
Gannet: a Scheme for Task-level Reconfiguration of
Service-based Systems-on-Chip

Wim Vanderbauwhede
Department of Computing Science, University of Glasgow, UKwim�d
s.gla.a
.uk

Abstract
There is a growing demand for solutions which allow the design of
large and complex reconfigurable Systems-on-Chip (SoC) at high
abstraction levels. The Gannet project proposes a functional pro-
gramming approach for high-abstraction design of very large SoCs.
Gannet is a distributed service-based SoC architecture, i.e. a net-
work of services offered by hardware or software cores. The Gan-
net SoC performs tasks by executing functional task description
programs using a demand-driven dataflow mechanism. The Gan-
net architecture combines the flexible connectivity offered by a
Network-on-Chip with the functional language paradigm to create
a fully concurrent distributed SoC with the potential to completely
separate data flows from control flows. In this paper we present
the Gannet architecture and explain how Scheme can be used to
describe task-level configuration of a Gannet SoC. The paperintro-
duces the background for the work, presents the Gannet machine
language and the compile process and explains how the Gannet
SoC executes task description programs.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors; C.1.4 [Processor Architectures]: Parallel Ar-
chitectures

General Terms Distributed System-on-Chip architecture, Task-
level reconfiguration

Keywords Service-based System-on-Chip, Network-on-Chip

1. Aim
The aim of this paper is to explain how Scheme can be used as a
language for task-level reconfiguration of service-based Systems-
on-Chip (SoCs).

Because the field of reconfigurable, heterogeneous multi-core
Systems-on-Chip is very specialised and does not overlap much
with the field of functional programming languages, the paper
provides the necessary background about SoC architectures. The
notions of task-level reconfiguration and service-based Systems-
on-Chip are introduced and applied to the Gannet service-based
SoC architecture. After setting the scene, the paper explains the

Proceedings of the 2007 Workshop on Scheme and Functional Programming
Université Laval Technical Report DIUL-RT-0701

design flow for the Gannet SoC and discusses why Scheme is a
suitable language for the purpose of task-level configuration.

2. Background
2.1 The need for high abstraction level SoC design

As integration density of integrated circuits increases following
Moore’s law, it becomes increasingly clear that the currenttools
and methodologies for the design and verification of very large
scale (VLSI) integrated circuits are not suited to exploit the full po-
tential offered by the technology (productivity gap). Today’s tech-
nology allows entire systems (e.g. a microprocessor with memory
and peripherals, but more importantly systems with large number
of data processing cores) to be integrated on a single chip, where
only a few years ago such systems would have consisted of indi-
vidual, packaged chips assembled onto a printed circuit board. For
that reason, there is a growing demand for solutions allowing to
design complex Systems-on-Chip (SoC) at high abstraction levels
(Kulkarni et al. 2004; Lavagno et al. 2002).

This is even more the case for run-time reconfigurable systems.
There are already a number of relatively high abstraction level
tools for FPGA-based, statically reconfigurable systems (where
the configuration does not change at run time). Most of these are
based on C dialects with some support for concurrency (Handel-
C, ImpulseC, SystemC) or on domain-specific languages (Kulkarni
et al. 2004). Run-time reconfigurable hardware currently uses fine-
grained reconfiguration mechanisms, using concepts such ascon-
text switching, differential bit file updates and reconfigurable in-
struction set processors (Hauck et al. 2004; Lam et al. 2006;Scalera
and Vazquez 1998). However, none of these approaches qualifies as
high abstraction level. The low granularity at which configuration
takes place is not well suited for very large systems consisting of
large numbers of heterogeneous processing cores.

2.2 Networks on Chip

The main issues with very large SoCs are connectivity (because the
number of logic blocks on a SoC and the number of connections
per block is very large) and design complexity (because the com-
plexity of every individual logic block in a SoC is similar tothe
complexity of a single chip in a conventional system) (Sgroiet al.
2001). Traditional bus-style interconnects are no longer aviable
option: synchronisation of hundreds of processing cores over large
physical distances (on a SoC, the order of magnitude is10−3m or
even10−2m where on a conventional IC it would be rather10−4m)
is impossible; fixed point-to-point connections result in huge wire
overheads. There is a consensus in the field that packet-switched
Networks-on-Chip (NoCs) (Dally and Towles 2001) provide the
best solution to this interconnect bottleneck because theyoffer flex-
ible connectivity and an efficient mechanism for managing wires
(Benini and De Micheli 2002; Grecu and Jones 2005).

Scheme and Functional Programming 2007 129

Figure 1. Gannet architecture

2.3 Design reuse

For very large SoCs, design reuse is essential (Stolberg et al. 2005).
Design reuse is facilitated by the concept of what is generally called
“Intellectual Property” (IP) cores. These are highly complex, self-
contained processing units offering a specific functionality, such
as data acquisition units, audio/video codecs, cryptography cores,
TCP/IP packet filtering etc. They can be implemented as hardware
logic circuits, as embedded microcontrollers running specific soft-
ware, or combinations of both.

2.4 Task-level reconfiguration and the service paradigm

Consider for example a handheld application, e.g. a mobile phone:
the functionality of this type of device has increased so dramatically
in recent times that a handset can perform a large number of differ-
ent tasks (camera, video, SMS, web browsing,...). To make optimal
use of the hardware resources, and in particular to reduce power
consumption, the system should be reconfigurable at run time. We
have proposed (Vanderbauwhede 2006a,b) a high abstractionlevel
run-time reconfiguration mechanism called task-level reconfigura-
tion. This mechanism organises the hardware blocks in the system
as services, to be called on demand. Because of their self-contained
nature, treating IP blocks as services is a natural abstraction. The
interaction between the services is governed by a task description
program. The framework of this so-called Service-based System-
on-Chip architecture effectively turns the SoC into a distributed
processor which executes task description programs.

It is important to note that the system does not require a von
Neumann-style microprocessor (with a program counter, registers
and a shared memory) to execute the program. Instead, the program
is executed through the collective action of the Gannet framework
and the IP cores contained therein.

3. The Gannet service-based architecture
The Gannet service-based architecture (Vanderbauwhede 2006a,b)
is a task-level reconfigurable systemthat consists of a – potentially
large – number of IP blocks connected via a Network-on-Chip (Fig.
1) . Every IP block is incorporated in aservice node. All service
nodes are connected over the NoC. Data and task configuration
programs enter the system via a dedicatedgatewaycircuit.

In practice, the System-on-Chip will have a tile-based layout
(Fig. 2). Every service node forms a tile (a rectangular areaof
the chip) which is connected to the Network-on-Chip via a local
switch.

To achieve service-based behaviour, every tile of a Gannet SoC
contains a special control unit (theservice manager), which pro-
vides a service-oriented interface between the IP core and the sys-
tem (Fig. 3).

Figure 2. SoC with on-chip network

Figure 3. Gannet SoC tile with Service Manager

3.1 Functional task description language

Obviously, the functionality in such a system is not solely deter-
mined by the functionality of each core. The way the cores interact
with each other is equally important. Thanks to the service man-
ager circuit, the data flow between the services – and consequently
the task performed by the system – can be described in a functional
way, using a Scheme-like language.

A simple example of a task (which we will use further on) would
be a system that takes images with 2 cameras and creates a 3-D
image based from the data:(
reate-3D (
amera1) (
amera2))
Assuming that the system has the required IP cores that map to
these services, this example can actually be compiled and executed
on a Gannet SoC, as detailed in Subsection 6.3.

The key role of the service manager is to marshall the data
required by the IP core as well as the results produced by the core.
In this way the service core is task-agnostic, i.e. it has no knowledge
of the overall task the system is performing. A service core simply
performs a computation on a set of input data and returns a result.
Each service manager, governed by its corresponding part ofthe
task description program, determines where to request the data and
where to direct the result. The service manager does not modify the
data in any way, it only directs the data flows.

3.2 Design Flow

Before we proceed to discuss the requirements imposed on the
task description language by the Gannet system’s architecture, we
present the high-level design flow for a Gannet SoC (Fig. 4).

130 Scheme and Functional Programming 2007

Figure 4. Gannet SoC Design Flow

The design flow has a hardware and a software component.
Both are governed by a common description of the system and its
services. This description contains a list of the services required
by the system, the IP cores that will provide these services and the
required configuration options for each core.

The hardware flow consists essentially of taking the IP cores
from a library, configuring them if required and placing themin the
Gannet fabric. For most of the cores the IP core library provides
a configurable layout template and a dedicated program that will
generate the final layout from this template.

The software flow essentially compiles a task description pro-
gram to a set of packets containing the bytecode to be executed by
the Gannet system.

3.3 Packet-based data transfer

Because the Gannet service-based architecture uses a Network-on-
Chip for all communication between services, all data transfers
are packet-based. In this section we discuss the Gannet packet
structure.

3.3.1 Gannet packet

The unit of data transfer in the Gannet SBA is the packet, denoted
as

Packet::= p(Packet-type,To,Return,Label;Payload)

The set of Gannet packet types is given by

Packet-type::=code| reference| data

Depending onPacket-type, the Payloadcan be aninstruction
(code), acode reference(ref) or data (data).To andReturnare the
addresses of the destination and return services.Label is a Gannet
symbol whose purpose will be discussed in Subsection 5.

3.3.2 Gannet symbol

An instruction is a flat list (further denoted with〈...〉) of symbols. A
Gannet symbol is a structured byteword of a fixed number of bytes.
The simplified1 structure of a Gannet symbol is:

1 The complete definition isSymbol::=[Kind:Res:Quoted:Ext:Task:Name:Subtask].
Res is reserved for future use;Task is used to distinguish between the

Symbol::=[Kind:Name:Subtask]

Every symbol has a property calledKind. The service manager
decides which action to take to process the task descriptionbased
on a set of rules related to the symbol kind.

The set of kinds and the meaning of its elements will be ex-
plained in Subsection 5.

The content of theNameandSubtaskfields depends on the kind.
In general,Nameis a symbolic name for a service, reference, vari-
able or argument;Subtaskprovides information about the instruc-
tion to which the symbol belongs.

4. The Gannet language
The Gannet language is the equivalent of an assembly language for
the Gannet “machine”. By this we mean that a program written in
Gannet syntax can be transformed in machine code in a trivialway.
The Gannet machine is defined as a set of service cores connected
to a Network-on-Chip via a service manager. With this definition,
the Gannet machine is acustom instruction set coarse-grained
distributed dataflow machine. Every service core provides one or
more “instructions”. In the Gannet language this is represented as
a function call.

Gannet syntax is an s-expression syntax completely free from
syntactic sugar. In BNF, a Gannet expression must always obey

gannet-expression ::= (service-token argument-expression+)
argument-expression ::= (gannet-expression | literal)

whereservice-tokenrepresents a particular service. Every ser-
vice in the system has a correspondingservice-tokenin the pro-
gram. There are no other keywords in the language, i.e. all flow
control constructs are provided by services. The use of control ser-
vices to provide “language” features is discussed in detailin Sec-
tion 7; however, for a better understanding we will first discuss the
compilation process and the execution model. An operational se-
mantics for the Gannet language is presented in (Vanderbauwhede
2006b).

5. Compiling Scheme into Gannet packets
This section presents the flow for compiling Scheme into Gannet
machine code, but first provides a justification for the choice of
Scheme as high-level task description language.

5.1 Why Scheme?

As explained above, Gannet is a functional assembly language. It is
not meant as a language to write the actual task descriptionsin. Be-
cause of Gannet’s functional nature, a functional higher-level lan-
guage is a natural choice for this purpose. As we will see in Sub-
section 5.2, Scheme is not only syntactically but also semantically
very similar to Gannet, which makes it an obvious choice. More-
over, Scheme is already popular with CAD vendors and tool users:
two of the leading companies, Synopsys and Cadence, make exten-
sive use of Scheme in their tools. Synopsys has embedded the GNU
Guile interpreter while Cadence has its own Scheme dialect called
SKILL (Petrus 1993).

It should be stressed that it is not the aim of Gannet to imple-
ment the full R5R Scheme. The purpose of Gannet is to configure
SoCs at service level, and the high-level language must havesuffi-
cient features for this task. For example, while support fornumbers
is required for purposes of flow control (see Section 7), support for

symbols of different task running simultaneously on the system. Quoted
andExt will be introduced in Subsection 7.1.

Scheme and Functional Programming 2007 131

strings is not required, nor is any type of OS interaction, including
I/O.

5.2 Compilation flow

The Gannet "machine" processespackets. Consequently, the task
description program will be compiled into packets.

Compilation of Scheme into Gannet packets is straightforward
and consists of the following steps:

1. Transform the Scheme code into a core subset
The subset supported by the Gannet system consists oflambda, let, let*, set!, if, list,
ons,
ar,
dr, length,eval, and literals (including quoted expressions), variables and

calls.
2. Transform the code into Gannet syntax
3. Decompose the Gannet code into an abstract syntax tree (AST)
4. Flatten the AST through reference substitution
5. Create a packet for each flattened node

Consider for example the following program:(begin(define (fa
t n a

)(if (< n 1)a

(fa
t (- n 1) (* a

 n))))(fa
t 5 1))
1. This will be transformed into(let((fa
t (lambda (n a

 f) (if (< n 1) a

(f (- n 1) (* a

 n) f)))))(fa
t 5 1 fa
t))
2. Using the following rules:

(a) (let ((v 〈expr〉)+) 〈body〉)
⇒ (let (assign′v 〈 expr〉) + 〈 body〉)

(b) (lambda(arg+) (〈body〉))
⇒ (lambda′arg+′(〈body〉))

(c) (〈 lambda-def〉 arg+)
⇒ (apply〈 lambda-def〉 ′arg+)

(d) (if 〈 cond〉 〈 expr1〉 〈 expr2〉)
⇒ (if 〈 cond〉 ′〈 expr1〉 ′〈 expr2〉)

the expression can be transformed into Gannet syntax:(let(assign 'fa
t(lambda 'n 'a

 'f '(if (< n 1) 'a

'(apply f (- n 1) (* a

 n) 'f))))(apply fa
t 5 1 'fa
t))
3. This expression is parsed into an AST which (slightly simpli-

fied) looks like this:[E:([S:let℄[E:([S:assign℄ [QV:fa
t℄[E:([S:lambda℄ [QA:n℄ [QA:a

℄ [QA:f℄[QE:([S:if℄ ([S:<℄ [A:n℄ [QL:1℄) [QA:a

℄[QE:([S:apply℄ [A:f℄ [E:([S:-℄ [A:n℄ [QL:1℄)℄[E:([S:*℄ [A:a

℄ [A:n℄)℄ [QA:f℄)℄)℄)℄)[E:([S:apply℄ [V:fa
t℄ [QL:5℄ [QL:1℄ [QV:fa
t℄)℄)℄E denotes an expression; the other uppercase letters denote
the symbol kind of the token which they prefix. The set of kinds
is:

Kind ::=S| R| L | V | A |QS|QR|QC|QV | QAS for service,R for referen
es, L for literals, V for let-
variables,A for function arguments.Q denotes a quoted entity.
As in Scheme, quoting turns expressions into literals. The Gan-
net quoting mechanism is explained in Subsection 7.1.

4. By recursively substituting references for expressions:

[E:([S:x]arg+)]⇒ [R:x:i]

the AST is flattened into a lookup table with the reference
symbol as the key and the expression as the value :[R:let:0℄: [E:([S:let℄ [R:assign:1℄ [R:apply:2℄)℄[R:assign:1℄: [E:([S:assign℄ [QV:fa
t℄ [R:lambda:3℄)℄[R:apply:2℄: [E:([S:apply℄ [V:fa
t℄ [QC:5℄ [QC:1℄ [QV:fa
t℄)℄[R:lambda:3℄: [E:([S:lambda℄ [QA:n℄ [QA:a

℄ [QA:f℄ [QR:if:4℄)℄[R:if:4℄: [E:([S:if℄ [R:<:5℄ [QA:a

℄ [QR:apply:6℄)℄[R:<:5℄: [E:([S:<℄ [A:n℄ [QC:1℄)℄[R:apply:6℄: [E:([S:apply℄ [A:f℄ [R:-:7℄ [R:*:8℄ [QA:f℄)℄[R:-:7℄: [E:([S:-℄ [A:n℄ [QC:1℄)℄[R:*:8℄: [E:([S:*℄ [A:a

℄ [A:n℄)℄

5. This table is transformed into a list of packets using the simple
rule:

[R:x:n] : ([S:dest]...)

⇒ p(code, dest, GW, [R:x:n]; 〈[S:dest]...〉)

Here GW indicates the address of the gateway node, i.e.
a special NoC node which acts as the gateway to the outside
world (see Section 3). The change from(...) to 〈...〉 is purely
for readability.

6. Code execution on a Gannet SoC
As discussed in Subsection 5, a Gannet task description program
consists of a set ofcodepackets (packets which contain an instruc-
tion) which enter the system via a gateway circuit. This circuit allo-
cates memory for the result and passes the packets on to the NoC,
which delivers them to their destination services where they are
stored until they are activated for execution. The gateway then acti-
vates the root task (top node of the computational tree) by sending
a referencepacket (a packet with a reference to the code for this
task) to the corresponding service. The service manager of this ser-
vice delegates all subtasks to the corresponding services (again by
sendingreferencepackets). In turn, the requested tasks repeat the
process until the lowest-level tasks (whose arguments are not ref-
erences) are reached. The results are propagated up the treeuntil
the final result returns to the gateway. The mechanism is schemati-
cally depicted in Fig. 5, with the “cloud” denoting all services in the
system. In practice, the system will run a large number of tasks in
parallel. The actual number depends on the amount of local mem-
ory allocated at every service for storing task packets. In the next
sections we will discuss this mechanism in detail.

6.1 The service manager architecture

The Gannet architecture is aimed at System-on-Chip designswith
a large number of heterogeneous IP cores, few of which – if any
– will be actual microprocessors. To manage the flow of data
and instructions between the IP cores that provide the services,
every IP core interfaces with the system through a dedicatedlogic
circuit called theservice manager.Its design philosophy is based
on simplicity and minimal action: the service manager must be
small, fast and resource efficient. A simplified design of theservice
manager is schematically represented in Fig. 6.

The circuit processes Gannet packets using a pipelined archi-
tecture. An input demultiplexer directs the incoming packets into

132 Scheme and Functional Programming 2007

Figure 5. Gannet program execution

Figure 6. Service manager schematic

FIFOs per packet type. Packet processing is event-driven; all FI-
FOs are processed in parallel. The figure shows the processing flow
for the main packet types (code, ref anddata). Code packets are
stored in a code store. The payload of data packets is stored in the
data store. Reference packets result in activation of corresponding
tasks from the code store. Processing of the instructions that are the
payload of thetaskpackets (activated code packets) results in cre-
ation and dispatch of reference packets to other services. The next
section presents a more detailed discussion of the service manager
functionality.

6.2 Rule-based instruction processing

For the purpose of this paper, we can use a more abstract modelof
the service manager as a system that interfaces between the network
and the service core:

• On the service core side, the service manager will notify the
service core when all data required for processing are present
and will receive a notification from the service core when the
processing is finished and the result is available.

• On the network side, it can receive and transmit Gannet packets.

Based on the type of packet, a particular action will be taken. The
smallest set of packet types and corresponding actions is:

• codepacket⇒ store packet
• referencepacket⇒ activate corresponding code packet
• datapacket⇒ store packet payload

Apart from the actions triggered by arrival of packets, there are 2
other actions which correspond to the interaction with the service
core:

• all required data present⇒ notify service core
• service core ready⇒take result (data) from the service core and

transmit over the NoC

The only non-trivial action is taken on receipt of a reference packet.
This is a packet which contains the local memory address of a piece
of code to be executed by the service manager. As described above,
a Gannet program is compiled into packets the payload of which
consists of bytecode representing a node in the AST. On activation
of a code packet, the Service Manager parses the bytecode in a
linear single-pass way, taking actions based on the kind of symbol.

In general terms, the semantics of a Gannet service (which
consists of a service manager and a service core) can be described
in terms of thetask code, the internalstateof the service and the
result packetproduced by the task as follows:

1. Initially, a serviceSi receives acodepacket
p(code, Si, Sj , rtask; 〈si a1...an〉). The task is stored and ref-
erenced byrtask.

2. Later, the serviceSi in statei receives a taskreferencepacket
p(ref, Si, Sj , rid; rtask)
(Note that “later” is not essential: if the reference arrives earlier,
activation will occur as soon as the code arrives.)

3. The service activates the task referenced byrtask: 〈si a1...an〉.
This results in evaluation of the argumentsa1...an.

4. The service, now instatei ′, produces a result packet
p(Typei, Sj , Si, rid; Payloadi) where bothPayloadi and the
state change tostatei ′ are the result of processing the evaluated
argumentsa1...anby the core ofSi.

5. This packet is sent toSj wherePayloadi is stored in a location
referenced byrid.

Note that the payload can be either data or an expression. While
in general data processing services (typically provided byIP cores)
will return data, control services can return data, bytecode or refer-
ences to code.

6.3 Gannet code execution: an example

Returning to the example from Section 3, a system that takes
images with 2 cameras and creates a 3-D image based from the
data can be described as:(
reate-3D (
amera1) (
amera2))
This will be compiled into

p0: p(ref,create-3D,GW, r′1; r1)

p1: p(code,create-3D,GW, r1; 〈s1 r2 r3〉)

p2: p(code, camera1, GW, r2; 〈s2〉)

p3: p(code, camera2, GW, GW, r3; 〈s3〉)

with

s1: [S:create-3D]
s2: [S:camera1]
s3: [S:camera2]
r1: [R:create-3D:memaddr1]
r2: [R:camera1:memaddr2]
r3: [R:camera2:memaddr3]

The symbolsr′1,r′2,r′3 contain the memory location at which the
result of the task should be stored.

The gateway circuit will take the packets and transmit them.The
NoC will deliver them to the corresponding services.

In accordance with the above rules, the code packets will be
stored and code packetp1 will be activated. Note that it doesn’t

Scheme and Functional Programming 2007 133

matter if the reference packetp0 would arrive beforep1 is stored:
the action will simply be deferred by the service manager until p1

is present.
Activation of p1 results in parsing of the list of 3 bytewords

〈s1 r2 r3〉. The first words1 is a service symbol (S), used to select
the service to be performed by the service core. This is because a
single service core can provide multiple services. The nextword
is a code reference symbol: the value of the first field (R) indi-
cates this. The second and third field indicate the service node ad-
dress and the memory address where the code is stored. For every
code reference symbol, the service manager dispatches a reference
packet to the corresponding service. Thus for the given example
service manager will dispatch

pr2: p(ref , camera1, create-3D, r′2; r2)

pr3: p(ref , camera2, create-3D, r′3; r3)

Arrival of these packets will trigger activation of respp2 andp3

As both the camera tasks contained inp2 andp3 don’t take any
arguments, the service manager does not need to request or store
any data. The service cores will simply acquire a picture andhand
the resulting data over to the service manager. The service manager
will transmit the data as a result packet to the caller, in this case
create-3D:

pd2: p(data, create-3D, camera1; r′2; 〈picture
2
〉)

pd3: p(data, create-3D, camera2; r′3; 〈picture
2
〉)

Arrival of pd2 andpd3 will trigger the store data packet action.
When the service manager has marshalled all data required by

the service core, it notifies the core. The service core then processes
the data and produces a result. The resulting data are handedback
to the service manager.

The service manager will transmit the data as a result packetto
the caller, in this case, as this is the final computation, thegateway:

pd1: p(data, GW, create-3D; r′1; 〈3D-picture
1
〉)

The gateway stores the payload ofpd1atr′1.

7. Control services: flow control and performance
In practice, the system requires the ability to control the data flow.
For that purpose, a number of additional services must be added
to the system. They provide familiar functional programming lan-
guage constructs such as if, lambda, let. It can be easily demon-
strated (Vanderbauwhede 2006a) that without control services the
performance of the system would be sub-optimal. As a simple ex-
ample, consider a service that takes two arguments and that needs
call itself recursively n times:(S (S (S ...) (S ...)) (S (S ...) (S ...)))
Without any additional constructs, this would result in2n − 1 code
packets. Furthermore, on execution, memory has to be allocated
for every call. As all calls are effectively dispatched in parallel, the
service would need to allocate2n − 1 memory locations. By in-
troducing functions, lexically scoped variables and the possibility
of sequential evaluation, we can reduce the code size and memory
requirements. Obviously, the use of recursive functions requires a
conditional branching control (if) to exit the recursion. (Another
obvious consequence is that we need support for numbers in the
language. Using Church numerals to count e.g. a number of iter-
ations would be very inefficient.) The above example might then
become:(letre
 ((re
S (lambda (m_ n_)(if (< n_ 1)

(S m_ m_)(re
S (S m_ m_) (- n_ 1))))))(re
S m n))
Furthermore, it is likely that some services will produce multiple
results and that these results may be required by more than one
service. For example, consider the inverse of the create-3Dservice,
which would take a 3D image an return two 2D images, destined
for say the left and right display of a 3D headset. It is clear that this
can’t be expressed as a pure functional dependency. But we could
easily write(left-eye (
ar (2Dfrom3D(3D-image (
amera1) (
amera2)))))(right-eye (
adr (2Dfrom3D(3D-image (
amera1) (
amera2))))))
To summarize, the service-based architecture requires control con-
structs to improve its performance. The set of control constructs for
the Gannet system is as follows:

• Functions:lambda, function application (apply)
• Conditional branching:if
• Lexical scoping: providing scope (let, let*), variable binding,

variable calling
• Lists:list,
ons,
ar,
dr, length
• Quoting andeval

Because all functionality in the service-based architecture is pro-
vided by services, all control constructs must be provided by con-
trol services. The consequences for the Gannet language andfor
the Service Manager architecture are discussed in the next section.

7.1 The Gannet quoting mechanism: deferred evaluation

The ruleset of the service manager results essentially in evaluation
of all arguments of a function before they are passed on to the
function body. The reason for this is that the IP cores providing
the services will in general not be able to handle Gannet symbols,
which is what the unevaluated arguments are. Consequently,a call
to e.g. thelambda service(lambda x (S x)) would result in(Sx) being called, which is obviously not the intention.

For that reason, we introduce a mechanism to defer evaluation
of arguments. Thisquoting mechanism simply marks a symbol
as a literal to be stored as data2. Thus, on encountering a quoted
symbol (as indicated by the symbol kind), the service manager
action will be to store the symbol. Numerical literals are encoded
by the compiler as quoted symbols, so the service manager does
not need specific extensions to support numbers.3

The Gannet quoting mechanism is very similar to Scheme’s.
The difference is mainly that in Gannet, only individual symbols
can be quoted: quoting expressions results in a quoted reference
symbol. However, the compiler handles this difference transpar-
ently. For example, consider the Ganneteval service:(eval '(+2 3)) is compiled into〈[S:eval:1℄ [QR:+:1℄〉 and [R:+:1℄ refers
to 〈[S:+:1℄ [QL:2℄ [QL:3℄〉.
7.2 Functions

In a Gannet system, function application is performed by theapply
service. Thus((lambda (n) (S n)) expr) ; S
heme
2 A symbol is marked as quoted by setting theQuotedbit.
3 A Gannet symbol can consist of several bytewords (extendedsymbol).
This is indicated by theExt bit. If Ext is 1, theNamefield will contain the
number of additional bytewords.

134 Scheme and Functional Programming 2007

becomes(apply (lambda 'n '(S n)) 'expr) ; Gannet
The reason whyexpr is quoted is explained in Subsection 8.2.

7.3 Conditional branching

In many (even most) cases, it is not desirable to evaluate both
branches of an if-statement before choosing one. Consequently, the
Gannetif becomes(if (S
ond ...) '(S1 ...) '(S2 ...)) ; Gannet
7.4 Variables

Gannet requires a service for providing scope, variable binding and
variable calling:(let ((a (S1 ...)) (b (S2 ...))) (S3 a b)) ; S
heme
becomes(let (assign 'a (S1 ...)) (assign 'b (S2 ...))(S3 (read 'a) (read 'b))) ; Gannet
This is an example of a service core providing multiple services, as
clearly the memory for storing the variables must be shared by let,assign andread: a service core can only access its local memory.

For variable updates, this core also provides theset! service.
Gannet does not provideletre
, so recursive functions must

be passed explicitly as arguments:(let ((fa
t (lambda (n a f)(if (< n 1) a (f (- n 1) (* a n) f)))))(fa
t 5 1 fa
t))
7.5 Lists

Gannet lists are different from Scheme lists in that lists inGannet
are not built from pairs. The only list constructor is thelist
service. Furthermore, in Gannet, a quoted list of expressions is not
the same as a list of quoted expressions. This is a consequence
of the fact that only individual symbols are quoted, not the actual
expressions. Thus for example'(1 (+ 2 3) (+ 4 5) 6 7) ; S
heme
will be translated by the compiler to(list 1 '(+ 2 3) '(+ 4 5) 6 7) ; Gannet
The translation consists of

1. Replacing quotes by thelist operator (in Scheme)
2. Quote all list arguments (in Gannet)

The list operations
ons,
ar,
dr and length behave like
Scheme’s.

8. Gannet is not quite Scheme
There are a number of aspects in which Gannet differs from
Scheme. The reason for all differences lies in the nature of Gannet
as a task description language for a SoC services provided byhard-
ware blocks, as opposed to the general-purpose nature of Scheme
as a language intended to run on a von Neumann-style micropro-
cessor system. In particular the distributed nature of the system,
with effectively no global memory, and the separation of argument
evaluation by the service manager and computation by the service
core result in a different code execution model. Furthermore, the
service manager is meant to be a small circuit with very limited
memory. This puts additional constraints on the language.

8.1 Restriction on lists

For practical reasons, Gannet lists can only consist of symbols.
Consequently, any expressions not returning a symbol should be
quoted. This means that in practice(list (
amera1) (
amera2)) ; S
heme and Gannet

is not allowed as both services return non-symbol data, but'((
amera1) (
amera2)) ; S
heme
and'((+ 1 2) (+ 3 4)); S
heme
are fine, as the latter are translated to(list '(
amera1) '(
amera2)) ; Gannet
and(list '(+ 1 2) '(+ 3 4)) ; Gannet
respectively.
The reason for this restriction is that IP cores can potentially

generate large amounts of data. As the service manager of thelist
service will evaluate all arguments, the resulting list of data could
be very large. Storing and transferring lists of values could there-
fore be very inefficient, costly (in terms of power consumption) and
slow and should therefore be avoided.

8.2 let versuslambda
In Scheme,let is syntactic sugar forlambda. In Gannet,let andlambda have similar semantics but a different implementation. A
single service provideslet, assign, set! andread. This service
actually binds variables to local memory locations. Consequently,set! can be used to update the content of a memory location.

Functions are provided by two different services:lambda,
which essentially constructs a list, andapply. Theapply service
does not bind the lambda arguments to memory locations. Instead,
it simply substitutes thelambda argument symbols with theapply
argument symbols (which therefor need to be quoted).

The reason for this behaviour is again that transferring large
amounts of data over large distances (in SoC terms) is costly(in
terms of power consumption) and slow. Consider a trivial example:(S1 (apply (lambda 'x '(S2 x)) (S3)).

Binding would result in the data being actually, physicallytrans-
ferred over the NoC fromS3 to apply, and then fromapply to S2.
This would be the case for every call toapply, as there is only a
singleapply service. Clearly, this would result in a serious bottle-
neck. With the substitution semantics,(S1 (apply (lambda 'x '(S2 x)) '(S3))

results in the task(S1 (S2 (S3))). The data are sent straight
from S3 to S2, soapply is not a bottleneck.

8.3 Closures

Because memory utilisation in SoCs must be minimised, Gannet
does not support closures that capturelet-variables. The reason
is that a capturedlet-variable would escape from thelet block
and it would in general not be possible to reclaim the memory
for this variable. This restriction is again motivated by resource
constraints: storing a full environment would consume a lotof
the service manager’s limited memory. However, because lambda
application works by substitution, closures withlambda instead oflet are supported. For example:(let (assign 'x 5) (lambda 'y '(+ x y))
is not supported: the memory for x would be de-allocated on leav-
ing thelet; however,(apply (lambda 'x '(lambda 'y '(+ x y))) 5)
returns(lambda 'y '(+ 5 y)). If the value is a quoted expres-
sion, the code reference is substituted.

Scheme and Functional Programming 2007 135

8.4 Concurrent evaluation

A key feature of the Gannet system is that all arguments of a
function are effectively evaluated in parallel. Consider e.g.(S1 (S2 (S3 (S4 1 2) (S5 3 4))(S6 (S7 5 6) (S8 7 8)))(S9 (S10 (S11 9 10) (S12 11 12))(S13 (S14 13 14) (S15 15 16))))
This (admittedly contrived) example will result in parallel execu-
tion of all 8 leaf calls, then of all 4 dependent calls, etc. Concur-
rent evaluation makes optimal use of the inherent parallelism of the
SoC (all hardware cores operate always in parallel), resulting au-
tomatically in the fastest execution. However, it requiresthat the
program is not sensitive to the evaluation order. This is actually
a more stringent requirement than Scheme’s serial-but-unspecified
evaluation order, but parallel execution is the overridingrationale
for the Gannet SoC architecture.

8.5 Forcing sequential evaluation

Although parallel evaluation is very efficient, it is sometimes un-
desirable. Parallel execution also means that memory will be allo-
cated for all parallel branches of computation, leading potentially
to very high memory consumption as discussed under Section 7.
Another important consequence of parallel evaluation is that e.g.
the following code produces an unpredictable result, as there is a
race condition between theread andset! calls:(let(assign 'a (S1 ...))(set! 'a (S2 ...))(read 'a))

Consequently, the capability to force sequential evaluation is es-
sential. Therefore thelet service allows serialisation of evaluation
through quoting. All quoted arguments will be evaluated sequen-
tially (and obviously after the unquoted arguments). Thus the above
example becomes(let(assign 'a (S1 ...))(set! 'a (S2 ...))'(read 'a))

As the update will be deferred until the assignment was success-
ful, only the last argument needs to be quoted.

The quoted variant of the Gannet let syntax is also used to
support Scheme’slet*:; S
heme(let ((x 0))(let ((x 5) (y x)) y) ; => 0(let* ((x 5) (y x)) y) ; => 5); Gannet(let (assign 'x 0)'(let (assign 'x 5)(assign 'y x) y) ; => 0'(let '(assign 'x 5)'(assign 'y x) 'y) ; => 5)

For the example given in 8.4, we can save memory by forcing
sequential evaluation:(let'(assign 'a(let'(assign 'a(let '(assign 'a (S4 1 2))'(assign 'b (S5 3 4)) '(S3 a b)))

'(assign 'b(let '(assign 'a (S7 5 6))'(assign 'b (S8 7 8)) '(S6 a b)))'(S2 a b)))'(assign 'b(let'(assign 'a(let '(assign 'a (S11 9 10))'(assign 'b (S12 11 12)) '(S10 a b)))'(assign 'b(let '(assign 'a (S14 13 14))'(assign 'b (S15 15 16)) '(S13 a b)))'(S9 a b)))'(S1 a b))
By combining lexical scoping and sequential evaluation, the

memory consumption now grows linearly with the depth of the
expression rather than exponentially.

9. Status
The work on the compiler for the Gannet language has focused
on the back-end, i.e. compilation of Gannet syntax into binary
packets. This is the only stage where non-trivial development is
required: the first stage of the compilation (transforming Scheme
to a subset) has been well-studied and there are plenty of Open
Source implementations available; transforming the Scheme subset
into Gannet syntax is quite straightforward.

The back-end compiler is written in Haskell. It produces host
platform-independent bytecode which can be executed on anyGan-
net implementation. The current prototype for Gannet is imple-
mented as a Virtual Machine written in Ruby (Thomas et al. 2004)
and automatically translated to C++ with the option of usingSys-
temC libraries. The main reason for the choice of Ruby is thatit is
a very clean language with excellent object support and Rubyob-
jects map easily to hardware modules. On the other hand, by writ-
ing generic rather than idiomatic Ruby, translation to STL-based
C++ (Austern 1998) is very efficient.

The purpose of the C++ version is to run as a Virtual Machine
on embedded systems. The Gannet VM makes it possible to imple-
ment some of the services in software and others in hardware,and
have a single task description program that governs the behaviour
of such a combined software/hardware system.

SystemC (Ruf et al. 2001) is a system-level design and mod-
elling library for C++. It provides a framework to simulate SoCs
at high levels of abstraction. The SystemC version of Gannetis the
closest approximation of the actual hardware SoC.

Although the Gannet architecture is aimed at very large application-
specific Systems-on-Chip (e.g. for handheld applications), for prac-
tical reasons, a proof-of-concept of the architecture is being devel-
oped on an FPGA board. Because FPGAs provide reprogrammable
hardware logic, they are ideally suited for development andproto-
typing. The circuit design of the service manager is currently being
implemented, as are a set of core services. Because of resource con-
straints (the target board is the Xilinx University ProgramVirtex-II
Pro board), the number of cores will be small (maximum 8). The
main purpose of the FPGA implementation is to help estimate the
resource utilisation of the system.

10. Conclusion
The Gannet project researches a novelservice-basedarchitecture
for very large reconfigurable Systems-on-Chip. The proposed ar-
chitecture results in a packet-based distributed processing system
that is reconfigurable at task level.

In this paper we proposed the use of Scheme as a high-level
task description language for the Gannet service-based Systems-

136 Scheme and Functional Programming 2007

on-Chip architecture. We have explained how the service-base SoC
architecture can work as a coarse-grained distributed dataflow ma-
chine. We have introduced the packet-based machine code forthe
Gannet architecture, the compilation process and the code execu-
tion process.

The paper has also explained the need for control constructs
to improve the system’s performance and the main differences in
runtime behaviour for Scheme control constructs when executed on
a von Neumann-style microprocessor and on the Gannet system.

In conclusion, we have demonstrated that Scheme is well suited
as a high abstraction-level design language for task-levelreconfig-
urable heterogeneous multi-core Systems-on-Chip.

Acknowledgments
The author acknowledges the support of the UK Engineering and
Physical Science Research Council (EPSRC Advanced Research
Fellowship).

References
Matthew H. Austern.Generic programming and the STL: using and

extending the C++ Standard Template Library. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1998.

L. Benini and G. De Micheli. Networks on Chips: A New SoC
Paradigm. IEEE Computer magazine, 35(1):70–78, January
2002.

W. J. Dally and B Towles. Route packets, not wires: On-chip inter-
connection networks. InProceedings of the Design Automation
Conference, pages 684–689, Las Vegas, NV, USA, June 2001.

Cristian Grecu and Michael Jones. Performance evaluation and
design trade-offs for network-on-chip interconnect architectures.
IEEE Trans. Comput., 54(8):1025–1040, 2005.

Scott Hauck, Thomas W. Fry, Matthew M. Hosler, and Jeffrey P.
Kao. The Chimaera reconfigurable functional unit.IEEE Trans.
Very Large Scale Integr. Syst., 12(2):206–217, 2004.

Chidamber Kulkarni, Gordon Brebner, and Graham Schelle. Map-
ping a domain specific language to a platform FPGA. InDAC
’04: Proceedings of the 41st annual conference on Design au-
tomation, pages 924–927, New York, NY, USA, 2004.

Siew-Kei Lam, Bharathi N. Krishnan, and Thambipillai Srikanthan.
Efficient management of custom instructions for run-time re-
configurable instruction set processors. InField Programmable
Technology, 2006. FPT 2006. IEEE International Conference
on, pages 261–264, 2006.

Luciano Lavagno, Sujit Dey, and Rajesh Gupta. Specification,
modeling and design tools for system-on-chip. InASP-DAC ’02:
Proceedings of the 2002 conference on Asia South Pacific design
automation/VLSI Design, page 21, Washington, DC, USA, 2002.

Edwin S. Petrus. SKILL: a Lisp based extension language. InLUV
’93: Proceedings of the third international conference on Lisp
users and vendors, pages 71–79, New York, NY, USA, 1993.

J. Ruf, D. Hoffmann, J. Gerlach, T. Kropf, W. Rosenstiehl, and
W. Mueller. The simulation semantics of systemc. InDATE
’01: Proceedings of the conference on Design, automation and
test in Europe, pages 64–70, Piscataway, NJ, USA, 2001.

S. M. Scalera and J. R. Vazquez. The design and implementation
of a context switching FPGA. InFCCM ’98: Proceedings of the
IEEE Symposium on FPGAs for Custom Computing Machines,
page 78, Washington, DC, USA, 1998.

M. Sgroi, M. Sheets, A. Mihal, K. Keutzer, S. Malik, J. Rabaey,
and A. Sangiovanni-Vencentelli. Addressing the system-on-a-
chip interconnect woes through communication-based design.

In DAC ’01: Proceedings of the 38th conference on Design
automation, pages 667–672, New York, NY, USA, 2001.

Hans-Joachim Stolberg, Mladen Berekovic, Soren Moch, Lars
Friebe, Mark Kulaczewski, Sebastian Flugel, Heiko Kluszmann,
Andreas Dehnhardt, and Peter Pirsch. HiBRID-SoC: A Multi-
Core SoC Architecture for Multimedia Signal Processing.The
Journal of VLSI Signal Processing, 41(1):9–20, August 2005.

Dave Thomas, Chad Fowler, and Andy Hunt.Programming Ruby:
The Pragmatic Programmers’ Guide, Second Edition. Pragmatic
Bookshelf, October 2004.

W. Vanderbauwhede. The Gannet Service-based SoC: A Service-
level Reconfigurable Architecture. InProceedings of 1st
NASA/ESA Conference on Adaptive Hardware and Systems
(AHS-2006), pages 255–261, Istanbul,Turkey, June 2006a.

W. Vanderbauwhede. Gannet: a functional task description lan-
guage for a service-based SoC architecture. InProc. 7th Sym-
posium on Trends in Functional Programming (TFP06), April
2006b.

Scheme and Functional Programming 2007 137

138 Scheme and Functional Programming 2007

