
Automatic construction of parse trees for lexemes ∗

Danny Dubé
Université Laval

Quebec City, Canada
Danny.Dube@ift.ulaval.ca

Anass Kadiri
ÉPITA

Paris, France
Anass.Kadiri@gmail.com

Abstract
Recently, Dubé and Feeley presented a technique that makes lexical
analyzers able to build parse trees for the lexemes that match regu-
lar expressions. While parse trees usually demonstrate how a word
is generated by a context-free grammar, these parse trees demon-
strate how a word is generated by a regular expression. This paper
describes the adaptation and the implementation of that technique
in a concrete lexical analyzer generator for Scheme. The adaptation
of the technique includes extending it to the rich set of operators
handled by the generator and reversing the direction of the parse
trees construction so that it corresponds to the natural right-to-
left construction of the lists in Scheme. The implementation of the
adapted technique includes modifications to both the generation-
time and the analysis-time parts of the generator. Uses of the new
addition and empirical measurements of its cost are presented. Ex-
tensions and alternatives to the technique are considered.

Keywords Lexical analysis; Parse tree; Finite-state automaton;
Lexical analyzer generator; Syntactic analysis; Compiler

1. Introduction
In the field of compilation, more precisely in the domain of syn-
tactic analysis, we are used to associate the notion of parse tree, or
derivation tree, to the notion of context-free grammars. Indeed, a
parse tree can be seen as a demonstration that a word is generated
by a grammar. It also constitutes a convenient structured represen-
tation for the word. For example, in the context of a compiler, the
word is usually a program and the parse tree (or a reshaped one)
is often the internal representation of the program. Since, in many
applications, the word is quite long and the structure imposed by
the grammar is non-trivial, it is natural to insist on building parse
trees.

However, in the related field of lexical analysis, the notion of
parse trees is virtually inexistent. Typically, the theoretical tools
that tend to be used in lexical analysis are regular expressions and
finite-state automata. Very often, the words that are manipulated are

∗ This work has been funded by the National Sciences and Engineering
Research Council of Canada.

Proceedings of the 2006 Scheme and Functional Programming Workshop
University of Chicago Technical Report TR-2006-06

rather short and their structure, pretty simple. Consequently, the no-
tion of parse trees is almost never associated to the notion of lexical
analysis using regular expressions. However, we do not necessar-
ily observe such simplicity in all applications. For instance, while
numerical constants are generally considered to be simple lexical
units, in a programming language such as Scheme [9], there are
integers, rationals, reals, and complex constants, there are two no-
tations for the complex numbers (rectangular and polar), there are
different bases, and there are many kinds of prefixes and suffixes.
While writing regular expressions for these numbers is manageable
and matching sequences of characters with the regular expressions
is straightforward, extracting and interpreting the interesting parts
of a matched constant can be much more difficult and error-prone.

This observation has lead Dubé and Feeley [4] to propose a
technique to build parse trees for lexemes when they match regular
expressions. Until now, this technique had remained paper work
only as there was no implementation of it. In this work, we describe
the integration of the technique into a genuine lexical analyzer
generator, SILex [3], which is similar to the Lex tool [12, 13] except
that it is intended for the Scheme programming language [9]. In
this paper, we will often refer to the article by Dubé and Feeley and
the technique it describes as the “original paper” and the “original
technique”, respectively.

Sections 2 and 3 presents summaries of the original technique
and SILex, respectively. Section 4 continues with a few definitions.
Section 5 presents how we adapted the original technique so that it
could fit into SILex. This section is the core of the paper. Section 6
quickly describes the changes that we had to make to SILex to
add the new facility. Section 7 gives a few concrete examples
of interaction with the new implementation. The speed of parse
tree construction is evaluated in Section 8. Section 9 is a brief
discussion about related work. Section 10 mentions future work.

2. Summary of the construction of parse tree for
lexemes

Let us come back to the original technique. We just present a
summary here since all relevant (and adapted) material is presented
in details in the following sections.

The original technique aims at making lexical analyzers able to
build parse trees for the lexemes that they match. More precisely,
the goal is to make the automatically generated lexical analyzers
able to do so. There is not much point in using the technique on an-
alyzers that are written by hand. Note that the parse trees are those
for the lexemes, not those for the regular expressions that match the
latter. (Parse trees for the regular expressions themselves can be ob-
tained using conventional syntactic analysis [1].) Such a parse tree
is a demonstration of how a regular expression generates a word,
much in the same way as a (conventional) parse tree demonstrates
how a context-free grammar generates a word. Figure 1 illustrates
what the parse trees are for a word aab that is generated by both a

51

∗

left right

· b

a a

�� @@

�� @@

S

C S

A C S

a a b ε

�� @@

@@

�� @@

(aa|b)∗
S → CS | ε
C → A | b
A → aa

Figure 1. Parse trees for a word aab that is generated by a regular
expression and a context-free grammar.

regular expression and an equivalent context-free grammar. While
the parse tree on the right-hand side needs no explanation, the other
one may seem unusual. It indicates the following: the Kleene star
has been used for 2 iterations; in the first iteration, the left-hand
side alternative has been selected and, in the second one, it was the
right-hand side alternative; the sub-tree for aa is a concatenation
(depicted by the implicit · operator). Note that the left and right la-
bels are used for illustration purposes only. In general, any number
of alternatives is allowed and the labels are numbered.

One might wonder why parse trees should be built for lexemes.
Typically, compiler front-end implementors tend to restrict the lex-
ical elements to relatively simple ones (e.g. identifiers, literal char-
acter constants, etc.). Even when more “complex” elements such as
string constants are analyzed, it is relatively easy to write a decod-
ing function that extracts the desired information from the lexemes.
When some elements are genuinely more complex, their treatment
is often deferred to the syntactic analysis. However, there are cases
where the nature of the elements is truly lexical and where these are
definitely not simple. In the introduction, we mentioned the numer-
ical constants in Scheme. These are definitely lexical elements (no
white space nor comments are allowed in the middle of a constant),
yet their lexical structure is quite complex. In Section 7, we illus-
trate how one can benefit from obtaining parse trees for Scheme
numerical constants. Moreover, it is a “chicken-and-egg” kind of
issue since, by having more powerful tools to manipulate complex
lexical elements, implementors may choose to include a wider va-
riety of tasks as part of the lexical analysis phase.

The idea behind the technique described in the original paper
is pretty simple. Because the automatically generated lexical an-
alyzers are usually based on finite-state automata, the technique is
based on automata too, but with a simple extension. The augmented
automata are built using straightforward structural induction on the
regular expressions to which they correspond. The addition to the
automata consists only in putting construction commands on some
arcs of the automata. The purpose of the construction commands is
simple: let r be a regular expression, A(r), the corresponding au-
tomaton, and w, a word; if a path P traverses A(r) and causes w to
be consumed, then the sequence of construction commands found
along P forms a “recipe” that dictates how to build a parse tree t
which is a demonstration that r generates w.

The automata that are built using the original technique are
non-deterministic. It is well-known that performing lexical analy-
sis using non-deterministic finite-state automata (NFA) is generally
slower than using deterministic finite-state automata (DFA). Con-
sequently, conversion of the NFA into DFA is desirable.

The augmented NFA can indeed be converted into DFA. How-
ever, note that a path taken through a DFA while consuming some

word has little to do with the corresponding path(s) in the NFA,
because of the presence of ε-transitions and arbitrary choices fea-
tured by the latter. Since one needs the construction commands of
the NFA to build a parse tree, there must exist a mechanism that al-
lows one to recover a path through the NFA from a path through the
DFA. The technique proposes a mechanism that is implemented us-
ing three tables that preserve the connection between the DFA and
the NFA. By making a series of queries to these tables, one is able
to efficiently convert a path through the DFA into a corresponding
path through the NFA. The path through the NFA trivially can be
translated into a sequence on commands that explain how to build a
parse tree. To summarize, the process of recognizing a lexeme and
building a parse tree for it consists in identifying the lexeme using
the DFA in the usual way while taking note of the path, recover-
ing the path through the NFA, and then executing the sequence of
commands.

The technique presented in the original paper deals only with
the most basic regular operators: concatenation, union, and the
Kleene star. Two distinct representations for the parse trees are
introduced: the internal representation and the external one. The
first one manipulates the trees as data structures. The second one
manipulates them under their printed form, i.e. as words. Since
the current paper is about lexical analyzers, we only consider the
internal representation of parse trees. Finally, the original paper
presents how one can obtain the complete set of parse trees for
a word w that matches a regular expression r. Indeed, as shown
below, the parse tree needs not be unique. In fact, there can be
huge numbers (even an infinity) of parse trees, in some cases.
Consequently, sets of parse trees are always represented under an
implicit form only. We consider complete sets of parse trees to be
mainly of theoretical interest and the current paper only considers
the construction of a single parse tree for any lexeme.

3. SILex: a lexical analyzer generator for Scheme
SILex has originally been designed to be similar to the original
Lex tool for the C language. In particular, the syntax of the regular
expressions and the set of operators are the same. However, the
actions that specify how to react to the recognition of a lexeme
must be written in Scheme as expressions. In SILex, the actions
return tokens while, in Lex, the actions produce tokens using a
mixture of a returned value and side-effects. The third part of the
specification files for Lex, which contains regular C code, does not
have a counterpart in SILex. Consequently, the specification files
for SILex include the part for the definition of macros (shorthands
for regular expressions) and the part for the rules. SILex offers
various services: many lexical analyzers may be used to analyze
the same input; counters are automatically updated to indicate the
current position inside of the input; the DFA can be represented
using ordinary (compact) or portable tables, or can be directly
implemented as Scheme code.

3.1 Lexemes
We describe the set R of regular expressions supported by SILex.
All regular expressions in R are presented in Figure 2. Each kind
of regular expression is accompanied by a short description and its
language. We use Σ to denote the set of characters of the Scheme
implementation at hand (e.g. the ASCII character set). The language
of a regular expression r is denoted by L(r). In the figure, c ranges
over characters (c ∈ Σ), i and j ranges over integers (i, j ∈ IN),
spec denotes the specification of the contents of a character class,
C ranges over character classes (C ⊆ Σ), and v ranges over strings
(v ∈ Σ∗). All variables r and ri are assumed to be in R. Finally,
ρL : R× IN× (IN ∪ {∞}) → 2Σ∗ is a repetition function defined

52 Scheme and Functional Programming, 2006

DESCRIPTION REGULAR EXPRESSION LANGUAGE
Ordinary character c {c}

Any character . Σ− {newline character}
Newline character \n {newline character}
Character by code \i {character of code i}
Quoted character \c {c}
Character class [spec] C ⊆ Σ
Literal string ”v” {v}

Parenthesized expression (r) L(r)
Kleene closure r∗ ρL(r, 0,∞)
Positive closure r+ ρL(r, 1,∞)

Optional expression r? ρL(r, 0, 1)
Fixed repetition r{i} ρL(r, i, i)

At-least repetition r{i, } ρL(r, i,∞)
Between repetition r{i, j} ρL(r, i, j)

Concatenation r0 . . . rn−1 L(r0) . . . L(rn−1)
Union r0 | . . . | rn−1 L(r0) ∪ . . . ∪ L(rn−1)

Figure 2. Regular expressions supported by SILex and the corresponding languages.

as:

ρL(r, b, B) =
⋃
i∈IN

b≤i≤B

(L(r))i

Many details are omitted in the presentation of R by lack of
relevance for this paper. For instance, the exact set of ordinary
characters and the syntax of the character classes are not really
interesting here. For complete information about the syntax, we
refer the reader to the documentation of SILex [3]. The important
thing to know about character classes is that an expression [spec]
matches nothing else than a single character and it does match a
character c if c ∈ C where C is the set of characters denoted by
spec.

Operators used to build up regular expressions have different
priority. We assume that the repetition operators (∗, ?, {i, }, . . .)
have higher priority than the (implicit) concatenation operator and
that the latter has higher priority than the union operator. More-
over, we expect unions (and concatenations) to account for all sub-
expressions that are united (or concatenated, respectively). In other
words, when we write a union r0∪. . .∪rn−1, none of the ri should
be a union. Likewise, when we write a concatenation r0 . . . rn−1,
none of the ri should be a concatenation (nor a union, naturally).
Repetition operators, though, can be piled up (e.g. as in expression
d?{2, 4}+).

From now on, we forget about the first 5 kinds of regular ex-
pressions. These can all be represented by totally equivalent char-
acter classes (equivalent according to their language and accord-
ing to their associated parse trees, too). For instance, expressions f
and . can be replaced by [f] and [^\n], respectively. As for the lit-
eral strings, we choose not to forget about them. Although it could
be tempting to replace them by concatenation of characters, which
would denote the same language, we refrain to do so because, as
we see later, it would change the associated parse trees. For effi-
ciency reasons, the parse trees for literal strings are different from
those for concatenations. The former are cheaper to generate than
the latter.

3.2 Incompatibilities with the original technique
The original technique for the construction of parse trees for lex-
emes cannot be integrated directly into SILex for two reasons. First,
SILex provides a larger set of operators in regular expressions than
the one presented in the original paper. Second, the original tech-
nique builds lists by adding elements to the right. This does not

correspond to the efficient and purely functional way of building
lists in Scheme. Consequently, the rules for the construction of the
NFA with commands have to be adapted to the larger set of opera-
tors and to the direction in which Scheme lists are built.

4. Definitions
There are some terms specific to the domain of lexical analysis
that need to be defined. At this point, we have already defined
regular expressions along with their language. In the context of
compiler technology, unlike in language theory, we are not only
interested in checking if a word w matches a regular expression r
(i.e. whether w ∈ L(r)), but also in the decomposition of the input
u (∈ Σ∗) into a stream of lexemes that leads to a stream of tokens.
A lexeme is a prefix w of the input u (u = wu′) that matches some
regular expression r. Based on the matching regular expression
r and the matched lexeme w, a token is produced. Examples of
tokens include: the identifier named trace, the reserved keyword
begin, the operator +, etc. Typically, the stream of tokens that is
produced by lexical analysis constitutes the input to the syntactic
analyzer. While the concept of token is variable and depends on the
application, the concept of lexeme is standard and can be defined
in terms of language theory. Usually, when a lexeme w has been
identified, i.e. when u = wu′, and that the corresponding token
has been produced, w is considered to have been consumed and the
remaining input is u′.

In the context of automatic generation of lexical analyzers, there
is typically more than one regular expression, ri, that may match
lexemes. Lexical analyzers are usually specified using a list of
rules, each rule being an association between a regular expression
ri and an action αi. An action αi is some statement or expression
in the target programming language that indicates how to produce
tokens when lexemes are found to match ri. The action normally
has access to the matching lexeme and also has the opportunity to
create some side effects such as: updating the table of symbols,
increasing counters, etc. During lexical analysis, the analyzer may
match a prefix of the input with the regular expression ri of any
(active) rule.

Lexical analyzers produced by SILex, like many other lexical
analyzers, obey some principles when trying to find and select
matches. SILex follows the maximal-munch (aka, longest-match)
tokenization principle. It means that when there is a match between
prefix w1 and regular expression ri that compete with another
match between prefix w2 and expression rj , such that |w1| > |w2|,

Scheme and Functional Programming, 2006 53

T ([spec], w) =

{
{w}, if w ∈ L([spec])
∅, otherwise

T (”v”, w) =

{
{v}, if w = v
∅, otherwise

T ((r), w) = T (r, w)

T (r∗, w) = ρT (r, w, 0,∞)

T (r+, w) = ρT (r, w, 1,∞)

T (r?, w) = ρT (r, w, 0, 1)

T (r{i}, w) = ρT (r, w, i, i)

T (r{i, }, w) = ρT (r, w, i,∞)

T (r{i, j}, w) = ρT (r, w, i, j)

T (r0 . . . rn−1, w) =

{
[t0, . . . , tn−1]

∃w0 ∈ Σ∗. . . . ∃wn−1 ∈ Σ∗.
w = w0 . . . wn−1 ∧
∀0 ≤ i < n. ti ∈ T (ri, wi)

}
T (r0 | . . . | rn−1, w) = {#i : t | 0 ≤ i < n ∧ t ∈ T (ri, w)}

where:

ρT (r, w, b, B) =

 [t0, . . . , tn−1]

∃n ∈ IN. b ≤ n ≤ B ∧
∃w0 ∈ Σ∗. . . . ∃wn−1 ∈ Σ∗.
w = w0 . . . wn−1 ∧
∀0 ≤ i < n. ti ∈ T (r, wi)

Figure 3. Parse trees for a word that matches a regular expression.

then the former match is preferred. SILex also gives priority to first
rules. It means that when there is a match between prefix w and
expression ri that compete with another match between w and rj ,
such that i < j, then the former match is preferred. Note that,
although these two principles uniquely determine, for each match,
the length of the lexeme and the rule that matches, they say nothing
about the parse tree that one obtains for the lexeme. As we see
below, a single pair of a regular expression and a word may lead to
more than one parse tree. In such a case, the lexical analyzer is free
to return any of these.

5. Adapting the construction of parse trees
Before the adapted technique is presented, the notation for the parse
trees is introduced and the parse trees for a word according to
a regular expression. The following two subsections present the
finite-state automata that are at the basis of the construction of
parse trees. Finally, we consider the issue of converting the NFA
into DFA.

5.1 Syntax of the parse trees
Let us present the syntax of the parse trees. Let T be the set of all
possible parse trees. T contains basic trees, which are words, and
composite trees, which are selectors and lists. T is the smallest set
with the following properties.

∀w ∈ Σ∗. w ∈ T
∀i ∈ IN. ∀t ∈ T . #i : t ∈ T
∀n ≥ 0. ∀i ∈ IN s.t. 0 ≤ i < n. ∀ti ∈ T .

[t0, . . . , tn−1] ∈ T
Note that we do not represent parse trees graphically as is

customary in presentation of parsing technology. Instead, we use
a notation similar to a data structure (to an algebraic data type, to
be more specific) to represent them. However, the essence of both
representations is the same as the purpose of a parse tree is to serve
as an explicit demonstration that a particular word can effectively

be generated by a regular expression (or, usually, by a context-free
grammar).

In particular, let us recall that if we have a parse tree t for a
word w according to a context-free grammar, then we can find all
the characters of w, in order, at the leaves of t. We can do the same
with our parse trees associated to regular expressions. Let us define
an extraction function X : T → Σ∗ that allows us to do so.

X(w) = w

X(#i : t) = X(t)

X([t0, . . . , tn−1]) = X(t0) . . . X(tn−1)

5.2 Parse trees for lexemes
We can now describe the parse trees for a word that matches a
regular expression. Figure 3 presents the T function. T (r, w) is the
set of parse trees that show how w is generated by r. We use the
plural form “parse trees” as there may be more than one parse tree
for a single expression/word pair. Borrowing from the context-free
grammar terminology, we could say that a regular expression may
be ambiguous.

Note that, once again, we need a repetition function ρT : R ×
Σ∗ × IN × (IN ∪ {∞}) → 2T to help shorten the definitions for
the numerous repetition operators. The definition of the repetition
function can be found at the bottom of Figure 3.

The meaning of T (r′, w), for each form of r′, is explained in
the following. Some examples are given. Note that, for the sake of
brevity, we may use single-character regular expressions such as a
instead of the equivalent class variants such as [a].

• Case r′ = [spec]. The only valid parse tree, if it exists, is a
single character c. c has to be a member of the character class
specification and has to be equal to the single character in w.
Examples: T ([ab], a) = {a}; T ([ab], c) = ∅ = T ([ab], baa).

54 Scheme and Functional Programming, 2006

• Case r′ = ”v”. The only valid parse tree is v and it exists if
w = v. Note that, from the point of view of the parse tree data
type, parse tree v is considered to be atomic (or basic), even
though, from the point of view of language theory, v ∈ Σ∗ may
be a composite object. Example: T (”abc”, abc) = {abc}.

• Case r′ = (r). Parentheses are there just to allow the user to
override the priority of the operators. They do not have any
effect on the parse trees the are generated.

• Cases r′ = r∗, r′ = r+, r′ = r?, r′ = r{i}, r′ =
r{i, }, and r′ = r{i, j}. The parse trees for w demon-
strate how w can be partitioned into n substrings w0, . . . ,
wn−1, where n is legal for the particular repetition operator
at hand, and how each wi can be parsed using r to form a
child parse tree ti, with the set of all the ti collected into a
list. The lists may have varying lengths but the child parse
trees they contain are all structured according to the sin-
gle regular expression r. Example: T (a{2, 3}∗, aaaaaa) =
{[[a, a], [a, a], [a, a]], [[a, a, a], [a, a, a]]}.

• Case r′ = r0 . . . rn−1. The parse trees for w demonstrate how
w can be partitioned into exactly n substrings w0, . . . , wn−1,
such that each wi is parsed according to its corresponding
child regular expression ri. In this case, the lists have constant
length but the child parse trees are structured according to vari-
ous regular expressions. Examples: T (abc, abc) = {[a, b, c]};
T (a∗ab, aaab) = {[[a, a], a, b]}.

• Case r′ = r0 | . . . | rn−1. A parse tree for w demonstrates
how w can be parsed according to one of the child regular
expressions. It indicates which of the child expressions (say ri)
matched w and it contains an appropriate child parse tree (for
w according to ri). Example: T (a∗|(aa)+|a?a?, a) = {#0 :
[a], #2 : [[a], []], #2 : [[], [a]]}.

Function T has some interesting properties. The first one is that
parse trees exist only for words that match a regular expression;
formally, T (r, w) 6= ∅ if and only if w ∈ L(r). The second
one is that, from any parse tree for a word according to a regular
expression, we can extract the word back; formally, if t ∈ T (r, w),
then X(t) = w.

Depending on the regular expression, the “amount” of ambigu-
ity varies. The union operator tends to additively increase the num-
ber of different parse trees produced by the child expressions. On
the other hand, the concatenation operator tends to polynomially
increase the number of different parse trees. Even more extreme,
some of the repetition operators tend to increase the number expo-
nentially and even infinitely. Let us give instances of such increases.
Let the ri’s be expressions that lead to one or two parse trees for any
non-empty word and none for ε. Then r0 | . . . | rn−1, r0 . . . rn−1,
((r0)

+)∗, and ((r0)
∗)∗ produce additive, polynomial, exponential,

and infinite increases, respectively.

5.3 Strategy for the construction of parse trees
In the original paper, it is shown how the construction of parse trees
for lexemes can be automated. The technique is an extension of
Thompson’s technique to construct finite-state automata [14]. The
extension consists in adding construction commands on some of
the edges of the automata. Essentially, each time a path through an
automaton causes some word to be consumed, then the sequence of
commands found along that path forms a “recipe” for the construc-
tion of a parse tree for the word.

In general, a parse tree may be an assemblage of many sub-
trees. These sub-trees cannot all be built at once. They are created
one after the other. Consequently, the sub-trees that are already built
have to be kept somewhere until they are joined with the other sub-
trees. It was shown that a data structure as simple as a stack was
providing the appropriate facilities to remember and give back parts

of a parse tree under construction. All the parse tree construction
commands are meant to operate on a stack.

The commands used by the original technique are: “push con-
stant”, “wrap in selector”, and “extend list”. The “push constant”
command has a constant tree t as operand and performs the fol-
lowing operation: it modifies the stack it is given by pushing t.
The “wrap in selector” command has a number i as operand and
performs the following operation: it modifies the stack by first pop-
ping a tree t, by building the selector #i : t, and then by pushing
#i : t back. Finally, the “extend list” command has no operand
and performs the following operation: it modifies the stack by first
popping a tree t and then a list l, by adding t at the end of l to form
l′, and then by pushing l′ back.

As explained above, the Scheme language does feature lists
but these lists are normally (efficiently) accessed by the front and
not by the end. Strictly speaking, Scheme lists can be extended
efficiently by the end but only in a destructive manner. We prefer to
avoid going against the usual programming style used in functional
languages and choose to adapt the original technique to make it
compatible with the natural right to left construction of lists in
Scheme.

This choice to adapt the original technique to build lists from
right to left has an effect on the way automata with commands are
traversed. In the adapted technique, we have the property that, if
a path traverses an automaton forwards and consumes some word,
then the sequence of commands found on the reversed path forms
a recipe to build a parse tree for the word. Thus, the next section
presents a technique to build finite-state automata with commands
similar to that of the original paper except for the facts that we have
a larger set of regular expression operators and that the commands
are placed differently in the automata.

5.4 Automata with construction commands
We present the construction rules for the finite-state automata with
commands. The construction rules take the form of a procedure A
that takes a regular expression r and builds the automaton A(r).
A is defined by structural induction on regular expressions. The
construction rules are similar to those prescribed by Thompson [14]
but with commands added on the edges. The rules are presented in
Figures 4 and 5.

Each construction rule produces an automaton with distin-
guished entry and exit states named p and q, respectively. When
an automaton A(r) embeds another one A(r′), we depict A(r′) as
a rectangle with two states which are the entry and exit states of
A(r′). In each automaton A(r), there is no path going from q to p
using edges of A(r) only. In other words, any path from q to p, if it
exists, has to go through at least one edge added by a surrounding
automaton. The parse tree construction commands are shown using
a compact notation. A “push constant” command with operand t is
denoted by push t. A “wrap in selector” command with operand
i is denoted by sel i. An “extend list” command is (of course)
denoted by cons.

We mention, without proof, the few key properties of the au-
tomata. Let r be a regular expression and P be a path that traverses
A(r) from entry to exit. First, the sequence of commands that are
met by following P backwards causes exactly one parse tree to be
pushed. More precisely, if we take a stack σ and apply on it all the
commands that we meet by following P backwards, then the net
effect of these commands is to push exactly one parse tree t on σ.
Second, the automata are correct in the sense that if the word that
is consumed along P is w, then t ∈ T (r, w). Third, the automata
are exhaustive with respect to T in the sense that, for any r ∈ R,
w ∈ L(r), t ∈ T (r, w), and stack σ, then there exists a path P that
traverses A(r), that consumes w, and whose reversed sequence of

Scheme and Functional Programming, 2006 55

A([spec]):
(where L([spec]) =

{c0, . . . , cn−1}) ����
> p �

� @
@R

c0

push c0

...@
@ �

��cn−1

push cn−1

�������
q

A(”v”): (where v = c0 . . . cn−1)

����
> p -

c0 ����
p1 -

ci
. . . -����

pn−1 -
cn−1 ����

pn -
ε

push v �������
q

A((r)) = A(r)

A(r∗) = A(r{0, })

A(r+) = A(r{1, })

A(r?) = A(r{0, 1})

A(r{i}) = A(r{i, i})

A(r{0, }): ����
> p �� @@R

ε

push []

@@ -
ε

cons ��� ���
p1 A(r) q1

6 ε

cons

���ε

push []

�������
q

A(r{i, }): (where i ≥ 1)

����
> p -

ε

cons ��� ���
p1 A(r) q1 - · · ·

ε

cons
- ��� ���

pi−1 A(r) qi−1

-

ε

cons

��� ���
pi A(r) qi

6 ε

cons

-
ε

push [] �������
q

Figure 4. Construction rules for the automata with commands (Part I).

commands causes t to be pushed on σ. These properties can be
proved straightforwardly by structural induction on R.

5.5 Using deterministic automata
For efficiency reasons, it is preferable to use a DFA instead of a
NFA. As explained above, the NFA obtained using function A may
be converted into a DFA to allow fast recognition of the lexemes
but three tables have to be built in order to be able to translate paths
through the DFA back into paths through the original NFA.

We assume the conversion of the NFA into a DFA to be a
straightforward one. We adopt the point of view that deterministic
states are sets of non-deterministic states. Then, our assumption
says that the deterministic state that is reached after consuming
some word w is exactly the set of non-deterministic states that can
be reached by consuming w.1

1 Note that this assumption precludes full minimization of the DFA. SILex
currently does not try to minimize the DFA it builds. The assumption is
sufficiently strong to ensure that paths through the NFA can be recovered

We may now introduce the three tables Acc, f , and g. Ta-
ble g indicates how to reach a state q from the non-deterministic
start state using only ε-transitions. It is defined only for the
non-deterministic states that are contained in the deterministic
start state. Table f indicates how to reach a non-deterministic
state q from some state in a deterministic state s using a path
that consumes a single character c. It is usually not defined ev-
erywhere. Table Acc indicates, for a deterministic state s, which
non-deterministic state in s accepts on behalf of the same rule as s.
It is defined only for accepting deterministic states.

Let us have a word w = c0 . . . cn−1 that is accepted by the
DFA and let PD = s0 . . . sn be the path that is taken when w
is consumed. Each si is a deterministic state, s0 is the start state,
and sn is an accepting state. Note that an accepting state does not
simply accept, but it accepts on behalf of a certain rule. In fact, an
accepting deterministic state may contain more than one accepting

but it may happen to be unnecessarily strong. More investigation should be
made to find a sufficient and necessary condition on the conversion.

56 Scheme and Functional Programming, 2006

A(r{0, 0}): ����
> p -

ε

push [] �������
q

A(r{0, j}):
(where j ≥ 1)

����
> p �� @@R

ε

push []

@@ -
ε

cons ��� ���
p1 A(r) q1 ���ε

push []

�· · ·

-

ε

cons

��� ���
pk A(r) qk -

6

ε

push []

�· · ·

-

ε

cons

��� ���
pj A(r) qj

ε

push []

�������
q

A(r{i, j}): (where i ≥ 1)

����
> p -

ε

cons ��� ���
p1 A(r) q1 - · · · -

ε

cons ��� ���
pi A(r) qi -

ε

push []

�· · ·

-

ε

cons

��� ���
pk A(r) qk -

6

ε

push []

�· · ·

-

ε

cons

��� ���
pj A(r) qj

ε

push []

�������
q

A(r0 . . . rn−1): (where n ≥ 2):

����
> p -

ε

cons ��� ���
p1 A(r0) q1 - · · · -

ε

cons ��� ���
pn A(rn−1) qn -

ε

push [] �������
q

A(r0 | . . . | rn−1):
(where n ≥ 2) ����

> p �
�

-
ε

sel 0 ��� ���
p1 A(r0) q1

@
@R

ε

...
@

@ -
ε

sel n− 1 ��� ���
pn A(rn−1) qn �

��ε �������
q

Figure 5. Construction rules for the automata with commands (Part II).

non-deterministic states, each on behalf of its corresponding rule.
In such a case, the deterministic state accepts on behalf of the
rule that has highest priority. The non-deterministic path PN that
corresponds to PD is recovered backwards portion by portion. The
idea consists in determining non-deterministic states {qi}0≤i≤n

and portions of path {Pi}0≤i≤n such that: each qi is in si; each Pi

starts at qi−1, ends at qi, and consumes ci−1, except for P0, which
starts at the non-deterministic start state, ends at q0, and consumes
ε; qn is a state that accepts on behalf of the same rule as sn.

The recovery is initialized by determining qn directly from sn

using the query Acc(sn). Next, the main part of the recovery con-
sists in an iteration, with i going from n down to 1. At step i,
given qi, one can determine portion of path Pi and intermedi-
ate non-deterministic state qi−1. Pi is obtained from the query
f(si−1, ci−1, qi). By doing so, qi−1 is also obtained as it is the
source state of Pi. As the final part of the recovery, P0 is obtained

using the query g(q0). Then path PN is simply the linkage of all
the portions together; i.e. PN = P0 · . . . · Pn.

Note that the preceding explanation contains some minor inac-
curacies. First, tables f and g do not exactly contain portions of
path but reversed ones. Indeed, recall that the NFA presented in
this paper are such that commands must be executed in the order
in which they are met when following paths backwards. Second,
there is no need to recover path PN (or its reverse) explicitly. It
is sufficient to keep references to the portions that form PN and
to later execute the commands by following the portions one af-
ter the other. Better yet, one may eagerly execute the commands
contained in each portion as the latter gets determined. This way,
it is unnecessary to remember PN nor its portions. Only the cur-
rent state of the construction stack needs to be preserved. Last, one
may observe that the sole purpose of the portions of path stored in
tables f and g is to be followed in order to recover the parse tree

Scheme and Functional Programming, 2006 57

construction commands. It is possible to skip the step of converting
a portion of path into a sequence of commands by directly storing
sequences of commands in f and g. It not only saves time by avoid-
ing the conversion but also because sequences of commands can be
no longer than the paths from which they are extracted since at
most one command gets attached to each arc. One must be careful
in the case of table f because a mere sequence of commands would
not indicate which non-deterministic state is the origin of the por-
tion of path. Consequently, the latter also has to be returned by f .
To recapitulate: a query g(q) provides the sequence of commands
that would be met by following some ε-consuming path from the
non-deterministic start state to q backwards; a query f(s, c, q) pro-
vides a pair of a non-deterministic state q′ ∈ s and the sequence of
commands that would be met by following some c-consuming path
from q′ to q backwards.

Remember that some regular expressions are ambiguous. Let r
be an ambiguous expression and w a word that has at least two
parse trees. We said that, in the context of automatically generated
lexical analyzers, it is sufficient to build only one parse tree for
w. In other words, from the path PD that traverses the DFA, it is
sufficient to recover only one (PN) of the corresponding paths that
traverse the NFA. Indeed, by the use of fixed tables f , g, and Acc,
the recovery of PN from PD and w is deterministic. Essentially, the
choices among all possible paths are indirectly made when unique
values are placed into tables entries that could have received any of
numerous valid values. Nevertheless, even if in practice, any single
lexical analyzer produces parse trees in a deterministic manner, it
remains more convenient to specify the parse tree construction as a
non-deterministic process.

6. Modifications to SILex
The addition of parse trees to SILex has little impact on the way
SILex is used. The only visible modification is the presence of an
additional variable in the scope of the actions. The name of this
variable is yyast, for Abstract Syntax Tree.2 An action may refer
to this variable as any other variable provided by SILex, such as
yytext, which contains the lexeme that has just been matched,
yyline, which contains the current line number, etc.

While the observable behavior of SILex has not changed much,
there are many changes that have been made to the implemen-
tation of SILex. The most important changes were made in the
generation-time modules. First, the original version of SILex used
to convert many regular expression operators into simpler forms in
order to handle as few native operators as possible. It was doing
so during syntactic analysis of the regular expressions. For exam-
ple, SILex eliminated some forms by converting strings like ”v”
into concatenations, by breaking complex repetition operators into
a combination of simpler ones and concatenations, and by splitting
large concatenations and unions into binary ones. While such con-
versions do not change the language generated by the expressions,
they do change the set of valid parse trees for most or all words.
The new version has to represent most syntactic forms as they ap-
pear in the specification files. Still, there are now new opportunities
to translate simple forms, such as r∗, r+, r?, and r{i}, into the
more general forms r{b, B}, which have to be supported anyway.

Second, the construction rules for the automata have been
changed to correspond to the new list of syntactic forms and to
conform to the specifications of Figures 4 and 5. Of course, the
representation of the arcs (in the NFA) had to be extended so that
commands could be attached.

2 Actually, we consider the name yyast to be rather inappropriate as the
parse trees that the new variable contains are indeed concrete syntax trees.
Still, since the version of SILex that we are working on uses that name, we
prefer to stick to the current conventions.

Third, a phase which used to clean up the NFA between the
elimination of the ε-transitions and the conversion of the NFA
into a DFA has been eliminated. It eliminated useless states and
renumbered the remaining states. The modification of the numbers
interfered with the construction of the three new tables and the
quick and dirty solution has been to completely omit the phase.
The generated analyzers would benefit from the re-introduction of
the clean-up phase and, in order to do so, some adaptation should
be made to the currently abandoned phase or to the implementation
of the table construction.

Fourth, we added the implementation of the construction and the
printing of the three tables. The construction of the tables mainly
consists in extracting reachability information from the graph of the
NFA.

The next modifications were made to the analysis-time module.
Fifth, the lexical analyzers had to be equipped with instrumentation
to record the paths that are followed in the DFA. Also, requests for
the construction of parse trees when appropriate have been added.

Sixth, we included the functions that build parse trees when they
are given a path through the DFA, the recognized lexeme, and the
three tables.

Up to this point, the modifications aimed only at providing the
parse tree facility when the tables of the DFA are represented using
the ordinary format. So, at last, we modified both the generation-
time and the analysis-time modules so that parse trees could also
be built when the DFA is represented using portable tables or
Scheme code. In the case of the portable tables, it required only the
creation of simple conversion functions to print a portable version
of tables f and g at generation time and to translate the portable
tables back into the ordinary format at analysis time. In the case of
the DFA as Scheme code, the modifications are more complex as
extra code must be emitted that takes care of the recording of the
path through the DFA and the requests for the construction of parse
trees. Note that the functions that perform the very construction of
the parse trees are the same no matter which format for the tables
of the DFA is used. It means that the construction of parse trees is
an interpretative process (based on queries to the three tables), even
when the DFA is implemented efficiently as code.

Note that, although SILex gives the impression that parse trees
are always available to actions, SILex is lazy with their construc-
tion. It builds them only for the actions that seem to access the vari-
able yyast. The path followed into the DFA is always recorded,
however. Still, SILex’s laziness substantially reduces the extra cost
caused by the addition of the parse trees as most of it comes from
the construction of trees, not the recording of paths.

The current state of the prototype is the following. The integra-
tion is complete enough to work but the code needs a serious clean-
up. The three additional tables for DFA to NFA correspondence are
much too large. The implementation of the mechanisms for path
recording and parse tree construction is not really optimized for
speed.

7. Examples of parse tree construction for
lexemes

We present a few concrete examples of the use of parse tree con-
struction using SILex. We first start by describing the Scheme rep-
resentation of the parse trees.

7.1 Representation of parse trees in Scheme
The representation of trees in T in Scheme is direct. A list tree
[t0, . . . , tn−1] becomes a Scheme list (S0 . . . Sn−1) where each
Si is the Scheme representation of ti. Next, a selector #i : t also
becomes a Scheme list (i S) where i remains the same and S cor-
responds to t. Finally, a word w may take two forms in Scheme.

58 Scheme and Functional Programming, 2006

If w is a parse tree that originates from a string regular expression
”w”, then it becomes a Scheme string "w", otherwise w is neces-
sarily one-character long and it becomes a Scheme character #\w.

7.2 Simple examples
Let us consider the following short SILex specification file:

%%
a{2,4} (list ’rule1 yyast)
a{0,3} (list ’rule2 yyast)

where only some sequences of a are deemed to be legal tokens and
where the actions simply return tagged lists containing the parse
trees that are produced. If we generate a lexical analyzer from this
specification file and ask it to analyze the input aaaaa, then it will
produce the following two results before returning the end-of-file
token:

(rule1 (#\a #\a #\a #\a))
(rule2 (#\a))

Both parse trees indicate that the matched lexemes were made of
repetitions of the character a, which is consistent with the shape of
the regular expressions. Note how the first token had to be as long
as possible, following the maximal-munch tokenization principle.

Now, let us consider a more complex example. The following
specification file allows the analyzer-to-be to recognize Scheme
strings:

%%
\"([^"\\]|"\\\""|"\\\\")*\" yyast

One must not forget about the necessary quoting of special charac-
ters " and \. If we feed the analyzer generated from this specifica-
tion with the following Scheme string:

"Quote \" and \\!"

then the analyzer returns a parse tree that denotes a sequence of
three sub-trees, where the middle one is a sequence of 14 sub-
sub-trees, where each is a selector among the three basic string
elements:

(#\"
((0 #\Q) (0 #\u) (0 #\o) (0 #\t) (0 #\e)
(0 #\space) (1 "\\\"") (0 #\space)
(0 #\a) (0 #\n) (0 #\d) (0 #\space)
(2 "\\\\") (0 #\!))
#\")

These two examples may not be that convincing when it comes
to justifying the implementation of automatic construction of parse
trees for lexemes. However, the one below deals with a regular
expression that is way more complex.

7.3 Lexical analysis of Scheme numbers
Scheme provides a particularly rich variety of numbers: from inte-
gers to complex numbers. It also provides a “syntax” for the exter-
nal representation of all these kinds of numbers. An implementor
has much work to do in order to handle all the kinds of numbers. In
particular, when it comes to reading them. There are so many cases
that reading them in an ad hoc way tends to be error-prone.

Even when one automates part of the process by using an auto-
matically generated lexical analyzer to scan Scheme numbers, only
half of the problem is solved. Indeed, merely knowing that a lex-
eme is the external representation of a Scheme number does not
provide any easy way to recover the internal representation from
the lexeme. That is, it is not easy unless the lexical analyzer is able

to provide a parse tree for the lexeme. In Figure 6, we present a rel-
atively complete specification for the Scheme numbers. Note that
we restrict ourselves to numbers in base 10 only and that we do not
handle the unspecified digits denoted by #. The specification file is
mostly made of macros and there is a single rule which takes the
parse tree for the number and passes it to a helper function.

The helper function is very simple as it only has to traverse the
tree and rebuild the number. This reconstruction is made easy by
the fact that the hierarchical structure of the lexeme according to the
regular expression is clearly exposed and that any “choice” between
various possibilities is indicated by the tree. Figure 7 presents the
implementation of our helper function, which is less than one hun-
dred lines of very systematic code. The reader needs not necessarily
study it closely—the font is admittedly pretty small—as the main
point here is to show the size and the shape of the code. If we were
to complete our implementation to make it able to handle the full
syntax, it would be necessary to add many macros in the specifica-
tion file but the helper function would not be affected much.

8. Experimental results
In order to evaluate the cost of the construction of parse trees, we
ran a few experiments. The experiments consist in analyzing the
equivalent of 50 000 copies of the following 10 numbers (as if it
were a giant 500 000-line file).

32664
-32664
32664/63
+32664/63
-98327E862
+i
-453.3234e23+34.2323e1211i
+.32664i
-3266.4@63e-5
+32664/63@-7234.12312

We used three different lexical analyzers on the input. The first
one is a lexical analyzer generated by the original version of SILex.
The second one is generated by the new version of SILex and build
a parse tree for each of the recognized lexemes. The third one
is also generated using the new version of SILex but it does not
ask for the construction of the parse trees (i.e. the action does not
access yyast). This last analyzer is used to evaluate the cost of the
instrumentation added to record the path through the DFA.

The lexical analyzers have been generated by (either version of)
SILex to be as fast as possible; that is, their DFA is implemented as
Scheme code and they maintain no counters to indicate the current
position in the input. The lexical analyzers have been compiled
using Gambit-C version 3.0 with most optimizations turned on. The
resulting C files have been compiled using GCC version 3.3.5 with
the ‘-O3’ switch. The analyzers were executed on a 1400 MHz Intel
Pentium 4 processor with 512 MBytes of memory.

The execution times for the three analyzers are 15.3 seconds,
39.8 seconds, and 20.2 seconds, respectively. Clearly, building the
parse trees incurs a serious cost as the execution time almost triples.
This is not that surprising given the complexity of building a parse
tree compared to the simplicity of a mere recognition using a DFA.
However, the third measurement indicates that the added instru-
mentation causes the operations of the DFA to take significantly
longer. The increase is about by a third. While the increase is much
less than in the case of parse tree construction, it is still less accept-
able. Construction of parse trees can be seen as a sophisticated op-
eration that is relatively rarely performed. One might accept more
easily to pay for a service that he does use. However, the extra cost
due to the instrumentation is a cost without direct benefit and that

Scheme and Functional Programming, 2006 59

; Regular expression for Scheme numbers
; (base 10 only, without ’#’ digits)

digit [0-9]
digit10 {digit}
radix10 ""|#[dD]
exactness ""|#[iI]|#[eE]
sign ""|"+"|"-"
exponent_marker [eEsSfFdDlL]
suffix ""|{exponent_marker}{sign}{digit10}+
prefix10 {radix10}{exactness}|{exactness}{radix10}
uinteger10 {digit10}+
decimal10 ({uinteger10}|"."{digit10}+|{digit10}+"."{digit10}*){suffix}
ureal10 {uinteger10}|{uinteger10}/{uinteger10}|{decimal10}
real10 {sign}{ureal10}
complex10 {real10}|{real10}@{real10}|{real10}?[-+]{ureal10}?[iI]
num10 {prefix10}{complex10}
number {num10}

%%

{number} (lex-number yyast)

Figure 6. SILex specification for the essentials of the lexical structure of Scheme numbers.

; Companion code for Scheme numbers

(define lex-number
(lambda (t)
(let* ((digit

(lambda (t)
(- (char->integer t) (char->integer #\0))))

(digit10
(lambda (t)
(digit t)))

(exactness
(lambda (t)
(case (car t)

((0) (lambda (x) x))
((1) (lambda (x) (* 1.0 x)))
(else (lambda (x) (if (exact? x) x (inexact->exact x)))))))

(sign
(lambda (t)
(if (= (car t) 2)

-1
1)))

(digit10+
(lambda (t)
(let loop ((n 0) (t t))

(if (null? t)
n
(loop (+ (* 10 n) (digit10 (car t))) (cdr t))))))

(suffix
(lambda (t)
(if (= (car t) 0)

0
(let ((tt (cadr t)))
(* 1.0

(sign (list-ref tt 1))
(digit10+ (list-ref tt 2)))))))

(prefix10
(lambda (t)
(exactness (list-ref (cadr t) (- 1 (car t))))))

(uinteger10
(lambda (t)
(digit10+ t)))

(decimal10
(lambda (t)
(let* ((e2 (suffix (list-ref t 1)))

(tt (list-ref t 0))
(ttt (cadr tt)))

(case (car tt)
((0)
(* (digit10+ ttt) (expt 10 e2)))

((1)
(let ((tttt (list-ref ttt 1)))
(* (digit10+ tttt) (expt 10.0 (- e2 (length tttt))))))

(else
(let* ((tttt1 (list-ref ttt 0))

(tttt2 (list-ref ttt 2)))
(* (digit10+ (append tttt1 tttt2))

(expt 10.0 (- e2 (length tttt2))))))))))
(ureal10
(lambda (t)
(let ((tt (cadr t)))

(case (car t)
((0)
(uinteger10 tt))
((1)
(/ (uinteger10 (list-ref tt 0))

(uinteger10 (list-ref tt 2))))
(else
(decimal10 tt))))))

(real10
(lambda (t)

(* (sign (list-ref t 0)) (ureal10 (list-ref t 1)))))
(opt
(lambda (op t default)

(if (null? t)
default
(op (list-ref t 0)))))

(complex10
(lambda (t)

(let ((tt (cadr t)))
(case (car t)

((0)
(real10 tt))
((1)
(make-polar (real10 (list-ref tt 0))

(real10 (list-ref tt 2))))
(else
(make-rectangular
(opt real10 (list-ref tt 0) 0)
(* (if (char=? (list-ref tt 1) #\+) 1 -1)

(opt ureal10 (list-ref tt 2) 1))))))))
(num10
(lambda (t)

((prefix10 (list-ref t 0))
(complex10 (list-ref t 1)))))

(number
(lambda (t)

(num10 t))))
(number t))))

Figure 7. Implementation of a helper function for the lexical analysis of numbers.

60 Scheme and Functional Programming, 2006

one cannot get rid of, even when parse tree construction is almost
never used.

9. Discussion
As far as we know, the original technique is the only one that makes
automatically generated lexical analyzers able to build parse trees
for lexemes using only finite-state tools and this work is the only
implementation of it.

Generated lexical analyzers always give access to the matched
lexemes. It is essential for the production of tokens in lexical anal-
ysis. To also have access to information that is automatically ex-
tracted from the lexemes is a useful feature. However, when such
a feature is provided, it is typically limited to the ability to ex-
tract sub-lexemes that correspond to tagged (e.g. using \(and \))
sub-expressions of the regular expression that matches the lexeme.
Techniquely, for efficiency reasons, it is the position and the length
of the sub-lexemes that get extracted. The IEEE standard 1003.1
describes, among other things, which sub-lexemes must be ex-
tracted [7]. Ville Laurikari presents an efficient technique to extract
sub-lexemes in a way that complies with the standard [11]. In our
opinion, extraction by tagging is too restrictive. The main problem
is that, when a tagged sub-expression lies inside of a repetition op-
erators (or inside of what is sometimes called a non-linear context)
and this sub-expression matches many different parts of a given
lexeme, only one of the sub-lexemes is reported. So extraction by
tagging starts to become ineffective exactly in the situations where
the difficulty or the sophistication of the extraction would make au-
tomated extraction most interesting.

Since the conventional way of producing parse trees consists
in using a syntactic analyzer based on context-free grammar tech-
nology, one might consider using just that to build parse trees for
his lexemes. For instance, one could identify lexemes using a DFA
and then submit the lexemes to a subordinate syntactic analyzer
to build parse trees. Alternatively, one could abandon finite-state
technology completely and directly use a scanner-less syntactic an-
alyzer. However, both options suffer from the fact that analyzers
based on context-free grammars are much slower than those based
on finite-state automata. Moreover, an ambiguous regular expres-
sion would be translated into an ambiguous context-free grammar.
Our technique handles ambiguous expressions without problem but
most parsing technology cannot handle ambiguous grammars. Of
course, there exist parsing techniques that can handle ambiguous
grammars, such as Generalized LR Parsing [10, 15], the Earley
algorithm [5], or the CYK algorithm [8, 17, 2], but these exhibit
worse than linear time complexity for most or all ambiguous gram-
mars. Finally, it is possible to translate any regular expression into
an unambiguous left- or right-linear grammar [6]. However, the re-
sulting grammar would be completely distorted and would lead to
parse trees that have no connection to the parse trees for lexemes
that we introduced here.

10. Future work
• We intend to complete the integration of automatic parse tree

construction into SILex and to clean up the whole implementa-
tion.

• Parse tree construction could be made faster. In particular, when
the DFA is represented as Scheme code, the functions that
build the trees ought to be specialized code generated from the
information contained in the three tables.

• The penalty that is strictly due to the additional instrumentation
(i.e. when no parse trees are requested) ought to be reduced. A
way to improve the situation consists in marking the determin-
istic states that may reach an accepting state that corresponds
to a rule that requests the construction of a parse tree. Then, for

states that are not marked, the instrumentation that records the
path in the DFA could be omitted.

• All tables generated by SILex ought to be compacted but the
one for f , in particular, really needs it. Recall that f takes a
three-dimensional input and returns a variable-length output (a
pair that contains a sequence of commands).

• Some or all of the following regular operators could be added to
SILex: the difference (denoted by, say, r1−r2), the complement
(r), and the intersection (r1&r2). Note that, in the case of the
complement operator, there would be no meaningful notion of
a parse tree for a lexeme that matches r. In the case of the
difference r1 − r2, the parse trees for a matching lexeme w
would be the demonstration that r1 generates w. Finally, in the
case of the intersection, for efficiency reasons, only one of the
sub-expressions should be chosen to be the one that dictates the
shape of the parse trees.

• The parse trees act as (too) detailed demonstrations. Almost
always, they will be either transformed into a more conve-
nient structure, possibly with unnecessary details dropped, or
completely consumed to become non-structural information. In
other words, they typically are transient data. Consequently, it
means that only their informational contents were important
and that they have been built as concrete data structures to no
purpose. In such a situation, deforestation techniques [16] could
be used so that the consumer of a parse tree could virtually tra-
verse it even as it is virtually built, making the actual construc-
tion unnecessary.

11. Conclusion
This paper presented the adaptation and the implementation of the
automated construction of parse tree for lexemes. The technique
that has been adapted was originally presented in 2000 by Dubé and
Feeley. It has been implemented and integrated in SILex, a lexical
analyzer generator for Scheme.

The adaptation was a simple step as it consisted only in modi-
fying the automaton construction rules of the original technique so
that the larger set of regular operators of SILex was handled and so
that the way the parse trees are built match the right-to-left direction
in which lists are built in Scheme.

The implementation was a much more complicated task. Fortu-
nately, SILex, like the original technique, is based on the construc-
tion of non-deterministic automata that get converted into deter-
ministic ones. Still, most parts of the generator had to be modified
more or less deeply and some extensions also had to be made to the
analysis-time module of the tool. Modifications have been done to
the representation of the regular expressions, to the way the non-
deterministic automata are built and represented, to the conversion
of the automata into deterministic ones, to the printing of SILex’s
tables, to the generation of Scheme code that forms parts of the lex-
ical analyzers, to the algorithm that recognize lexemes, and to the
(previously inexistent) construction of the parse trees.

The new version of SILex does work, experiments could be run,
but the implementation is still somehow disorganized. The con-
struction of parse trees is a pretty costly operation compared to the
normal functioning of a deterministic automaton-based lexical an-
alyzer and, indeed, empirical measurements show that its intensive
use roughly triples the execution time of an analyzer.

Acknowledgments
We wish to thank the anonymous referees whose comments really
helped to improve this paper.

Scheme and Functional Programming, 2006 61

References
[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles,

Techniques, and Tools. Addison-Wesley, Reading, MA, USA, 1986.
[2] J. Cocke and J. T. Schwartz. Programming languages and their

compilers: Preliminary notes. Technical report, Courant Institute of
Mathematical Sciences, New York University, 1970.

[3] D. Dubé. Scheme Implementation of Lex, 2001.
http://www.iro.umontreal.ca/~dube/silex.tar.gz.

[4] D. Dubé and M. Feeley. Efficiently building a parse tree from a
regular expression. Acta Informatica, 37(2):121–144, 2000.

[5] J. Earley. An efficient context-free parsing algorithm. Communica-
tions of the ACM, 13(2):94–102, feb 1970.

[6] J. E. Hopcroft and J. D. Ullman. Introduction to automata theory,
languages and computation. Addison-Wesly Publishing Company,
1979.

[7] IEEE std 1003.1, 2004 Edition.
[8] T. Kasami. An efficient recognition and syntax-analysis algorithm for

context-free languages. Technical Report AFCRL-65-758, Air Force
Cambridge Research Lab, Bedford, MA, USA, 1965.

[9] R. Kelsey, W. Clinger, and J. Rees (eds.). Revised5 report on
the algorithmic language Scheme. Higher-Order and Symbolic
Computation, 11(1):7–105, aug 1998.

[10] B. Lang. Deterministic techniques for efficient non-deterministic
parsers. In Proceedings of the 2nd Colloquium on Automata,
Languages and Programming, pages 255–269, London, UK, 1974.
Springer-Verlag.

[11] Ville Laurikari. NFAs with tagged transitions, their conversion to
deterministic automata and application to regular expressions. In
Proceedings of the 7th International Symposium on String Processing
and Information Retrieval, pages 181–187, sep 2000.

[12] M. E. Lesk. Lex—a lexical analyzer generator. Technical Report 39,
AT&T Bell Laboratories, Murray Hill, NJ, USA, 1975.

[13] J. Levine, T. Mason, and D. Brown. Lex & Yacc. O’Reilly, 2nd
edition, 1992.

[14] K. Thompson. Regular expression search algorithm. Communications
of the ACM, 11(6):419–422, 1968.

[15] M. Tomita. Efficient parsing for natural languages. A Fast Algorithm
for Practical Systems, 1986.

[16] P. L. Wadler. Deforestation: transforming programs to eliminate trees.
Theoretical Computer Science, 73(2):231–248, 1990.

[17] D. H. Younger. Recognition and parsing of context-free languages in
time n3. Information and Control, 10(2):189–208, 1967.

62 Scheme and Functional Programming, 2006

