LATEX
commands inside values of BIBTEX fields, because ‘old’ BIBTEX it-
self does not have enough expressive power. We already mentioned
this fact in the introduction about commands from thebabel pack-
age. In fact, it does not matter if LATEX documents are generated—
although it can be told that such behaviour makes difficult the shar-
ing of bibliography files among several users because users have to
load the same packages as abovementioned—but may cause errors
on other cases. For example:

TITLE = {{\textsc{la}} Confidential}

In such a case—some letters to be typeset using small capitals—our
parser of bibliography files can easily process this title byusing an
element with accurate attributes:9

9 Hereafter theasitis element means that its contents should not be
capitalised or uncapitalised, even if the bibliography style requires that.
The emph element and its attributes specifies typographic effects, e.g.,
using small capitals in this example. Readers interested ina description of

<title>
<asitis>

<emph emf="no" scf="yes">la</emph>
</asitis>
Confidential

</title>

since the\textsc command is predefined in LATEX. The problem
is more complicated if end-users put commands they have defined
themselves, e.g.:

TITLE = {{\logo{la}} Confidential}

where\logo is a user-defined command meaning that its its argu-
ment is an acronym. Such a command may be defined as follows
[33, § A.1.2]:

\newcommand{\logo}[1]{\textsc{#1}}

that is, the\logo command has the same effect than the\textsc
command, but it is more readable about its meaning and can be
redefined if users wish to change the display of acronyms.

This example shows that if end-users have put some LATEX com-
mands inside values of BIBTEX fields and wish to use MlBIBTEX to
output files according to other formats than LATEX, they should be
able to specify how their commands have to be processed when bib-
liography files are parsed and transformed intoXML trees. They can
do that by means of thedefine-pattern function of MlBIBTEX,
some examples being given in Figure 2. The first example shows
how the previous\logo command can be processed: in this case, it
is processed like the\textsc command (see thetitle andemph
elements above).

Hereafter we sketch the effect of thedefine-pattern func-
tion, in order to show that end-users can easily customise the trans-
formation of bibliography files intoSXML trees. In particular, such
a customisation is easy since Scheme allows powerful operations
on strings nicely. If a language like C was still used for MlBIBTEX’s
implementation, this kind of specification would be tedious, or we
would have to define a mini-language to do that.

The define-pattern function has two arguments. The first
is a string viewed as apattern, following the conventions of TEX
for defining commands, that is, the arguments of a command are
denoted by ‘#1,’ ‘ #2,’ . . . (cf. [28, Ch. 20]). If the second argu-
ment is a string, it specifies a replacement, the arguments ofthe
corresponding command being processed recursively. The result—
that is, the second argument—could be given as anSXML expres-
sion, but we wish a particular representation not to occur inside the
Scheme code introduced by thedefine-pattern function: that is
why we give it as a string whose content is expressed by means of
‘usual’ XML syntax.

This simple form can deal with many cases, but not all. If
we look at the second example, we see how the\textbf com-
mand of LATEX is replaced by anemph element with accurate at-
tributes: using bold face and non-italicised characters. That may
be wrong, because\textit{\textbf{...}} produces both bold
face and italicised characters10 in LATEX. More expressive power
is needed to deal with such cases. In the developed form of
the define-pattern function, the second argument is a zero-
argument function that results in a string, which is the replacement
of the pattern. When this form is used, all the operations must be
explicit within the body of this zero-argument function. Infact, the
form:

elements and attributes used within theXML versions of bibliography files
can refer to [15]: that is an earlier version, but changes areslight.
10Readers interested in the font management in LATEX can refer to [33,
Ch. 7].

81

(define-pattern "\\logo{#1}" "<emph emf=’no’ scf=’yes’>#1</emph>") ; ‘scf’ is a flag for ‘small capitals.’

(define-pattern "\\textbf{#1}" "<emph emf=’no’ bff=’yes’>#1</emph>") ; ‘bff’ is for ‘boldface flag.’

(define-pattern "\\textit{#1}" (lambda ()
;; Notice that theemf attribute of theemph element—a switch between roman and italicised characters—
;; defaults toyes, the other attributes default tono.
(define-pattern "\\textbf{#2}" "<emph bff=’yes’>#2</emph>") ; Local pattern.
(string-append "<emph>" (pattern-process "#1") "</emph>")))

Figure 2. Patterns for LATEX commands in Scheme.

(define-pattern p s)

—wherep ands are strings—is equivalent to:

(define-pattern p
(lambda () (pattern-process s))

the pattern-process function belonging to MlBIBTEX’s pro-
gram. The body of the function that is the second argument of
define-pattern may include the specification oflocal patterns,
as shown in the third example given in Figure 2. Let us consider
the last two patterns shown in this figure: when an occurrenceof
a \textbf command is encountered, the local pattern of the third
example is applied inside the argument of a\textit command,
the ‘global’ pattern of the second example being applied anywhere
else.

3. The program
3.1 MlBIBTEX’s architecture

In the previous section, we introduced to the main modules of
MlB IBTEX; now we show how they are put together. Figure 3
pictures MlBIBTEX’s architecture. This figure emphasises the data
flow: given some citation keys extracted from an auxiliary (.aux)
file, some bibliography (.bib) files are searched and the result is
a list of bibliographical entries, given asSXML data. To do that,
MlB IBTEX’s parser is enriched with a module for dealing with pat-
terns. As shown in Figure 3, some patterns are predefined, some—
like the pattern matching the\logo command in Figure 2—can
be user-defined. The analysis of the.aux file also allows us to get
information about a bibliography style. If we do not consider the
compatibility mode for old.bst files, bibliography styles are writ-
ten using thenbst language. These files are parsed usingSSAX,
grouped and ‘semi-compiled,’ in the sense that templates are re-
arranged in order to ease the determination of the template to be
invoked when we are moving to a particular element. Each tem-
plate results in a Scheme function after this pre-processing, and the
bibliography processor applies such functions.

Like XSLT [52, § 16],nbst supports ‘text,’ ‘ xml’ and ‘html’
output modes.11 There is also aLaTeX mode, taking into account
some particular points of LATEX’s syntax. So, only the strings to be
output are concerned by the differences betweentext andLaTeX
modes. As examples—nbst:text is used to put a stringverbatim,
like thexsl:text element inXSLT—:

• <nbst:text>%</nbst/text> yields ‘%’ in text mode, ‘\%’
in LaTeX mode (in LATEX, ‘%’ introduces a comment [29,
§ 2.2.1], so it must be escaped to loose this property),

• <nbst:text>£</nbst:text>—the character numbered
163—yields this character (‘£’) intext mode and the com-
mand to produce it (‘\pounds’) [29, § 3.2.2] inLaTeX mode,
this command being suitable whatever the encoding used by the
word processor is.

11A html mode is needed sinceHTML texts do not fitXML ’s syntax, stricly
speaking.

As mentioned in § 2.4, the programs in.nbst files can use calls
to external functions written in Scheme. That is not heretic: this
feature—using external procedures—exists inXSLT. We use such
external functions in Scheme to implement operations on strings, to
program lexical ordering that depend on natural languages,and to
search.tex files for information about the multilingual capabilities
allowed by the user of the source files, as shown in Figure 3.

We can be asked for a question: ‘why two languages:nbst and
Scheme? why have we not used Scheme for the whole of a bibli-
ography style?’ Such a conventions would have made MlBIBTEX
close to the stylesheets written inDSSSL12 [22], associated with
SGML texts. But it was told that programming withDSSSLwas dif-
ficult for style designers that are not experienced programmers. In
fact, DSSSL is not declarative enough, if we compare it toXSLT or
nbst. Besides,nbst allows refinements to be put into action with-
out modifying an existing style directly. For example, if a Polish
style designer finds out that the default version for a style does
not fit the Polish requirements for the layout of a reference for
aninproceedings entry, such requirements can be implemented
by developing additional templates whose thelanguage attribute
is associated withpolish. External functions written in Scheme
should be used for low-level computation, for examples, foroper-
ations dealing with the different characters of a string. Infact, we
think that style designers will not have to develop such functions,
but they can do that if they wish.

Last but not least, Figure 3 makes precise the parts that are
finished presently: all, except that those pictured within adashed
box, they are planned for the next version.

3.2 Our programming

Working about natural languages is an open domain, in the sense
that there is no general framework, from a theoretical pointof view,
that would cover all the natural languages in the world. Whatis
suitable for a particular language may be unsuitable for another.
So even if we consider a wide range of natural languages, we have
to do experiments and other experiments, reprogram some parts if
they have been modelled insufficiently, that is, if some particular
cases made fail a general scheme. Only a high-level programming
language allows such approach. Besides, the ability for end-users
to enrich the program by means of patterns (cf. § 2.5) seemed to us
to be a decisive point for choosing Scheme. Let us compare this
feature with the Emacs editor, written inEmacs Lisp [31], and
customisable by user-defined functions written in this language.
Such issues seem to us to justify the choice of a LISP dialect. In
addition, when we decided to do a second implementation using
another language than C, we were familiar with LISP universe,
we have already developed a medium-sized program in COMMON
L ISP: a rewrite engine for an algebraic specification language [10].
But we noticed that COMMON L ISP was too big and heavy. We
did not want to accept its complexity, whereas we needed onlya

12DocumentStyle SemanticsSpecification. This formalism is a side-effect
free subset of Scheme, enriched by a library for formatting outputs.

82

.aux file

6

?

key citations and
name of data bases

bibliography
style

.bib file(s)
bibliographical entries

asSXML data
-

MlB IBTEX’s
parser MlB IBTEX’s output: file of

bibliographical references
-

bibliography
processor

bibliography style(s)
asSXML data

6

.nbst file(s) -
SSAX parser

.tex file(s)

?

Information about
multilingual
capability

external functions
in Scheme

(possibly user-defined)

interpretation of
.bst functions

������

HHHHHY

pattern processing

?

user-defined patterns

‘predefined’ patterns
(TEX commands for
accents and fonts)

�������������9

XXXXXXXXXXXXXy

‘A← B’ means thatA usesB. More precisely, functions or data put inA use functions ofB or data fromB.

Figure 3. Data flow in MlBIBTEX.

small part of it. We were interested in programming in a simpler
L ISP dialect, using only a few powerful constructs. In addition,we
already have taught Scheme to undergraduate [11] and graduate
[12] students.

Here are our rules of programming. Most of them aim to ease
maintainability.

• There are precise rules for naming global variables. MlBIBTEX
is organised into modules,13 each module defining a prefix for
naming variables. For example, ‘pattern-’ is the prefix of
the functions dealing with patterns (cf. § 2.5). Here are the
exceptions:

some general functions and macros, grouped into one file,

local variables, that is, variables defined in the body of the
special formsdefine, do, lambda, let, let*, andletrec,

protected variables, as we will see below, their names al-
ways end with ‘-pv;’ when they are used in several mod-
ules, they do not have any prefix.

13From our point of view, these modules only exist in connection toconcep-
tion, we do not use any syntactic feature—e.g., themodule specification of
the Scheme compilerbigloo [40, § 2.2] orPLT Scheme [6, § 5]—for them.

• Side effects are only allowed for local variables. In addition,
we have carefully followed the recommendation about naming
destructive functions in Scheme [24, § 1.3.5]: if a function
mutates any of its arguments, its name ends with ‘!’

• Information is retained locally, by means of lexical closure and
unlimited extent as far as possible. If several functionalities
share the same environment, they are put into action by one
function working bymessage-passing. This technique is used
for protected variables: they are protected since they are en-
closed within a lexical environment. For example, the bibliog-
raphy style, as a path to anbst program, is managed this way:

((bibliographystyle-pv ’see)) ; Get the value.
((bibliographystyle-pv ’set) ...) ; Update.

In fact, this technique can be viewed as object-oriented pro-
gramming in Scheme, as shown in [1, Ch. 2] and [39]. We could
have defined a global variable whose value is such a path and
setting it whilst MlBIBTEX is running. We could put a syntactic
sign inside its name to warn readers of our program that this
variable is supposed to be modified. But we have preferred for

83

(define (parsers-make-launching filename launcher)
;; launcher is the function that rules the analysis of the input file. Its arguments are the function going forward through
;; the file and the function managing errors.
(call-with-current-continuation (lambda (parser-exit-c)

(parsers-filename-rp-loop filename launcher parser-exit-c))))

(define (parsers-filename-rp-loop filename launcher parser-exit-c)
;; filename being an absolute path to an existing file, opens it, runs a read-and-process loop, and closes the
;; corresponding port.
(let ((input-p ’*dummy-value*))

(dynamic-wind
;; Even if thelauncher function encounters errors, the input port is closed. The side effect oninput-p is allowed
;; w.r.t. our conventions, because it is a local variable.
(lambda ()
;; Reenter the middle thunk causes the input file to be open again:
(set! input-p (open-input-file filename)))

(lambda () (launcher (make-r-thunk input-p) parser-exit-c))
(lambda () (close-input-port input-p)))))

(define (make-r-thunk input-p)
;; The result is a thunk—zero-argument function—that moves forward through the input file.
(lambda () (read-char input-p)))

(define (make-x-function parser-exit-c)
;; The result is an escape function—‘x’ is for ‘eXit’— that displays an error message, and stops reading through the input file.
(lambda (msg-idf)

(msg-manager msg-idf)
(parser-exit-c #f)))

Figure 4. Basic functions to build MlBIBTEX’s parsers.

all the ways to get the value of such information or update it to
be grouped into one function within our program.14

We did not use lexer and parser generator like those proposed
in [34], analogous toLEX andYACC, which generates C programs
[30]. In fact, we could have done that for thebst language, be-
cause lexical and syntactic analyses are clearly distinguished in
this case. However, there is no distinction between scannerand
parser in TEX’s language,15 also used in auxiliary files where in-
formation about bibliographies to be build are located (cf.§ 2.2).
For this language, there is only one analyser, which returnseither a
whitespace character, or another character, different from ‘\’, or the
complete name of a macro. Concerning bibliography files, we can
separate lexical and syntactic analysis—we did that in the first ver-
sion [13, Annex]—but that yields a two-level grammar: a firstlevel
for entries (‘@...{...}’), a second for values associated with field
names. So, we have preferred to developad hocparsers for these
languages. Last, we use theSSAX parser fornbst programs, since
they areXML documents.

We have defined a common framework for the parsers we have
built ourselves, the main functions are given in Figure 4. Bycon-
vention, the arguments of the parser’s functions include a zero-
argument function to move forward through the input file and an
escape function stopping reading through the input file.16 Since
this zero-argument function is our only way to get somethingfrom
the current input file inside the functions of our parser, we do not

14 In addition, if we consider a variable defined globally and updated at
run-time, it can be difficult to detect that it has not been assigned yet to its
‘actual’ value. We could define it by bounding it to a ‘dummy value’, but
there is no ‘universal dummy value.’
15That is the case for some early languages.
16 In particular, this function is called when an error is encountered. There
is no error recovery in MlBIBTEX—our parsers stop as soon as an error is
encountered—but there was not in ‘old’ BIBTEX, either.

‘unread’ a character.17 On the other hand, a parser is reading in
advance. The solution put into action is that the functions of our
parser return at least two values: the result of processing afrag-
ment of the input file, and the first character belonging to thetoken
after what has just been processed. A simple example is givenin
Figure 5. These parsers were easy to debug: we replaced the func-
tion moving forward through an input file by a function given in
Figure 6 and exploring successive characters of a string.18 as the
read-char function would do after opening a string port in the
sense ofSRFI19 Nr. 6 [3].

Concerning the management of multilinguism, the information
related to natural languages used throughout bibliographydata
bases is organised into atrie:20 see [21] for more details.

4. Scheme as an implementation language
First we developed MlBIBTEX’s present version withMIT Scheme
[2, 9]. Then we study how to put a portable implementation into
action with bigloo [40] and PLT Scheme [6, 37]. We carefully
grouped non-portable code in one file, so we knew which parts
could be difficult to adapt.

17 In fact, we could use thepeek-char function of Scheme [24, § 6.6.2] for
this operation, but we decided to proceed only ahead, homogeneously.
18Besides, this function is used in ‘final’ MlBIBTEX: when an abbre-
viation, defined by ‘@STRING{schw = {Scheme Workshop}}’—cf. [33,
§ 13.2.3]—is used, e.g., in ‘BOOKTITLE = schw’, MlB IBTEX’s parser in-
serts the contents of the string associated with ‘schw’ by means of the
make-r-string-thunk function.
19SchemeRequestFor Implementation. For more details, see the Web page
http://srfi.schemers.org.
20A trie is a particular case of a tree for storing strings: there is only one
node for every common prefix.

84

(define (s-parse-string-def r-thunk char x)
;; ‘s-’ is the prefix for functions parsing bibliography files. Parses ‘@STRING{<token-0> = <string-value>},’ ‘ @STRING’ being
;; recognised, char being the first character after. r-thunk is the 0-argument function that allows us to move forward through the
;; input file, x is the escape function that stops reading and returns#f as the global result of parsing.
(call-with-values (lambda ()

(s-next-bibtex-idf r-thunk
;; Checking that the token beginning withchar is ‘{’ and returning the first character
;; after, in case of success:
(s-recognise-left-brace r-thunk char x)
x))

(lambda (token-0 char-0)
:: token-0 is the abbreviation’s name, char-0 is supposed to be‘=.’
(call-with-values (lambda () (s-parse-value r-thunk (s-recognise= r-thunk char-0 x) x))
(lambda (string-value char-1)

((s-string-defs-pv ’add) token-0 string-value) ; Adds the bindingtoken-0 7→ string-value. Let us notice that
; s-string-defs-pv is a protected variable (cf. § 3).

;; First, recognising‘}’ and returning the first character after, then processing next entry, that is, next‘@{...}’ and
;; returning two values:
(s-next-entry r-thunk (s-recognise-right-brace r-thunk char-1 x)))))))

Figure 5. How our parsers use multiple values.

Our only error related to portability was an occurrence of the
false value inadvertently replaced by the empty list.21 Another
portability problem arose from accented letters typed by using an
encoding which extendsASCII:

(char-alphabetic? #\é) =⇒MIT Scheme #t
(char-alphabetic? #\é) =⇒bigloo, PLT Scheme #f

In reality, such a case is unspecified by the standard Scheme since
this standard does not specify whether or not a character like ‘#\é’
is a letter and since thechar-alphabetic? function can only be
applied to letters. Anyway, porting MlBIBTEX raises a very small
number of problems, but difficult, because they were relatedto fea-
tures outside the standard Scheme. In fact, most of the issues men-
tioned hereafter are not MlBIBTEX-specific and have already been
debated, but we mention them, as a short report of our experience
and as additional examples of these problems.

4.1 What we have liked

A common pitfall for Scheme programmers is the order of evalua-
tion of a function’s arguments: it is left unspecified by the Scheme
reports [24, § 4.1.3] and may vary from an interpreter to another
in practice. To be honest, the absence of a fixed order may look
strange at first glance, but we think that it is straightforward, it
forces programmers to emphasise what is sequential within their
programs, most often by using the special formslet or let*.

As far as possible, we use Scheme as a functional programming
language, in the sense that functions can be arguments or results
of other functions. Since Scheme has only one namespace, that is,
functions are particular values for variables, our programlooks ho-
mogeneous. In COMMON L ISP or other LISP dialects where func-
tions belongs to a particular namespace [47, § 5.2], distinct from the
‘other’ variables, we would have had to add many occurrencesof
thefunction special form and thefuncall function, what would
complicate the programming.

Advanced functions likecall/cc and dynamic-wind [24,
§ 6.4] are used in MlBIBTEX (cf. Figure 4). However, let us men-
tion that wherever we use these functions, simplified forms,as
they are provided by COMMON L ISP would have been sufficient:
dynamically-scoped exits, by means of the special formscatch
andthrow [47, § 7.11], and the special formunwind-protect.

21Let us recall that inMIT Scheme,#f and() are still the same object [9,
§ 1.2.5].

Dealing with multiple values is very common within the source
files of MlBIBTEX, an example being given in Figure 5, many other
examples existing for functions dealing with multilingualinforma-
tion. A new special form such aslet-values, as suggested by
SRFI 11 [8], would simplify these examples.

4.2 What we have missed

The functions dealing with input files,open-input-file and
call-with-input-file, signal an error if the file cannot be
opened. But by using only the forms of the Scheme standard, we
cannot know this information before trying this operation.The
same problem arises from the functions dealing with output files,
open-output-file andcall-with-output-file. This can be
solved by means ofconditions—this notion exists in COMMON

L ISP [47, Ch. 29], but not (yet?) in the standard Scheme22—as
suggested bySRFI 36 [44].

Some interpreters—MIT Scheme [9, § 5.7],bigloo [40, §§ 4.1.8
& 4.1.10]—allow characters to be processed using Unicode [49],
but only partially. That should be added in the future standard,
since more and more information will be encoded according to
some extensions of theASCII code: latin-1 (or ISO–8859–1) for
West-European languages,23 latin-2 for East-European ones, . . .
Unicode precisely redefines what letters, signs are. Proposals for
putting these definitions in Scheme areSRFI 14 [41] and 75 [7].
As mentioned at the beginning of this section, some interpreters
presently diverge about this point, which should be refined for
further versions of Scheme.

We especially missed an interface with the operating system, in
the sense of a function that would have launched a command of the
operating system, and be able to retain its result displayedon the
current output port, this result being a string usable by thefunctions
of Scheme. From a general point of view, we think that in the stan-
dard Scheme, such a function would be more useful than special
interfaces with specific programming languages like C orJava24

[40, §§ 15 & 16]. More specifically, software belonging to TEX’s
world usually call functions of thekpathsea library [50], used for
locating files. For example, the bibliography styles used by‘old’
BIBTEX can be located by means of thekpsewhich command:

22 . . . but some Scheme interpreters incorporate them: e.g.,MIT Scheme [9,
Ch. 16].
23 Internally used inMIT Scheme [9, § 5.5].
24Besides, this function could be used to run the compiled formof a
program written using these languages.

85

(define (make-r-string-thunk string-0)
;; Returns a thunk exploring each character ofstring-0, in
;; turn. When the end of this string is reached, #f is
;; returned.
(let ((string-length-0 (string-length string-0))

(index 0))
(lambda ()
(if (< index string-length-0)

(let ((result (string-ref string-0 index)))
(set! index (+ index 1))
result)

#f))))

Figure 6. Moving forward through a string.

kpsewhich plain.bst
.../texmf/bibtex/bst/base/plain.bst

In order to put a similar feature into action for MlBIBTEX, a
workaround was to implement a simplified version of this com-
mand in Scheme. This implementation is not wholly satisfactory
from a point of view related to portabiblity because this com-
mand usesenvironment variables, inaccessible directly from stan-
dard Scheme functions:BIBINPUTS, TEXBIB for ‘old’ B IBTEX,25.
MlB IBTEX uses first the environment variableMLBIBINPUTS, be-
fore considering those of BIBTEX [20].

Last, Scheme could includepackagesin the sense of COMMON
L ISP [47, § 11.2], a simpler version being sufficient. If we develop
software under the predefined functions of Scheme, a good disci-
pline for naming functions is sufficient to avoid name clashes. But
packages would ease software composition. For example, there is
no document explaining how functions and macros ofSXML have
been named. So we had to be very careful to this point when we
decided to use this software for dealing withXML documents.

4.3 Proposals

In [42], Dorai Sitaram writes that ‘the [IEEE] Scheme standard and
the Scheme reports do not define a useful programming language
for all platforms. Instead they [. . .] define a family of program-
ming languages that individual implementors can instantiate to a
concrete programming language for a specific platform.’ That is
true, but what does it mean in practice? That an ambitious program
rhas to rely on a particular dialect? Such dependence seems to us
to be acceptable for a program using special effects (e.g., graphical
parts), but is strange for functionalities related to a simple interface
with an operating system (e.g., file existence). Besides, each di-
alect obviously provides such a function, and most often under the
same name:file-exists? in MIT Scheme [9, § 15.3], inbigloo
[40, § 4.2.2], inPLT Scheme [6, § 11.3.3]. Naming them homo-
geneously should be possible. Other examples are subtler, because
functions are not known under the same name: if we wish to get the
values of environment variables set at the operating systemlevel
(cf. § 4.2), the function isget-environment-variable in MIT
Scheme [2, § 2.6],getenv in bigloo [40, § 4.2.1] andPLT Scheme
[6, § 15.4]. Analogous points can be noticed about the functions
passing a command to the operating system level.

In the foreword of [45], Guy L. Steele Jr. wrote: ‘[. . .] Small
is easy to understand. I like the Scheme programming language
because it is small.’ But Scheme can include a small interface with
basic services of operating systems and be still small. Sucha small
interface would not give COMMON L ISP’s complexity to Scheme.
It may be difficult to decide about the names to be given to the
functions of this interface, because some software alreadyuse some

25However, we had to consider these environment variables forsake of
compatibility with BIBTEX.

functions specific to particular interpreters, so it would be tedious
to rename them. A workaround could be an additional predefined
variable whose value would group the whole information about
the present interpreter, its name and version number, the running
operating system, etc. The purpose of the zero-argument function
identify-world of MIT Scheme [2, § 2.1] is close, but such
information is only displayed when the function is applied and
cannot be retained in a variable since this function does notreturn
any result. Such a variable had been defined in COMMON L ISP:
features returns a list offeaturescharacterising a particular
implementation [47, § 25.4.2]. Features have also been proposed in
SRFI0 [5], that seems to us to be a promised way. In particular, such
ways a variable would ease the writing of a tool likeSCMXLATE
[42], a software for porting Scheme programs from a dialect to
another.

5. Conclusion
When we teach Scheme to undergraduate students, some of them
asks us about using this language in ‘real’ situations. Our personal
opinion is that Scheme is certainly less used than an imperative
language like C, or a language in fashion likeJava. However, some
medium-sized projects have been programmed using Scheme, and
often the use of this language in such cases was successful. Agood
illustration of that is MlBIBTEX. Doing the second implementation
in Scheme was faster than doing the first in C, and performances
are comparable. Surely, it is well-known that the higher thepro-
gramming language’s level, the faster the development. Andto be
honest, many problems had already been specified and solved for
the first version, so often adapting C structures to Scheme ones was
sufficient. But on the other hand, the second implementationpro-
poses many more functionalities.

At the time of writing, we are working on MlBIBTEX’s instal-
lation, in order for this program to be able to work with a great
number of Scheme interpreters. We think that we could succeed by
usingGNU tools such asmake [46] andautoconf [32].

We enjoyed programming MlBIBTEX in Scheme. We hope
that we could go on with our implementation. We think that we
could do better for future versions, especially about processing
Unicode characters, according to an interpreter-independent way.
So Scheme will be a modern language, since the localisation of
software, including the use of several writing systems, is current
challenge. Likewise, we hope that installing software programmed
using Scheme will become easier. So Scheme will be not only ‘an
efficient and practical programming language’ [24], but it will be
more portable and more suitable for the modern types of strings.

Acknowledgements
I am very grateful to the anonymous referees, who allowed me to
improve the first version of this article substantially.Many thanks to
Michael Sperber, too, for his patience when he was waiting for this
article.

References
[1] Harold ABELSON and Gerald Jay SUSSMAN: Structure and Interpre-

tation of Computer Programs. The MIT Press, McGraw-Hill Book
Company. 1985.

[2] Stephen ADAMS, Chris HANSON andTHE MIT SCHEME TEAM: MIT

Scheme User’s Manual, 1st edition. June 2002.

[3] William D. CLINGER: Basic String Ports. July 1999. http:
//srfi.schemers.org/srfi-6/.

[4] Antoni DILLER: LATEX wiersz po wierszu. WydawnictwoHelio,
Gliwice. Polish translation ofLATEX Line by Linewith an additional
annex by Jan Jelowicki. 2001.

86

[5] Marc FEELEY: Feature-based Conditional Expansion Construct.
May 1999.http://srfi.schemers.org/srfi-0/.

[6] Matthew FLATT : PLT MzScheme: Language Manual. Version
299.100. March 2005. http://download.plt-scheme.org/
doc/299.100/mred.pdf.

[7] Matthew FLATT and Marc FEELEY: R6RS Unicode Data. July 2005.
http://srfi.schemers.org/srfi-75/.

[8] Lars T. HANSEN: Syntax for Receiving Multiple Values. March 2000.
http://srfi.schemers.org/srfi-11/.

[9] Chris HANSON, THE MIT SCHEME TEAM et al.: MIT Scheme
Reference Manual, 1st edition. March 2002. Massachusetts Institute
of Technology.

[10] Jean-Michel HUFFLEN : Fonctions et généricité dans un langage
de programmation parallèle. Thèse de doctorat, Institut National
Polytechnique de Grenoble. Juillet 1989.

[11] Jean-Michel HUFFLEN : Programmation fonctionnelle en Scheme. De
la conception à la mise en œuvre. Masson. Mars 1996.

[12] Jean-Michel HUFFLEN : Programmation fonctionnelle avancée. Notes
de cours et exercices. Polycopié. Besançon. Juillet 1997.

[13] Jean-Michel HUFFLEN: “MlB IBTEX: a New Implementation of
BIBTEX”. In: EuroTEX 2001, pp. 74–94. Kerkrade, The Netherlands.
September 2001.

[14] Jean-Michel HUFFLEN: “Lessons from a Bibliography Program’s
Reimplementation”. In:LDTA 2002, Vol. 65.3 of ENTCS. Elsevier,
Grenoble, France. April 2002.

[15] Jean-Michel HUFFLEN: “Multilingual Features for Bibliography
Programs: FromXML to MlBIBTEX”. In: EuroTEX 2002, pp. 46–59.
Bachotek, Poland. April 2002.

[16] Jean-Michel HUFFLEN: “Mixing Two Bibliography Style Lan-
guages”. In:LDTA 2003, Vol. 82.3 of ENTCS. Elsevier, Warsaw,
Poland. April 2003.

[17] Jean-Michel HUFFLEN: “European Bibliography Styles and
MlB IBTEX”. TUGboat, Vol. 24, no. 3, pp. 489–498. EuroTEX
2003, Brest, France. June 2003.

[18] Jean-Michel HUFFLEN: “MlB IBTEX’s Version 1.3”.TUGboat, Vol. 24,
no. 2, pp. 249–262. July 2003.

[19] Jean-Michel HUFFLEN: “A Tour around MlBIBTEX and Its Imple-
mentation(s)”.BiuletynGUST, Vol. 20, pp. 21–28. InBachoTEX 2004
conference. April 2004.

[20] Jean-Michel HUFFLEN: “Making MlB IBTEX Fit for a Particular
Language. Example of the Polish Language”.BiuletynGUST, Vol. 21,
pp. 14–26. 2004.

[21] Jean-Michel HUFFLEN: Managing Languages within MlBIBTEX. Will
be presented at PracTEX conference, Chapel Hill, North Carolina.
June 2005.

[22] International StandardISO/IEC 10179:1996(E): DSSSL. 1996.

[23] Java Technology. June 2005.http://java.sun.com.

[24] Richard KELSEY and William D. CLINGER, eds.: “Revised5 Report
on the Algorithmic Language Scheme”.HOSC, Vol. 11, no. 1, pp. 7–
105. August 1998.

[25] Brian W. KERNIGHAN and Denis M. RITCHIE: TheC Programming
Language. 2nd edition. Prentice Hall. 1988.

[26] Oleg KISELYOV: “A Better XML Parser through Functional Program-
ming”. In: 4th International Symposium on Practical Aspects of
Declarative Languages, Vol. 2257 ofLNCS. Springer. 2002.

[27] Oleg KISELYOV and Kirill L ISOVSKY: “ XML , XPath,XSLT Imple-
mentations asSXML, SXPath, andSXSLT”. In: International Lisp
Conference 2002. San Francisco, California. October 2002.

[28] Donald Ervin KNUTH: Computers & Typesetting. Vol. A: the
TEXbook. Addison-Wesley Publishing Company, Reading, Mas-
sachusetts. 1984.

[29] Leslie LAMPORT: LATEX. A Document Preparation System. User’s

Guide and Reference Manual. Addison-Wesley Publishing Company,
Reading, Massachusetts. 1994.

[30] John LEVINE, Tony MASON and Doug BROWN: lex & yacc. 2nd
edition. O’Reilly & Associates, Inc. October 1992.

[31] Bill L EWIS, Dan LAL IBERTE, Richard M. STALLMAND and THE

GNU MANUAL GROUP: GNU Emacs Lisp Reference Manual
for Emacs Version 21. Revision 2.8. January 2002. http:
//www.gnu.org.

[32] David MACKENZIE, Ben ELLISTON and Akim DEMAILLE : au-
toconf. Creating Automatic Configuration Scripts. Version 2.59.
November 2003.http://www.gnu.org/software/autoconf/
manual/.

[33] Frank MITTELBACH, Michel GOOSSENS, Joannes BRAAMS, David
CARLISLE, Chris A. ROWLEY, Christine DETIG and Joachim
SCHROD: The LATEX Companion. 2nd edition. Addison-Wesley
Publishing Company, Reading, Massachusetts. August 2004.

[34] Scott OWENS, MATTHEW FLATT , Olin SHIVERS and Benjamin
MCMULLAN : “Lexer and Parser Generators in Scheme”. In:Proc.
ACM SIGPLAN 2004 Scheme Workshop, pp. 41–52. Snowbird, Utah.
September 2004.

[35] Oren PATASHNIK : Designing BIBTEX Styles. February 1988. Part of
BIBTEX’s distribution.

[36] Oren PATASHNIK : BIBTEXing. February 1988. Part of BIBTEX’s
distribution.

[37] PLT: PLT MzLib: Libraries Manual. Version 299.100. March 2005.
http://download.plt-scheme.org/doc/299.100/mzlib.
pdf.

[38] Erik T. RAY : Learning XML . O’Reilly & Associates, Inc. January
2001.

[39] Jonathan A. REES and Norman I. ADAMS IV : “Object-Oriented
Programming in Scheme”. In:Proc. of the 1988ACM Conference
on Lisp and Functional Programming, pp. 277–288. Snowbird, Utah.
1988.

[40] Manuel SERRANO: Bigloo. A Practical Scheme Compiler. User
Manual for Version 2.6c. June 2004.

[41] Olin SHIVERS: Character-set Library. December 2000.http:
//srfi.schemers.org/srfi-14/.

[42] Dorai SITARAM : “Porting Scheme Programs”. In:Proc. of the 4th
Workshop on Scheme and Functional Programming, UUCS–03–
023, pp. 69–74. School of Computing, University of Utah, Boston,
Massachusetts. November 2003.

[43] Karel SKOUPÝ: “The Software Quality andNTS”. GUST, Vol. 16,
pp. 41–49. 2001.

[44] Michael SPERBER: I/O Conditions. June 2003. http://srfi.
schemers.org/srfi-36/.

[45] George SPRINGERand Daniel P. FRIEDMAN: Scheme and the Art of
Programming. TheMIT Press, McGraw-Hill Book Company. 1989.

[46] Richard M. STALLMAN , Roland MCGRATH and Paul SMITH : GNU

make. A Program for Directing Recompilation. Version 3.80. July
2002.http://www.gnu.org/software/make/manual/.

[47] Guy Lewis STEELE, JR.: COMMON L ISP. The Language. Second
Edition. Digital Press. 1990.

[48] Philip TAYLOR, Jǐri ZLATUŠKA and Karel SKOUPÝ: “The NTS
Project: from Conception to Implementation”.Cahiers GUTenberg,
Vol. 35–36, pp. 53–77. May 2000.

[49] THE UNICODE CONSORTIUM: The Unicode Standard Version 4.0.
Addison-Wesley. August 2003.

[50] TUG Working Group on a TEX Directory Structure:A Directory
Structure for TEX Files. Version 0.9995. CTAN:tex/archive/tds/
standard/tds-0.9995/tds.dvi. January 1998.

[51] W3C: XML Path Language (XPath). Version 1.0. W3C Recommen-
dation. Edited by James Clark and Steve DeRose. November 1999.
http://www.w3.org/TR/1999/REC-xpath-19991116.

87

[52] W3C: XSL Transformations (XSLT). Version 1.0. W3C Rec-
ommendation. Edited by James Clark. November 1999.http:
//www.w3.org/TR/1999/REC-xslt-19991116.

[53] W3C: HyperText Markup Language Home Page. May 2005.
http://www.w3.org/MarkUp/.

[54] Norman WALSH and Leonard MUELLNER: DocBook: The Definitive
Guide. O’Reilly & Associates, Inc. October 1999.

88

89

The Marriage of MrMathematica and MzScheme

Chongkai Zhu
mrmathematica@yahoo.com

Abstract
In this paper, I argue that the programming languages provided
in current mainstream CASes are not suitable for general pur-
pose programming. To address this problem, I developed MrMathe-
matica. MrMathematica is a connection between Mathematicaand
PLT-Scheme, which provides the ability to call Mathematicafrom
MzScheme. The two languages share some common ground, but
are mostly complementary to each other. MrMathematica enhances
Mathematica, and it helps to introduce Scheme to more people
(CAS users).

1. Introduction
A Computer Algebra System(CAS) is a type of software package
that is used in manipulation of mathematical formulae. The primary
goal of a CAS is to automate tedious and sometimes difficult alge-
braic manipulation tasks. The principal difference between a CAS
and a traditional calculator is the ability to deal with equations sym-
bolically rather than numerically. The specific uses and capabili-
ties of these systems vary greatly from one system to another, yet
the purpose remains the same: manipulation of symbolic equations.
CASes often include facilities for graphing equations and provide
a programming language for the user to define his/her own proce-
dures.

CASes began to appear in the early 1970s, and evolved out
of research into artificial intelligence (in Lisp), though the fields
are now regarded as largely separate. The first popular systems
were Reduce, Derive, and Macsyma. The current market leaders
are Maple and Mathematica; both are commonly used by research
mathematicians, scientists, and engineers.

The programming languages provided in all the current main-
stream CASes are not suitable for general purpose programming.
To address this problem, I developed MrMathematica, a Scheme
based system that keeps the repertoire of Mathematica.

The remainder of this article is organized as follows. Section 2
of this paper discusses why CAS programming language falls and
why a real language is needed; Section 3 introduces Mathematica
briefly; Section 4 gives details about MrMathematica; Section 5
concludes.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Sixth Workshop on Scheme and Functional Programming.September 24, 2005,
Tallinn, Estonia.
Copyright c© 2005 Chongkai Zhu.

2. CAS programmers need a real language
A key issue in the design of CAS is the resolution of what is meant
by “evaluation” – of expressions and programs in the embedded
programming language of the system.

Roughly speaking, evaluation is a mapping from an object (in-
put) and a specified context or environment to another objectthat
is a simpler or more specific object (output). Example: 2+3 evalu-
ates to 5. More specifically and somewhat pedantically, in a CAS,
evaluation involves the conventional programming language map-
ping of variables or names (e.g. x) to their bound values (e.g. 3), and
also the mapping of operators (e.g. +) to their actions. Lessconven-
tionally, CAS evaluation generally requires resolution ofsituations
in which a variable “has no value” but stands only for itself,or in
which a variable has a value that is “an expression”. For example,
given a context where x is bound to 3, y has no binding or is used
as a “free variable”, and z is a+2, a typical CAS would evaluate
x+y+z+1 to y+a+5.

In simple cases this model is intuitive for the user and efficiently
implemented by a computer. But a system design must also handle
cases that are not so simple or intuitive. CAS problem-solving
sessions abound in cases where the name and its value(s) in some
context(s) must coexist. Sometimes, values are not the onlyrelevant
attributes of a name: there may be a declaration of “type” or other
auxiliary information. For example it might evaluatesin2 x ≤ 1 to
“True” knowing only that x is of type “Real”.

CAS builders, either by tradition or specific intent, often im-
pose two criteria on their systems intended for use by a ”general”
audience. Unfortunately, the two criteria tend to conflict.

1. The notation and semantics of the CAS should correspond
closely to “common intuitive usage” in mathematics.

2. The notation and semantics of the CAS should be suitable for
algorithmic programming as well as (several levels) of description
of mathematical objects, ranging from the abstract to the relatively
concrete data representations of a computer system.

The need for this first requirement (intuitiveness) is rarely ar-
gued. If programs are going to be helpful to human users in a math-
ematical context, they must use an appropriate common language.
Unfortunately, a careful examination of common usage showsthe
semantics and notion of mathematics as commonly written is of-
ten ambiguous or context dependent. The lack of precision insuch
mathematics (or alternatively, the dependence of the semantics of
mathematical notation on context) is far more prevalent than one
might believe. While mathematics allegedly relies on rigorand for-
mality, a formal “automaton” reading the mathematical literature
would need to accumulate substantial context or else suffergreatly
from the substantial abuse of notation that is, for the most part,
totally accepted and even unnoticed by human readers. Consider
cos(n + 1)x sin nx.

Because the process of evaluation must make explicit the bind-
ing between notation and semantics, the design of the evaluation
program must consider these issues centrally. Furthermore, evalu-
ation typically is intertwined with “simplification” of results. Here

90

again, there is no entirely satisfactory resolution in the symbolic
computation programs or literature as to what the “simplest” form
of an expression means.

As for the second requirement, the need for programming and
data description facilities follows from the simple fact that com-
puter algebra systems are usually “open-ended”. It is not possible to
build-in a command to anticipate each and every user requirement.
Therefore, except for a few simple (or very specific, application-
oriented) systems, each CAS provides a language for the userto
program algorithms and to convey more detailed specifications of
operations of commands. This language must provide a bridgefor
a computer algebra system user to deal with the notations andse-
mantics of programming as well as mathematics. Often this means
including constructions which look like mathematics but have dif-
ferent meanings. For example, in Mathematica x = x+1 is program-
ming language assignment statement; x == x + 1 is an apparently
absurd assertion of equality. Furthermore, the programming lan-
guage must make distinctions between forms of expressions when
mathematicians normally do not make such istinctions. As anex-
ample, the language must deal with the apparently equal but not
identical expressions 2x and x + x.

Programming languages also may have notations of “storage
locations” that do not correspond simply to mathematical notations.
Changing the meaning (or value) of an expression by a side effect
is possible in most systems, and this is rather difficult to explain
without recourse to notions like “indirection” and how datais
stored. For example, in Mathematica, m[[1,1]]= b assigns value to
a position in the matrix m.

With respect to its evaluation strategy, each existing CAS
chooses its own twisting pathway, taking large and small some-
times controversial stands on different issues, along the way. Let’s
see an example in Mathematica:

i = 0;
g[x_] := x+i/;i++ > x

Or put in Scheme syntax:

(begin (Set i 0)
(SetDelayed (g (Pattern x (Blank)))

(Condition (+ x i)
(> (Increment i) x))))

The two allegedly equivalent expressions (list (g 0) (g 0)) and
(Table (g 0) (list 2)) result in (list (g 0) 2) and (list (g 0) (g0))
respectively.

Other CASes sufferes from similar problems. [4] From the au-
thor’s own experience, when writing big programs in Mathematica
(or some other major CAS), such problems can and will arise, re-
sulting in substantial debugging difficulty.

Providing a context for “all mathematics” without making that
unambiguous underpinning explicit is a recipe that ultimately leads
to dissatisfaction for sophisticated users.

Is there a way through the morass? A proposal (eloquently
championed some time ago by David R. Barton at MIT and more
recently at Berkeley) [4] goes something like this: Write inLisp
or similar suitable language and be done with it. This solvesthe
second criterion. As for the first criterion of naturalness –let the
mathematician/user learn the language, and make it explicit.

But there is nearly no CA library in Scheme, besides the
lightweight JACAL. Statistics shows that for those people who
want to do symbolic computation with a computer, nearly all are
using a CAS, and nearly none is using Lisp, although most of them
also want general purpose programming at the same time. What’s
worse, CASes that are in/with Lisp (such as MACSYMA, Axiom)
have only negligible market share.

So I wrote MrMathematica, which lifts and embeds a popular
CAS, Mathematica, into Scheme. Although the currently version
targets only MzScheme, its design is portable to any Lisp imple-
mentation that can be extended using C. Mathematica was chosen
because it has the most dynamic language among major CASes;
PLT Scheme was chosen because it has a good interface and a large
user group.

3. Introduction to Mathematica
In a typical CAS, an internal evaluation program (eval for short),
plays a key role in controlling the behavior of the system. Even
thougheval may not be explicitly available for the user to call, it
is implicitly involved in much that goes on. Typically,eval takes as
input the representation of the user commands, program directives,
and other “instructions” and combines them with the “state”of the
system to provide a result, plus sometimes a change in the “state”.
Mathematica is one CAS that has a singleeval.

The central data types of Mathematica are just the same as
Scheme: numbers, symbols, and lists. The abstract syntax ofthe
two languages is also congruent: every expression is a list-based
tree. To accommodate traditional mathematical expressionsyn-
tax, Mathematica defines several forms:InputForm, OutputForm,
TranditionalForm, FullForm, and so on. The FullForm is very
close to S-exp, and is the internal representation of expression. A
FrontEnd is used to convert between ordinary mathematical expres-
sion (InputForm, OutputForm, TranditionalForm) and FullForm.

Mathematica has two major difference compared with Lisp.
First, Mathematica doesn’t have quote. Second, Mathematica uses
array (of pointers) instead of Lisp’s linked-list.

The underlying strategy for evaluation in Mathematica is based
on the notion that when the user types in an expression, the system
should keep applying rules (and function evaluation means rule
application in Mathematica) until the expression stops changing.
(The example in the previous section just violate this strategy!)

To get a detailed introduction of Mathematica language,please
refer to part 2 of [2], or [6].

There are additional evaluation rules for numerical computation
in which Accuracy and Precision are carried along with each num-
ber. These are intended to automatically keep track of numerical
errors in computation.

Besides the rule-based language, Mathematica also offers many
mathematical functions and methods, including algebraic manipu-
lation, symbolic calculus, plotting, and so on. Part 3 of [2]describes
them in detail.

4. Structure and Interpretation of
MrMathematica

Scheme is a meta-language and MzScheme is actually an opera-
tion system [3], while Mathematica regards itself only as a sci-
entific computation tool. This determines the architectureof Mr-
Mathematica: It works as an extension to MzScheme, which calls
Mathematica.

Among all possible interface (between Scheme and Mathemat-
ica). I choose to implement the simpest one, MathEval, whichis
exactly theeval used by Mathematica. MathEval is provided as
a Scheme function, with input and output done in S-exp, making
use of the similarity between S-exp and FullForm. MathEval suf-
fices. Even if you want some “better” interface, the right wayto
implement it is first to define the same MathEval, and then to de-
fine your interface based on it. Another merit of MathEval is that
it needs explicit quote, which helps distinguighing between algebra
expression and other Scheme value.

Mathematica and MzScheme are both implemented in C, so it
is natural for MrMathematica to use C as transmitter. But thema-

91

Figure 1. MrMathematica session

jor part of MrMathematica was written not in C but in Scheme.
Bottom-up style was used: All needed MathLink (Mathematica’s
C interface) functions were raised into Scheme in a lower layer
implemented as a Scheme module. All the other parts of MrMath-
ematica are written in Scheme, and the final export is the Scheme
function MathEval. Compared with the interface provided byMath-
Link, nearly all the details about the call are encapsulated.

Although the structures of S-exp and Mathematica-expression
are similar, the actual keywords are different. The syntax of some
pre-defined functions is also distinct. To bridge the gap, I use a
separate module in MrMathematica to translate expressions. The
result is that a user can write expression just as a Scheme oneand
send it to Mathematica. In most cases, the output of Mathematica
can be directly feed into the Scheme functioneval or used directly
as a Scheme object. The default rules in the translate table are
conservative, only dealing with the (exact) common part of Scheme
and Mathematica. Programmers can customize the table by new
rules.

From the example in Figure 1, we can see that MrMathemat-
ica allows every Mathematica Input-Output done in “FullForm” of
Mathematica. So CAS users will lose no function from Mathemat-
ica, but get the unambiguous, aesthetically appealing, andconsis-

tent Scheme. The recommended way to use MrMathematica is, to
do all the other programming job in Scheme, and when dealing
with mathematical concepts, call the corresponding Mathematica
function using MathEval.

You can define your Scheme function that use MathEval, thus
using the power of Mathematica with almost no effort. For ex-
ample, the Mathematica function FactorInteger was raised into
Scheme, with exactly the same contract:

> (define (factorinteger n)
(eval (MathEval ‘(FactorInteger ,n))))

> (factorinteger 111111111111111111)
((3 2) (7 1) (11 1) (13 1) (19 1) (37 1)
(52579 1) (333667 1))

A more efficient version:

> (define-syntax factorinteger
(syntax-rules ()

((_ n)
(map cdr

(cdr (MathEval ‘(FactorInteger ,n)))))))

92

For computaion that involves algebra symol(s), explicit quote is
used. See the example about integration. To use the return value in
Scheme, a explicit call to Scheme’s eval is needed:

> (define f
(MathEval

’(Integrate (/ 1 (+ (expt x 2) 1)) x)))
> f
(atan x)
> (define s (eval ‘(lambda (x) ,f)))
> (s 0)
0

MrMathematica is designed to avoid providing too many fea-
tures, but also to avoid weaknesses or restrictions. For example,
calling multiple or remote Mathematica Kernel(s) is supported; par-
allel computation is available using PLT’s thread utility;variables
could all be put in Scheme and the quasi-quote will help transfer
their values into Mathematica; Windows, Unix (including Linux),
and MacOS are all supported; MrMathematica can render Graph-
ics from Mathematica in DrScheme (this feature needs Schemeand
Mathematica running on same machine, which needs further im-
provement).

Even if your favorite Scheme implementation is not PLT, port-
ing MrMathematica should be easy. There are only three points
that are not R5RS and SRFI: the Scheme to C interface, the mod-
ule system, and the Graphics renderer. MrMathematica uses “Inside
MzScheme”, the only official C interface for PLT Scheme v20x,as
its FFI. As mentioned before, all code that deals with C is in asep-
arate module whose only role is raising C functions. Changing it
into different FFI could be done as a routine. The same to module
system. To render Graphics from Mathematica in DrScheme, MrEd
is used. When using other Scheme implementation, you can easily
disable this feature, just as the light-weight version of MrMathe-
matica (designed for MzScheme only instead of full DrScheme)
does.

5. Conclusion and Future Work
With MrMathematica, you can use whatever feature you like either
from Scheme or from Mathematica. The recommended method to
use MrMathematica is to do mathematical compuation in Mathe-
matica and other programming in Scheme. This solves the problem
of major CASes: the lack of a good programming language.

Schemers can view MrMathematica as a Computer Algebra
library, or a build in term rewriting engine; Mathematica users
can view it as a Foreign Language Interface better than that of
Java, Perl or Python (string based). After all, the two languages
are homologous, thus making the symbiosis.

However, this is only a start of the project. To be really suc-
cessful, MrMathematica need more applications. Hence thispaper.
Enjoy hacking with MrMathematica!

For more information about MrMathematica, please visithttp:
//www.websamba.com/mrmathematica.

Acknowledgments
Thanks to LinPeng Huang, Matthew Flatt, and Shriram Krishna-
murthi for prereading the draft of this paper.

References
[1] PLT Scheme.http://www.plt-scheme.org/.

[2] Stephen Wolfram. The Mathematica Book. Wolfram Media, 5th
Edition, 2003.

[3] Matthew Flatt, Robert Bruce Findler, Shriram Krishnamurthi, and
Matthias Felleisen. Programming Languages as Operating Systems.
ICFP 1999.

[4] Richard J. Fateman. Symbolic Mathematics System Evaluators. ISSAC
1996.

[5] Geddes K.O., Czapor Stephen R., and Labahn George. Algorithms for
Computer Algebra.Kluwer Academic, 1992.

[6] John Gray. Mastering Mathematica. Academic Press,Inc,1994.

[7] G J Chaitin. Algorithmic Information Theory. CambridgeUniversity
Press, 2004.

[8] Stephen Wolfram. A New Kind of Science. Wolfram Media, 2002.

[9] Olin Shivers. A Scheme Shell.http://www.scsh.net/docu/
scsh-paper/scsh-paper.html

[10] Aubrey Jaffer. Jacal.http://swissnet.ai.mit.edu/jaffer/
JACAL.html

[11] Maxima.http://maxima.sourceforge.net/

[12] Axiom. http://savannah.nongnu.org/projects/axiom

[13] Reduce.http://www.reduce-algebra.com/

[14] Mapple.http://www.maplesoft.com/

93

ACT Parameterization Framework

Alan Pavǐcić
AVL-AST Zagreb, Croatia

alan.pavicic@avl.com

Nikša Bosníc
AVL-AST Zagreb, Croatia

niksa.bosnic@avl.com

Abstract
ACT is a generic parameterization framework used in the develop-
ment of applications for modeling and parameterization of internal
combustion engines. It is developed in Guile. Its two main parts
areIlm core of object model built on top of Goops, andBeeeditor
environment providing UI. The core object model supports generic
persistence of any object to database, type guardians for different
slots, nameservices and object repositories. It also supportsaddins,
additional modules which can change the behavior of the entire
system as well as any of its parts (e.g. undo/redo functionality, de-
pendencies between objects, event notification, . . .). The editor en-
vironment for editing Ilm objects includes a library of basic editors,
simple composite editors and generic editors. A grading system can
be used to dynamically decide which registered editor classis the
most appropriate for editing a particular object. Every Beeeditor is
an Ilm object itself. High level XML descriptions of data models
and editors can be compiled to Scheme code defining Ilm classes
and Bee editors.

Keywords Lisp, Scheme, MOP, data model, UI, parameterization

1. Introduction
We are working for AVL, a company producing software that sim-
ulates parts of internal combustion engines. Most productsin our
product line are structurally similar. They all consist of two main
parts – a part which models and parameterizes some aspects ofan
engine and a part which actually calculates simulations (solver).
Each solver is typically monolithic stand-alone process which reads
custom formatted data files from input stream, and after (sometimes
very lengthy) calculation stores the result of the simulation to some
output stream to be additionally post-processed.

We will concentrate on the part which allows user to model parts
of an engine and prepares the input data for solvers in the system.

Such a modeling and parameterizing subsystem needs to be able
to define and edit some particular aspects of an engine (depending
on the actual ability of the particular solver) and then run the solver.
Previously, such a subsystem was implemented in such a way that
particular solvers were run from different programs written in C++
which weren’t mutually connected. This architecture was drasti-
cally slowing down adding new or changing existing aspects of the
engine and every change in UI required programmer intervention
and rebuilding of the whole application.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Sixth Workshop on Scheme and Functional Programming.September 24, 2005,
Tallinn, Estonia.
Copyright c© 2005 Alan Pavǐcić and Niǩsa Bosníc.

Obviously, we needed more expressive and more efficient sys-
tem. The first step in the implementation was the analysis of re-
quirements.

In most cases, parameterization is not a very difficult task,be-
cause it can be reduced to a relatively small number of statically
defined classes of objects which are being parameterized. Connec-
tions between such objects are typically trivial, or there are no con-
nections at all. Similarly, editors for such objects can be hand writ-
ten or just partially automatized.

Sometimes requirements on parameterization can be quite seri-
ous. In our case, we have a project where a large number of classes
is in play, which are intensively changed during development of
program or can be added to system after it has already been de-
ployed.

Also, we have some non typical requirements on objects as they
have to know how to persist and depersist themselves (save state
to some unspecified medium, such as a file, an internet connection
or a relational database, and be able to restore it later, e.g. after the
program has been restarted).

Models described by our system can be quite complex them-
selves and dependencies between objects can be very specific(e.g.
relations between mechanic parts of car engine).

Motivated by all of the above, we decided to create a modeling
language which allows the same functionality to be added in dif-
ferent ways, depending on the estimation of application developer,
rather than to create a rigid tool which should anticipate all possible
requirements on classes and relations between them.

Apart from modeling requirements, there are also requirements
for additional changes to the functionality of objects. Again, instead
of anticipating all possible ways how the behavior of objectcould
be changed, we rather open a way to change the behavior of any
class or object during runtime. As we will see later, abstractions for
changing metaproperties of an object we will calladdins.

Similarly, the system has to be able to describe even particular
editors for particular types of objects or any other elements of
UI. The philosophy should be that the simple editors could be
generated automatically and very quickly, but if the application
programmer wants to add a very specialized editor for some class
or family of classes, that should be possible too. Such approach
would guarantee us both – fast development when possible, and
tuning anything within the system when necessary.

Finally, it would be nice if even the application itself could be
described as a regular object which behaves like the rest of the
system.

Such a system, which couples all mentioned elements, would be
a parameterization framework for rapid application development in
any technical area, not necessarily just engine simulation.

The system described is specific enough that the object model
of any typically used OO language (C++, Java, Python, ...) doesn’t
fit completely. Moreover, since we have requirements that classes
can change their behavior (e.g. an object is able to log all changes

94

of its properties) no fixed object model would serve us completely,
no matter how powerful it is.

Creation of such object model from scratch would be a long and
expensive task.

Thus, we decided to use the meta object protocol (MOP)[9]
which allows us to be independent from any predefined fixed object
model and gives us freedom to change the object model on the fly
as needed.

The most complete implementations of MOP can be found in
Lisp systems, so Lisp was the most obvious choice from the begin-
ning. Because, from a management perspective, the experiment of
using Lisp could have failed, Lisp implementation had to be free to
reduce possible losses. Because of high number of target platforms,
implementation also had to be easy to port. An additional require-
ment on Lisp implementation was that the chosen implementation
has to interface easily to C because of third party librarieswe use
(GTK+, expat, OpenGL, libuuid, . . .).

We chose Guile as the Scheme implementation because it satis-
fies most of our needs. It is widely used, free and easily portable.
It comes with Goops [3] – a complete CLOS-like implementation
of MOP. Although it meets all of our requirements, decision to use
it is still questionable1 and implementation of the whole system
shouldn’t involve anything Guile specific on the conceptuallevel
so everything should be easily portable to any Lisp which hasa
complete implementation of MOP.

Goops itself has some differences from CLOS, but it is still
part of CLOS family. It has slots, generic functions, methods,
metaclasses similar to CLOS but it lacks proper implementation
of method combinations.

The object system we built upon Goops is namedIlm, and the
editor system built upon Ilm is namedBee. ACT is the complete
architecture for application development, which along Ilmand Bee
containsXi – an XML editor which allows application developers
to simply draw definitions and layouts of classes and editors, Xic
– a compiler from Xi XML formats to Ilm and Bee definitions,
and some parts more specific to area of internal combustion engine
simulation. Xi is created for the sake of more efficient application
development and the fact that most of our application developers
do not know Scheme.

2. Ilm
2.1 Ilm Basics

The basic idea of Ilm is to enrich Goops with new features, butto
preserve the way the object system is used. That means there should
be no difference between using Ilm classes and using classeswhich
are instances of the default metaclass<class>.

From user’s point of view the basic difference is that a classis
defined usingdefine-ilm-class macro, which is syntactically
the same asdefine-class macro. The class defined in such a way
has metaclass<class-ilm> and has class<unique> added to its
list of superclasses. An additional difference is that slots, which
do not have getter and setter names defined, will get standardized
names for them (prefixing ”get-” or ”set-” and adding ”!” at the end
of setter name). We must enforce that access happens only through
getters and setters because for some elements of the system to work,
one may use only get/set functions to communicate with instances
and should never work directly withslot-ref and slot-set!
functions. Similarly,#:init-keyword is added if absent.

For example, the code:

(define-ilm-class <gas> ()
specific-heat-capacity
specific-heat-ratio

1 performance problems, bugs, module system deficiencies

dynamic-viscosity)

creates an Ilm class<gas> with fully defined slots.
Above definition is expanded to:

(define-class <gas> (<unique>)
(specific-heat-capacity
#:init-keyword #:specific-heat-capacity
#:setter set-specific-heat-capacity!
#:getter get-specific-heat-capacity)
(specific-heat-ratio
#:init-keyword #:specific-heat-ratio
#:setter set-specific-heat-ratio!
#:getter get-specific-heat-ratio)
(dynamic-viscosity
#:init-keyword #:dynamic-viscosity
#:setter set-dynamic-viscosity!
#:getter get-dynamic-viscosity)
#:metaclass <class-ilm>)

The class<unique> has a single slotuuid which is set to
unique 128 bit value during instance initialization. To generate that
value, the libuuid library is used.

The second class essential for the system is class<ref> used for
representing references. It is a simple Goops class which contains
two slots – the slotuuid which keeps the uuid of the object the
reference points to, and the slotobj which keeps the object itself.
The value of the slotobj is #f if the target object is not loaded.

One of the basic requirements on the system is that every object
must be persistable. Knowing that an object in its slot may contain
any Scheme value including other objects or collections of objects,
it is easy to imagine a situation where we have cycles in the
reference graph (in fact this situation is very common when the
model is complex).

Class<ref> is used for breaking the circularity during recursive
persistence of objects. When another Ilm object is found during
traversal through object’s slots or compound values withina slot,
we are persisting a reference to that other object using its uuid as
the key rather than the found object itself.

When an object is instantiated or depersisted (loaded) it regis-
ters itself with theobject repository. The object repository is a weak
hash table whose keys are uuids of objects, and values are objects
themselves. During depersistence, the system again recursively tra-
verses through all object’s slots and values. When a reference to
an object is found, the system looks for matching a object in the
repository and puts it to the proper place. If a matching object is
not found (it is not depersisted yet), the system adds a broken link
to the hash table and stores a location which should point to the
missing object. Eventually, when the missing object is loaded all
missing links are removed from the hash table and all pointers are
set to their proper values. Such loading strategy enables lazy load-
ing of instances, which is an advantage when large clusters of ob-
jects that do not have to reside in memory simultaneously need to
be loaded. Obviously, the object repository has to be a weak hash
table because if an object is not referenced by some other object
(other than the repository itself), it should be collected.

2.2 Persistence

The serialization format of the persisted object does not depend on
the database implementation and is always the same. That property
allows easy implementation of persistence to a new medium.

Objects are always stored as S-expressions.
The basic writer for objects is the standard generic function

write2, with specialized methods for a few additional classes. The
main change, with respect to standard write, is that<ref> and

2 R5RS [8] thewrite procedure becomes generic function after Goops is
loaded

95

<unique> are written in custom syntax#,(instance ...) that
stores the class name of the persisted instance and the keyword list
of #:init-keyword value pairs. This syntax is the reason why
every slot that needs to be persisted has to have#:init-keyword
defined, and why Ilm will add one if omitted. Every database
implementation has to provide a port used bywrite for storing
the object.

Analogously, loading of object is implementation independent.
Using define-reader-ctor from SRFI-10[6], #,(instance
...) syntax allows us to use the standard functionread for read-
ing from given port. If the class whose instance is being readis not
yet present in memory, the system will look for its definitionon the
file system and load it before instantiating the object.

For example, a persisted instance of the above class<gas>
could look like:

#,(instance <gas>
#:uuid
#,(uuid "c6e93456-fef8-44df-9738-d00df8926860")
#:specific-heat-capacity
#,(instance <ref>

#:uuid
#,(uuid "8426e7f7-1883-48a5-ab4b-43dcf94ba45d"))

#:specific-heat-ratio
#,(instance <ref>

#:uuid
#,(uuid "75cd206c-d03f-4288-ae1d-109a0e5360bd"))

#:dynamic-viscosity
#,(instance <ref>

#:uuid
#,(uuid "ac11af8e-0913-4a90-b16b-53b0e7903864")))

By default each bound slot with allocation type#:instance
and which has#:init-keyword will be persisted. If we do not
want to persist such slot, we can use keyword#:nopersist while
defining the slot. If the value of the#:nopersist keyword is true,
the slot is skipped.

The storage (database) where objects are persisted is named
object pool, regardless of how it is implemented.

A valid implementation of an object pool is any library that
satisfies the following requirements:

• it must invoke the standardread andwrite on its own ports
while loading and saving an object

• it must support shallow loading and saving (i.e. implement
load-object and write-object) using standardread and
write

• it must support deep loading and saving (i.e. implement
load-object-deep andwrite-object-deep)

Such definition of the object pool provides transparent scalabil-
ity from trivial object pools (e.g. persistence to the clipboard used
for copy/paste) to large databases.

It is recommended that object pool implementation indexes
objects by uuid, while other indices are not required3.

Most object pool implementations will have a symbolic name
for their identification.

At the moment, three different object pool implementations
exist:

• using the file system – The database name is the directory
name, every object is in its own file named after object’s uuid.
Indexing is done by the file system.

• single file database – Used for embedding Ilm databases into
other formats. The database name is the file name and the index
is embedded in the file.

3 The implementation of a query language is planned.

• Berkeley DB – Currently in the test phase. A hash table is used
for indexing uuids.

Regardless of implementation, an object pool should be garbage
collected periodically; otherwise dead objects can remainin it
forever. The root set for the object pool garbage collector is the
name service.

Object pools describe physical representation of the stored ob-
ject. If we want to arrange objects in logical an hierarchy orwe
want to give a logical name to an object, we use<name-service>.
<name-service> can be considered as analog to file system in Ilm
world. A standard way for an application to get some particular ob-
ject by its name from the the object pool, is using name service
(using uuid is considered bad style since uuids should only be used
internally and there is no guarantee the object will remain in the
database if it is reachable only by uuid).

<name-service> is a standard Ilm class. Therefore, it can
be persisted. Since it keeps references to other Ilm objects, plac-
ing another named instance of<name-service> within it cre-
ates a lower level in hierarchy in the logical sense. The root
name service always has to exist and every object pool has to
have a function for obtaining it. Typically, that function is named
load-obj-from-named-source. If an object is not reachable
from the root name service or some other named source it may be
considered dead.<name-service> is a simple hash table.

2.3 Metaclasses, Aspects and their Applications

Every Ilm class is an instance of the metaclass<class-ilm>.
<class-ilm> is derived from<class>. The initial reason for
introducing additional metaclass to the base system is possibility
to customize theinitialize method for<class-ilm>, which
allows us to change the behavior of the class we are defining before
it is fully defined.

For example, Goops creates all getters and setters of a class
as instances of<accessor-method> class. If we want to com-
bine methods generated with getters and setters with some other
methods, instances of<accessor-method> class are not suffi-
cient because they do not supportnext-method (the form needed
to combine methods). That is the reason why we replace all
<accessor-method> instances that we get from slots with reg-
ular instances of<method> during instantiation of<class-ilm>.
The implementation of newly created methods is taken from acce-
sor methods.

The fact that getters and setters are regular methods is inten-
sively used by addins.

We used the ability to modify a class during its creation to intro-
duce several new keywords in slot definitions.#:getter-thunk
and#:setter-thunk define post and pre processing procedures
respectively which are used to modify default implementations of
getters and setters.#:getter-thunk takes two arguments: the ob-
ject whose getter is invoked and the value received from the default
getter.#:getter-thunk that simply returns the value received
from default implementation would be implemented as:

(lambda (obj val) val).
#:setter-thunk takes three arguments - the object, the new

value and the procedure which would be invoked by default. A
simple pass-through#:setter-thunk would be:

(lambda (obj val proc) (proc obj val)).
Slot definitions may omit thunks. One example when thunks

should be used is automatic conversion of units (model internally
uses SI units while values are provided in arbitrary unit system se-
lected by user). In this case thunks would perform the unit conver-
sion.

The last keyword we added for customizing slot definitions is
#:type. It is used as type guardian for particular slot – if one tries

96

to assign to a slot a value of wrong type, a runtime exception is
raised.

If a slot has both,#:setter-thunk and#:type keywords, the
new value is first passed through the setter and than processed by
the type checker. Types can be basic types like integers or strings,
enumerated types (elements of a symbol list), other Ilm classes or
compound types like type list and type union. A type union allows
slot values of one of the specified types for that slot. A type list
requires the value to be a list of instances of specified typesfor that
slot, properly ordered. With such compound types, any recursive
type can be described.

Example for canonical definition of list of integers without
macro usage:

(define int-list (make <ilm:type-union>))
(set-types! int-list

(list (make <ilm:nil>)
(make <ilm:type-list>

#:types (list
(make <ilm:integer>)
int-list))))

and redefinition of the class<gas> with a new type guarded slot
ints:

(define-ilm-class <gas> ()
...
(ints #:type int-list))

Types are used for better guarantee of correctness of program as
well as to enhance introspection capabilities (used by generic Bee
editors).

Like the ability to define classes separately from methods, it
would be nice if parts of the same class could be defined separately.
In practice, it is often a case that some property or a set of proper-
ties is defined later on, and that it is added to definitions of some
already defined classes. For example, an engineer who describes
a cylinder cares only about slots which are related to calculations
in some particular simulation, but the class<cylinder> can have
some additional properties not necessarily related to engine simula-
tions (e.g. the name of the author and some documentation). Such
sets of orthogonal properties of a class we callaspects. When an
aspect is added to a class, new slots are introduced, but the class
doesn’t change its behavior in any other way. Every slot in the class
stores which aspect introduced it. If a slot is supported by several
different aspects, it contains a list of all those aspects. If differ-
ent aspects introduce the same slot with incompatible settings (e.g.
#:init-value is different), the system raises an error.

Information which aspects are supported by the class are
stored in a slot of the metaclass<class-ilm>. The class and its
slots can be queried and filtered by different aspects. The macro
define-class-aspect is syntactically similar to the macro
define-ilm-class, except that it takes the name of the aspect
as its second argument. The implementation of aspects is basically
redefinition of a class in a way that all already existing slots are kept
and new slots are added, taking care about merging of properties of
duplicate slots4.

An example of a macro for adding an aspect to a class:

(define-syntax add-name-aspect
(syntax-rules ()
((_ cls) (define-ilm-class-aspect cls #:naming

(name #:init-values ""
#:type (make <ilm:string>))))))

and usage of that macro applied to the class<gas>:

(add-name-aspect <gas>)

4 We are considering implementation of aspects using multiple inheritance
that would enable specialization of methods by aspects.

Now <gas> has a new slotname and supports the naming
aspect.

2.4 Addins

The basic behavior of objects (e.g. persistence) is always in the
system. When we want to introduce some additional behavior of
an object which for some reason (memory usage, speed, pure aes-
thetics, . . .) doesn’t need to exist for every class or object, we are
introducing special types of modules, namedaddins. An addin can
introduce a new behavior which cannot be described by the base
system itself.

While aspects introduce new slots and don’t change the behav-
ior of the class, addins bring new functionality to existingmethods.

Such enriching of the model with new a functionality we call
injecting. Important features of addins are that they can beapplied
to any class or instance and that they can be combined. Number
of additional addins which can be added to the base system is
unlimited.

We will try to clarify addins through two examples – undo/redo
and dependency addin.

A system which would keep track of all changes on all slots of
every object all the time would at times be needlessly inefficient
(e.g. when it is used by some calculation which is executed from a
script where things like undo and redo make no sense). On the other
hand, the ability to execute undo and redo actions on some objects
and keeping track of all changes chronologically is quite helpful
to application developers, who could use the object system without
knowing how to implement undoing. Undo addin addresses exactly
that issue. Even in an application that needs undo/redo functionality
not all objects are undoable. All an application developer has to do
to have undo/redo facility in his program is to declare whichobjects
should be undoable or declare classes whose all instances should
support that facility.

Injecting an addin means that a new class will appear in the sys-
tem. The new class will be composed of two – the original classand
a class which is introduced by the addin. Composition is doneusing
multiple inheritance. The class introduced by the addin is typically
an instance of some addin-specific metaclass, so the composed
class will be an instance of the addin’s metaclass too. Hencewe
can additionally customize the composed class in theinitialize
method of the addin’s metaclass. In the undo/redo example, we
are traversing through all setters, modifying them to register all
changes on the global undo/redo stack and to invokenext-method
which in turn invokes the original setter method, specialized for
old class to which addin was injected. That is the reason why we
had to convert all getters and setters from<accessor-method>
to <method>. undo andredo functions are just executing closures
stored on a global stack. Of course, changes are captured only when
an object is changed through a setter and the object is an instance
of an Ilm class with undo/redo addin injected.

If an application programmer knows in advance which addins
should be used, and into which classes or objects they shouldbe
injected, he could use the composed class name – the name of class
concatenated to the name of the injected addin. If we want to make
an undoable instance of<gas>, we would create an instance of the
class<<undo><gas>>, where<undo> is a the name of addin class.

If we want to inject an addin to an already instantiated object,
after its class is composed with the addin, all we have to do iscall
change-class to the newly created class. Since the new class has
superset of slots of the old one, all values within old slots will
remain untouched. Instead of invoking old methods, such object
will have more specialized methods for setters, which are created
during composition of classes.

The purpose of the dependency addin is that slot values can be
calculated from values of other slots (perhaps from anotherob-

97

ject) by some user defined formula. If we make one slot depen-
dent of other slots the connection will be stored in an instance of
class<dependency-descriptor>, which also stores the depen-
dency formula. Propagation of change is eager – immediatelyaf-
ter some value is changed, the object knows whether it is dirty
(needs updateing), but the calculation of the value is lazy and it
calculates only parts it actually needs. The persistence ofsuch
cluster of objects will not calculate all dirty objects before they
are stored. Rather, it will persist current in-memory stateinclud-
ing <dependency-descriptor> objects. Same as in undo addin,
everything what’s happening during setting of the slot value and
during reading from a slot is defined ininitialize method of the
dependency metaclass<dep-mc>. Original getters and setters are
invoked usingnext-method.

When an object with an injected addin is loaded, the name of
its class is recognized as composed class and after loading of class
and addin, additional composition is performed.

For example:

(inject-addin-to-class <undo> <gas>)

will create a new class<<undo><gas>> whose instance will be
persisted as:

#,(instance <<undo><gas>>
#:uuid
#,(uuid "c6e93456-fef8-44df-9738-d00df8926860")
#:specific-heat-capacity
#,(instance <ref>

#:uuid
#,(uuid "8426e7f7-1883-48a5-ab4b-43dcf94ba45d"))

#:specific-heat-ratio
#,(instance <ref>

#:uuid
#,(uuid "75cd206c-d03f-4288-ae1d-109a0e5360bd"))

#:dynamic-viscosity
#,(instance <ref>

#:uuid
#,(uuid "ac11af8e-0913-4a90-b16b-53b0e7903864"))

#:ints (1 2 3)
#:name "air")

To ejecte an addin can from an object,change-class to the
original class can be invoked.

The list of possible addins is open ended. In addition to already
described addins we implemented an event addin which makes an
object notify its listeners when any of its slots change. Implemen-
tations of a locking addin which would replace proper setters with
dummy setters and debug addin which is able to log all changes
within the system are planned.

3. Bee
3.1 Bee Basics

For a complete solution of the parameterization problem, apart
from the data model we also neededitors– UI components ded-
icated to the interactive modification of objects. The part of our
system addressing the task of editing Ilm objects is calledBee5.
Altough Bee does not limit the choice of UI library, all currently
created editors are implemented using GTK+ [4].

Every Bee editor is an Ilm object itself. That approach elegantly
solves persistence of editors (i.e. UI state), dependencies between
editors etc. Additionaly, it also enables creation of meta-editors
(Bee editors designed for creation and modification of Bee edi-
tors)6. Furthermore, since Ilm permits modeling of the data meta-

5 short for ”Bee is aneditor environment”
6 This possibility is not employed in its full strength in the current imple-
mentation.

model, Bee editors are also used for editing the data model itself
i.e. Ilm class definitions.

An additional source of flexibility of Bee editors is a classical
Lisp pattern where an editor accepts a procedure (commonly just a
simple lambda expression) as a value of a parameter that specifies
or specializes its behavior. Examples of problems solved insuch a
way are definition of arbitrary hierarchy in the generic treeeditor
(children of a tree node are returned by a procedure given as
a parameter, effectively solving filtering and ordering also) and
naming of an entity (name is generated depending on the context
and/or translated to the given language).

Since an editor is fully defined just by defining six state-
changing actions upon it, a short description of the life cycle of
an editor (shown in figure 1) is necessary.

Figure 1. Editor state diagram

• The stateoff is the starting and the ending state. An editor in that
state exists as an Ilm object but it still (or again) doesn’t have
any UI representation. This state is introduced to enable manip-
ulation of properties of the editor which must be defined before
the widget (or widget hierarchy) that makes up the editor’s UI
is created.

• In the stateon, the static part of the editor’s UI representation is
created but it is not visible. The static part of UI representation
is the part that can be created without knowing exactly which
object will be edited and it includes at least the main widget
of the editor. We can add an editor in this state to some parent
widget and by doing so we can build UI to be shown later all at
once.

• The stateloadedis the ”working” state of the editor. Before the
editor can enter this state, the object to be edited must be set. UI
representation exists in full and is visible, and the editorpermits
interactive modification of the object.

Actions turn-on, turn-off, load andunloadswitch states of an
editor. All transitions shown on the state diagram are allowed (e.g.
off-on-loaded-on-loaded-on-off) so the same editor can beused
multiple times for editing (even editing different objects) without
repeated construction and destruction of the static part ofits UI
representation.

Each action is implemented as a Goops method that can be in-
voked by the owner of the editor. Bee provides a simple embedded
language[7] for defining editors:

• specialize-ed-class macro defines an editor class (using
define-ilm-class) and overrides the default initial values for
slots inherited from its base classes.

• Macros define-turn-on, define-turn-off, etc. simplify
the definition of appropriate methods, provide error checking
and ensure state consistency.

98

3.2 Basic Editors and Simple Composite Editors

Basic editorscover editing of ”atomic” objects and serve as build-
ing blocks for construction of complex editors. Typical examples
of basic editors are editors for strings, numbers, enumerated val-
ues, Boolean values, tabular functions, physical quantities (a pair
of a number and a unit from given unit group) etc. Although each
basic editor must be manually coded7, the embedded language de-
scribed above greatly reduces the effort.

For example, the complete definition of an editor for real num-
bers is:

(specialize-ed-class <real-ed> (<gtk-ed>)
(layout-hints ’(#:hflexible #:small)))

(define-turn-on (ed <real-ed>)
(set-widget! ed (make <gtk-entry>)))

(define-turn-off (ed <real-ed>))

(define-load (ed <real-ed>)
(gtk-widget-set-sensitive (get-entry ed)

(not (read-only? ed)))
(load-text ed))

(define-unload (ed <real-ed>)
(gtk-entry-set-text (get-entry ed) ""))

(define-save (ed <real-ed>)
(unless (read-only? ed)
(set-obj! ed

(string->real (gtk-entry-get-text
(get-entry ed))))))

(define-reload (ed <real-ed>)
(load-text ed))

(define (load-text ed)
(gtk-entry-set-text (get-entry ed)

(real->string (get-obj ed))))

(define get-entry get-widget)

Simple composite editorsgroup several (often basic) editors
into one whole. Layout creation algorithms have access tolayout
hints, a way for a child editor to express its properties regarding
layout. While the current version of Bee includes only a simple
single-column composite editor, a table composite editor is under
development.

3.3 Grading

To any editor class we can attach one or moregraders– procedures
that, based on properties of the location we want to edit (e.g. al-
lowed types of objects, type of the object currently stored at the
location, read-only flag, . . .), give a numerical measure of how ap-
propriate an instance of the editor class would be for editing that
location. That way we can make the decision about the most ap-
propriate editor class dynamically, without the explicit knowledge
about all editor classes in the system and their requirements.

One appropriate grader for the real number editor class could be
registered as:

(registry-add-type-grader
(lambda (type)
(and (or (is-a? type <ilm:real>) (eq? type <real>))

(cons <real-ed> 11))))

A later call to a query function such asregistry-grade-type
would include a pair of the editor class<real-ed> and the grade
11 in the returned list if the type given satifies the above condition.

7 as opposed to automatically generated

By convention, more specific editors are given higher grades.
A non-specific ”last-resort” editor intended primarily foruse by
application developers can be used for any location but getsa low
grade. On the other hand, an editor created for a specific narrow
category of objects (like<gas-ed> below) gets much higher grade,
but under more selective conditions.

3.4 Generic Editors

The concept of graders opens a door towardsgeneric editors.
Generic editors use simple composite editors as containersand
layout managers for editors created according to the results of the
grading of parts8 of the object being edited. The simplicity of this
process enhances scalability with respect to the number of classes
in the data model and the number of editor classes in the system,
along with resilience regarding data model changes. Furthermore,
generic editors enable work on the data as soon as the data model
is finished or even during its development.

For example, figure 2 depicts an instance of<uni-ed>, a
generic editor that uses the described grading and the single-
column composite editor, editing an instance of the class<gas> de-
fined with the appropriate slot type information.<uni-ed> grades
each slot of the given object, selects the editor class with the high-
est grade if any, and adds an instance of the selected editor class to
a single-column composite editor serving as a container andlayout
manager.

Figure 2. A generic editor

With some minimal specialization generic editors can often
replace complex editors built manually by gradual composition of
basic editors:

(specialize-ed-class <specific-heat-capacity-ed>
(<multi-type-ed>)
(slot-namer (make-alist-namer

’((const . "Constant")
(T-tbl . "Table (T)")
(p-T-tbl . "Table (p,T)")))))

(registry-add-class-type-grader
<specific-heat-capacity>
<specific-heat-capacity-ed> 13)

;;;; omitting similar specialization code for specific
;;;; heat ratio and dynamic viscosity editors

(specialize-ed-class <gas-ed> (<uni-ed>)
(heading "Gas")
(slot-namer
(make-alist-namer
’((name . "Name")
(specific-heat-capacity ."Specific Heat Capacity")
(specific-heat-ratio . "Specific Heat Ratio")
(dynamic-viscosity . "Dynamic Viscosity")))))

(registry-add-class-type-grader <gas> <gas-ed> 13)

The specialized generic editor<gas-ed> is shown in figure 3.

8 typically non-virtual instance slots

99

Figure 3. A specialized generic editor

4. Related Work
ASL’s [10] components Adam and Eve2 treat problems that are
similar to those treated by Ilm and Bee, respectively. We avoid
the multiple language approach (C++ for the implementationof li-
braries, AEL for data and dependency expressions, AVM for the
interpretive runtime execution) by using Scheme for all parameter-
ization purposes.

Cells [1] and Cells-Gtk [2] combined also provide a flexible
Lisp based parameterization framework.

5. Conclusion
The initial predevelopment experiment was successful and after a
short additional development phase we are about to start with de-
ployment, proving once again that Lisp and MOP should be consid-
ered in commercial programming at least equally to C++ or Java.
Problems we encountered using Lisp weren’t of conceptual nature
and mostly were related to the selection of a good implementation
that covers our specific requirements.

References
[1] Cells. http://common-lisp.net/project/cells
[2] Cells-Gtk. http://common-lisp.net/project/cells-gtk
[3] Goops. http://www.gnu.org/software/guile/docs/goops
[4] GTK+. http://www.gtk.org
[5] Guile. http://www.gnu.org/software/guile
[6] SRFI-10. http://srfi.schemers.org/srfi-10/srfi-10.html
[7] Paul Graham.On Lisp. Prentice Hall, 1993.
[8] Richard Kelsey, William Clinger, and Jonathan Rees (Editors).

Revised(5) Report on the Algorithmic Language Scheme.
http://www.schemers.org/Documents/Standards/R5RS

[9] Gregor Kiczales, Jim des Rivières, Daniel G. Bobrow.The Art of the
Metaobject Protocol. The MIT Press, 1991.

[10] Sean Parent, Foster Brereton.Overview of Adobe Source Libraries.
http://opensource.adobe.com/groupasl overview.html

100

101

Javascript to Scheme Compilation

Florian Loitsch
Inria Sophia Antipolis

2004 route des Lucioles - BP 93
F-06902 Sophia Antipolis, Cedex

France
Florian.Loitsch@sophia.inria.fr

ABSTRACT
This paper presents Jsigloo, a Bigloo frontend compiling Javascript
to Scheme. Javascript and Scheme share many features: both are
dynamically typed, they feature closures and allow for functions
as first class citizens. Despite their similarities it is notalways
easy to map Javascript constructs to efficient Scheme code, and in
this paper we discuss the non-obvious transformations thatneeded
special attention.

Even though optimizations were supposed to be done by Bigloo
the chosen Javascript-Scheme mapping made several analyses inef-
fective and some optimizations are hence implemented in Jsigloo.
We illustrate the opportunities Bigloo missed and show how the
additional optimizations improve the situation.

1. Introduction
Javascript is one of the most popular scripting languages available
today. It was introduced with Netscape Navigator 2.0 in 1995, and
has since been implemented in every other dominant web-browser.
As of today nearly every computer is able to execute Ecmascript
(Javascript’s official name since its standardization [9] in 1997),
and most sophisticated web-sites use Javascript.

Over the time Javascript has been included in and adapted to
many different projects (eg. Qt Script for Applications, Macro-
media’s Actionscript), and it is not exclusively used for web-
pages anymore. Most of them are interpreting Javascript, but some
are already compiling Javascript directly to JVM byte code (eg.
Mozilla’s Rhino [5] and Caucho Resin [4]).

Javascript is not easy to compile though. Several of its proper-
ties make it challenging to generate efficient code:

• Javascript is dynamically typed,

• functions are first class citizens,

• variables can be captured by functions (closures),

• it provides automatic memory management, and

• it contains aneval function, which allows one to compile and
run code at run-time.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Sixth Workshop on Scheme and Functional Programming.September 24, 2005,
Tallinn, Estonia.
Copyright c© 2005 Florian Loitsch.

Scheme has similar features, and Scheme compilers are faced
with the same problems. Contrary to Javascript much research
has been spent in compiling Scheme, and there exists severalef-
ficient Scheme compilers now. By compiling Javascript to Scheme
it should hence be possible to benefit from the already present op-
timizations. Bigloo, one of these efficient compilers, has the sup-
plementary advantage of compiling to different targets: inaddition
to C, it is capable of producing JVM bytecode or .NET’s CLI. A
Javascript to Scheme compiler would hence immediately makeit
possible to run (and interface) Javascript with these threeplatforms.

When we started the compiler we expected to have the following
advantages over other Javascript compilers:

• The compiler should be small. Most of Javascript’s features
exist already in Scheme, and only few adjustments are needed.

• The compiler should be easy to maintain. A small compiler is
easier to maintain than a big, complex compiler.

• The compiler should be fast. Bigloo is fast, and if the trans-
lated code can be optimized by Bigloo, the combined compiler
should produce fast code. An efficient Javascript to Scheme
compiler does not need to create efficient Scheme-code, but
code that is easily optimized by Bigloo.

• Any improvement in Bigloo automatically improves the Java-
script compiler. New optimizations are automatically applied to
the Javascript code, and new backends allow distribution todif-
ferent platforms.

• Javascript code could be easily interfaced with Scheme and all
languages with which Bigloo interfaces.

Many existing Javascript compilers or interpreters already featured
some of the listed points, but none combined all these advantages.

Our compiler,Jsigloo, takes Javascript code as input, and trans-
lates it to Scheme code with Bigloo extensions1 which is then op-
timized and compiled to one of the three platforms. Furthermore
it is planned to integrate Jsigloo into Bigloo (as has been done for
Camloo [16]) thereby eliminating the intermediate Scheme-file.

Section 2 will detail the differences between Javascript and
Scheme. In Section 3, the chosen data-structure mapping andtyp-
ing issues are discussed. Section 4 describes the code generation
and how encountered difficulties are handled. Some preliminary
performance results are given in Section 5. Section 6 shows why
Jsigloo is not yet finished and what needs to be improved in the
future. Finally, Section 7 concludes this paper.

1 Most of the used extensions increase Bigloo’s efficiency andcould be
either omitted or replaced by equivalent (slower) Scheme expressions.

102

2. Javascript vs. Scheme
Javascript and Scheme share many features, and this sectionwill
therefore concentrate on their differences rather than similarities.
Even though Javascript is generally considered to be an object ori-
ented language, it bears more resemblance to functional languages
like Scheme than to most object oriented languages. In fact Java-
script’s object system is based on closures which is a feature typi-
cally seen in functional languages.

Javascript’s syntax resembles Java (or C), and even readers
without any Javascript knowledge should be able to follow the
provided code samples.

2.1 Binding of Variables

In Scheme, new variables can only be created within certain ex-
pressions (eg.let anddefine) which ensure that every variable is
defined. Javascript however is more flexible:

• Globals do not need to be declared. They can be defined within
the global scope (using the same syntax as is used for local
variables in functions), but it is also possible to declare them
implicitly when assigning an undeclared variable2. The inverse
- reading from an undeclared variable - is not possible and
throws an exception.

• A variable declaration (var x;) allows one to declare variables
anywhere in a function. The variable is then set toundefinedat
the beginning of the function. Most languages provide blocks
to limit the visibility of variables whereas in Javascript blocks
do not influence the scoping. But even more surprising the
declaration also affects all previous occurrences of the same
symbol. In theory one could put all variable-declarations in a
block at the end of a function.

This flexibility comes at a price though. When variables share
the same name it is easy to accidently reference the wrong variables
and produce buggy code. The following example contains several
common mistakes.

1: var x = "global"; // global variable
2: function f() {
3: x = "local"; // references local x
4: var someBool = true;
5: var x = 2;
6: some bool = false; // oops.
7: if (someBool) {
8: var x = 1; // references same x
9: }
10: return x;
11: }
12: f(); // => 1
13: x; // => "global"
14: some bool; // => false

Due to the local declaration ofx in line 5 and 8 the assignment
in line 3 does not change the globalx, but the local one. Line
6 contains another annoying bug: instead of changing the local
someBool a new globalsome bool is created and set tofalse.

From a compiler’s point of view these differences are mostly
negligible though. Only the automatic assignment ofundefinedis
of concern, as it makes typing less efficient.

2.2 Object System

Whereas Bigloo uses a CLOS-like [6] object system, Javascript
adopted a prototype based system [13]: conceptually objects are
ordinary hash tables with an attached prototype field. When-
ever a property (Javascript’s synonym for ”member”) is read
(obj.property or obj["property"]) the object’s hash table

2 Note, there exists a third method involving the ”global object”.

is searched for this entry. If the hash table contains the property the
value is returned otherwise the search recursively continues on the
object stored in the prototype-field. Either the member is eventu-
ally found, or the prototype does not hold an object, in whichcase
undefinedis returned. Writing on the other hand is always done
on the first object (ie. the prototype is completely ignored). If the
property did not already exist it will be created during the write.

Methods are just regular functions stored within the object.
Every procedure implicitly receives athis argument, and when
called as method (obj.method() or obj["method"]()) this
points to the object (as in line7 of the next example). If a function
is called as non-method (line4) the this-argument is set to the
global objectwhich represents the top-level scope (containing all
global variables and functions).

1: function f() {
2: print(this);
3: }
4: f(); // ’this’ in f becomes the global object
5: var o = new Object();
6: o.f = f;
7: o.f(); // ’this’ in f becomes o

In Javascript all functions are objects, and while functionin-
vocations usually do not access the contained properties, the
prototype-property is retrieved, when functions are used as con-
structors. Indeed, constructors too are just functions anddo not
need to be declared differently. An object creation is invoked by
the constructnew Fun(), which is decomposed and executed in
three steps:

• Javascript creates a new object.

• it retrieves theprototype-property out of the function object’s
hash table (which is not necessarily identical to the prototype-
field of the same object), and stores the result in the prototype-
field of the newly created object.

• it runsFun as if it was invoked as a method on the new object,
hence allowing to modify it.

Even though the previous description is not entirely complete
(we intentionally omitted some special cases), it is not difficult to
show that prototype-based object-systems allow most (if not all)
usual Smalltalk [11] or CLOS operations. In particular inheritance,
private members or mix-ins [10] are easily feasible. Interested read-
ers are referred to [7] for a more in-depth discussion of Javascript’s
object-system.

2.3 Global Object

Simply spoken, theglobal object represents the scope holding
all global variables (including the functions). What differentiates
Javascript from many other languages is the fact, that this ob-
ject is accessible to the programmer. It is hence possible tomod-
ify global variables through an object. Interpreters simply reuse
their Javascript-object structure for all global variables. Whenever
needed they just provide a pointer to this structure. However for
an optimizing compiler the global object is a major obstacle. The
following example demonstrates how the global object disallows
simple optimizations like inlining.

1: function g() { /* do something */ }
2:
3: function f(o) {
4: o.g = undefined;
5: g();
6: }

Suppose the given functions are part of a bigger program. Func-
tion f is calling the global functiong. If g is never changed (eg.g

103

= some value;), which is usually easy to detect, a good compiler
could inlineg. In Javascript it is however more or less impossible to
be sure thatg is never modified. Even the object passed tof could
be the global object, andf could changeg. As pointer-analyses are
generally very costly and compute only conservative approxima-
tions, tracking the global object is not an option.

It is not even possible to avoid the use of global objects (as
should be done with thewith-construct). The global object is ac-
cessed by two ways: it is assigned to thethis variable in the global
scope (easily avoidable), but it is also passed to every function call,
where it becomes thethis-variable. Exceptions are all method-
calls where the global object is replaced by the object on which the
method is executed (Section 2.2 shows an example).

2.4 Variable Arity Functions

Scheme and Javascript both allow variable arity functions,but their
approach is quite different. Scheme procedures must explicitly al-
low supplementary parameters, whereas Javascript functions are
automatically prepared to receiveanynumber of arguments. Even if
a function’s signature hints several parameters, it can still be called
without passing any argument. The missing values are automati-
cally filled with undefined:

1: function f(x) { print(x); }
2: f(); // => prints "undefined"

If the procedure needs to know the actual number of passed
arguments, it can access thearguments-object which is available
within any function. Not only does the propertysize hold the
actual number of parameters, it also contains a reference toall
arguments:arguments[n] accesses thenth argument. Variables
in the function’s signature are just aliases to these entries. The
following example demonstrates the use ofarguments. It will print
2, 3 and finally2:

1: function f(x) {
2: print(arguments.size); // => 2
3: x = 3; // modify first argument
4: print(arguments[0]); // => 3
5: print(arguments[1]); // => 2
6: }
7: f(1, 2);

2.5 Eval Function

Scheme and Javascript both have theeval function, which al-
lows to compile and execute code at runtime. They do not use the
same environment for the evaluation, though. Scheme gives the de-
veloper the choice between theNull-environment, Scheme-report-
environmentor theInteraction-environment. TheNull-environment
andScheme-report-environmentare completely independent of the
running program and an expression evaluated in them will always
yield the same result. The optionalInteraction-environmenthow-
ever allows to interact with the running program. The visibility of
this environment is usually restricted to the top-level of the running
program, and it is certainly independent from the location where
eval is executed.3.

Javascript, on the other hand, uses the same environment in
which theeval function is executed. The evaluated code has hence
access to the same variables any other statement at theeval’s loca-
tion would have. To ease the development of Javascript compilers,
the standard gives writers the choice to restrict the use ofeval to
the formeval(...) (disallowing for instanceo.eval(...)) and
to forbid the assignment ofeval (makingf=eval illegal)). It is

3 The standard is rather unclear about what this environment really repre-
sents.

then possible to statically determine all locations and environments
of eval.

3. Data structures and Types
The Javascript specification defines six types:Undefined, Null,
booleans, strings, numbers and Object. This section presents the
chosen representation of these types in the compiled code. Java-
script’s strings and booleans are directly mapped to their Scheme
counterparts. As reimplementation of Javascript’s numbers would
have been too slow and too time-consuming, numbers are mapped
to Scheme doubles. This representation does not conform to the
ECMA specification4, but the differences are often negligible.Un-
definedandNull are both constants and currently represented by
Scheme symbols. Asnull is generally used for undefined objects
we might replace it by a constant object in future versions ofJsigloo
to improve typing.

Javascript objects however could not be mapped to any primitive
Scheme (or Bigloo) type. In Javascript properties can be added and
removed to objects at run-time, and Bigloo’s class-system does not
allow such modifications. As a result a Bigloo classJs-Object has
been written that represents Javascript objects. It contains a hash
table as container for these dynamic properties and a prototype-
field which is needed for Javascript’s inheritance. Severalassoci-
ated procedures simulate Javascript’s property accesses and Java-
script’s objects are now directly mapped to theJs-Object and its
methods.

Javascript functions are objects with an additional field con-
taining the Scheme procedure. In our caseJs-Function is a
Bigloo class deriving fromJs-Object, where a new fieldfun
holds the procedure. A function call gets hence translated into a
member-retrieval (with-access) followed by the invocation of
the received procedure. Figure 1 shows the two classes and the
js-call-function executing the call. (a description ofthis-var
andarguments-vec is found in Section 4.4).

1: (class Js-Object
2: props ; hashtable
3: proto) ; prototype
4:
5: (class Js-Function::Js-Object
6: fun::procedure) ; field of type procedure
7:
8: (define-inline (js-call fun-obj this-var arguments-vec)
9: (with-access::Js-Function fun-obj (fun)
10: (fun this-var arguments-vec)))

Figure 1. Javascript’s objects and functions are mapped to Bigloo classes

Javascript is dynamically typed and variables can hold values of
different types during their lifetime. Most of the time programmers
do not mix types though, and it is usually possible to determine a
small set of possible types for each variable. Bigloo already per-
forms an efficient typing analysis [15], but it cannot differentiate
Javascript types that have been mapped to the same Scheme type
(undefinedandnull become both symbols, objects and functions are
both translated to Bigloo objects). Bigloo lacks Javascript-specific
knowledge too. Depending on the operands some Javascript oper-
ations may return different types. One of these operations is the
+-operator. If any operand is a string the result will be a string, oth-
erwise the expression evaluates to a number.

As a result Jsigloo contains itself a typing pass. Contrary to
Bigloo Jsigloo only implements an intraprocedural analysis resem-
bling the implementations found in “Compiler Design Implemen-

4 Javascript requires -0 and +0 to be different, which is not possible with
any Scheme number type in R5RS.

104

tation” [14], Chapter “Data-Flow Analysis”. This choice implies
that parameters need to be typed totop (i.e. an abstract value de-
noting any possible type) as is the case for escaping variables: at
every function-call the types could change and they need to be set
to top. Despite these two restrictions the typing pass is able to type
most expressions to some small subset. As we will see Javascript
does many automatic conversions, and restricting the type-set only
a little helps a lot to reduce the impact of them.

4. Compilation
Similar to Bigloo Jsigloo is decomposed into several smaller
passes, which respectively execute a specific task. This first part
of the section will provide a small overview over Jsigloo’s archi-
tecture. The remainder of the section will then focus on the code
generation. The generic case is handled first, specially treated con-
structs are then discussed separately. Primarily Scheme-foreign
constructs likewith (Section 4.3) andswitch (Section 4.2) are
examined in their respective subsections, but the important func-
tion compilation has its own area (Section 4.4), too. Whenever a
generated code is dependent on previous optimizations we will
revisit the concerned passes.

A first lexing/parsing pass constructs an abstract syntax tree
(AST) composed of Bigloo objects representing Javascript con-
structs. Bigloo uses a CLOS like object system and it is hencepos-
sible to create procedures that dispatch calls according totheir type.
Jsigloo does not use any other intermediate representationother
than this AST. Passes just modify the tree or update the informa-
tion stored in the nodes.

An early expansion pass then removes some syntactic sugar
and reduces the number of used nodes. Immediately afterwards the
“Symbol” pass binds all symbols to variables. The followingpass
continues the removal of syntactic sugar. The optimizationpasses
and typing is then executed before Jsigloo reaches the backend.

The code generator still receives an AST and a simplified
version just needs to transform recursively the nodes to Scheme
expressions and definitions. Ignoring the previously mentioned
special cases and some last optimizations this transformation is
straight-forward. Jsigloo just recursively dumps the nodes us-
ing generic functions and methods which are dispatched ac-
cording to the type of their first argument (define-method).
Figure 2 contains the implementations of the generic method
generate-scheme for theBlock andIf nodes as well as the pro-
ceduregenerate-indirect-call used for creating unoptimized
function calls.

Javascript and Scheme are very similar, and this can be seen
at this level: many implementations ofgenerate-scheme just re-
trieve the members of the node (with-access), transform them,
and plug them into escaped Scheme lists. Most of the time only
minor adjustments are needed. TheIf-method at line9, for in-
stance, needs to boolify the condition expression first. That is, in
Javascript 0,null, undefined and the empty string are also con-
sidered to befalse, and conditional expressions need hence to
test for these values. As we already know the type (or a super-
set of possible types) of every expression, some of these tests can
be discarded at compile time. Instead of generating adaptedcode
for every boolify-expression Jsigloo uses macros. This waysome
complexity is moved outside the compiler itself into the runtime li-
brary. Macros are still evaluated at compile time, but now within
Bigloo. The js-boolify-generate-scheme function retrieves
all possible types of the given expression and passes them tothe
js-boolify typed macro (figure 3) as second parameter (the first

one being the transformed expression). The macro then automati-
cally discards all impossible configurations5.

Similar typed-macros are used in many other places. Even
though properties of Javascript objects are always referenced by
strings (obj.prop is transformed intoobj["prop"]), the expres-
sion within the brackets can be of any type. Javascript therefore
performs an implicit conversion to string for every access.For in-
stance the0 in obj[0] is automatically converted into"0". obj[0]
andobj["0"] reference hence the same property. The conversion
is in this case performed by the->string typed-macro which
reduces the tests as much as possible. Another implicit conversion
is executed for numeric operators which convert their operands to
numbers (->number typed). Generally every conversion has its
typed pendant which is used whenever possible.

1: (define-method (generate-scheme b::Block)
2: (with-access::Block b (elements)
3: ‘(begin

4: #unspecified ; avoid empty begin-blocks
5: ,@(map generate-scheme elements))))
6:
7: (define-method (generate-scheme iff::If)
8: (with-access::If iff (test true false)
9: ‘(if ,(js-boolify-generate-scheme test)
10: ,(generate-scheme true)
11: ,(generate-scheme false))))
12:
13: (define (generate-indirect-call fun this-arg args)
14: ; JS ensures left-to-right evaluation of arguments.
15: (if (or (null? args) ; 0 arguments
16: (null? (cdr args))) ; 1 argument
17: ‘(js-call ,fun
18: ,this-arg
19: (vector ,@(map out args)))
20: (let ((tmp-args (map (lambda (x)
21: (gensym ’tmp-arg))
22: args)))
23: ‘(let* (,@(map (lambda (tmp-name arg)
24: (list tmp-name
25: (out arg)))
26: tmp-args
27: args))
28: (js-call ,fun
29: ,this-arg
30: (vector ,@tmp-args))))))

Figure 2. the generate-scheme-code methods for some selected
nodes.

Some Javascript constructs need more than just these minor
adjustments though. In particularswitch, with and even the well
knownwhile do not have corresponding Scheme expressions. Due
to various optimizations, functions too are not directly mapped to
their Scheme counterparts and are therefore discussed in a separate
subsection.

4.1 While Translation

The straightforward intuitive compilation of

1: while(test) body

to

1: (let loop ()
2: (if test
3: (begin

4: body
5: (loop))))

5 The actualjs-boolify typed in the Jsigloo-runtime even removes the
test for the type, if the expression can only have one single type. The given
code sample also misses some other object-tests.

105

1: (define-macro (js-boolify typed exp types)
2: (let ((x (gensym ’x)))
3: ‘(let ((,x ,exp))
4: (cond
5: ,@(if (member ’bool types)
6: ‘(((boolean? ,x) ,x))
7: ’())
8: ,@(if (member ’undefined types)
9: ‘(((eq? ,x ’undefined)
10: #f))
11: ’())
12: ,@(if (member ’null types)
13: ‘(((eq? ,x ’null)
14: #f))
15: ’())
16: ,@(if (member ’string types)
17: ‘(((string? ,x)
18: (not (string=? ,x))))
19: ’())
20: ,@(if (member ’number types)
21: ‘(((number? ,x)
22: (not (=fl ,x 0.0))))
23: ’())
24: (else #t)))))

Figure 3. js-boolify typed used the calculated types to optimize the
conversion.

misses an important point: loops in Javascript can be interrupted
(break) or shortcut (continue). These kind of break-outs require
eithercall/cc (or similar constructs) or exceptions. Jsigloo uses
Bigloo’s bind-exit, a call/cc that can only be used in the
dynamic extend of its form:

1: (bind-exit (break)
2: (let loop ()
3: (if test
4: (begin

5: (bind-exit (continue)
6: (body))
7: (loop)))))

In the current Bigloo version non-escapingbind-exits are
not yet optimized though6 and a bind-exit removal pass has been
implemented.

We usedbind-exits not just in loops, but also for theswitch-
breaks (see next section) or the function-returns. In certain cases
there is no easy way of avoiding them, but the following transfor-
mations are able to remove most of them. The following three sam-
ples represent some cases where our analysis allows to eliminate
bind-exits.

1: (lambda (x)
2: (bind-exit (return)
3: (if (eq? x ’null) (return ’undefined))
4: ;do something
5:))

1: (bind-exit (return)
2: ; do something
3: (if test
4: (return ’any)
5: (return ’thing))
6:)

6 Bigloo’s bind-exit supplies a closure, which, when invoked, unwinds
the execution flow to the end ofbind-exit’s definition (not unlike excep-
tions caught by acatch). Jsigloo uses only a small part ofbind-exit’s
functionality. The supplied closure never leaves the current procedure, and
in this case invocations of bind-exit can be transformed into simplegotos.
Future versions (post 2.7) of Bigloo will contain such an optimization.

1: (lambda (x)
2: (bind-exit (return)
3: ; do something
4: (return result)))

All these examples are based on thereturn statement, but
similar examples exist with thecontinue keyword of thewhile
statement.

Our optimization relies on two observations:

• If an if-branch does not finish its execution but is interrupted
(break, continue, return or throw) any remaining state-
ments following theif can be attached to the other branch of
theif7.

• Any invocation of the escaping closure, directly followed by the
end of the surroundingbind-exit is unnecessary and can be
removed.

The first observation allows to transform the first example into:

1: (lambda (x)
2: (bind-exit (return)
3: (if (eq? x ’null)
4: (return ’undefined)
5: ;do something
6:)))

Under the assumption that thereturns have not been used
elsewhere in the code, allbind-exits can now be removed thanks
to the second rule:

1: (lambda (x)
2: (if (eq? x ’null)
3: ’undefined
4: ;do something
5:))

1: ; do something
2: (if test
3: ’any
4: ’thing)

1: (lambda (x)
2: ; do something
3: result)

This optimization removes all but onebind-exit from the 33
bind-exits found in our test-cases and benchmarks.

4.2 Switch Construct

Javascript’sswitch statement allows control to branch to one
of multiple choices. It resembles Scheme’scase and cond ex-
pressions, which serve the same purpose. As we will see, neither
of them has the same properties as the Javascript construct,and
switch therefore need to be translated specially.

Javascript permits non-constant expression ascase clauses and
in the following exampleexpr1, expr2 and expr3 could thus
represent any Javascript expression (including function-calls):

1: switch (expr)
2: case expr1: body1
3: case expr2: body2
4: default: default body
5: case expr3: body3

It is therefore not possible to mapswitch to Scheme’scase
which only works with constants. Scheme’scond, on the other

7 If neither branch finishes normally, the remaining statements are dead
code, and can hence be removed.

106

hand, evaluates arbitrary expressions, and if it was not forJava-
script’s “fall-throughs”, aswitch statement would be easily com-
piled into an equivalentcond expression:

1: (let ((e expr))
2: (cond
3: ((eq? expr1 e) body1)
4: ((eq? expr2 e) body2)
5: ((eq? expr3 e) body3)
6: (else default body))

As it is, a case-body falls through and continues to execute the
body of the next case-clause (unless, of course, itbreaks out of the
switch). To simulate these fall-throughs Jsigloo wraps thebodies
into a chain of procedures. Each procedure calls the following body
at the end of its corps and hence continues the control-flow atthe
beginning of the next clause’s body.breaks are simply mapped to
bind-exits and are not yet specially treated.8

The following code demonstrates this transformation applied to
our previous example:

1: (bind-exit (break)
2: (let* ((e expr)
3: (cond-body3 (lambda () body3))
4: (cond-default (lambda ()
5: default-body
6: (cond-body3)))
7: (cond-body2 (lambda ()
8: body2
9: (cond-default)))
10: (cond-body1 (lambda ()
11: body1
12: (cond-body2))))
13: (cond
14: ((eq? expr1 e) (cond-body1))
15: ((eq? expr2 e) (cond-body2))
16: ((eq? expr3 e) (cond-body3))
17: (else (cond-default)))))

Even though Javascript’s default clause does not need to be the
last clause, it is only evaluated once all other clauses havebeen
tested. It is therefore safe to use thecond’s else-clause to invoke
the default body, but care must be taken to include its body inthe
correct location of the procedure-chain.

4.3 With Statement

The access to the propertyprop of a Javascript-objectsobj is
usually either done by one of the following constructs:obj.prop
or obj["prop"]. A third construction, thewith-keyword, pushes
a complete object onto the scope stack which makes all contained
properties equivalent to local variables. Within interpreters this
operation is usually trivial. The interpreter just needs toreuse
the Javascript object type as representation of a scope. When it
encounters awith it pushes the provided object onto their internal
scope-stack. Compilers do not use explicit scope objects though,
and pushing objects onto the stack is just not feasible.

Moreover, an efficient compilation of thewith-statement is
extremely difficult. As Javascript is a dynamically typed language
it is not (always) possible to determine the type and hence the
properties of thewith-object. Even worse: Javascript objects might
grow and shrink dynamically. It is possible to add and remove
members at runtime. The following code shows an example where
a variable within a closure references two different variables even
though the same object is used.

8 The current transformation has been implemented followinga suggestion
of a reviewer, and it was not possible to remove thebind-exits in this
short time-frame.

1: var o = new Object();
2: function f(x)
3: {
4: with(o) {
5: return function() { return x; };
6: }
7: }
8: g = f(0);
9: g(); // => 0;
10: o.x = 1; // adds x to o
11: g(); // => 1;

During the first invocation (line9) of the anonymous function
of line 5 theo object does not yet containx and the referencedx is
hence the one of the functionf. After we addedx to o another call
to g references the object’sx now.

It is therefore nearly impossible to find the shadowed variables
when entering awith-scope, but a test needs to be done at every
access. As a result Jsigloo replaces all references to potentially in-
tercepted variables by a call to a closure which is then inlined by
Bigloo. This closure tests for the presence of a same-named mem-
ber in thewith-object, and executes the operation (eitherget or
set) on the selected reference. Note thatwith constructs might be
nested, and in this case the operation on the “selected reference”
involves calling another function. This transformation (in a simpli-
fied version) is summarized in the following code snippet.

1: with(o) {
2: x = y;
3: }

becomes

1: (let ((x-set! (lambda (val) (if (contains o x)
2: (set! o.x val)
3: (set! x val))))
4: (y-get (lambda () (if (contains o y) o.y y))))
5: (x-set! (y-get)))

This approach obviously introduces a performance penalty and
together with the sometimes unexpected results (like the closure
referencing different variables) a widely accepted recommendation
is to avoidwith completely [7].

4.4 Function Compilation

The function translation is the arguably most challenging part of a
Javascript to Scheme compiler. Not only is Javascript a functional
language where functions are frequently encountered, Scheme
compilers usually optimize functions, and a good translation can
reuse these optimizations. This section will restate the major dif-
ferences between Javascript functions and Scheme procedures. We
will then discuss each point separately, and detail how Jsigloo han-
dles it. Bigloo is often unable to optimize Jsigloo’s generic transla-
tion of functions, and the last part of this section presentsJsigloo’s
optimizations for functions.

Three primary features make the function translation from Java-
script to Scheme difficult (for a more detailed discussion see Sec-
tion 2):

• Every Javascript function can serve as method too. In this case
every occurrence of the keywordthis in the function’s body is
replaced by the object on which the function has been invoked.
Otherwisethis is replaced by theglobal object.

• It is possible to call every function with any numbers of argu-
ments. Missing arguments are automatically filled withunde-
finedand additional ones are stored in theargumentsobject.

• Javascript functions are objects.

Jsigloo’s compilation of thethis keyword is straightforward:
When translating functions an additional parameterthis is added

107

in front and all call-sites are adjusted: method calls pass the at-
tached object as parameter, and function calls pass theglobal ob-
ject.

Javascript functions can be called with any number of argu-
ments and an early version of Jsigloo compiled functions to the
intuitive form(lambda (this . args) body) to use Scheme’s
variable arity feature. Some measurements revealed that Bigloo
was more efficient, if vectors were used instead of the implicit lists.
At the call-sites a vector of all parameters is constructed,and then
passed as second parameter after thethis. A translated function is
now of the following form:(lambda (this args-vec) body).

Inside the function every declared parameter is then represented
by a local variable of the same name. At the beginning of the pro-
cedure the local variables are either filled with their correspondent
values from the arguments vector, or set toundefined. Figure 4 con-
tains a simplified unhygienic version [8] of this process. The same
figure shows the result for the declared parametersa andb.

1: ‘(let* ((len (vector-length vec))
2: ,@(map (lambda (param-id count)
3: ‘(,param-id (if (> len ,count)
4: (vector-ref vec ,count)
5: ’undefined)))
6: param-list
7: (iota (length param-list))))
8: ,body)

1: (let* ((len (vector-length vec))
2: (a (if (> len 0) (vector-ref vec 0) ’undefined))
3: (b (if (> len 1) (vector-ref vec 1) ’undefined)))
4: body)

Figure 4. the Jsigloo-extract at the top generates the code responsible for
extracting the values out of the passedvec. The code at the bottom gets
generated for the parametersa andb.

After the variable extraction Jsigloo creates the arguments ob-
ject. As thearguments-entries are aliased with the parameter vari-
ables (a andb in the previous example) we use the same technique
as for thewith statement: the entries within thearguments ob-
ject are actually closures modifying the local variables. Additional
arguments access directly the values within the vector. Figure 5
demonstrates this transformation.

As has already been stated in Section 3, Javascript functions are
mapped to the Bigloo classJs-Fun, which contains a fieldfun
holding the actual procedure. Jsigloo’s runtime library provides the
proceduremake-js-function, which takes a Scheme procedure
with its arity and returns such an object. Jsigloo only needsto
translate the bodies of Javascript functions, and generatecode,
that calls this runtime procedure with the compiled function as
parameter . The returned object of typeJs-Fun is compatible
with translated Javascript objects. As the compiled function is now
stored within an object, function calls are translated intoa member
retrieval, followed by the invocation of the received procedure.

The overhead introduced by these transformations is substan-
tial: the compilation of the simple Javascript functionfunction
f(a, b) {} produces a Scheme expression of more than 20 lines,
and the applied transformations are extremely counter-productive
to Bigloo’s optimizations. Storing the procedure in an object ef-
ficiently hides it from Bigloo’s analyses. The Storage Use Anal-
ysis [15] (henceforth SUA), responsible for typing, and Bigloo’s
inlining pass are both powerless after this transformation. The ar-
guments are then obfuscated by storing them in vectors, where
Bigloo’s constant propagation can not see them. When building the
arguments objects they are furthermore accessed from inside a clo-
sure, which makes them slower to access.

1: ‘(let ((len (vector-length vec))
2: (arguments (make-Arguments-object)))
3: ,@(map (lambda (param-id count)
4: ‘(if (> len ,count)
5: (add-entry arguments
6: (lambda () ,param-id)
7: (lambda (new-val)
8: (set! ,param-id new-val)))))
9: param-list
10: (iota (length param-list)))
11: (let loop ((i ,(length param-list)))
12: (if (> len i)
13: (begin

14: (add-entry arguments
15: (lambda () (vector-ref vec i))
16: (lambda (new-val)
17: (vector-set! vec i new-val)))
18: (loop (+ i 1)))))
19: ,body)

1: (let ((len (vector-length vec))
2: (arguments (make-Arguments-object)))
3: (if (> len 0)
4: (add-entry arguments
5: (lambda () a)
6: (lambda (new-val) (set! a new-val))))
7: (if (> len 1)
8: (add-entry arguments
9: (lambda () b)
10: (lambda (new-val) (set! b new-val))))
11: (let loop ((i 2))
12: (if (> len i)
13: (begin

14: (add-entry arguments
15: (lambda () (vector-ref vec i))
16: (lambda (new-val)
17: (vector-set! vec i new-val)))
18: (loop (+ i 1)))))
19: body)

Figure 5. the Jsigloo code at the top is responsible for thearguments

creation in the emitted result. The bottom is generated for parametersa and
b.

Jsigloo contains some optimizations addressing these issues. A
simple one eliminates unnecessary lines: the creation of the argu-
ments object is obviously only needed if the variablearguments is
referenced inside the function. Otherwise Jsigloo just omits these
lines.

In order to benefit from Bigloo’s optimizations the indirect
function calls need to be replaced by direct function calls wherever
possible. Jsigloo’s analysis is still relatively simple, but it catches
the common case where declared (local or global) functions are
directly called. The optimization is not yet correct though, and in
its current form it needs to set an important restriction on the input:
the given program must not modify any declared functions over
the global object or in aneval statement. Section 6 discusses the
necessary changes for the removal of this restriction.

Single Assignment Propagation (SAP) performs its optimiza-
tion in two steps. First it finds all assignments to a variableand
stores it in a set. Then it propagates constant values (including func-
tions) of every variable that is assigned only once in the whole pro-
gram.

Computing the definition-set is easy, but not trivial: Javascript
automatically sets all local variables toundefinedat the beginning
of a function, and nearly every variable is hence modified at least
twice. Once it is assigned toundefinedand then to its initial value.
Declared functions (global and local) are immediately set to their
body and are hence treated accordingly. For all others a data-flow
analysis needs to determine, if the variable might be used unde-
fined. This analysis is mostly intraprocedural, and only needs one

108

pass. Some parts are however interprocedural as escaping variables
cross function boundaries. Take for instance the followingcode:

1: function f() {
2: var y = 1;
3: var g = function() { return x + y + z; };
4: var z = 2;
5: g();
6: var x = 3;
7: return x + y + z;
8: }

Even though withinf the variablex is read only after the defi-
nition in line6, the call at line5 still uses the undefined variable.y
on the other hand is always used after its first (and unique) defini-
tion. Usually these cases are difficult to catch, but SAP manages to
find at least the most obvious ones: if a variable is defined before
an anonymous function has been declared (as is the case fory in
our example), the analysis does not add the implicitundefineddef-
inition to the variables definition set. SAP does hence correctly set
y’s definition set to the assignment in line2, but will find two defi-
nitions forz. At the moment ofg’s declarationz is still undefined,
and as it is used withing the final definition set ofz will hold the
implicit undefined-definition and the assignment at line4.

The implicit undefinedassignments are disturbing Bigloo’s op-
timizations too. Whenever in doubt Jsigloo sets the variable toun-
definedat the beginning of a function. One of the first analyses
Bigloo applies is the SUA-analysis, which detects the assignment
of undefinedand types the variable accordingly. Even if Bigloo is
able to remove this assignment later on, it will not retype the vari-
able, and misses precious optimization opportunities.

Once the definition-set has been determined, a second pass
propagates “single assignments”. If a variable has only oneassign-
ment in its definition set, and this assignment sets the variable to
a constant value or a Javascript function, all occurrences of this
variable are replaced by either the constant, or by a reference to
this function. In our example the line7 still usesx andz, as their
definition-sets contain more than one assignment. The optimization
transforms our previous example into the following code:

1: function f() {
2: var y = 1;
3: var g = function() { return x + 1 + z; };
4: var z = 2;
5: anonymous g();
6: var x = 3;
7: return x + 1 + z;
8: }

Wherever the backend finds direct function-references it isnow
able to optimize the call. Instead of extracting the procedure from
the function object it can use the function-reference. The previous
creation of function objects must first be modified to allow access
to the procedure:

1: (set! direct f (lambda (this vec) body))
2: (set! f (make-js-function direct f 2))

In our benchmarks and test-cases 27% of all function calls could
be replaced by direct function calls after this analysis.

Wherever Jsigloo is able to replace the indirect calls with direct
calls it can also improve the parameter passing. The function’s sig-
nature provides the expected number of arguments, and the parame-
ters do not need to be hidden in a vector anymore. If there are miss-
ing arguments, they can already be filled withundefinedconstants
at compile-time. An additionalarg-nb parameter passes the orig-
inal number of arguments, which is needed for the creation ofthe
arguments object. The last argument finally contains additional ar-
guments, that have not been mapped to direct parameters. They will

be used duringarguments creation, too. Obviously the generic call
needs to be adapted too, and the parameter-extraction of figure 4 is
lifted into the procedure passed to themake-js-function.

Many functions do not usethis and in this case the first ar-
gument can be removed. The same is of course true forarg-nb
and rest-vec, which are only needed, if the function uses the
arguments-object. Our running example is finally transformed into
the following code:

1: (set! direct f (lambda (a b) body))
2: (set! f (make-js-function
3: (lambda (this vec)
4: (let* ((len (vector-length vec))
5: (a (if (> len 0)
6: (vector-ref vec 0)
7: ’undefined))
8: (b (if (> len 1)
9: (vector-ref vec 1)
10: ’undefined)))
11: (direct f a b))
12: 2))

Applying these optimizations to the well known Fibonacci func-
tion let the size of procedure drop from more than 75 to about 20
lines9, and reduce execution time by a factor of more than 20.

5. Performance
Ack Fib Meth Nest Tak Hanoi

Jsigloo J 1931 443 185 898 28 424
Rhino 1042 666 155 973 55 619

Jsigloo C 513 368 84 1060 11 368
Konqueror - 17183 262 15478 593 21049

Firefox - 3179 227 1808 79 2762
NJS - 767 23 1481 25 734

Jsigloo is not yet finished, and the given benchmarks (see theap-
pendix for the sources) are therefore just indications. As we wanted
to be able to run our benchmarks on most existing Javascript im-
plementations we decided to move the time-measurement intothe
benchmark itself. This way it was possible to benchmark Inter-
net browsers too. At the same time we lost the start-up overhead,
and the more precise measurement of the Linux kernel. All times
have been taken under a Linux 2.6.12-nitro on an AMD Athlon
XP 2000+, and are expressed in Milliseconds. We used Sun’s JDK
1.4.2.09 (HotSpot Client VM, mixed mode) and GCC 3.4.4. We ran
every benchmark at least three times, and report the fastestmea-
sured time here. Konqueror [2], Firefox [1] and NJS [3] wherenot
able to complete Ack (stack overflows) and do not have a time for
this benchmark.

“Jsigloo J” uses Bigloo’s JVM backend, whereas “Jsigloo C”
targets C, followed by a compilation to native code. “Rhino”, in
version 1.6R2RC2, compiles Javascript directly to JVM bytecode
and competes hence with “Jsigloo JVM”. The fastest time on the
JVM machine is underlined. “Konqueror” 3.4.2, “Firefox” 1.0.6
and “NJS” 0.2.5 are all interpreters (even though NJS was allowed
to precompile the Javascript code into its bytecode format)and are
compared to “Jsigloo C”. The fastest time is in bold.

During the development these benchmarks have been (and are
still) used to pinpoint weak spots of Jsigloo, which were then
improved. One of the first benchmarks has been Fibonacci, which
explains Jsigloo’s good results in some of the other call-intensive
benchmarks (Hanoi and Tak). “Nest”, as the name hints, increments
a number within nested loops. We verified our results and for
this benchmark the Java version is actually faster than the native

9 We are well aware, that this is still far away from a standard 5lines
implementation, but most of the resting lines are redundantlets, begins
or #unspecified which are easily removed by Bigloo.

109

C version. The JVM version of Ackermann is still slower than
Rhino’s code, but we have pinpointed the source of inefficiency
and a generic transformation brings the time for “Ack” down to the
same level as Rhino. “Meth” on the other hand makes heavy use of
anonymous functions and objects, and this part of Jsigloo isnot yet
optimized at all.

Note, that Jsigloo is not conformant to the ECMA specification
(see Section 6), and has therefore an unfair advantage over the com-
petitors. Some tests showed that Fibonacci’s execution time would
double if the global object was treated correctly. Other experiences
however confirmed, that for instance a fully optimizing Rhino is
not conformant either, and especially theglobal objectis equally
ignored.

6. Future Work
Jsigloo is not finished. Several Javascript features have not yet
been implemented and some parts of Jsigloo are not conformant to
the ECMA specification. From the more than 10 runtime objects,
only two have been written until now (in particular theBoolean,
String, Number andDate objects are still missing). Due to limi-
tations in the used lexer-generator, some syntactic sugar is missing
too (Javascript’s automatic semicolon insertion and its regular ex-
pression literals).

At the moment Jsigloo does not handle the global object cor-
rectly either. It is not possible to modify global variablesover an
object, and function calls receive a standardObject asthis. We
intend to fix this shortcoming by adding two strategies:

• a “correct” solution using a special global object, that holds
closures. Whenever a field is modified the closure automati-
cally updates the real global object. (Inversely reading from the
global object automatically redirects to the real global variable).
A similar strategy is already being used for thearguments ob-
ject and thewith translation.

• a fast implementation which disallows the use of the global
object. Every access to the global object throws an exception.

The eval function is missing too. Javascript’s and Scheme’s
eval specification are different and incompatible, but Bigloo pro-
vides some extensions to Scheme’seval which should allow the
implementation without too much trickery.

Once either theeval-function or the global object is correctly
implemented, the SAP optimization of Section 4.4 needs to be
adapted. Functions that are visible toeval statements and global
functions might not be called directly anymore.

Finally the number representation needs to improved. Javascript
numbers are mapped to Scheme doubles. In R5RS [12] doubles do
not provide enough functionality to correctly represent Javascript
numbers, but R6RSwill extend Scheme’s number specification, and
we will revisit this topic once R6RS has been released.

7. Conclusion
We presented in this paper Jsigloo, a Javascript to Scheme com-
piler we implemented during the last five months. Together with
Bigloo it compiles Javascript to Java byte-code, C, or .NET CLI.
In the introduction we listed the features Jsigloo should have. We
wanted the compiler to be small. Jsigloo is not very big, but with
about 30.000 lines of Scheme code Jsigloo is not small anymore. It
is still easy to maintain the project, but the effort required is higher
than we hoped it would be. Jsigloo’s size is explained by the op-
timizations we integrated in Jsigloo, and preliminary benchmarks
show that Jsigloo/Bigloo has the potential to be as fast as the fastest
existing Javascript compilers. As Jsigloo uses Bigloo it interfaces

with all languages Bigloo interfaces and excels in this area. Fur-
thermore, if Bigloo improves, Jsigloo/Bigloo will improvetoo.

Despite Javascript’s resemblance to Scheme, we could not take
full advantage of all Bigloo optimizations and needed to imple-
ment additional optimization passes. SAP (Section 4.4) enhances
direct method calls, abind-exit-removal pass (Section 4.1) elim-
inates unnecessary (but currently expensive)bind-exits, and typ-
ing (Section 3) improves the ubiquitous conversions of Javascript
and helps several Bigloo optimization by providing Javascript-
specific type information.

Compiling to Scheme and using an efficient existing Scheme
compiler did not fulfill all our expectations, but still yielded an
interesting compiler. Once all missing features are implemented
Jsigloo may be an attractive alternative to all other Javascript com-
pilers.

[1] http://www.mozilla.org/products/firefox/ .
[2] http://www.konqueror.org/ .
[3] http://www.njs-javascript.org/ .
[4] http://www.caucho.com/articles/990129.xtp.
[5] http://www.mozilla.org/rhino/ .
[6] Bobrow, D. and DeMichiel, L. and Gabriel, R. and Keene, S.and

Kiczales, G. and Moon, D. –Common lisp object system
specification– special issue, Sigplan Notices, (23), Sep, 1988.

[7] D. Flanagan –JavaScript - The definitive guide– O’Reilly &
Associates, 2002.

[8] Dybvig, K. and Hieb, R. and Bruggeman, C. –Syntactic abstraction
in Scheme– Lisp and Symbolic Computation, 5(4), 1993, pp.
295–326.

[9] ECMA – ECMA-262: ECMAScript Language Specification–
1999.

[10] Flatt, M. and Krishnamurthi, S. and Felleisen, M. –Classes and
Mixins – Symposium on Principles of Programming Languages, Jan,
1998, pp. 171–183.

[11] Goldberg, A. and Robson, D. –Smalltalk-80: The Language and
Its Implementation – Addison-Wesley, 1983.

[12] Kelsey, R. and Clinger, W. and Rees, J. –The Revised(5) Report on
the Algorithmic Language Scheme– Higher-Order and Symbolic
Computation, 11(1), Sep, 1998.

[13] Martin Abadi and Luca Cardelli –A theory of objects – Springer,
1998.

[14] Muchnick, S. –Advanced Compiler Design Implementation–
Morgan Kaufmann, 1997.

[15] Serrano, M. and Feeley, M. –Storage Use Analysis and its
Applications – 1fst Int’l Conf. on Functional Programming,
Philadelphia, Penn, USA, May, 1996, pp. 50–61.

[16] Serrano, M. and Weis, P. –1+1=1: an optimizing Caml compiler–
ACM Sigplan Workshop on ML and its Applications, Orlando
(Florida, USA), Jun, 1994, pp. 101–111.

8. Appendix
Benchmarks

Ackermann

1: function ack(M, N) {
2: if (M == 0) return(N + 1);
3: if (N == 0) return(ack(M - 1, 1));
4: return(ack(M - 1, ack(M, (N - 1))));
5: }
6:
7: ack(3, 8);

Fibonacci

1: function fib(i) {
2: if (i < 2)
3: return 1;
4: else
5: return fib(i-2) + fib(i-1);
6: }
7: fib(30);

110

Method Calls

1: function methcall(n) {
2: function ToggleValue () {
3: return this.bool;
4: }
5: function ToggleActivate () {
6: this.bool = !this.bool;
7: return this;
8: }
9:
10: function Toggle(start state) {
11: this.bool = start state;
12:
13: this.value = ToggleValue;
14: this.activate = ToggleActivate;
15:
16: }
17:
18: function NthToggleActivate () {
19: if (++this.count > this.count max) {
20: this.bool = !this.bool;
21: this.count = 1;
22: }
23: return this;
24: }
25:
26: function NthToggle (start state, max counter) {
27: this.base = Toggle;
28: this.base(start state);
29: this.count max = max counter;
30: this.count = 1;
31:
32: this.activate = NthToggleActivate;
33:
34: }
35: NthToggle.prototype = new Toggle;
36:
37: var val = true;
38: var toggle = new Toggle(val);
39: for (i=0; i<n; i++) {
40: val = toggle.activate().value();
41: }
42: var tmp = (toggle.value() ? "true"
43: : "false");
44:
45: val = true;
46: var ntoggle = new NthToggle(val, 3);
47: for (i=0; i<n; i++) {
48: val = ntoggle.activate().value();
49: }
50: return (tmp + " " +
51: (ntoggle.value() ? "true"
52: : "false"));
53: }
54:
55: methcall(10000);

Nested Loops

1: function nested(n) {
2: var x=0;
3: var a=n;
4: while(a--) {
5: var b=n; while(b--) {
6: var c=n; while(c--) {
7: var d=n; while(d--) {
8: var e=n; while(e--) {
9: var f=n; while(f--) {
10: x++;
11: }
12: }
13: }
14: }
15: }
16: }
17: return x;
18: }
19:
20: nested(14);

Tak

1: function tak(x, y, z) {
2: if (!(y < x))
3: return(z);
4: else {
5: return (
6: tak (
7: tak (x-1, y, z),
8: tak (y-1, z, x),
9: tak (z-1, x, y)
10:));
11: }
12: }
13:
14: tak(18, 12, 6);

Towers of Hanoi

1: function towers(nb discs, source, dest, temp) {
2: if (nb discs > 0) {
3: return towers(nb discs - 1,
4: source,
5: temp,
6: dest)
7: + 1
8: + towers(nb discs - 1,
9: temp,
10: dest,
11: source);
12: }
13: return 0;
14: }
15:
16: towers(20, 0, 1, 2);

