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Abstract
We show howcontractswith blame fit naturally with recent work
on hybrid typesandgradual types. Unlike hybrid types or gradual
types, we require casts in the source code, in order to indicate where
type errors may occur. Two (perhaps surprising) aspects of our
approach are that refined types can provide useful static guarantees
even in the absence of a theorem prover, and that typedynamic
should not be regarded as a supertype of all other types. We factor
the well-known notion of subtyping into new notions of positive
and negative subtyping, and use these to characterise wherepositive
and negative blame may arise. Our approach sharpens and clarifies
some recent results in the literature.

1. Introduction
Recently, a number of researchers have suggested ways to integrate
static and dynamic typing into a single framework. These include
thecontractsof Findler and Felleisen (2002) and others, thegrad-
ual typesof Siek and Taha (2006), and thehybrid typesof Flana-
gan (2006) and others. Interfaces between Scheme and statically
typed languages have been explored by Gray et al. (2005), Tobin-
Hochstadt and Felleisen (2006), and Matthews and Findler (2007).
Static and dynamic typing are both supported in Visual Basic(Mei-
jer 2004), with similar integration planned for Perl 6 and Javascript;
and one of the designers of Java has argued that static types should
be optional (Bracha 2004).

We provide a uniform view of recent work oncontracts, grad-
ual types, andhybrid typesby introducing a notion of blame (from
contracts) to a type system with casts (similar to intermediate lan-
guages used for gradual and hybrid types), yielding a systemthat
we call evolutionary types. Programmers using this type system
may add contracts to evolve dynamically typed programs intostati-
cally typed programs (as with gradual types) or to evolve statically
typed programs into programs with refinement types (as with hy-
brid types).

We suggest that what has been used as an intermediate type
system for gradual and hybrid types is itself useful as a source
language—this has the advantage that it is obvious reading the
source language where static guarantees hold and where dynamic
checks are enforced. We also suggest, in contrast to previous work,
that hybrid types can be useful even in the absence of a theorem
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prover—one need not have a sophisticated type checker to benefit
from sophisticated types! Finally, we suggest that one should not
regard every type as a subtype of the dynamic type.

The technical content of this paper is to introduce notions of
positive and negative subtyping, and prove a theorem that charac-
terises when positive and negative blame can occur. We show how
our theorem sharpens the published results for gradual and hybrid
types, and clarifies other recent results.

Many readers will recognise that our title is the third in a series.
“Well-typed programs can’t go wrong” summarised a denotational
approach to soundness introduced by Milner (1978). “Well-typed
programs don’t get stuck” refined this slogan, summarising an oper-
ational approach to soundness introduced by Wright and Felleisen
(1994). A related slogan, “safety is preservation plus progress”, is
due to Harper (Pierce 2002, page 95). “Well-typed programs can’t
be blamed” describes an approach suited to systems that use con-
tracts and blame, characterising interaction between more-typed
and less-typed components of a program.

We make the following contributions:

• We introduce our language, showing that a language with ex-
plicit casts and no theorem prover (and a little syntactic sugar)
is suited to many of the same purposes as gradual types and
hybrid types (Section 2).

• We give a framework similar to that of the hybrid typing of
Flanagan (2006) and the dynamic dependent typing of Ou et al.
(2004), but with a decidable type system for the source lan-
guage and satisfying unicity of type (Section 3).

• We factor the well-known notion of subtyping into new notions
of positive and negative subtyping. We prove that a cast froma
positive subtype cannot give rise to positive blame, and that a
cast from a negative subtype cannot give rise to negative blame
(Section 4).

• We apply our theorem to sharpen published results for gradual
types (Siek and Taha 2006) and hybrid types (Flanagan 2006),
and to shed light on recently published results by Gronski and
Flanagan (2007) and Matthews and Findler (2007) (Section 5).

Section 6 describes related work, and Section 7 concludes.

2. Evolutionary Programming

2.1 From Untyped to Typed

Consider the following program written without types.

⌈let
x = 2

in let
f = λy. y + 1

in let
h = λg. g (g x)

in
h f⌉
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By default, our programming language is typed, so we escape to
an untyped language by surrounding the code with ceiling brackets
⌈·⌉. Untyped code is really uni-typed; it is a special case of typed
code where every term has typeDyn (Harper 2007). The above
term evaluates to⌈4⌉ : Dyn.

As a matter of software engineering, when we add types to our
code we may not wish to do so all at once. For instance, here is a
version of the program in whichx andh and the application ofh
to f are written in a typed language, but the body off is written
untyped and cast to a suitable type. Of course, this isn’t very helpful
for such a short piece of code, but it should be clear how this would
work in a larger system.

let
x = 2

in let
f = 〈Int → Int ⇐ Dyn〉pn ⌈λy. y + 1⌉

in let
h = λg : Int → Int . g (g x)

in
h f

Here,⌈λy. y + 1⌉ has typeDyn (the type of untyped code), and
the cast converts it to typeInt → Int . The above term evaluates to
4 : Int .

In general, a cast from source typeS to target typeT is written

〈T ⇐ S〉pn
s,

where subterms has typeS and the whole term has typeT . The two
labels on a cast,p andn, are used for allocatingpositive blameand
negative blamerespectively. Blame labels are simply identifiers,
without further structure. Positive blame is allocated if the term
contained in the cast fails to satisfy the contract implied by the cast,
while negative blame is allocated if the context containingthe cast
fails to satisfy the contract.

Our notation is chosen for clarity rather than compactness.Writ-
ing the source type is redundant, but convenient for a core calcu-
lus. Even writing the target can be cumbersome. Both the gradual
type system of Siek and Taha (2006) and the hybrid type systemof
Flanagan (2006) include source languages where most or all casts
are omitted, but inferred by a type-directed translation. Our nota-
tion is inspired by that of Flanagan (2006), and identical tothat of
Gronski and Flanagan (2007).

2.2 Contracts and refinement types

Findler and Felleisen (2002) introduced higher-order contracts, and
Flanagan (2006) observed that contracts can be incorporated into a
type system as a form of refinement type.

An example of refinement type is{x : Int | x ≥ 0}, the
type of all integers greater than zero, which we will writeNat. A
cast fromInt to Nat performs a dynamic test, checking that the
integer is indeed greater than or equal to zero. As the name implies,
refinement types are types, soInt , Nat, Int → Int andNat→ Nat
are all examples of types.

Just as we can start with an untyped program and add types, we
can start with a typed program and add refinement types. Here is a
version of the previous program with refinement types added.

let
x = 〈Nat⇐ Int 〉pn 2

in let
f = 〈Nat→ Nat⇐ Int → Int 〉p

′n′

(λy : Int . y + 1)
in let

h = λg : Nat→ Nat. g (g x)
in

h f

The hybrid type system of Flanagan (2006) allows one to writethis
program without any casts, and uses a theorem prover and a type-
directed inference system to add the casts in the above. However,
we want to stress the point that a theorem prover, or even a fancy
inference system, is not essential.

The type system presented in this paper does not require sub-
typing or subsumption, unlike similar type systems in the literature
(Flanagan 2006; Gronski et al. 2006; Ou et al. 2004). This gives the
system the pleasant property ofunicity of type: every well-typed
term has exactly one type. (This constrasts withprinciple types,
where every well-typed term has a most general type, of whichall
its other types are instances.) In order to achieve unicity,we la-
bel constants with their type. Thus the value of the above term is
not 4 : Int but 4Nat : Nat. Subscripted constants are used only
to explain how evaluation works; in the source program, the user
always creates values of refinement types by casts that dynami-
cally check the predicate of that type. For instance, above we wrote
〈Nat⇐ Int 〉pn 2 which evaluates to2Nat : Nat.

2.3 The Blame Game

The above examples execute with no errors, but in general we may
not be so lucky. Casts perform dynamic tests at run-time thatfail if
a value cannot be coerced to the given type.

A cast on a refinement type reduces to a dynamic test of the
condition on the type.

〈Nat⇐ Int 〉pn (−2)
−→

if −2 ≥ 0 then−2Nat else blamep
−→

blamep

(The middle term in this reduction may not appear to be well-typed,
but the type system has a special rule for just this purpose, to assure
that reductions preserve types.)

Given an arbitrary term that takes integers to integers, it is
not decidable whether it also takes naturals to naturals. Therefore,
when casting a function type the test is deferred until the function
is applied. This is the essence of higher-order contracts.

Here is an example of casting a function and applying the result.

(〈Nat→ Nat⇐ Int → Int 〉pn (λy : Int . y + 1)) 2Nat
−→
〈Nat⇐ Int 〉pn((λy : Int . y + 1) (〈Int ⇐ Nat〉np 2Nat))
−→
〈Nat⇐ Int 〉pn((λy : Int . y + 1) 2)
−→
〈Nat⇐ Int 〉pn3
−→

3Nat

The cast on the function breaks into two casts, each in opposite
directions: the cast on the result takes the range of thesourceto
the range of thetarget, while the cast on the argument takes the
domain of thetarget to the domain of thesource. Preserving order
for the range while reversing order for the domain is analogous to
the standard rule for function subtyping, which is covariant in the
range and contravariant in the domain.

Observe that the blame labels on the reversed cast have been
swapped frompn to np. The blame labels are swapped on the
argument cast because if that cast fails it is the fault of thecontext,
which supplies the argument to the function; swapping movesthe
negative label to the positive position, so it will take the blame if
something goes wrong. Conversely, the blame label is not swapped
on the result cast because if that cast fails it is the fault ofthe
function itself.

The above cast took a function with range and domainInt to a
function with more precise range and domainNat. Now consider a
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cast to a function with less precise range and domainDyn.

(〈Dyn→ Dyn⇐ Int → Int 〉pn (λy : Int . y + 1)) ⌈2⌉
−→
〈Dyn⇐ Int 〉pn((λy : Int . y + 1) (〈Int ⇐ Dyn〉np ⌈2⌉))
−→
〈Dyn⇐ Int 〉pn((λy : Int . y + 1) 2)
−→
〈Dyn⇐ Int 〉pn 3
−→
⌈3⌉

Again, a cast on the function breaks into two casts, each in op-
posite directions. What is interesting here is that the caston the
argument—reduction converts thestatic type Int of the argument
of f into adynamicallyenforced cast!

If we consider a well-typed term of the form

(〈Nat→ Nat⇐ Int → Int 〉pn
f) x

we can see that negative blameneveradheres to this cast, because
the type checker guarantees thatx has typeNat, and the cast from
Nat to Int always succeeds. However positive blame may adhere,
for instance iff is λy : Int . y − 2 andx is 1.

Conversely, if we consider a well-typed term of the form

(〈Dyn→ Dyn⇐ Int → Int 〉pn
f) x

we can see that positive blameneveradheres to this cast, because
the type checker guarantees thatf returns a value of typeInt , and
the cast fromInt to Dyn always succeeds. However negative blame
may adhere, for instance iff is λy : Int . y + 1 andx is ⌈true⌉.

One contribution of this paper is that we will characterise those
situations in which we can ensure that negative or positive blame
cannot arise. Roughly speaking, if a cast is making a type more
precise it cannot give rise to negative blame, while if it is making a
type less precise it cannot give rise to positive blame.

2.4 Well-typed programs can’t be blamed

Consider a program that mixes typed and untyped code; it will
contain two sorts of casts.

One sort takes untyped code and gives it a type. Such a cast
makes types more precise, and so cannot give rise to negative
blame. For instance, the following code fails, blaming the cast with
the labelp.

let
x = ⌈true⌉

in let
f = λy : Int . y + 1

in let
h = 〈(Int → Int )→ Int ⇐ Dyn〉pn ⌈λg. g (g x)⌉

in
h f

Because the blame is positive, the fault lies with the untyped code
inside the cast.

The other sort takes typed code and makes it untyped. Such a
cast makes types less precise, and so cannot give rise to positive
blame. For instance, the following code fails, blamingn.

let
x = ⌈true⌉

in let
f = 〈Dyn⇐ Int → Int 〉pn (λy : Int . y + 1)

in let
h = ⌈λg. g (g x)⌉

in
⌈h f⌉

Because the blame is negative, the fault lies with the untyped code
outside the cast.

Both times the fault lies with the untyped code! This is of course
what we would expect, since typed code should contain no type
faults. The point is that positive and negative blame, and knowing
when each can arise, is the key to giving a simple proof of this
expected fact.

The same analysis generalizes to code containing refinement
types. For instance, the following code fails, blamingp′.

let
x = 〈Nat⇐ Int 〉pn 3

in let
f = 〈Nat→ Nat⇐ Int → Int 〉p

′n′

(λy : Int . y − 2)
in let

h = ⌈λg. g (g x)⌉
in
⌈h f⌉

Here both casts make the types more precise, so cannot give rise
to negative blame. Because the blame is positive, the fault lies with
the less refined code inside the cast.

We now formalise the above analysis.

3. Types, reduction, subtyping
We now begin the formal development of our work.

Findler and Felleisen (2002) includes a system with dependent
contracts, and Flanagan (2006) and Ou et al. (2004) similarly use
dependent function types. We follow Gronski and Flanagan (2007),
in using a simpler system without dependent function types.Re-
finement types include terms within types and thus constitute a re-
stricted form of dependent type. Extending to dependent function
types should be straightforward, but we leave this for future work.

We also follow Flanagan (2006) and Gronski and Flanagan
(2007) in restricting subset types to base types and treating base
types as a special case of subset types, which is technicallysimpler.
Gronski et al. (2006) permits subsets over arbitary types.

Compile-time type rules of our system are presented in Figure 1,
reduction rules in Figure 2, additional run-time type rulesin Fig-
ure 3, and rules for subtyping in Figure 4. We discuss each of these
in turn in the following four subsections.

3.1 Types and terms

Figure 1 presents the syntax of types and terms and the compile-
time type rules. The language is explicitly and statically typed, we
discuss how to embed untyped terms in Section 3.6.

We letS, T range over types, ands, t range over terms. A type
is either a function typeS → T ; a subset type{x : B | t}, where
B is a base type, andt is a term of typeBool with a free variable
x of typeB; or the dynamic typeDyn. In types we may writeB as
an abbreviation for{x : B | true}.

A term is either a variablex; a constantc; a conditional expres-
sion if s thent elseu; a lambda expressionλx : S. t; an application
s t; or a cast expression〈T ⇐ S〉pn s.

The type system is explained in terms of three related judge-
ments, which are presented in Figure 1. We writeΓ ⊢ t : T if term
t has typeT in environmentΓ, we writeΓ ⊢ T wf if type T is well
formed in environmentΓ, and we writeΓ wf if environmentΓ is
well formed. It is easy to check thatΓ ⊢ t : T impliesΓ ⊢ T wf,
andΓ ⊢ T wf impliesΓ wf.

We assume a denumerable set of constants. Every constantc is
assigned a unique type ty(c), which must be either a base typeB or
a function typeS → T . We assumeBool is a base type withtrue
andfalseas constants of typeBool; and thatInt is a base type with
0, 1, and so on, as constants of typeInt , and+ and− as constants
of typeInt → Int → Int , and possibly other constants. We assume
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Syntax

variables x, y
blame labels p, n
base types B ::= Bool | Int | · · ·
constants c ::= true | false | 0 | 1 | · · · | + | − | · · ·
types S, T ::= S → T | {x : B | t} | Dyn
terms s, t, u ::= x | c | if s then t elseu | λx : S. t | t s | 〈T ⇐ S〉pn s

Type rules Γ ⊢ t : T

Γ wf (x : T ) ∈ Γ

Γ ⊢ x : T

Γ wf T = ty(c)

Γ ⊢ c : T

Γ ⊢ s : Bool Γ ⊢ t : T Γ ⊢ u : T

Γ ⊢ (if s then t elseu) : T

Γ ⊢ S wf Γ ⊢ T wf Γ, x : S ⊢ t : T

Γ ⊢ (λx : S. t) : (S → T )

Γ ⊢ t : (S → T ) Γ ⊢ s : S

Γ ⊢ (t s) : T

Γ ⊢ s : S Γ ⊢ T wf S ∼ T

Γ ⊢ (〈T ⇐ S〉pn s) : T

Well-formed types Γ ⊢ T wf

Γ ⊢ S wf Γ ⊢ T wf

Γ ⊢ (S → T ) wf

Γ, x : B ⊢ t : Bool

Γ ⊢ {x : B | t} wf

Γ wf

Γ ⊢ Dyn wf

Well-formed context Γ wf

∅ wf

Γ wf Γ ⊢ T wf

Γ, x : T wf

Compatibility S ∼ T

S ∼ S′ T ∼ T ′

(S → T ) ∼ (S′ → T ′) {x : B | s} ∼ {x : B | t} S ∼ Dyn Dyn ∼ T

Figure 1. Type system

Syntax

terms s, t, u ::= · · · | cT | if s then cT else blamep
values v, w ::= c | cT | λx : S. t | 〈S′ → T ′ ⇐ S → T 〉pn v | 〈Dyn⇐ S〉pn v
results r ::= t | blamep
evaluation context E ::= [ ] | if E then t elseu | if E then cT else blamep | E t | v E | 〈T ⇐ S〉pn E

Reductions s −→ r

c v −→ [[c]](v)

(λx. t) v −→ t[x := v]

if true then t elseu −→ t

if false thent elseu −→ u

(〈S′ → T ′ ⇐ S → T 〉pn v) w −→ 〈T ′ ⇐ T 〉pn (v (〈S ⇐ S′〉np w))

〈T ⇐ S〉pn cS −→ if t[x := cB ] then cT else blamep, if S = {x : B | s}, T = {x : B | t}

〈T ⇐ Dyn〉p
′n′

(〈Dyn⇐ S〉pn v) −→ 〈T ⇐ S〉p
′n v, if S ∼ T

〈T ⇐ Dyn〉p
′n′

(〈Dyn⇐ S〉pn v) −→ blamep′, if S 6∼ T

if true then cT else blamep −→ cT

if false thencT else blamep −→ blamep

E[s] −→ E[t] if s −→ t

E[s] −→ blamep if s −→ blamep

Figure 2. Reduction
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Run-time type rules Γ ⊢ t : T

T = {x : B | t} ty(c) = B Γ ⊢ T wf
Γ |= true ⇒ t[x := c]

Γ ⊢ cT : T

Γ ⊢ s : Bool T = {x : B | t} ty(c) = B Γ ⊢ T wf
Γ |= s⇒ t[x := c]

Γ ⊢ (if s then cT else blamep) : T

Implication Γ |= s⇒ t

Γ ⊢ s : Bool Γ ⊢ t : Bool for all σ such thatΓ |= σ, if σ(s) −→∗ true thenσ(t) −→∗ true

Γ |= s⇒ t

Consistent substitution Γ |= σ

∅ |= ∅

Γ |= σ Γ ⊢ v : T

Γ, x : T |= (σ, x := v)

Figure 3. Run-time type rules

Subtype Γ ⊢ S <: T

Γ wf

Γ ⊢ Dyn <: Dyn

Γ ⊢ S′ <: S Γ ⊢ T <: T ′

Γ ⊢ (S → T ) <: (S′ → T ′)

Γ, x : B |= s⇒ t

Γ ⊢ {x : B | s} <: {x : B | t}

Positive subtype Γ ⊢ S <:+ T

Γ ⊢ S wf

Γ ⊢ S <:+ Dyn

Γ ⊢ S′ <:− S Γ ⊢ T <:+ T ′

Γ ⊢ (S → T ) <:+ (S′ → T ′)

Γ, x : B |= s⇒ t

Γ ⊢ {x : B | s} <:+ {x : B | t}

Negative subtype Γ ⊢ S <:− T

Γ ⊢ T wf

Γ ⊢ Dyn <:− T

Γ ⊢ S′ <:+ S Γ ⊢ T <:− T ′

Γ ⊢ (S → T ) <:− (S′ → T ′)

Γ ⊢ {x : B | s} wf Γ ⊢ {x : B | t} wf

Γ ⊢ {x : B | s} <:− {x : B | t}

Naive subtype Γ ⊢ S <:n T

Γ ⊢ S wf

Γ ⊢ S <:n Dyn

Γ ⊢ S <:n S′ Γ ⊢ T <:n T ′

Γ ⊢ (S → T ) <:n (S′ → T ′)

Γ, x : B |= s⇒ t

Γ ⊢ {x : B | s} <:n {x : B | t}

Figure 4. Subtypes and Implication

that the type assigned to each constant is well formed in the empty
context.

Conditional expressions and lambda abstraction are as normal.
So is application, save the additional constraintΓ ⊢ T wf is
required to ensure thatx does not appear free inT . The cast rule
is straightforward: it says that if terms has typeS andT is a well-
formed type compatible withS (where compatibility is defined
below), then〈T ⇐ S〉pn s has typeT .

We writeS ∼ T for thecompatibilityrelation, which holds if it
may be sensible to castS to T . Two function types are compatible
if their domains and ranges are compatible, two subset typesare
compatible if they have the same base type, andDyn is compatible
with every type.

Compatibility is reflexive and symmetric but not transitive. For
example,S ∼ Dyn andDyn ∼ T hold for any typesS andT , but
S ∼ T does not hold if one ofS or T is a function type and the
other is a subset type, or ifS andT are subset types over different
base types.

Our cast rule is inspired by the similar rules found for gradual
types and hybrid types. Gradual types introduce compatibility and
the idea that all types are compatible with the dynamic type,but
do not have subset types. Hybrid types include subset types,but

do not bother with compatibility. Neither system uses both positive
and negative blame labels, as we do here.

Hybrid types also have a subsumption rule: ifs has typeS, and
S is a subtype ofT , thens also has typeT . This greatly increases
the power of the type system. For instance, in hybrid types each
constant is assigned the singleton typec : {x : B | c = x}; and by
subtyping and subsumption it follows that each constant belongs
to every subset type{x : B | t} for which t[x := c] −→∗ true.
However, the price paid for this is that type checking for hybrid
types is undecidable, because the subtype relation is undecidable.

Since we do not have subsumption our type system over the
source language remains decidable. A pleasant consequenceof
omitting subsumption is that, as with gradual types, each term has
a unique type.

Proposition 1. (Unicity) If Γ ⊢ s : S andΓ ⊢ s : T thenS = T .

An even more pleasant consequence is that our type system for
the source language is decidable, unlike that for hybrid types.

Proposition 2. (Decidability) GivenΓ and t, it is decidable
whether there is aT such thatΓ ⊢ t : T .

Both propositions are easy inductions.
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However, there are some less pleasant consequences. (The tiger
is caged, not tamed!) Reduction may introduce terms that arenot
permitted in the source language and we need additional undecid-
able run-time rules to check the types of these terms. We explain
the details of how this works below.

3.2 Reductions

Figure 2 defines values and evaluation contexts, and presents the
rules for reduction.

We extend the syntax of terms with two new forms. Ifc is a
constant with ty(c) = B, andT is a subset type{x : B | t},
and we are in a context wheret[x ← c] −→∗ true, then we write
cT to stand for a constant of typeT . Subscripting a constant with
its type is necessary to ensure that each term has a unique type in
the presence of subset types. We writec as an abbreviation forcB ,
whereB is in turn an abbreviation for{x : B | true}. We also add
the term formif sthencT elseblamep. Note thatif sthentelseu and
if s thencT elseblamep are distinct terms; they cannot be confused
becaseblamep is not a legal term.

We letv, w range over values. A value is either a constant (sub-
scripted with its type), a lambda expression, a cast from function
type to function type, or a cast to a dynamic type.

A value of function type is either a lambda expressionλx : S. t
or a constant of function typec, or a cast applied to a function type,
〈S′ → T ′ ⇐ S → T 〉pn v, wherev has typeS → T .

A value of subset typeT = {x : B | t} is a constant of the
form cT , wheret[x := c] −→∗ true.

A value of dynamic typeDyn is a cast of the form〈Dyn ⇐
S〉pn v, wherev has typeS.

We let E range over evaluation contexts, which are standard.
The cast operation is strict, and must reduce the term being cast to
a value before the cast can be performed.

We writes −→ t to indicate that a single reduction step takes
term s to term t, and we writes −→∗ t for the reflexive and
transitive closure of reduction.

A value of function type is a lambda expression, a constant, or
a cast. If a constant is of function type, its meaning is specified by
the function[[c]]. For example,+ is a constant of typeInt → Int →
Int , with [[+]](3) = +3, where+3 is a constant of typeInt → Int
and [[+3]](4) = 7. We assume that the meaning of constants is
consistent with their type: if ty(c) = S → T and valuev has type
S then[[c]](v) has typeT .

The rules for applying a lambda expression and a constant are
standard. The rule for applying a cast is as follows.

(〈S′ → T ′ ⇐ S → T 〉pn v) w
−→
〈T ′ ⇐ T 〉pn (v (〈S ⇐ S′〉np w))

Herev : S → T andw : S′, and the whole term has typeT ′. The
cast is broken into two smaller casts, each in opposite directions,
reversing the blame labels on the argument cast.

A value of subset type is a labelled constant. The rule for casting
a subset type is as follows.

〈T ⇐ S〉pn cS

−→
if t[x := cB ] then cT else blamep

if S = {x : B | s}, T = {x : B | t}

The cast reduces to a conditional that tests the appropriatepredicate
and returns the constant if the predicate is true, or fails (blaming
the cast) if the predicate is false. The predicate may also fail to
terminate or cast blame, in which case the conditional will do the
same. On the left-hand side, the constantc is labelled with the
subset typeS, and on the right-hand side it is relabelled with the
base typeB to give it the right type in the predicate, and with
labelT if the predicate evaluates to true. If the predicate does not

evaluate to true, the right-hand side contains a subterm,cT , that is
ill-typed; therefore there is a special typing rule (discussed below)
which assigns a type to the right-hand side as a whole.

A value of dynamic type is a cast from a source type, which is
deconstructed by casting back to a target type. If the sourceand
target types are compatible, the two casts collapse to a single cast.

〈T ⇐ Dyn〉p
′n′

(〈Dyn⇐ S〉pn v)
−→

〈T ⇐ S〉p
′n v,

if S ∼ T

The cast fromS to Dyn makes the type less precise, and so should
never assign positive blame, and the cast fromDyn to T makes the
type more precise, and so should never assign negative blame, as
discussed in Section 2.3. Hence two of the blame labels can safely
be discarded, and the remaining two carry over to the new cast. This
is further discussed in Section 4.

If the source and target types are not compatible, then the term
fails, assigning positive blame to the cast to the target.

〈T ⇐ Dyn〉p
′n′

(〈Dyn⇐ S〉pn v)
−→

blamep′,
if S 6∼ T

Negative blame is only assigned to function arguments. Since the
cast from the source is making the type less precise it shouldnot
be assigned positive blame, hence the blame must go to the cast to
the target. This rule differs slightly from the rules used for gradual
typing (Siek and Taha 2006) or in Sage (Gronski et al. 2006), in that
it fails immediately if the types are not compatible. In those other
systems, incompatibility of function argument or range types is
discovered only if and when the function is applied. This difference
fell out naturally from our formulation; it is not clear whether it is
important, but it may have advantages in terms of catching errors
earlier.

The last two reduction rules give the compatible closure of
reduction, and ensure that computation fails immediately if a blame
term becomes the locus of reduction.

3.3 Run-time type rules

Figure 3 presents additional rules for typing terms at run-time, and
rules for implication and consistent substitution.

The two additional type rules ensure that the reduction of a
cast to a subset type remains well typed. How the rules work is
discussed in detail in the proof of the preservation property in
Section 3.5. Although the rules lookad hocand special purpose,
they are actually special cases of similar rules for implication and
subset types found in Gronski et al. (2006) and Ou et al. (2004).

The run-time type rules use an undecidable judgement that
determines when one predicate implies another;Γ |= s ⇒ t
holds if whenever terms −→∗ true then termt −→∗ true.
The definition quantifies over all substitutions consistentwith a
given environment, which are identified by a second undecidable
judgement;Γ |= σ holds if σ is a substitution that maps variable
x to a value of typeT for every pairx : T in Γ. Both of these
judgements are taken directly from (Flanagan 2006), and they are
the source of undecidability in his type system and in our run-time
type system. A similar entailment judgement is used by (Ou etal.
2004).

Hence decidability, Proposition 2, holds only for the type rules
of Figure 1, and fails when these are extended with the rules of
Figure 3. However, it is easy to check that unicity, Proposition 1,
holds for the type rules in Figure 1 even when extended by those of
Figure 3.
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The good news is that undecidability is not a show stopper. We
introduce the undecidable type rules precisely in order to prove
preservation and progress. It is straightforward to decidewhether
a source term is typed, and straightforward to perform successive
reduction steps on a term. Progress guarantees that we can per-
form these steps without getting stuck, preservation guarantees that
the resulting terms are well typed. There is never a need to decide
whether a term satisfies the undecidable rules, since this isguaran-
teed by preservation and progress!

3.4 Subtyping

We do not need subtyping to assign types to terms, but we will use
subtyping to characterise when a cast cannot give rise to blame.

Figure 4 presents four subtyping judgements: ordinary, positive,
negative, and naive.

The ordinary subtyping rules are similar to those found in Flana-
gan (2006) and Ou et al. (2004). We writeΓ ⊢ S <: T if S is a
subtype ofT in environmentΓ. Function subtyping is contravariant
in the domain and covariant in the argument. One subset type is a
subtype of another if the predicate of the first implies the predicate
of the second; this is determined using the implication judgement
defined in Figure 3. This means that subtyping is undecidable, but
this is not a hindrance, since our type system does not dependon
subtyping. Defining subtyping as undecidable is natural, and means
we can show more types are in the subtype relation, making ourre-
sults more powerful.

However, contrary to what one may expect, no type is a subtype
of Dyn other thanDyn itself. This differs from the rule of Gronski
et al. (2006), which takes every type to be a subtype ofDyn. In
our case, we only takeS to be a subtype ofT if a cast fromS to
T can never receive any blame. However, we have seen that a cast
that makes types less precise, such as a cast fromT to Dyn, may
receive negative blame (but not positive blame); thereforeit is not
appropriate to takeT as a subtype ofDyn (but it is appropriate to
takeT as a positive subtype ofDyn, as discussed below). The issues
are very similar to the treatment of the contractAny, as discussed
by Findler and Blume (2006).

In order to capture the situations in which positive and nega-
tive blame cannot occur, we factor the notion of subtype intotwo
subsidiary relations, positive subtyping, writtenΓ ⊢ S <:+ T and
negative subtyping, writtenΓ ⊢ S <:− T . Intuitively, these judge-
ments are defined to track the swapping of positive and negative
blame labels that occurs with function types. The two judgements
are defined in terms of each other, with the contravariant position
in the function typing rule reversing the roles. We haveS <:+ Dyn
andDyn <:− T for every typeS andT . The intuitive reason for
this is that casting toDyn can never give rise to positive blame,
and casting fromDyn can never give rise to negative blame. We
only check inclusion between subtypes for positive subtyping: we
haveS <:+ T for subset types only when the predicate of the first
implies the predicate of the second, but we haveS <:− T for all
subset types. The intuitive reason for this is that a failed cast to a
subset type can only give rise to positive blame, not negative blame.

The main results concerning positive and negative subtyping are
given in Section 4. We show thatS <: T if and only if S <:+ T
andS <:− T . We also show that ifS <:+ T then a cast fromS to
T cannot receive positive blame, and that ifS <:− T then a cast
from S to T cannot receive negative blame.

We also define a naive subtyping judgement,S <:n T , which
is covariant rather than contravariant for function arguments. Thus,
we haveInt → Nat <: Nat → Int but Nat → Nat <:n Int →
Int . The formal conceptS <:n T corresponds to the informal
concept ofS being more precise thanT . In Section 4 we show
that S <:n T if and only if S <:+ T andT <:− S. (Note the
reversal! Here we writeT <:− S where above we hadS <:− T .)

Hence ifS is more precise thanT we haveS <:+ T , and ifS is less
precise thanT we haveS <:− T . This result connects our informal
discussion relating precision and blame above to our formalresults
below.

As examples, note we have the following:

Int → Nat <: Nat→ Int
Int → Nat <:+ Nat→ Int
Int → Nat <:− Nat→ Int

Nat→ Nat <:n Int → Int
Nat→ Nat <:+ Int → Int
Int → Int <:− Nat→ Nat

The first line shows that subtyping is contravariant in its function
argument, and the fourth lines shows that naive subtyping isco-
variant. The first line is equivalent to the second and third,and the
fourth line is equivalent to the fifth and sixth.

3.5 Type safety

We have usual substitution and canonical forms lemmas, and
preservation and progress results.

Lemma 3. (Substitution) IfΓ ⊢ s : S andΓ, x : S ⊢ t : T , then
Γ ⊢ t[x := s] : T .

Lemma 4. (Canonical forms) Letv be a value that is well-typed
in the empty context. One of three cases applies.

• If ∅ ⊢ v : S → T then either

v = λx : S. t, with x : S ⊢ t : T , or
v = c, with ty(c) = S → T , or
v = 〈S → T ⇐ S′ → T ′〉pn v′ with ∅ ⊢ v′ : S′ → T ′.

• If ∅ ⊢ v : T with T = {x : B | t} thenv = cT with ty(c) = B
andt[x := cB ] −→∗ true.

• If ∅ ⊢ v : Dyn thenv = 〈Dyn⇐ T 〉pn v′ with ∅ ⊢ v′ : T .

Proposition 5. (Preservation) IfΓ ⊢ s : T and s −→ t then
Γ ⊢ t : T .

Proof. By case analysis over reductions. We consider only the
unusual cases.

• Consider the reduction

〈T ⇐ S〉pn cS

−→
if t[x := cB ] then cT else blamep,

if S = {x : B | s}, T = {x : B | t}

This preserves types because of the run-time typing rule for
conditionals.

• Consider the reduction

if true then cT else blamep −→ cT

If T = B then this is well typed in the usual way. IfT =
{x : B | t} with t 6= true, then the left-hand side can only be
well-typed by the run-time typing rule for conditionals,

Γ ⊢ s : Bool T = {x : B | t} ty(c) = B Γ ⊢ T wf
Γ |= s⇒ t[x := cB]

Γ ⊢ (if s then cT else blamep) : T,

and we must haves = true, in which case the right-hand side
is well typed by the run-time type rule for constants

T = {x : B | t} ty(c) = B Γ ⊢ T wf
Γ |= true ⇒ t[x := cB ]

Γ ⊢ cT : T.

Scheme and Functional Programming 2007 21



• Consider the reduction

if false thencT else blamep −→ blamep

This does not match the hypothesis, becauseblame p is not a
term.

Proposition 6. (Progress) IfΓ ⊢ s : T then either

• s is a value, or
• s −→ t for some termt, or
• s −→ blamep for some blame labelp.

Proof. By induction on the structure of the typing derivation. We
consider only the unusual cases.

• Consider the rule

T = {x : B | t} ty(c) = B Γ ⊢ T wf
Γ |= true ⇒ t[x := cB ]

Γ ⊢ cT : T

In this case, the typed term is a value.
• Consider the rule

Γ ⊢ s : Bool T = {x : B | t} ty(c) = B Γ ⊢ T wf
Γ |= s⇒ t[x := cB ]

Γ ⊢ (if s then cT else blamep) : T

SinceΓ ⊢ s : Bool, by induction there are three possibilities
for s.

s is a value, in which cases must betrue or false, and the
term reduces tocT or blamep.
s −→ s′ for somes′, and the term reduces to

if s
′ then cT else blamep.

s −→ blame p′, for somep′, and the term reduces to
blamep′.

In this case, simply knowing preservation and progress doesnot
guarantee a great deal, since it does not rule out reduction to a
blame term. However, Section 4 gives results that let us identify
circumstances where certain kinds of blame cannot arise.

3.6 Typed and untyped lambda calculus

We introduce a separate grammar for untyped lambda calculus, and
show how to map this into our typed lambda calculus. LetM, N
range over untyped terms.

M, N ::= x | k | λx.N |M N | ⌊t⌋

The term form⌊t⌋ is used to embed a typed term into an untyped
term; it may be applied only if the typed term has typeDyn.

An untyped term is well-formed if every variable appearing free
in it has typeDyn, and if every typed subterm has typeDyn. We
write Γ ⊢M wf to indicate thatM is well formed.

(x : Dyn) ∈ Γ

Γ ⊢ x wf

Γ, x : Dyn ⊢ N wf

Γ ⊢ (λx.N) wf

Γ ⊢M wf Γ ⊢ N wf

Γ ⊢ (M N) wf

Γ ⊢ t : Dyn

Γ ⊢ ⌊t⌋ wf

There is an simple mapping that takes untyped terms into typed
terms.

⌈x⌉ = x
⌈c⌉ = 〈Dyn⇐ ty(c)〉 c
⌈λx.N⌉ = 〈Dyn⇐ Dyn→ Dyn〉 (λx : Dyn. ⌈N⌉)
⌈M N⌉ = (〈Dyn→ Dyn⇐ Dyn〉 ⌈M⌉) ⌈N⌉
⌈⌊t⌋⌉ = t

Every well-formed untyped term maps to a typed term with type
Dyn.

Lemma 7. We haveΓ ⊢M wf if and only ifΓ ⊢ ⌈M⌉ : Dyn.

4. The Blame Theorem
Subtyping factors into positive and negative subtyping.

Lemma 8. We haveΓ ⊢ S <: T if and only ifΓ ⊢ S <:+ T and
Γ ⊢ S <:− T .

Proof. By induction on the derivation of the judgement.

• Dyn <: Dyn
iff (by definition)
S <:+ Dyn andDyn <:− T , with S = T = Dyn.

• S → T <: S′ → T ′

iff (by definition)
S′ <: S andT <: T ′

iff (by induction hypothesis)
S′ <:+ S andS′ <:− S andT <:+ T ′ andT <:− T ′

iff (by definition)
S → T <:+ S′ → T ′ andS → T <:− S′ → T ′.

• {x : B | s} <: {x : B | t}
iff (by definition)
∀x : B. s⇒ t
iff (by definition)
{x : B | s} <:+ {x : B | t} and{x : B | s} <:− {x : B | t}.

In the reverse direction there are nine cases to consider, but the six
not listed above (e.g.,Dyn <:+ S → T andS → T <:− Dyn)
trivially validate the implication.

Naive subtyping also factors into positive and negative subtyp-
ing, this time with the direction of negative subtyping reversed.
Hence, narrowing implies positive subtyping and widening implies
negative subtyping.

Lemma 9. We haveΓ ⊢ S <:n T if and only ifΓ ⊢ S <:+ T and
Γ ⊢ T <:− S.

Proof. By induction on the derivation of the judgement.

• S <:n Dyn
iff (by definition)
S <:+ Dyn andDyn <:− T with S = T .

• S → T <:n S′ → T ′

iff (by definition)
S <:n S′ andT <:n T ′

iff (by induction hypothesis)
S′ <:− S andS <:+ S′ andT ′ <:− T andT <:+ T ′

iff (by definition)
S → T <:+ S′ → T ′ andS′ → T ′ <:− S → T .

• {x : B | s} <:n {x : B | t}
iff (by definition)
∀x : B. s⇒ t
iff (by definition)
{x : B | s} <:+ {x : B | t} and{x : B | s} <:− {x : B | t}.

Again, in the reverse direction there are nine cases, but thesix not
listed above are trivial.

The following is the central result of this paper. Note that the
subterms of a term include any term in a refinement type in a cast.

Proposition 10. (Positive and negative blame) Lett be a well-
typed term andp be a blame label, and consider all subterms of
t containingp. If
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• every cast with labelp in positive position is a positive subtype,
〈T ⇐ S〉pn s hasS <:+ T , and

• every cast with labelp in negative position is a negative sub-
type,〈T ⇐ S〉np s hasS <:− T , and

thent 6−→∗ blamep.

Proof. By case analysis on the reduction. For each reduction that
contains a cast, we consider each label on the left-hand side, and
show that if the cast with that label satisfies the induction hypothe-
sis, so does every cast with that label on the right-hand side.

• Consider the reduction

〈S′ → T ′ ⇐ S → T 〉pn f v
−→
〈T ′ ⇐ T 〉pn (f (〈S ⇐ S′〉np v))

The labelp appears positively on the left. By hypothesis we
haveS → T <:+ S′ → T ′ for the term on the left, whence
definition of <:+ we haveS′ <:− S andT <:+ T ′, so the
hypothesis is maintained for the term on the right.

The labeln appears negatively on the left. By hypothesis we
haveS → T <:− S′ → T ′ for the term on the left, whence
definition of <:− we haveS′ <:+ S andT <:− T ′, so the
hypothesis is maintained for the term on the right. (These two
cases are identical, save for swappingp with n and<:+ with
<:−.)

• Consider the reduction

〈T ⇐ S〉pn cS

−→
if t[x := cB ] then cT else blamep,

if S = {x : B | s}, T = {x : B | t}

The labelp appears positively on the left. By hypothesis we
haveS <:+ T for the term on the left, whence by definition of
<:+ we haveΓ, x : B |= s ⇒ t. SincecS : S we know that
s[x :=cB ] −→∗ true, and it follows thatt[x :=cB ] −→∗ true,
so the right hand side reduces tocT and not toblamep.

The labeln appears negatively on the left and does not
appear on the right, so preserves the hypothesis trivially.More
correctly,n may appear independently int, but in that case the
hypothesis carries over independently.

• Consider the reduction

〈T ⇐ Dyn〉p
′n′

(〈Dyn⇐ S〉pn v)
−→

〈T ⇐ S〉p
′n v, if S ∼ T

The positive labelp appears in a cast fromS to Dyn, andS <:+

Dyn by definition; butp does not appear on the right hand side,
and so this reduction preserves the necessary invariant trivially.

Similarly, the negative labeln′ appears in a cast fromDyn to
T , andDyn <:− T by definition; butn′ does not appear on the
right hand side, and so this reduction preserves the necessary
invariant trivially.

The positive labelp′ appears in a cast fromDyn to T , and
Dyn <:+ T holds only if T is Dyn, in which case the cast
on the right is〈Dyn ⇐ S〉p

′n for which S <:+ Dyn holds
trivially.

Similarly, the negative labeln appears in a cast fromS to
Dyn, andS <:− Dyn holds only if S is Dyn, in which case
the cast on the right is〈T ⇐ Dyn〉p

′n for which Dyn <:− T ′

holds trivially.

• Consider the reduction

〈T ⇐ Dyn〉p
′n′

(〈Dyn⇐ S〉pn v)
−→

blamep′,
if S 6∼ T

Of the four subcases for the previous reduction, the argument
for the first two cases is the same here. In the remaining two
cases, the hypothesis is satisfied only ifS or T is Dyn, but that
cannot happen since we haveS 6∼ T , andDyn is compatible
with all types.

We have an immediate corollary.

Corollary 11. (Well-typed programs can’t be blamed) Lett be a
well-typed term with a subterm

〈T ⇐ S〉pn
s

containing the only occurrences ofp andn in t.

• If S <:+ T thent 6−→∗ blamep.
• If S <:− T thent 6−→∗ blamen.
• If S <: T thent 6−→∗ blamep andt 6−→∗ blamen

In particular, sinceS <:+ Dyn, any failure of a cast from a
well-typed term to a dynamically-typed context must be blamed on
the dynamically-typed context. And sinceDyn <:− T , any failure
of a cast from a dynamically-typed term to a well-typed context
must be blamed on the dynamically-typed term.

Further, consider a cast from a more precise type to a less
precise type, which we can capture using naive subtyping. Since
S <:n T implies S <:+ T , any failure of a cast from a more-
precisely-typed term to a less-precisely-typed context must be
blamed on the less-precisely-typed context. And sinceT <:n S
impliesS <:− T , any failure of a cast from a less-precisely-typed
term to a more-precisely-typed context must be blamed on theless-
precisely-typed term.

5. Applications
5.1 Siek and Taha

Siek and Taha (2006) describe an intermediate language similar to
the one described here: it is decidable, has compatibility but no
subtyping, and possesses unicity of type. The type we write asDyn
they write as ‘?’, and the cast we write as〈T ⇐ S〉pn s they write
as〈T 〉 s. (Given unicity of type, the typeS of terms in the cast is
redundant.)

Siek and Taha present two languages, a source language and
an intermediate language, and a compilation algorithm thattakes
the first into the second, inserting casts to convert to and from the
dynamic type.

They show that if the original program is well-typed in simply-
typed lambda calculus then it is well-typed in their system,and they
show that the only way an evaluation can go wrong is if some cast
fails. It follows that any intermediate program derived from a well-
typed source program with no dynamic types cannot get stuck.

But theirs is an all-or-nothing result. Our results show that if a
cast fails in a gradually typed program, then the blame must lie with
a fragment of the program that contains a dynamic type. Sincethe
purpose of gradual typing is to permit dynamic types in programs,
our result is a useful supplement to theirs.

5.2 Flanagan

Flanagan (2006) describes an intermediate language similar to the
language described here, except that it includes subsumption; hence
the type system is undecidable and does not have unicity of type.
The cast we write as〈T ⇐ S〉pn s he writes as〈S � T 〉 s.
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Flanagan presents two languages, a source language and an
intermediate language, and a compilation algorithm that takes the
first into the second, inserting casts to check inclusion between
types when a theorem prover fails to show that one is a subtype
of the other.

He shows that the compilation algorithm inserts only upcasts
when the original program is well-typed, and that in this case the
compiled program yields the same result as the original program.
It follows that an intermediate program that is derived froma well-
typed source program does not get stuck.

But his is an all-or-nothing result. Our results show that any
upcast in the intermediate language (that is, a cast fromS to T
whereS <: T ) does not get stuck, regardless of how it was derived,
and even if the intermediate program contains other casts that are
not upcasts. Since the purpose of hybrid types is to insert dynamic
checks when the theorem prover fails to prove a subtyping relation
(or to find a counterexample), our result is a useful supplement to
his.

5.3 Matthews and Findler

Matthews and Findler (2007) define cross-language casts between
Scheme and ML.

If eS is a term in Scheme, they write

τ
MSN (Gτ

+ eS)

for the corresponding term of typeτ in ML. HereτMSN indicates
conversion from Scheme to an ML term of typeτ with no checking
(hence the subscriptN ), while Gτ

+ is a “guard” in Scheme that
ensures the termeS satisfies the contract specified byτ , checking
only for instances of positive blame (hence the subscript+). The
corresponding conversion in our calculus is

〈T ⇐ Dyn〉pn
s

whereT corresponds toτ ands corresponds toeS . SinceDyn <:−

T for any typeT we know that negative blame cannot arise, which
explains why Matthews and Findler only check for positive blame.

Similarly, If eM is a term of typeτ in ML, they write

Gτ
− (SM

τ
N eM )

for the corresponding term in Scheme. HereSMτ
N indicates con-

version from an ML term of typeτ to a Scheme term with no check-
ing (hence the subscriptN ), whileGτ

− is a “guard” in Scheme that
ensures the termeM satisfies the contract specified byτ , checking
only for instances of negative blame (hence the subscript−). The
corresponding conversion in our calculus is

〈Dyn⇐ T 〉pn
t

whereT corresponds toτ andt corresponds toeM . SinceT <:+

Dyn for any typeT we know that positive blame cannot arise,
which explains why Matthews and Findler only check for negative
blame.

5.4 Gronski and Flanagan

Gronski and Flanagan (2007) relate the contract calculus ofFindler
and Felleisen (2002), modeled as a calculusλC , to the hybrid type
calculus of Flanagan (2006), modeled as a calculusλH .

The calculusλH of Gronski and Flanagan is similar to the
calculus of this paper, but one key difference is that cast terms have
only a single blame label.

Type S ::= {x : B | s} | S1 → S2

Term s ::= · · · | 〈S2 ⇐ S1〉
l s

They also introduce a calculusλC to model the calculusλCon of
Findler and Felleisen, that separates types from contracts.

Type T ::= B | T1 → T2

Contract c ::= contract B v | c1 7→ c2

Term t ::= · · · | tc,l,l′

Here a contract on a base typecontract B v takes a valuev which
must be a predicate of typeB → Bool, and a contract on a function
type c1 7→ c2 checks that its argument satisfies contractc1 and
its results satisfies contractc2. A term t may be annotated with a
contractc to be checked and labelsl andl′ for positive and negative
blame respectively. Whereas inλH casts change types (as in our
work), in λC contracts preserve types: if termt has typeT , then
the annotated termtc,l,l′ also has typeT .

They define a mappingφ from the types and terms ofλC to
those ofλH , and show that it preserves types and reductions. The
key to the mapping is that a term which enforces a contract maps
to apair of casts.

φ(tc,l,l′) = 〈base(S)⇐ S〉l
′

(〈S ⇐ base(S)〉l φ(t))
whereS = φc(c)

Hereφc maps a contract ofλC into a subset type ofλH , and base
erases a subset type ofλH to obtain a simple type ofλC .

φc(contract B v) = {x : B | φ(v) x}
φc(c1 7→ c2) = φc(c1)→ φc(c2)

base({x : B | s}) = {x : B | true}
base(S1 → S2) = base(S1)→ base(S2)

This result is easily understood in terms of our results, since
base(S) <:− S, so the rightmost cast can only allocate positive
blame, andS <:+ base(S), so the leftmost cast can only allocate
negative blame.

However, in generalλH contains casts of the form〈S2 ⇐ S1〉
ls

where neitherS1 <:− S2 nor S1 <:+ S2 holds, so we would
argue that their simplicity is misguided: if blame is to be allocated,
it should be divided into positive blame and negative blame.One
doesn’t want to know merely which cast has failed, but also whether
it is the contained term or the containing context which is toblame
for that failure.

6. Related work

6.1 Contracts

The notion of dynamic testing of specifications goes back at least
to Parnas (1972). A software engineering strategy based on such
checking, as well as the termcontract, was popularised by the
language Eiffel (Meyer 1988).

Findler and Felleisen (2002) introduced the use of higher-order
contracts with blame in functional programming.

Blume and McAllester (2006) describe some counterintuitive
properties of contracts. Findler and Blume (2006) uses projections
to model contracts, and suggests that the counterintuitiveaspects
of contracts may not be so counterintuitive after all. The issues
involved are similar to our discussion of the type Dynamic, and our
(perhaps counterintuitive) observation that one should not regard
all types as subtypes of the type Dynamic.

Meunier et al. (2006) is concerned with integrating static and
dynamic checking of contracts across modules, where the static
checking is implemented as a set-based constraint analysis. Tobin-
Hochstadt and Felleisen (2006) is also concerned with integrating
static and dynamic checking of contracts across modules, this time
using a more traditional type inference algorithm augmented to
insert contracts where appropriate. We believe the system presented

24 Scheme and Functional Programming 2007



here provides roughly the same power as these other systems,but
in a perhaps simpler way.

Gray et al. (2005) discuss the practice of using contract to
interface Java to Scheme, and Matthews and Findler (2007) discuss
the theory of using contracts to interface ML to Scheme. The
relation of the latter to our work is discussed in Section 5.3.

6.2 Gradual types

Integrating static and dynamic typing is not a new idea, and previ-
ous work includes the type dynamic of Abadi et al. (1991), thesoft
types of Wright and Cartwright (1997), the partial types of Thatte
(1988), and the Scheme-to-ML translation of Henglein and Rehof
(1995).

Siek and Taha (2006) introduced gradual types; its relationto
our work is described in Section 5.1.

Siek and Taha (2007) extends gradual typing to an object-
oriented language.

Findler and Felleisen (2002) observed that adding contracts to
a program can lose the benefits of tail-recursion, and the same
observation applies to gradual types and hybrid types, which both
apply a form of contracts. Herman et al. (2007) observes how
to restore a bounded-space implementation of tail recursion for
gradual types. This work exhibits a further connection between
gradual types and hybrid types, since it was performed by the
team working on hybrid types. Unfortunately, the techniques in this
paper apply only to simple types and type Dynamic, and it is not
yet clear how to extend them to the subset types found in hybrid
type systems.

6.3 Hybrid types

Subset types were first introduced in type theory by Nordstr¨om
and Petersson (1983) and Smith and Salvesen (1988). The formof
subset types used in hybrid types was influenced by the refinement
types of Freeman and Pfenning (1991) and the Dependent ML of
Xi and Pfenning (1999). An embedding of particular subset types
(non-empty lists, index ranges) into Haskell or O’Caml is described
by Kiselyov and chieh Shan (2006).

Flanagan (2006) introduced hybrid types; its relation to our
work is discussed in Section 5.2.

Gronski et al. (2006) describe Sage, a practical language based
on hybrid types. Both the theory of Sage and practical experience
with it is described. The theory of Sage extends hybrid typesin that
it adds a typeDynamic, similar to ourDyn. It also supports first-
class types, and permits the subtype construction to be applied to
any types (not just base types).

Knowles and Flanagan (2007) present a type reconstruction
algorithm for hybrid types that finds principle typings, analogous
to Hindley-Milner type reconstruction.

Gronski and Flanagan (2007) investigate the relationship be-
tween hybrid types and contracts; its relation to our work isdis-
cussed in Section 5.4.

Ou et al. (2004) present a language with dynamically-checked
dependent types, which is closely related to the work on hybrid
types. There is a compilation from a source language into an inter-
mediate language, very similar to that for hybrid types. Thesystem
explicitly labels which portions of the code are to be dynamically
checked and which are to be statically checked, similar to our use
here of the notation⌈M⌉ to embed untyped lambda calculus into
our typed calculus.

7. Conclusion
Organisms evolve by selection of the fittest, and programming lan-
guages evolve in the same way, but fittest may not mean best! Gould
(1994) repeatedly remarks on the fact that evolution leads to crea-
tures which reproduce well in a given environment, not necessarily

to creatures which are more sophisticated. In the developerenviron-
ment, anecdotal evidence suggests that familiarity, libraries, devel-
opment tools, user community, or other network effects may drown
out actual technical superiority when comparing languages.

Can we promote the evolution of programming languages by
some mechanism other than ‘survival of the fittest’? Integrating two
competing designs into a single language may provide a better basis
for comparing the strengths and weaknesses of each, factoring out
the biases listed above.
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