Well-typed programs can’t be blamed

Philip Wadler
University of Edinburgh

Abstract

We show howcontractswith blame fit naturally with recent work
on hybrid typesandgradual typesUnlike hybrid types or gradual
types, we require casts in the source code, in order to itedichere
type errors may occur. Two (perhaps surprising) aspectsupf o
approach are that refined types can provide useful statiagteses
even in the absence of a theorem prover, and that dypeamic
should not be regarded as a supertype of all other types. dar fa
the well-known notion of subtyping into new notions of poast
and negative subtyping, and use these to characterise pbstive
and negative blame may arise. Our approach sharpens aifibslar
some recent results in the literature.

1. Introduction

Recently, a number of researchers have suggested wayesgoete
static and dynamic typing into a single framework. Theséuihe
the contractsof Findler and Felleisen (2002) and others, tjiad-
ual typesof Siek and Taha (2006), and thgbrid typesof Flana-
gan (2006) and others. Interfaces between Scheme andabyatic
typed languages have been explored by Gray et al. (2005)n-Tob
Hochstadt and Felleisen (2006), and Matthews and FindG&7R
Static and dynamic typing are both supported in Visual Badi-
jer 2004), with similar integration planned for Perl 6 andalript;
and one of the designers of Java has argued that static typekls
be optional (Bracha 2004).

We provide a uniform view of recent work awontracts grad-
ual types andhybrid typesby introducing a notion of blame (from
contracts) to a type system with casts (similar to interiatedian-
guages used for gradual and hybrid types), yielding a systam
we call evolutionary typesProgrammers using this type system
may add contracts to evolve dynamically typed programssteti-
cally typed programs (as with gradual types) or to evolvicsthy
typed programs into programs with refinement types (as with h
brid types).

We suggest that what has been used as an intermediate type

system for gradual and hybrid types is itself useful as acsour
language—this has the advantage that it is obvious readiieg t
source language where static guarantees hold and wherendyna
checks are enforced. We also suggest, in contrast to psework,

that hybrid types can be useful even in the absence of a tineore 2.

Proceedings of the 2007 Workshop on Scheme and Functioogidmming
Universitée Laval Technical Report DIUL-RT-0701

Scheme and Functional Programming 2007

Robert Bruce Findler
University of Chicago

prover—one need not have a sophisticated type checker &fiben
from sophisticated types! Finally, we suggest that one lshnat
regard every type as a subtype of the dynamic type.

The technical content of this paper is to introduce notiohs o
positive and negative subtyping, and prove a theorem traich
terises when positive and negative blame can occur. We sbaw h
our theorem sharpens the published results for gradual woridh
types, and clarifies other recent results.

Many readers will recognise that our title is the third in Be®
“Well-typed programs can't go wrong” summarised a denotsl
approach to soundness introduced by Milner (1978). “Waiked
programs don’t get stuck” refined this slogan, summarisimger-
ational approach to soundness introduced by Wright an@iGeh
(1994). A related slogan, “safety is preservation plus pesg’, is
due to Harper (Pierce 2002, page 95). “Well-typed prograamé ¢
be blamed” describes an approach suited to systems thabose ¢
tracts and blame, characterising interaction between -typed
and less-typed components of a program.

We make the following contributions:

e We introduce our language, showing that a language with ex-
plicit casts and no theorem prover (and a little syntactigas)
is suited to many of the same purposes as gradual types and
hybrid types (Section 2).

e We give a framework similar to that of the hybrid typing of
Flanagan (2006) and the dynamic dependent typing of Ou et al.
(2004), but with a decidable type system for the source lan-
guage and satisfying unicity of type (Section 3).

* We factor the well-known notion of subtyping into new noson
of positive and negative subtyping. We prove that a cast fiom
positive subtype cannot give rise to positive blame, antlaha
cast from a negative subtype cannot give rise to negativaéla
(Section 4).

e We apply our theorem to sharpen published results for gtadua
types (Siek and Taha 2006) and hybrid types (Flanagan 2006),
and to shed light on recently published results by Gronsdi an
Flanagan (2007) and Matthews and Findler (2007) (Section 5)

Section 6 describes related work, and Section 7 concludes.

Evolutionary Programming

2.1 From Untyped to Typed
Consider the following program written without types.

[let
xr =2
in let
f=My.y+1
in let
h=Xg.g(g7)
in

hf]

15

By default, our programming language is typed, so we esaape t
an untyped language by surrounding the code with ceilingkets
[]. Untyped code is really uni-typed; it is a special case oétyp
code where every term has tymgyn (Harper 2007). The above
term evaluates tp4] : Dyn.

As a matter of software engineering, when we add types to our

The hybrid type system of Flanagan (2006) allows one to white
program without any casts, and uses a theorem prover ancta typ
directed inference system to add the casts in the above. \Howe
we want to stress the point that a theorem prover, or evency fan
inference system, is not essential.

The type system presented in this paper does not require sub-

code we may not wish to do so all at once. For instance, here is atyping or subsumption, unlike similar type systems in thertiture

version of the program in which andh and the application of

to f are written in a typed language, but the bodyfof written
untyped and cast to a suitable type. Of course, this ismt kelpful

for such a short piece of code, but it should be clear how tbiddv
work in a larger system.

let
xr =2
in let
f={(Int = Int < Dyn)*" [Ay.y + 1]
in let
h=MXg:Int = Int.g (g x)
in
h f

Here, [A\y.y + 1] has typeDyn (the type of untyped code), and
the cast converts it to typat — Int. The above term evaluates to
4:Int.

In general, a cast from source tygdo target typel is written

(T <= S)P" s,

where subterm has typeS and the whole term has tyfie The two
labels on a casp andn, are used for allocatingositive blamend
negative blameespectively. Blame labels are simply identifiers,
without further structure. Positive blame is allocatedhié tterm
contained in the cast fails to satisfy the contract impligdHe cast,
while negative blame is allocated if the context contairtimg cast
fails to satisfy the contract.

Our notation is chosen for clarity rather than compactnasi:
ing the source type is redundant, but convenient for a cdca
lus. Even writing the target can be cumbersome. Both theugitad
type system of Siek and Taha (2006) and the hybrid type system
Flanagan (2006) include source languages where most casiff ¢
are omitted, but inferred by a type-directed translatioor Gota-
tion is inspired by that of Flanagan (2006), and identicahtat of
Gronski and Flanagan (2007).

2.2 Contracts and refinement types

Findler and Felleisen (2002) introduced higher-order icams, and
Flanagan (2006) observed that contracts can be incorporatea
type system as a form of refinement type.

An example of refinement type i : Int | z > 0}, the
type of all integers greater than zero, which we will wiiat. A
cast fromint to Nat performs a dynamic test, checking that the
integer is indeed greater than or equal to zero. As the narpigeisn
refinement types are types, b, Nat, Int — Int andNat — Nat
are all examples of types.

Just as we can start with an untyped program and add types, we

can start with a typed program and add refinement types. dere i
version of the previous program with refinement types added.

let
z = (Nat < Int)P" 2
in let
#=(Nat — Nat < Int — Int)?™ (Ay: Int.y + 1)
in let
h = \g : Nat — Nat. g (g x)
in
h f

16

(Flanagan 2006; Gronski et al. 2006; Ou et al. 2004). Thiegjitie
system the pleasant property wricity of type every well-typed
term has exactly one type. (This constrasts vgtinciple types
where every well-typed term has a most general type, of whiich
its other types are instances.) In order to achieve univityla-
bel constants with their type. Thus the value of the abova fer
not4 : Int but4yng : Nat. Subscripted constants are used only
to explain how evaluation works; in the source program, ther u
always creates values of refinement types by casts that dynam
cally check the predicate of that type. For instance, abavewote
(Nat < Int)P™ 2 which evaluates t@yq; : Nat.

2.3 The Blame Game

The above examples execute with no errors, but in generalaye m
not be so lucky. Casts perform dynamic tests at run-timefétilt
a value cannot be coerced to the given type.

A cast on a refinement type reduces to a dynamic test of the
condition on the type.

(Nat < Int)P" (—2)
E—
if —2 > 0then —2y4; else blamep

—

blamep

(The middle termin this reduction may not appear to be waedet,
but the type system has a special rule for just this purposessure
that reductions preserve types.)

Given an arbitrary term that takes integers to integerss it i
not decidable whether it also takes naturals to naturaleréfbre,
when casting a function type the test is deferred until tmetion
is applied. This is the essence of higher-order contracts.

Here is an example of casting a function and applying thdttesu

((Nat — Nat <= Int — Int)?™ (Ay : Int.y + 1)) 2Nat
—

(Nat < Int)P"((Ay : Int.y 4+ 1) ({Int <= Nat)"? 2Nat))
—

(Nat <= Int)P"((Ay : Int.y + 1) 2)
—

(Nat < Int)P"3

—_—
3Nat

The cast on the function breaks into two casts, each in ofgosi
directions: the cast on the result takes the range okthaceto
the range of thdarget while the cast on the argument takes the
domain of thetargetto the domain of theource Preserving order
for the range while reversing order for the domain is analsgo
the standard rule for function subtyping, which is covarianthe
range and contravariant in the domain.

Observe that the blame labels on the reversed cast have been
swapped frompn to np. The blame labels are swapped on the
argument cast because if that cast fails it is the fault ottirext,
which supplies the argument to the function; swapping meles
negative label to the positive position, so it will take tHarbe if
something goes wrong. Conversely, the blame label is ngbjsech
on the result cast because if that cast fails it is the faulthef
function itself.

The above cast took a function with range and dontairto a
function with more precise range and dombiat. Now consider a

Scheme and Functional Programming 2007

cast to a function with less precise range and dorbsin.

((Dyn — Dyn < Int — Int)P™ (Ay : Int.y + 1)) [2]
7Dyn < Int)?"((Ay : Int.y + 1) ({Int < Dyn)"? [2]))
7Dyn < Int)?*((Ay : Int.y + 1) 2)
7Dyn < Int)P" 3

[3]

Again, a cast on the function breaks into two casts, each in op
posite directions. What is interesting here is that the oasthe
argument—reduction converts t&tictype Int of the argument
of f into adynamicallyenforced cast!

If we consider a well-typed term of the form

((Nat — Nat < Int — Int)?™ f)x

we can see that negative blameveradheres to this cast, because
the type checker guarantees thatas typeNat, and the cast from
Nat to Int always succeeds. However positive blame may adhere,
forinstance iff is \y : Int.y — 2 andzx is 1.

Conversely, if we consider a well-typed term of the form

((Dyn — Dyn < Int — Int)*" f) z

we can see that positive blameveradheres to this cast, because
the type checker guarantees tifateturns a value of typint, and
the cast fronint to Dyn always succeeds. However negative blame
may adhere, for instance ffis \y : Int.y + 1 andx is [true].

One contribution of this paper is that we will characterisese
situations in which we can ensure that negative or positisaenb
cannot arise. Roughly speaking, if a cast is making a typeemor
precise it cannot give rise to negative blame, while if it skimg a
type less precise it cannot give rise to positive blame.

2.4 Well-typed programs can't be blamed

Consider a program that mixes typed and untyped code; it will
contain two sorts of casts.

One sort takes untyped code and gives it a type. Such a cast.
makes types more precise, and so cannot give rise to negative

blame. For instance, the following code fails, blaming thstavith
the labelp.

let
x = [true]
in let
f=Ay:Int.y+1
in let
h = {(Int — Int) — Int < Dyn)*" [Ag.g (g x)]
in
h f

Because the blame is positive, the fault lies with the urdypsde
inside the cast.

The other sort takes typed code and makes it untyped. Such am

cast makes types less precise, and so cannot give rise tiv@osi
blame. For instance, the following code fails, blaming

let

x = [true]
in let

f=(Dyn<Int — Int)?™ (A\y : Int.y + 1)
in let

h=1[Ag.g(gz)]

n
[h f]

Scheme and Functional Programming 2007

Because the blame is negative, the fault lies with the urtyjpele
outside the cast.

Both times the fault lies with the untyped code! This is ofisau
what we would expect, since typed code should contain no type
faults. The point is that positive and negative blame, araiming
when each can arise, is the key to giving a simple proof of this
expected fact.

The same analysis generalizes to code containing refinement
types. For instance, the following code fails, blamjig

let
z = (Nat < Int)P" 3
in let
f=(Nat — Nat < Int — Int)?™ (Ay: Int.y — 2)
in let
h=[Xg.g(g7)]
in
[h f]
Here both casts make the types more precise, so cannot geve ri
to negative blame. Because the blame is positive, the fagltlith
the less refined code inside the cast.
We now formalise the above analysis.

3. Types, reduction, subtyping

We now begin the formal development of our work.

Findler and Felleisen (2002) includes a system with dep@nde
contracts, and Flanagan (2006) and Ou et al. (2004) similexd
dependent function types. We follow Gronski and FlanaganTy,
in using a simpler system without dependent function tyjes.
finement types include terms within types and thus constaute-
stricted form of dependent type. Extending to dependerttiom
types should be straightforward, but we leave this for fituork.

We also follow Flanagan (2006) and Gronski and Flanagan
(2007) in restricting subset types to base types and tgpdtase
types as a special case of subset types, which is techngtaipler.
Gronski et al. (2006) permits subsets over arbitary types.

Compile-time type rules of our system are presented in Eigur
reduction rules in Figure 2, additional run-time type rutes$-ig-
ure 3, and rules for subtyping in Figure 4. We discuss eachesfet
in turn in the following four subsections.

3.1 Types and terms

Figure 1 presents the syntax of types and terms and the campil
time type rules. The language is explicitly and staticallyed, we
discuss how to embed untyped terms in Section 3.6.

We letS, T range over types, and ¢t range over terms. A type
is either a function typ& — T'; a subset typdz : B | t}, where
B is a base type, andis a term of typeBool with a free variable
x of type B; or the dynamic typ®yn. In types we may writd3 as
an abbreviation fofx : B | true}.

A term is either a variable; a constant; a conditional expres-
sionif sthent elseu; a lambda expressioke : S. ¢; an application
s t; or a cast expressioff’ < S)P" s.

The type system is explained in terms of three related judge-

ents, which are presented in Figure 1. We wiite ¢ : T if term
t has typer in environment”, we writeT" = T wf if type T is well
formed in environment’, and we writel" wf if environmentT is
well formed. It is easy to check th&tt ¢ : T impliesT" - T' wf,
andT" + T wf impliesT" wf.

We assume a denumerable set of constants. Every corstant
assigned a unique type(t), which must be either a base typeor
a function typeS — T. We assumdool is a base type wittrue
andfalse as constants of typBool; and thatint is a base type with
0, 1, and so on, as constants of tyjp¢, and+ and— as constants
of typelnt — Int — Int, and possibly other constants. We assume

17

Syntax

variables T,y
n

blame labels p,

base types B = Bool|Int |---
constants ¢ = true|false|O|1]---|4+]|—|---
types S, T = S—T|{z:B|t}|Dyn
terms s,t,u == x|c|ifsthentelseu|Az:S.t|ts| (T < S)s
Type rules
I wf (z:T)el T wf T =ty(c) I'ts:Bool r-t¢:T Ttu:T
'kz:T T'ke:T I' I (if sthentelseu) : T'
' .Swf ' T wf Dz:SkH¢:T T'kFt:(S—1T) 'ks:S 'ks:S ' T wf S~T
'(Az:S8.¢t):(S—1T) Tk (ts): T rE((r<=5)Ms): T
Well-formed types T'F T wf
'S wf I'E T wf I',z:Btt:Bool I wf
L (S—T)wf I'H{z:B|t}wf I' - Dyn wf
Well-formed context
Iwf TFTwf
0 wf T, x:Twf
Compatibility S~T
S~ 9 T~T
(S—>T)~ (8 —T {z:B|s}~{z:B|t} S ~ Dyn Dyn ~T
Figure 1. Type system
Syntax
terms s,t,u = ---|ecr | if sthener else blamep
values v, W = cler|Ax: 8.t (S =T <S8 —T)"v|(Dyn < S)Pv
results r := t | blamep
evaluation context £ := []]if Ethentelseu | if Ethencr elseblamep | Et |v E | (T < S)'" E
Reductions s —r
cv — [
(Az.t)v — t[z =]
if true then ¢ elseu — t
if false thent elseu — u
(S =T =S —>T)yY"v)w — {T'<=T)™ (v (S <)" w))
(T <= S)P" cs — if tfx :=cp]thencr elseblamep, if S={z:B|s},T={z:B |t}
(T <= Dyn)?™ ((Dyn < S)P" v) — (T <= S)P'" v, ifS~T
(T <= Dyn)?™ ((Dyn < S)?" v) —> blamep’, ifS 4T
if true then cr else blamep —s cr
if false thencr else blamep — blamep
Els] — E[t] ifs—t
Els] — blamep if s — blamep

18

Figure 2. Reduction

Scheme and Functional Programming 2007

Run-time type rules
T={z:B]|t} ty(c) =B '+ T wf 't s: Bool T={z:B]|t} ty(c) = B ' T wf
I' E true = t[z := (] FEs=tlr:=
T'ker:T I+ (if sthencr else blamep) : T
Implication
I't s : Bool I'+t: Bool for all o such thaf®’ | o, if o(s) —* true theno(t) —* true
F'Es=t
Consistent substitution E=o
F'Eo 'tov:T
=0 D,z:TkE (0, z:=0v)
Figure 3. Run-time type rules
Subtype T'ES<:T
T wf r-S<S TrT<T Nz:BEs=t

I' = Dyn <: Dyn

Positive subtype

FrES—=T)<: (8 =1

PH{z:B|s}<:{z:B|t}

r-S<*rT

'ES<™T

'ES<,T

'S wf s <8 TFT<TT INz:BEs=t
'+ S <:* Dyn TS —=T)< (8 —=1T) I't{z:B|s} <t {z:B]|t}
Negative subtype
I'-T wf r-8<t*s TrT<"T TrH{z:B|s}wf T'kF{z:B]|t}wf
'-Dyn<:" T (S —->T)<:™ (S"—>T PH{z:B|s}<: {z:B|t}
Naive subtype
T'FSwf TFS<:, S THFT <, T' Mz:BlEs=>t
'+ S <:, Dyn FE(S—>T) <0 (8"—1T) Ft{z:B|s}<w{z:B|t}

Figure 4. Subtypes and Implication

that the type assigned to each constant is well formed inrtiye
context.

Conditional expressions and lambda abstraction are asahorm
So is application, save the additional constrdint- 7' wf is
required to ensure that does not appear free ifi. The cast rule
is straightforward: it says that if termhas typeS andT is a well-
formed type compatible witts' (where compatibility is defined
below), then(T' <= S)P™ s has typeT'.

We write S ~ T for the compatibilityrelation, which holds if it
may be sensible to castto T'. Two function types are compatible
if their domains and ranges are compatible, two subset tgpes
compatible if they have the same base type, Byd is compatible
with every type.

Compatibility is reflexive and symmetric but not transitiver
example,S ~ Dyn andDyn ~ T hold for any typesS andT’, but
S ~ T does not hold if one of or T is a function type and the
other is a subset type, or & andT" are subset types over different
base types.

Our cast rule is inspired by the similar rules found for gr@du
types and hybrid types. Gradual types introduce compgilaihd
the idea that all types are compatible with the dynamic tyjue,
do not have subset types. Hybrid types include subset typss,

Scheme and Functional Programming 2007

do not bother with compatibility. Neither system uses baikitive
and negative blame labels, as we do here.
Hybrid types also have a subsumption rules Has typeS, and
S is a subtype of’, thens also has typd'. This greatly increases
the power of the type system. For instance, in hybrid typeh ea
constant is assigned the singleton type{x : B | ¢ = z}; and by
subtyping and subsumption it follows that each constandrizs
to every subset typéz : B | t} for which t[z := ¢] —" true.
However, the price paid for this is that type checking for figyb
types is undecidable, because the subtype relation is idadee.
Since we do not have subsumption our type system over the
source language remains decidable. A pleasant consequénce
omitting subsumption is that, as with gradual types, eagh teas
a unique type.

Proposition 1. (Unicity) If '+ s : SandI" - s : T thenS = T.

An even more pleasant consequence is that our type system for
the source language is decidable, unlike that for hybriegyp

Proposition 2. (Decidability) GivenT' and ¢, it is decidable
whether there is & such that" ¢ : 7.

Both propositions are easy inductions.

1

©

However, there are some less pleasant consequences.d&he ti evaluate to true, the right-hand side contains a subterinthat is

is caged, not tamed!) Reduction may introduce terms thahatre ill-typed; therefore there is a special typing rule (dismd below)
permitted in the source language and we need additionalcidide which assigns a type to the right-hand side as a whole.
able run-time rules to check the types of these terms. Weaaxpl A value of dynamic type is a cast from a source type, which is
the details of how this works below. deconstructed by casting back to a target type. If the soancke
3.2 Reductions target types are compatible, the two casts collapse to tesiagt.
Figure 2 defines values and evaluation contexts, and peeteat (T <= Dyn)?"™" ((Dyn < S)P" v)
rules for reduction. —

We extend the syntax of terms with two new formsclis a (T < 5>p/n v,
constant with tyc) = B, andT is a subset typdz : B | t}, if S~ T

and we are in a context whetgr «— ¢] —~ true, then we write
cr to stand for a constant of ty@g. Subscripting a constant with ~ The cast fromS to Dyn makes the type less precise, and so should
its type is necessary to ensure that each term has a unigeéntyp never assign positive blame, and the cast ffoyn to 7" makes the

the presence of subset types. We weites an abbreviation farg, type more precise, and so should never assign negative bkane
whereB is in turn an abbreviation fofz : B | true }. We also add discussed in Section 2.3. Hence two of the blame labels datysa
the term formf sthencr elseblame. Note thaif sthentelseu and be discarded, and the remaining two carry over to the new Thist

if sthencr else blame are distinct terms; they cannot be confused is further discussed in Section 4.

becasélamep is not a legal term. If the source and target types are not compatible, then the te

We letv, w range over values. A value is either a constant (sub- fails, assigning positive blame to the cast to the target.
scripted with its type), a lambda expression, a cast fronetfan

type to function type, or a cast to a dynamic type. (T <= Dyn)”™ ({Dyn <= S)*" v)
A value of function type is either a lambda expresskan: S. ¢ —

or a constant of function type or a cast applied to a function type, blamep’,

(8" = T' <= S — T)P™ v, wherev has typeS — T. it S LT

A value of subset typd = {z : B | ¢} is a constant of the
form cr, wheret[z := ¢] —" true.

A value of dynamic typeDyn is a cast of the form{Dyn <
S)P™ v, wherev has typesS.

We let E range over evaluation contexts, which are standard.
The cast operation is strict, and must reduce the term beisigtc
a value before the cast can be performed.

We write s — ¢ to indicate that a single reduction step takes
term s to term¢, and we writes —* ¢ for the reflexive and
transitive closure of reduction.

A value of function type is a lambda expression, a constant, o
a cast. If a constant is of function type, its meaning is dfeetby
the function[c]. For examplest is a constant of typint — Int —

Int, with [+](3) = +3, where+3 is a constant of typent — Int
and [+3](4) = 7. We assume that the meaning of constants is
consistent with their type: if i) = S — T and valuev has type 3.3 Run-time type rules
S then[c](v) has typel'. } N))
The rules for applying a lambda expression and a constant areFigure 3 presents additional rules for typing terms at fovet and

standard. The rule for app|y|ng a cast is as follows. rules for implication and consistent substitution.
, , n The two additional type rules ensure that the reduction of a
(" =T <=S->T)"v)w

cast to a subset type remains well typed. How the rules work is

Negative blame is only assigned to function arguments.eSine
cast from the source is making the type less precise it shaotd
be assigned positive blame, hence the blame must go to thtocas
the target. This rule differs slightly from the rules useddoadual
typing (Siek and Taha 2006) or in Sage (Gronski et al. 2006 at
it fails immediately if the types are not compatible. In taagher
systems, incompatibility of function argument or rangeetyps
discovered only if and when the function is applied. Thiaténce
fell out naturally from our formulation; it is not clear winer it is
important, but it may have advantages in terms of catchingrer
earlier.

The last two reduction rules give the compatible closure of
reduction, and ensure that computation fails immediafeylame
term becomes the locus of reduction.

., on Nnp discussed in detail in the proof of the preservation prgpeért
(T"=T)"" (v ((F = 5)" w)) Section 3.5. Although the rules load hocand special purpose,
Herev : $ — T andw : S’, and the whole term has ty®. The they are actually special cases of similar rules for impicaand
cast is broken into two smaller casts, each in opposite tibres; subset types found in Gronski et al. (2006) and Ou et al. (2004
reversing the blame labels on the argument cast. The run-time type rules use an undecidable judgement that
Avalue of subset type is a labelled constant. The rule fdimgs ~ determines when one predicate implies anotfier= s = ¢
a subset type is as follows. holds if whenever terms —™ true then term¢ —™ true.
on The definition quantifies over all substitutions consisteith a
_<>T = 85)Mes given environment, which are identified by a second undétida

judgement’ = o holds if o is a substitution that maps variable
x to a value of typerl” for every pairz : T in T'. Both of these
judgements are taken directly from (Flanagan 2006), ang dhe

if t[z := cg] then cr else blamep
if S={z:B|s},T={z:B|t}

The cast reduces to a conditional that tests the approriaticate the source of undecidability in his type system and in ourtione
and returns the constant if the predicate is true, or faianfing type system. A similar entailment judgement is used by (Cal.et
the cast) if the predicate is false. The predicate may aldda 2004).

terminate or cast blame, in which case the conditional valttie Hence decidability, Proposition 2, holds only for the typées

same. On the left-hand side, the constans labelled with the of Figure 1, and fails when these are extended with the rules o
subset typeS, and on the right-hand side it is relabelled with the Figure 3. However, it is easy to check that unicity, PropositlL,
base typeB to give it the right type in the predicate, and with holds for the type rules in Figure 1 even when extended byetbbs
label T' if the predicate evaluates to true. If the predicate does not Figure 3.

20 Scheme and Functional Programming 2007

The good news is that undecidability is not a show stopper. We Hence ifS is more precise thai we haveS <:* T, and if S is less

introduce the undecidable type rules precisely in orderrtveo
preservation and progress. It is straightforward to deuwitlether
a source term is typed, and straightforward to perform ssice

reduction steps on a term. Progress guarantees that we can pe

form these steps without getting stuck, preservation giees that
the resulting terms are well typed. There is never a needdiniele
whether a term satisfies the undecidable rules, since thisaisan-

teed by preservation and progress!

3.4 Subtyping

We do not need subtyping to assign types to terms, but we séll u
subtyping to characterise when a cast cannot give rise toébla

Figure 4 presents four subtyping judgements: ordinaryitiges
negative, and naive.

The ordinary subtyping rules are similar to those found ang}
gan (2006) and Ou et al. (2004). We write-- S <: T'if Sisa
subtype ofl" in environment". Function subtyping is contravariant
in the domain and covariant in the argument. One subset g/pe i
subtype of another if the predicate of the first implies thedprate
of the second; this is determined using the implication @rdgnt
defined in Figure 3. This means that subtyping is undecidlie
this is not a hindrance, since our type system does not depend
subtyping. Defining subtyping as undecidable is natural raeans
we can show more types are in the subtype relation, makingesur
sults more powerful.

precise thafl" we haveS <:~ T'. This result connects our informal
discussion relating precision and blame above to our foremllts
below.

As examples, note we have the following:

Int — Nat <: Nat — Int
Int — Nat <:* Nat— Int
Int — Nat <:~ Nat— Int
Nat — Nat <:, Int — Int
Nat — Nat <:T Int — Int
Int —Int <:7 Nat— Nat

The first line shows that subtyping is contravariant in itsdtion

argument, and the fourth lines shows that naive subtypirgpis
variant. The first line is equivalent to the second and ttard] the
fourth line is equivalent to the fifth and sixth.

3.5 Type safety

We have usual substitution and canonical forms lemmas, and
preservation and progress results.

Lemma 3. (Substitution) IT'+ s : Sandl’, z : S+t : T, then
Dk tlz:=s]:T.

Lemma 4. (Canonical forms) Let be a value that is well-typed
in the empty context. One of three cases applies.

However, contrary to what one may expect, no type is a subtype e If () - v : S — T then either

of Dyn other tharDyn itself. This differs from the rule of Gronski
et al. (2006), which takes every type to be a subtyp®wf. In
our case, we only také' to be a subtype df if a cast fromsS to

T can never receive any blame. However, we have seen that a cast

that makes types less precise, such as a castffamDyn, may
receive negative blame (but not positive blame); thereitagenot
appropriate to takd” as a subtype dbyn (but it is appropriate to
takeT as a positive subtype @fyn, as discussed below). The issues
are very similar to the treatment of the contraety, as discussed
by Findler and Blume (2006).

In order to capture the situations in which positive and nega
tive blame cannot occur, we factor the notion of subtype into
subsidiary relations, positive subtyping, writtBr- S <:* T and
negative subtyping, writtefi - .S <:™ T'. Intuitively, these judge-
ments are defined to track the swapping of positive and negati
blame labels that occurs with function types. The two judgets
are defined in terms of each other, with the contravarianitipos
in the function typing rule reversing the roles. We h&ve::™ Dyn
andDyn <:~ T for every typeS andT'. The intuitive reason for
this is that casting t®yn can never give rise to positive blame,
and casting fronDyn can never give rise to negative blame. We
only check inclusion between subtypes for positive sulpiypive
haveS <:* T for subset types only when the predicate of the first
implies the predicate of the second, but we h&ve::~ T for all
subset types. The intuitive reason for this is that a failest ¢to a
subset type can only give rise to positive blame, not negéiiame.

The main results concerning positive and negative subgyaia
given in Section 4. We show that <: T ifand only if S <:* T
andS <:~ T. We also show that i <:* 7" then a cast fron$ to
T cannot receive positive blame, and thabif<:~ T then a cast
from S to T’ cannot receive negative blame.

We also define a naive subtyping judgemeht<:,, 7', which
is covariant rather than contravariant for function argoteeThus,
we havelnt — Nat <: Nat — Int butNat — Nat <:, Int —
Int. The formal conceptS <:, T corresponds to the informal
concept ofS being more precise thaf. In Section 4 we show
that S <:, T ifand only if S <:* T andT <:~ S. (Note the
reversall Here we writd” <:~ S where above we hafl <:~ T'))

Scheme and Functional Programming 2007

syp=Ar:S.t,withz:SkFt:T,or
"y =c Withty(c) =S — T, or
ro=(S>T <S5 >THYW'y withprv" : 8 —T.
e lfdrv:TwithT = {z: B|t}thenv = cr withty(c) = B
andt[z := cg] —" true.
o If) v : Dynthenv = (Dyn < T)?" v' with@ - o' : T'.

Proposition 5. (Preservation) IfT" - s : T'ands — ¢ then
T'kt:T.

Proof. By case analysis over reductions. We consider only the
unusual cases.

o Consider the reduction
(T <= S)P" cs

—
if t[z := cg] then cr else blamep,
if S={z:B|s},T={z:B|t}

This preserves types because of the run-time typing rule for
conditionals.

e Consider the reduction
if true then cr else blamep — cr

If T = B then this is well typed in the usual way. ¥ =
{z : B | t} with t # true, then the left-hand side can only be
well-typed by the run-time typing rule for conditionals,
I'ks:Bool T={xz:B]|t} ty(c) = B =T wf
I' = s = tlx:=cp|
T I (if s thencr else blamep) : T,

and we must have = true, in which case the right-hand side
is well typed by the run-time type rule for constants

T={z:B|t} ty(c) = B =T wf
I' = true = ¢z := cp|
FFCT:T.

21

e Consider the reduction
if false thencr else blamep — blamep

This does not match the hypothesis, becaaene p is not a
term. |

Proposition 6. (Progress) IfT" - s : T then either

e sis avalue, or
e s — t for some ternt, or
e s — blamep for some blame label.

Proof. By induction on the structure of the typing derivation. We
consider only the unusual cases.

e Consider the rule

T={x:B|t} ty(c) = B =T wf
I' = true = ¢z := cp|
'+ CT T
In this case, the typed term is a value.
e Consider the rule
I'ks:Bool T={z:B]|t} ty(c) = B =T wf
I' = s = tlx:=cB]
I' - (if sthencr else blamep) : T

Sincel’ + s : Bool, by induction there are three possibilities
for s.

= s is a value, in which case must betrue or false, and the
term reduces ter or blamep.

= s — s’ for somes’, and the term reduces to
if s’ then cr else blamep.

* s — blame p’, for somep’, and the term reduces to
blamep’. O

In this case, simply knowing preservation and progress does
guarantee a great deal, since it does not rule out reduabian t
blame term. However, Section 4 gives results that let ustiigen
circumstances where certain kinds of blame cannot arise.

3.6 Typed and untyped lambda calculus

We introduce a separate grammar for untyped lambda calarids
show how to map this into our typed lambda calculus. MEtN
range over untyped terms.

M,N == z|k|Xx.N|MN||t]

The term form|¢] is used to embed a typed term into an untyped
term; it may be applied only if the typed term has typgn.

An untyped term is well-formed if every variable appeariregf
in it has typeDyn, and if every typed subterm has typgn. We
write " = M wf to indicate that\/ is well formed.

(x:Dyn) el I, z: Dyn - N wf
'k zwf 'k (Az. N) wf

'+ M wf T'F N wf T'Ft:Dyn
'+ (M N)wf T |t] wf

There is an simple mapping that takes untyped terms intaltype
terms.

[z] = =z

[c] = (Dyn<=ty(c)) c

[Az. N| = (Dyn < Dyn — Dyn) (Az : Dyn. [N1])
FM N = 7g(Dyn — Dyn < Dyn) [M1) [N]

[£]]

22

Every well-formed untyped term maps to a typed term with type
Dyn.

Lemma 7. We havd' - M wf if and only ifl" - [M] : Dyn.

4., The Blame Theorem
Subtyping factors into positive and negative subtyping.

Lemma 8. We havd - S <: Tifand only if " - S <:* T and
'ES<~T.

Proof. By induction on the derivation of the judgement.

e Dyn <: Dyn
iff (by definition)
S <:* DynandDyn <:~ T, with S = T = Dyn.
e S—-T<: 8 =T
iff (by definition)
S’ <:SandT <: T
iff (by induction hypothesis)
S <t SandS’ <:~ SandT <:* T andT <:~ T’
iff (by definition)
S—T<T8 =T andS - T <:= 8 = T.
{z:B|s}<:{z:B]|t}
iff (by definition)
Ve:B.s=>t
iff (by definition)
{z:B|s} <t {z:B|tyand{z: B|s} <:” {z: B|t}.

In the reverse direction there are nine cases to consideth®six
not listed above (e.gDyn <:* S — T andS — T <:~ Dyn)
trivially validate the implication. a

Naive subtyping also factors into positive and negativeygub
ing, this time with the direction of negative subtyping neses.
Hence, narrowing implies positive subtyping and widenimglies
negative subtyping.

Lemma9. We havd - S <:, T ifand only ifl' - S <:* T"and
T <™ S.

Proof. By induction on the derivation of the judgement.

e S <, Dyn
iff (by definition)
S <:* Dyn andDyn <:~ T with S = T.
oS T <, 8 =T
iff (by definition)
S < S andT <:p, T
iff (by induction hypothesis)
S <:” SandS <:* S andT’ <:~ T andT <:* T’
iff (by definition)
S—>T<tTS ST andS’' - T' <:— 8§ — T.
{z:B|s}<iqn{z:B|t}
iff (by definition)
Vr:B.s=1
iff (by definition)
{z:B|s}y <t {z:B|t}and{x: B|s} <:~ {z:B|t}.

Again, in the reverse direction there are nine cases, bugixheot
listed above are trivial. O

The following is the central result of this paper. Note tha t
subterms of a term include any term in a refinement type inta cas

Proposition 10. (Positive and negative blame) Letbe a well-
typed term anc be a blame label, and consider all subterms of
t containingp. If

Scheme and Functional Programming 2007

e every cast with labeb in positive position is a positive subtype,
(T <= S)*™ shasS <:* T, and

e every cast with labep in negative position is a negative sub-
type,(T' < S)"? shasS <:~ T, and

thent —/~* blamep.

Proof. By case analysis on the reduction. For each reduction that
contains a cast, we consider each label on the left-hand aide
show that if the cast with that label satisfies the inductigpdthe-

sis, so does every cast with that label on the right-hand side

e Consider the reduction
(' =T <=8 —>T)Y" fu

—

(T"=T)" (f ((S < §)" v))

The labelp appears positively on the left. By hypothesis we
haveS — T <:T 8’ — T’ for the term on the left, whence
definition of <:™ we haveS’ <:~ S andT <:* T”, so the
hypothesis is maintained for the term on the right.

The labeln appears negatively on the left. By hypothesis we
haveS — T <:~ S’ — T’ for the term on the left, whence
definition of <:~ we haveS’ <:* S andT <:~ T’, so the
hypothesis is maintained for the term on the right. (These tw
cases are identical, save for swapppnwith » and <:* with
<:7)

Consider the reduction

<T = S)pn cs
N

if t[z := cg] then cr else blamep,
if S={z:B|s},T={z:B|t}

The labelp appears positively on the left. By hypothesis we
haveS <:* T for the term on the left, whence by definition of
<:* we havel', z : B = s = t. Sincecs : S we know that
s[z:=cp] —" true, and it follows that[z :=cp] —* true,

so the right hand side reducesdp and not tablame p.

The labeln appears negatively on the left and does not
appear on the right, so preserves the hypothesis trividitye
correctly,n may appear independently énbut in that case the
hypothesis carries over independently.

Consider the reduction
(T <= Dyn)*™" ((Dyn < S)?" v)

—

(T <= S)P'™v,if S~ T

The positive labep appears in a cast froito Dyn, andS <:*
Dyn by definition; butp does not appear on the right hand side,
and so this reduction preserves the necessary invariiatlyi

Similarly, the negative label’ appears in a cast frobyn to
T, andDyn <:~ T by definition; butn’ does not appear on the
right hand side, and so this reduction preserves the nagessa
invariant trivially.

The positive labep’ appears in a cast frofyn to 7', and
Dyn <:T T holds only if T is Dyn, in which case the cast
on the right is(Dyn < S)P/” for which S <:* Dyn holds
trivially.

Similarly, the negative labet appears in a cast frorfi to
Dyn, andS <:~ Dyn holds only if S is Dyn, in which case
the cast on the right i§" < Dyn)P/” for whichDyn <:~ T
holds trivially.

Scheme and Functional Programming 2007

e Consider the reduction
(T < Dyn)”/"/ ((Dyn < S)P™ v)

—
blameyp’,
if S AT

Of the four subcases for the previous reduction, the arguimen
for the first two cases is the same here. In the remaining two
cases, the hypothesis is satisfied only ibr 7" is Dyn, but that
cannot happen since we hagex T, andDyn is compatible
with all types. |

We have an immediate corollary.

Corollary 11. (Well-typed programs can't be blamed) Ltebe a
well-typed term with a subterm

(T'<= S)"" s
containing the only occurrences pfandn in ¢.

e If S <:* T thent —4* blame p.
e If S <:” T thent -/ blamen.
e If S <: T thent -/ blamep andt -/ blamen

In particular, sinceS <:* Dyn, any failure of a cast from a
well-typed term to a dynamically-typed context must be l#dron
the dynamically-typed context. And sinByn <:~ T, any failure
of a cast from a dynamically-typed term to a well-typed cante
must be blamed on the dynamically-typed term.

Further, consider a cast from a more precise type to a less
precise type, which we can capture using naive subtypingceSi
S <:, T implies S <:T T, any failure of a cast from a more-
precisely-typed term to a less-precisely-typed contexstrhne
blamed on the less-precisely-typed context. And sificec:,, S
impliesS <:~ T, any failure of a cast from a less-precisely-typed
term to a more-precisely-typed context must be blamed oletize
precisely-typed term.

5. Applications
5.1 Siekand Taha

Siek and Taha (2006) describe an intermediate languagtasimi
the one described here: it is decidable, has compatibilityro
subtyping, and possesses unicity of type. The type we wsiya
they write as ?’, and the cast we write 88" < S)*" s they write
as(T) s. (Given unicity of type, the typ& of terms in the cast is
redundant.)

Siek and Taha present two languages, a source language and
an intermediate language, and a compilation algorithm teilegs
the first into the second, inserting casts to convert to amwh fihe
dynamic type.

They show that if the original program is well-typed in siywpl
typed lambda calculus then it is well-typed in their systang they
show that the only way an evaluation can go wrong is if somée cas
fails. It follows that any intermediate program derivednfra well-
typed source program with no dynamic types cannot get stuck.

But theirs is an all-or-nothing result. Our results showt tha
cast fails in a gradually typed program, then the blame nigtith
a fragment of the program that contains a dynamic type. Shmee
purpose of gradual typing is to permit dynamic types in paogs,
our result is a useful supplement to theirs.

5.2 Flanagan

Flanagan (2006) describes an intermediate language sitmithe
language described here, except that it includes subsompince
the type system is undecidable and does not have unicitypef ty
The cast we write aél" < S)P" s he writes ag.S < T') s.

23

Flanagan presents two languages, a source language and afhey also introduce a calculug” to model the calculus©°" of

intermediate language, and a compilation algorithm thegsahe

first into the second, inserting casts to check inclusioneeh
types when a theorem prover fails to show that one is a subtype
of the other.

He shows that the compilation algorithm inserts only upcast
when the original program is well-typed, and that in thisect®e
compiled program yields the same result as the originalparag
It follows that an intermediate program that is derived franvell-
typed source program does not get stuck.

But his is an all-or-nothing result. Our results show thag an
upcast in the intermediate language (that is, a cast ffoto T’
whereS <: T') does not get stuck, regardless of how it was derived,
and even if the intermediate program contains other caatsatie
not upcasts. Since the purpose of hybrid types is to insermijc
checks when the theorem prover fails to prove a subtypiragiosi
(or to find a counterexample), our result is a useful suppiere
his.

5.3 Matthews and Findler

Matthews and Findler (2007) define cross-language castsebat
Scheme and ML.
If es is a term in Scheme, they write

"MSnN (G} es)

for the corresponding term of typein ML. Here ™ M S indicates
conversion from Scheme to an ML term of typevith no checking
(hence the subscrip¥), while G7 is a “guard” in Scheme that
ensures the terms satisfies the contract specified bychecking
only for instances of positive blame (hence the subseriptThe
corresponding conversion in our calculus is

(T <= Dyn)™ s

whereT corresponds te ands corresponds tes. SinceDyn <:™

T for any typeT we know that negative blame cannot arise, which

explains why Matthews and Findler only check for positivarbé.
Similarly, If eas is a term of typer in ML, they write

gi (SM}—\; 6A1)

for the corresponding term in Scheme. Héf&/% indicates con-
version from an ML term of type to a Scheme term with no check-
ing (hence the subscrigt), while G” is a “guard” in Scheme that
ensures the termy, satisfies the contract specified bychecking
only for instances of negative blame (hence the subsef)piThe
corresponding conversion in our calculus is

(Dyn < T)P™ ¢

whereT corresponds te andt corresponds teys. SinceT <:*
Dyn for any typeT we know that positive blame cannot arise,
which explains why Matthews and Findler only check for nagat
blame.

5.4 Gronski and Flanagan

Gronski and Flanagan (2007) relate the contract calcul&énofier
and Felleisen (2002), modeled as a calculifis to the hybrid type
calculus of Flanagan (2006), modeled as a calcifiis

The calculusA of Gronski and Flanagan is similar to the
calculus of this paper, but one key difference is that castsdnave
only a single blame label.

Type S
Term s

{r:B|s}|S1— 5
| (S2 = Si) s

24

Findler and Felleisen, that separates types from contracts

Type T = B | T — 15
Contract ¢ = contract Bv | ¢1 — c2
Term ¢t u= ... |ob

Here a contract on a base typentract B v takes a value which
must be a predicate of tyg@ — Bool, and a contract on a function
type c1 — c2 checks that its argument satisfies contracand
its results satisfies contract. A term ¢ may be annotated with a
contractc to be checked and labdlandi’ for positive and negative
blame respectively. Whereas M casts change types (as in our
work), in \° contracts preserve types: if tertthas typeT’, then
the annotated tertf!" also has typd’.

They define a mapping from the types and terms of¢ to
those ofA?, and show that it preserves types and reductions. The
key to the mapping is that a term which enforces a contracsmap
to apair of casts.

o) = (baséS) < S)" (S « basds))' ¢(1))

wheresS = ¢.(c)

Here¢. maps a contract oX€ into a subset type of¥, and base
erases a subset type b to obtain a simple type of°.

¢c(contract Bv) = {xz:B|¢(v)x}
pe(cr — c2) = ¢c(c1) = e(c2)
bas€{z : B | s}) {z: B |true}

basé¢S, — S2) bas€.S1) — basé€S,)

This result is easily understood in terms of our resultsgesin
bas¢S) <:~ S, so the rightmost cast can only allocate positive
blame, andS <:* basgS), so the leftmost cast can only allocate
negative blame.

However, in general” contains casts of the forfif. < S1)'s
where neitherS; <:~ Sz nor S; <:* S holds, so we would
argue that their simplicity is misguided: if blame is to blehted,
it should be divided into positive blame and negative bla®ee
doesn’'t want to know merely which cast has failed, but alsetivér
it is the contained term or the containing context which ibleome
for that failure.

6.
6.1 Contracts

Related work

The notion of dynamic testing of specifications goes bacleasdt|
to Parnas (1972). A software engineering strategy basedicim s
checking, as well as the teregontract was popularised by the
language Eiffel (Meyer 1988).

Findler and Felleisen (2002) introduced the use of highhdeio
contracts with blame in functional programming.

Blume and McAllester (2006) describe some counterinteitiv
properties of contracts. Findler and Blume (2006) usesptimns
to model contracts, and suggests that the counterintuibgects
of contracts may not be so counterintuitive after all. Theués
involved are similar to our discussion of the type Dynamia] aur
(perhaps counterintuitive) observation that one shouldregard
all types as subtypes of the type Dynamic.

Meunier et al. (2006) is concerned with integrating statid a
dynamic checking of contracts across modules, where thie sta
checking is implemented as a set-based constraint analydis-
Hochstadt and Felleisen (2006) is also concerned with iiateg
static and dynamic checking of contracts across modulestitine
using a more traditional type inference algorithm augmerite
insert contracts where appropriate. We believe the systesepted

Scheme and Functional Programming 2007

here provides roughly the same power as these other systems,
in a perhaps simpler way.

Gray et al. (2005) discuss the practice of using contract to
interface Java to Scheme, and Matthews and Findler (2082)isk
the theory of using contracts to interface ML to Scheme. The
relation of the latter to our work is discussed in Section 5.3

6.2 Gradual types

Integrating static and dynamic typing is not a new idea, aedip
ous work includes the type dynamic of Abadi et al. (1991) s
types of Wright and Cartwright (1997), the partial types bgfe
(1988), and the Scheme-to-ML translation of Henglein antidRe
(1995).

Siek and Taha (2006) introduced gradual types; its relaton
our work is described in Section 5.1.

Siek and Taha (2007) extends gradual typing to an object-
oriented language.

Findler and Felleisen (2002) observed that adding corstrtact
a program can lose the benefits of tail-recursion, and theesam
observation applies to gradual types and hybrid types, whath
apply a form of contracts. Herman et al. (2007) observes how
to restore a bounded-space implementation of tail recur&wo
gradual types. This work exhibits a further connection leetv
gradual types and hybrid types, since it was performed by the
team working on hybrid types. Unfortunately, the techngjinethis
paper apply only to simple types and type Dynamic, and it is no
yet clear how to extend them to the subset types found in dybri
type systems.

6.3 Hybrid types

Subset types were first introduced in type theory by Nooastr”
and Petersson (1983) and Smith and Salvesen (1988). Theoform
subset types used in hybrid types was influenced by the reéinem

types of Freeman and Pfenning (1991) and the Dependent ML of

Xi and Pfenning (1999). An embedding of particular subspesy
(non-empty lists, index ranges) into Haskell or O’Caml isctébed
by Kiselyov and chieh Shan (2006).

Flanagan (2006) introduced hybrid types; its relation to ou
work is discussed in Section 5.2.

Gronski et al. (2006) describe Sage, a practical languagedba
on hybrid types. Both the theory of Sage and practical eepes
with it is described. The theory of Sage extends hybrid typéisat
it adds a type@ynamic, similar to ourDyn. It also supports first-
class types, and permits the subtype construction to beeapial
any types (not just base types).

Knowles and Flanagan (2007) present a type reconstruction

algorithm for hybrid types that finds principle typings, bgous
to Hindley-Milner type reconstruction.

Gronski and Flanagan (2007) investigate the relationskip b
tween hybrid types and contracts; its relation to our worliss
cussed in Section 5.4.

Ou et al. (2004) present a language with dynamically-che:cke
dependent types, which is closely related to the work onitlybr
types. There is a compilation from a source language intotn-i
mediate language, very similar to that for hybrid types. $ysem
explicitly labels which portions of the code are to be dyrzatly
checked and which are to be statically checked, similar tause
here of the notatioff /] to embed untyped lambda calculus into
our typed calculus.

7. Conclusion

Organisms evolve by selection of the fittest, and progrargran-
guages evolve in the same way, but fittest may not mean besttGo
(1994) repeatedly remarks on the fact that evolution leadsea-
tures which reproduce well in a given environment, not nesely

Scheme and Functional Programming 2007

to creatures which are more sophisticated. In the devekapéron-
ment, anecdotal evidence suggests that familiarity, liesadevel-
opment tools, user community, or other network effects mawd

out actual technical superiority when comparing languages

Can we promote the evolution of programming languages by

some mechanism other than ‘survival of the fittest'? Integgetwo
competing designs into a single language may provide artiettis

for comparing the strengths and weaknesses of each, fagtouit

the biases listed above.

Acknowledgements

This paper benefited enormously from conversations witmJoh
Hughes. We also thank Matthias Felleisen, Cormac Flan&gjeq,
Kisselyov, and six anonymous referees.

References

Martin Abadi, Luca Cardelli, Benjamin Pierce, and Gor-
don Plotkin. Dynamic typing in a statically typed
language. ACM Transactions on Programming Lan-

guages and Systemd3(2):237-268, April 1991.
citeseer.ist.psu.edu/abadi89dynamic.html.

Matthias Blume and David McAllester. Sound and complete mod
els of contractsJournal of Functional Programmindl6(4&5):
375-414, 2006.

Gilad Bracha. Pluggable type systems.Q@OPSLA'04 Workshop
on Revival of Dynamic Language®ctober 2004.

Robby Findler and Matthias Blume. Contracts as pairs ofgeroj
tions. Ininternational Symposium on Functional and Logic Pro-
gramming (FLOPS)April 2006.

Robert Bruce Findler and Matthias Felleisen. Contractéifgier-
order functions. INACM International Conference on Func-
tional Programming (ICFP)October 2002.

Cormac Flanagan. Hybrid type checking. AGM Symposium on
Principles of Programming Languages (POPIanuary 2006.

Tim Freeman and Frank Pfenning. Refinement types for ML.
In ACM Conference on Programming Language Design and
Implementation (PLDI)1991.

Stephen Jay GoulcEight Little Piggies Penguin, 1994.

Kathryn E Gray, Robert Bruce Findler, and Matthew Flatt. eFin
grained interoperability through mirrors and contractsACM
Conference on Object-Oriented Programming: Systems, Lan-
guages, and Applications (OOPSL.2P05.

Jessica Gronski and Cormac Flanagan. Unifying hybrid tymes
contracts. InTrends in Functional Programming (TFPApril
2007.

Jessica Gronski, Kenneth Knowles, Aaron Tomb, Stephen &. Fr
und, and Cormac Flanagan. Sage: Hybrid checking for flexible
specifications. IrScheme and Functional Programming Work-
shop (Schemepeptember 2006.

Robert Harper. Practical Foundations for Programming Lan-
guages 2007. Working Draft.

Fritz Henglein and Jakob Rehof. Safe polymorphic type eriee
for a dynamically typed language: translating Scheme to ML.
Conference on Functional Programming Languages and Com-
puter Architecture (FPCA)1995.

David Herman, Aaron Tomb, and Cormac Flanagan. Space-
efficient gradual typing. IArends in Functional Programming
(TFP), April 2007.

Oleg Kiselyov and Chung chieh Shan. Lightweight static bipa
ities. In Programming Languages meets Program Verification
(PLPV), August 2006.

URL

25

Kenneth Knowles and Cormac Flanagan. Type reconstruation f Benjamin PierceTypes and Programming LanguagégIT Press,

general refinement types. European Symposium on Program- 2002.

ming (ESOP)March 2007. Jeremy G. Siek and Walid Taha. Gradual typing for functional
Jacob Matthews and Robert Bruce Findler. Operational seécsan languages. IiB8cheme and Functional Programming Workshop

for multi-language programs. lCM Symposium on Principles (Scheme)September 2006.

of Programming Languages (PORLJanuary 2007. Jeremy G. Siek and Walid Taha. Gradual typing for objects.
Erik Meijer. Static typing where possible, dynamic typinheve In European Conference on Object-Oriented Programming

needed: The end of the cold war between programming lan- (ECOOP) 2007.
guages. IMOOPSLA'04 Workshop on Revival of Dynamic Lan- jan Smith and Anne Salvesen. The strength of the subset type

guages October 2004. in Martin-Lof's set theory. InIEEE Symposium on Logic in
Philippe Meunier, Robert Bruce Findler, and Matthias Fsda. Computer Science (LICS)988.
Modular set-based analysis from contracts. A@GM Sympo- Satish Thatte. Type inference with partial types. In
sium on Principles of Programming Languages (POR&huary Proceedings of the 15th International Colloquium on Au-
2006. tomata, Languages and Programmjngolume 317 ofLec-
Bertrand MeyerObject-Oriented Software ConstructioRrentice ture Notes in Computer Scienc8pringer-Verlag, 1988. URL
Hall, 1988. http://portal.acm.org/citation.cfm?id=646242.681286.
Robin Milner. A theory of type polymorphism in programming. Sam Tobin-Hochstadt and Matthias Felleisen. Interlanguag
Comput. Syst. S¢il7:348-375, 1978. gration: From scripts to programs. lynamic Languages Sym-

Bengt Nordstrdm and Kent Petersson. Types and specifisatio posium (DLS)October 2006.
In International Federation for Information Processing Wbrl Andrew K. Wright and Robert Cartwright. A practical soft

Computer Congress (IFIP1983. typing system for Scheme. ACM Transactions on Pro-
Xinming Ou, Gang Tan, Yitzhak Mandelbaum, and David Walker. ~ gramming Languages and System9(1), 1997. URL

Dynamic typing with dependent types. IRIP International http://portal.acm.org/citation.cfm?id=239912.239917.

Conference on Theoretical Computer Scierfoggust 2004. Andrew K. Wright and Matthias Felleisen. A syntactic apmto&o
David L. Parnas. A technique for software module specificati type soundnessinformation and Computationi15(1):38-94,

with examples. Communications of the ACM.5(5):330-336, 1994.

May 1972. Hongwei Xi and Frank Pfenning. Dependent types in pracpioad

gramming. INACM Symposium on Principles of Programming
Languages (POPL.Y1999.

26 Scheme and Functional Programming 2007

