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Abstract
Eq hash tables, which support arbitrary objects as keys, distinguish
keys via pointer comparison and often employ hash functions that
utilize the address of the object. When compacting garbage collec-
tors move garbage collected objects, the addresses of such objects
may change, thus invalidating the hash function computation. A
common solution is to rehash all of the entries in an eq hash ta-
ble on the first access to the table after a collection. For a simple
stop-and-copy garbage collector, which moves every element of a
hash table, the rehashing overhead is proportional to the amount
of work done by the collector and so the cost of rehashing adds
only constant overhead. Generational copying collectors, however,
may move a few or none of the entries, so rehashing a large table
may cost considerably more than the garbage collection run that
caused the rehash. In other words, such rehashing is not “genera-
tion friendly.”

In this paper, we describe an efficient, generation-friendly
mechanism for implementing eq hash tables. The amount of work
required for rehashing is proportional to the work performed by the
collector as only objects that actually move during a collection are
rehashed. The collector supports eq hash tables and their variants
via a simple new type of object, a transport link cell, the handling
of which by the collector is nearly trivial.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—data structures; D.3.4
[Programming Languages]: Processors—memory management,
runtime environments

General Terms Languages

Keywords Scheme, hash tables, generational garbage collection,
generation-friendliness

1. Introduction
A hash table (Dumey 1956; Knuth 1998; Cormen et al. 2001)
associates a set of keys with a corresponding set of values. A
hash table employs a hashing function h that maps keys from the
universe of possible keys to a limited range of integer values, which
are used as indices into the table. Proper hashing depends on the
property that h is a function in the mathematical sense: for every
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k, h(k) must be the same every time h(k) is computed. Efficient
hashing (i.e., O(1) cost for lookup and update operations) relies on
the ability of the hashing function to produce uniformly distributed
values.

Hash tables can be characterized by the predicates used to dis-
tinguish keys. Eq hash tables, which support arbitrary objects as
keys, distinguish keys via pointer comparison, e.g,. Scheme’s eq?
predicate or C’s == operator. Because keys are distinguished by
their address in memory, the most effective eq hash functions are
based on those addresses, since the address of an object is different
from that of every other object and the addresses are already scat-
tered in memory. Hash functions based on objects’ addresses are
also the most efficient, since no traversal of the objects’ sub-parts is
required. Unfortunately, compacting garbage collectors, which are
used by many implementations, can change the address of an object
at any time—in particular, between the time it is entered into an eq
hash table and the time it is retrieved. An attempted retrieval based
on the new address is likely not to succeed. A common solution to
this problem is to rehash all of the entries in an eq hash tables on
the first access of the table since the last garbage collection run. For
simple copying collectors, which touch every element of a table in
shifting it from old to new space, the rehashing overhead is pro-
portional to the amount of work done by the collector and so adds
only constant overhead. Generational copying collectors, however,
may move none or only some of the entries. Rehashing a large table
may cost considerably more than the cost of the garbage collection
run that caused the rehash. In other words, such rehashing is not
“generation friendly.”

In this paper, we describe an efficient, generation-friendly
mechanism for implementing eq hash tables. The amount of work
required for rehashing objects that move during garbage collection
is at most proportional to the work performed by the collector. Con-
sequently, the cost of rehashing is O(1) amortized over the lifetime
of the hash table. Furthermore, the mechanism adds no overhead
to programs that do not make use of hash tables. In addition, none
of the common hash-table operations require synchronization with
the collector, i.e., disabling the collector during the operation. The
mechanism is also flexible in that it allows eq hash tables, and
variants such as weak eq hash tables or hash tables based only
partly on object address, to be created by the user. The collector
supports eq hash tables and their variants via a simple new type
of object, the transport link cell, which are inspired by transport
guardians (Dybvig et al. 1993). Transport link cells are simple to
implement efficiently within the collector and thus contribute al-
most nothing to the complexity of the implementation or the cost
of a collection run.

The rest of this paper is organized as follows: Section 2 gives
brief background information about hash tables and compacting
generational garbage collection techniques. Section 3 describes
three existing implementation techniques of hash table that are
found in practice and how each fails to meet our performance cri-
teria. Section 4 presents a prototype solution of implementing eq
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usage    : int
table    : ptr
length   : int

key  : ptr
val  : ptr
next : ptr

bucketsdescriptor

chain link

Figure 1. Chained Hash Tables: A hash table is represented as a
descriptor holding (a) a counter indicating the number of key/value
pairs stored in the table, (b) a pointer to a vector of buckets, and (c)
the number of buckets in the vector. A (possibly empty) linked list
of key/value pairs is stored in each bucket.

hash tables using transport guardians. Section 5 presents our final
solution based on transport link cells and describes their implemen-
tation within the collector. Section 6 analyzes the performance of
our implementation. To illustrate the flexibility of our approach,
Section 7 presents some possible user-space extensions to the ba-
sic hash-table mechanism that employ the same transport link cell
mechanism. Finally, section 8 presents our conclusions and discus-
sions future research directions.

2. Background
This section gives a brief overview of chained hash tables, gen-
erational garbage collection, and the problems associated with the
interaction of the two subsystems. Readers who are familiar with
these topics can skip this section without loss of continuity.

2.1 Chained hash tables
A chained hash table (see figure 1) is a data structure with the
following components:

• Hash table descriptor: The descriptor contains information
about the hash table such as the number of elements contained
in the table, the number of buckets in the buckets array, a pointer
to the buckets array, and the maximum capacity of the table.

• Buckets Array: A contiguous area of memory where every ele-
ment of the array (a bucket) is a pointer to a chain of links.

• Chain Links: A link in the chain is composed of a key, a value
associated with the key, and a pointer to the next link in the
chain.

In addition to the data structures, a hash table uses a hash
function, h, that maps a hash key, k, to an integer index i =
h(k). The hash function computes a hash value either based on the
content of the key (e.g., symbol tables use the content of the input
string to compute the hash value), or based on the address of the
key (e.g., eq hash tables mapping arbitrary objects to values based
on the identity of the key objects).

The set of required operations on hash tables varies among pro-
gramming languages and their implementations. At a minimum, a
hash table implementation must supports the following operations:

• (hash-table-put! ht k v): associates the value v with the
key k in the hash table ht.

• (hash-table-get ht k d): retrieves the value associated
with the key k in the hash table ht. If k does not exist in the
table, the default value d is returned.

• (hash-table-delete ht k): removes any association of the
key k in the hash table ht.

To find the value associated with a key in a hash table, the index
of the bucket containing the key is obtained by computing an index
idx = h(k) mod length(ht). The chain stored at that bucket idx
is then searched sequentially by comparing the key of each chain
link to the key requested.

Many programming languages (e.g., Common LISP (American
National Standards Institute and Information Technology Industry
Council 1996), Perl (Wall et al. 1996), Python (Rossum 1992),
Scheme (Sperber et al. 2007), etc.) require additional operations
on hash tables such as:

• (hash-table-member? ht k): returns a boolean value indi-
cating whether the hash table ht contains a binding for the key
k.

• (hash-table-keys ht): returns the list of keys stored in the
hash table.

• (hash-table-map ht p): applies the procedure p to every
key/value pair in the hash table.

2.2 Compacting garbage collectors
Implementations of programming languages that support automatic
memory management often use garbage collection to reclaim un-
used heap space (Wilson 1992). A large contiguous block of mem-
ory is pre-allocated to serve as an allocation heap from which indi-
vidual objects are allocated. Exhaustion of the allocation area trig-
gers the garbage collection routine which moves all live objects
(e.g., objects that are reachable through the transitive closure of the
program roots including the registers and the stack) to another area
in memory, and thus freeing the old allocation area.

Generational garbage collectors separate heap objects into gen-
erations based on their age (Lieberman and Hewitt 1983; Sansom
and Jones 1993; Appel 1989; Dybvig et al. 1994). Memory is di-
vided into a (typically fixed) number of generations. Objects in
younger generations are collected more frequently than those in
older generations. New objects are allocated sequentially into the
youngest generation (a.k.a. the nursery). Once the nursery is ex-
hausted, the garbage collector is invoked to clean up the nursery
by moving the surviving young objects to the first generation. De-
pending on some heuristics, the garbage collection run may clean
up other generations in addition to the nursery area. Objects in gen-
eration i that survive a collection are moved to the next generation
i + 1. Objects that survive the last generation are either tenured
(i.e., moved to a permanent storage area and never collected again)
or are moved back into the last generation.

2.3 The interaction between eq hash tables and compacting
garbage collection

If the address of a key is used in part by the hashing function to
obtain the index of the bucket in which the key is stored, and if
the garbage collector changes the address of the object in memory,
then lookup operations on the hash table will incorrectly fail to find
some keys that do reside in the table. This is obviously a problem
that implementations of eq hash tables must address.
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3. Common Solutions
Implementations of programming languages that require support-
ing eq hash tables have adopted different strategies for coping with
the interaction problem between hash tables and garbage collectors.
This section summarizes some of the known solutions.

3.1 Extending all heap objects with a hash value field
One way of making hash tables work in garbage collected envi-
ronments is by using a hash value that is different from the chang-
ing address of the object. With this technique, all heap objects are
padded with an additional memory cell that holds a constant integer
hash value (Agesen 1999).

Augmenting all memory objects with an additional field is easy
to understand and to implement. Unfortunately, this solution makes
the construction and collection of every object in the system more
expensive. Languages whose paradigm rely on constructing many
small temporary data structures (such as cons pairs in Lisp and
Scheme, tuples in ML, closures, small vectors, etc.) suffer the most
with this technique since most objects are not used as hash table
keys.

Some systems attempt to optimize the memory requirement
by adding a hash value field on-demand (Agesen 1999). Unfor-
tunately, such optimization is not always possible. For example,
many optimizing compilers for Scheme and Common Lisp repre-
sent cons pairs as a tagged pointer to a two-word object holding
the car and cdr fields of the pair. With such a tight representation,
objects do not contain an extensible field to hold the hash value.

3.2 Rehashing as part of garbage collection
Another technique is to rehash the contents of each hash table
during garbage collection (Hanson 2005). This technique does not
penalize programs that do not use hash tables. Because the hash
table data structures are owned by the garbage collector, however,
operations that access hash tables must generally be performed
with the garbage collector disabled, and the code to disable the
collector may add considerable overhead to each operation. This
also has the effect of complicating the task of the garbage collector
in addition to prohibiting implementing hash tables as a user-level
feature. Also, the cost of rehashing all hash tables on every garbage
collection can dominate the cost of the garbage collection run. This
is most noticeable on generational garbage collectors where minor
collection runs are frequent and their cost is small.

3.3 Rehashing when lookup fails
An improvement over the second strategy is to delay rehashing until
it is needed (Haible et al.; Dybvig 2007). If the lookup operation
of an element fails, and a garbage collection occurred since the
last rehash, the entire table is rehashed and lookup is retried on the
newly rearranged table. The advantage of this approach is that not
all hash tables are rehashed on every collection. Instead, only the
hash tables that are used after collection are rehashed, and only if a
lookup operation fails.

This technique performs well for applications in which oper-
ations rarely fail, e.g., a database from a finite domain where all
lookup operations are performed on older-generation (and thus
largely stationary) keys in the database. This approach also benefits
hash tables that lay dormant for extended periods of time. There
are, however, no guarantees on performance with this technique,
since any failed lookup can trigger expensive rehashing.

This problem is recognized by implementors, as illustrated by
the following excerpt from the implementation notes for GNU
CLISP (Haible et al.):

EXT:FASTHASH-EQ: This uses the fastest possible hash
function. Its drawback is that its hash codes become invalid

at every garbage-collection (except if all keys are immedi-
ate objects), thus requiring a reorganization of the hash table
at the first access after each garbage-collection. Especially
when generational garbage-collection is used, which leads
to frequent small garbage-collections, large hash table with
this test can lead to scalability problems.

4. Prototype Solution
There are two main problems with the solutions presented in Sec-
tion 3. The performance of systems employing a hash value field
suffers because every object occupies more memory, and thus the
cost of allocation and garbage collection are increased. The perfor-
mance of systems employing the rehashing strategy suffer because
rehashing operations are performed on entire hash tables, even if
only few or no keys are moved during garbage collection. To ob-
tain an efficient, generation-friendly solution, the system must re-
hash only the keys that move during garbage collection. A key that
does not move must not be rehashed.

Our prototype solution uses transport guardians (Dybvig et al.
1993), a mechanism by which the garbage collector can commu-
nicate with the hash table implementation the set of objects that
have moved during collection. In this section, we first review trans-
port guardians then show how they can be put to use to derive our
implementation of hash tables.

4.1 Guardians
Guardians (Dybvig et al. 1993) allow programs to determine when
the last reference to an object has been dropped and “resurrect”
the object, often to perform some cleanup action (e.g., flushing
and closing open file handles) before the storage associated with
the object is finally released. From the programmer’s perspective,
a guardian is a procedure. If passed one argument, the guardian
registers the object for resurrection; if passed no arguments, the
guardian returns a resurrected object, if one has been resurrected,
otherwise #f. Any number of guardians may be created, and each
guardian may guard any number of objects. New guardians are
created using make-guardian.

The simple example below illustrates the mechanism.

(let ([G (make-guardian)])
(G (cons ’a ’()))
(let loop ()
(cons ’b ’())
(or (G) (loop))))

The example creates a new guardian, which it calls G, creates a new
one-element list (a), and registers the list with the guardian. It then
loops, allocating and discarding a new one-element list on each
iteration. Assuming that the inner cons is not eliminated as useless
code by the compiler, a collection is eventually required to reclaim
the storage for the discarded lists. At this point, the original list (a)
is recognized as no longer accessible except through the guardian
and is thus resurrected. The next call to G returns the resurrected
list and the loop terminates.

Guardians are handled in a cooperative manner by the collec-
tor and mutator. (The mutator is the code that runs outside of the
collector, creating and releasing objects while the collector cleans
up after it.) The two subsystems interact through a queue encapsu-
lated within the guardian. When an otherwise inaccessible guarded
object is found by the collector, it enqueues the object, and when
the guardian is invoked without arguments by the mutator, the first
object on the queue, if any, is dequeued.

The queue associated with each guardian is represented as a
tconc, or tail concatenation object (Teitelman 1974). A tconc is
a pair whose car points to the first pair of a nonempty list and
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whose cdr points to the last pair of that list. Elements are enqueued
by extending the list destructively through the last-pair pointer and
dequeued through the first-pair pointer. The queue is empty when
both pointers point to the same pair.

The procedure make-guardian allocates a new tconc and re-
turns a procedure that encapsulates the tconc. When the guardian
is passed an object to guard, it hands it off to the collector, which
adds a pointer to it along with the guardian’s tconc to an internal
(per generation) list of guarded objects. After a given generation is
collected, the collector scans that generation’s list of guarded ob-
jects for any that are otherwise inaccessible, promotes them to the
next generation if necessary, and enqueues each via its associated
tconc. When the guardian is called without arguments, it compares
the first-pair and last-pair pointers of the tconc and, if different,
dequeues and returns one object. (See Figure 2.)

0 0

(A)

0 0

(B)

0 0

(C)

0 0

(D)

0 0

(E)

Figure 2. The lifetime of a guardian: (A) A guardian is a simple
tconc pair with its head and tail pointing to the same object. (B,
C) The garbage collector adds objects that have no strong pointers
to the tail of the tconc. (D, E) The mutator pops the rescued
elements from the head of the tconc. No synchronization between
the mutator and the collector is needed since the mutator modifies
the head of the tconc while the collector modifies its tail.

4.2 Conservative Transport Guardians
Transport guardians are a variant of guardians through which the
garbage collector communicates to the mutator that an object’s
address has changed.

A conservative variant of transport guardians can be imple-
mented on top of the general guardians using a simple trick (Dy-
bvig et al. 1993). By constructing a new indirection object that is
guaranteed to be younger than the guarded object, and by drop-
ping the reference to the new object immediately after registering it
with the guardian, we are guaranteed that whenever the collector is
triggered, our new object will be found dead and is therefore resur-
rected and added to the tconc. This indicates that our initial object
was potentially moved during the garbage run. Whenever the in-
direction object is popped from the tconc, it is registered again to
monitor future collection runs. As the indirection object ages in the
system, it eventually resides in the same generation as the origi-
nal monitored object. Ideally, the the object should hold onto the
guarded object via a weak pointer so that it does not cause other-
wise inaccessible objects to be retained unnecessarily.

4.3 Combining Hash Tables and Transport Guardians
Transport guardians provide the means to detect which objects
have moved, and therefore their addresses have changed, due to
garbage collection. In order to utilize the guardians, we modify the
representation of chained hash tables in two ways:

key  : ptr
val  : ptr
next : ptr

guardian : fun
table    : ptr
usage    : int

bucketsdescriptor

chain link

0
1

2
3

5
4

8
7

6

9

31
30

...

Figure 3. Modified Hash Tables: Each hash table contains a
pointer to a transport guardian that keeps track of which keys have
potentially moved during collection. Additionally, the buckets are
terminated by an integer value denoting the index of the bucket in
the table.

1. A transport guardian is constructed with every hash table to
keep track of which hashed objects move during garbage col-
lection.

2. The index of every chain is initially stored at the bucket. There-
fore, the tail of every chain is the index of the chain in the table.

Figure 3 shows our modified hash table structure.

4.4 Adding elements to a hash table
Adding a key/value pair to a hash table involves the following steps:
First, a new link is constructed to hold the key and value. Next, the
link is registered with the hash table’s transport guardian. Finally,
the address of the key is obtained and is used to compute the index
of the chain in which the object is stored.

(define (hash-table-add ht key val)
(let ([link (make-link key val)])
((ht-transport-guardian ht) link)
(insert-link ht link)))

(define (insert-link ht link)
(let ([key (key-of link)])
(let ([idx (mod (int-hash (address-of key))

(length-of ht))])
(set-next-of link (hash-table-ref ht idx))
(set-hash-table ht idx link))))

Two points are worth mentioning here. First, we are registering
the link, rather than the key, with the transport guardian. This is
because we need to obtain the link, and not the key, when the
address of the key changes. If a general-purpose transport guardian
is used, it will notify us when the link is moved. As long as the
link is constructed after the key, this usage yields a correct, but
sometimes conservative behavior. The guardian may signal some
false positives when the link alone is moved until the link gradually
ages and becomes as old as the key it holds. Section 5 shows how
to implement more efficient transport guardians that do not signal
such false positives.

Second, the address of the key must be obtained after the
guardian is installed. Otherwise, the garbage collector may be trig-
gered between the time of obtaining the address of the key and the
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time a guardian is installed, resulting in incorrect hashing using an
outdated address.

4.5 Link Lookup
A link lookup operation on a hash table is a procedure that takes a
hash table and returns the link in which the key is stored, or false if
the key is not in the table. Link lookup is useful for implementing
both lookup and update operations.

When a key is added to the hash table, the link is registered with
the transport guardian and the address of the key is used to compute
the index. At the time of lookup, either the garbage collector has not
moved the key, in which case computing the index during lookup
will yield the same index that was used during insertion; or the
garbage collector has moved the key, in which case the transport
guardian would have captured the event and will return the links to
all moved objects.

We can therefore optimistically assume that the key was not
moved and perform a direct lookup on the key, ignoring interaction
from garbage collection. Only if that lookup fails do we check with
the guardian.

(define (link-lookup ht key)
(or (direct-lookup ht key)

(rehash-lookup ht key)))

The direct-lookup operation involves computing the hash value
of the key and traversing the chain at the computed index. The
rehash-lookup operation invokes the guardian of the hash table,
and if it returns a moved link, it rehashes that link. If the popped
link contains the required key, it is returned and rehashing is termi-
nated. Otherwise, the rehashing operation is retried until the key is
found or all the moved objects are rehashed.

(define (rehash-lookup ht key)
(let ([link ((transport-guardian-of ht))])
(and link

(begin
(delete-link ht link)
(insert-link ht link)
(if (eq? (key-of link) key)

link
(rehash-lookup ht key))))))

Unlinking a chain link is performed by first obtaining the index of
the bucket in which the link resides. The index of the bucket cannot
be computed from the key since the address of the key no longer
matches the address used initially to store the link. What we do
instead is traverse the chain to the end to obtain the index we stored
originally in the table.

(define (index-of x)
(if (fixnum? x)

x
(index-of (next-of x))))

Once we obtain the index of the chain, we traverse the chain from
the front and modify the pointer to the link to point to the next link
in the chain.

(define (delete-link ht link)
(let ([idx (index-of link)])
(let ([chain (hash-table-ref ht idx)])
(if (eq? chain link)

(set-hash-table! ht idx (next-of link))
(delete-loop chain link)))))

(define (delete-loop chain link)
(let ([x (next-of chain)])
(if (eq? x link)

(set-next-of chain (next-of link))
(delete-loop x link))))

4.6 Key Lookup and Update
Once we have a way of looking up the link in which a particular
key resides in the hash table, implementing hash-table-get and
hash-table-put! are straightforward as shown in the following
code snippets.

(define (hash-table-get ht key default)
(let ([x (lookup-link ht key)])
(if x

(value-of x)
default)))

(define (hash-table-put! ht key val)
(let ([x (lookup-link ht key)])
(if x

(set-value-of x val)
(hash-table-add ht key val))))

5. Transport Link Cells
The preceding section demonstrated that transport guardians,
which can be implemented on top of general guardians, allow the
construction of generation-friendly eq hash tables. The mechanism
does, however, have two drawbacks. First, it is conservative in the
sense that some objects may be reported as having moved when in
fact they have not, as described in the preceding section. Second,
the use of guardians requires that the guarded objects be regis-
tered with the garbage collector, i.e., entered into a list of guarded
objects. This in turn forces the collector to explicitly manage the
objects even if the hash table employing the guardian has been
dropped by the program, essentially adding undesirable dealloca-
tion overhead.

In this section, we describe our final solution based on trans-
port link cells, a specialized variant of transport guardians. Trans-
port link cells eliminate both drawbacks with the use of transport
guardians. By providing accurate information about when objects
are moved by the collector, no rehashing occurs for old objects that
are not moved during a collection. Second, transport link cells need
not be registered with the garbage collector so that when a cell is
dropped, it incurs no further collection overhead. If links are re-
claimed before collection, as is often the case for short-lived hash
tables, they are never touched by the collector and are reclaimed
for free.

Transport link cells, or TLCs, are used by the mutator as the
chain links of the hash table buckets as illustrated in figure 3. TLCs
are also used by the collector as a way of linking the guarded key
and a guardian tconc. A TLC is an object with four fields:

• key: The key field serves two purposes: (1) It is used by the
lookup and update operation of hash table for comparison, and
(2) it is also used by the garbage collector for tracking address
changes.

• value: The value associated with the key.
• tconc: This fields contains a pointer to a tconc into which the

TLC is added once the key is moved. A null value means that
the TLC was already added to the tconc and that no further
action is required.

• next: A pointer to the next TLC in the bucket, or an integer that
marks the index of the bucket in the hash table.

Scheme and Functional Programming 2007 31



0 0...

active 
transporters

tconc:

...

inactive 
transporters

(A)

...

active 
transporters

tconc:

...

inactive 
transporters

0 0

(B)

...

active 
transporters

tconc:

...

inactive 
transporters

0 0

(C)

Figure 4. The lifetime of a transport guardian: (A) A transport
guardians is constructed to point to a tconc and an object. (B)
When the object is moved during garbage collection, its guardians
are deactivated and appended to the tconcs they point to. (C) The
program can then pop the inactive guardians from the tconc in order
to perform operations on the moved objects.

A TLC is allocated in the same manner as a pair or other small
heap-allocated object, with the tconc and key fields initialized dur-
ing allocation, i.e., not mutated after allocation. The address of the
key is determined only after the TLC is constructed; otherwise, the
address might change if the collector is triggered between the time
the address is extracted and the time the TLC is constructed. The
key field is never mutated. Thus, it never points to a younger ob-
ject, allowing the generational collector to ignore the key field when
tracking pointers from older to younger generations.

When the garbage collector forwards a TLC that contains (1) a
non-null tconc field and (2) a key whose location has changed, it
(a) adds the TLC to the tail of the tconc and (b) sets the tconc field
to null in order to prevent further tracking. This minor chore is all
the collector must do for TLCs beyond what it must do for other
types of objects.

6. Analysis
A generation-friendly implementation of eq hash tables must pos-
sess two properties:

1. The cost of collecting a generation must be proportional to the
size of live objects in that generations.

2. The cost of rehashing in the mutator must not exceed the
amount of work performed by the collector to move the re-
hashed keys.

The first condition is true in our implementation of eq hash tables
that utilizes TLCs because the TLC objects are allocated, traversed,
and relocated in a manner similar to that of any other data structure
in the system with the exception that it performs one additional
check to see if the key of the TLC is moved during the collection or
not. If the key is moved, a pair is constructed and appended to the
tconc. The cost of the extra check and the conditional construction
of these pairs is O(1) per collected TLC and therefore adds only
(small) constant overhead to the cost of collection.

The second condition is also true in our implementation. First,
because we only rehash the TLCs that are popped from the hash
table’s tconc, we are guaranteed to rehash only the TLCs whose
keys have actually moved during collection. Second, the cost of
rehashing a single TLC is O(1) because popping it from the tconc,
deleting it from its original bucket and adding it to the new bucket
are all constant time operations. This is based on the assumption
that the buckets of any hash tables are of small constant size (the
quality of the hashing function is in question should this not be the
case).

Empirical Results
We have implemented generation-friendly eq hash tables based
both on conservative transport guardians (Section 4) and on TLCs
(Section 5), as well as eq hash tables that rehash on the first failed
access after a collection (Section 3.3), in both Chez Scheme (Dyb-
vig 2007) and Ikarus Scheme (Ghuloum 2007). Both Scheme sys-
tems employ generational garbage collectors.

We compared the three hash table mechanisms in each Scheme
systems to determine how each behaves when hash tables of various
sizes are constructed, collected, and both collected and accessed.
The results for Chez Scheme are described below; the Ikarus results
were similar.

The comparisons were performed on a dual-processor 2.6Ghz
AMD Opteron system with 4GB of RAM. Each of the tests were
run five times and the minimum times of each run was used for
comparison.

Table Construction Times: We first measure the cost of con-
structing hash tables of various sizes. For each table size and hash-
table mechanism, we construct a list of the desired size, then mea-
sures the time required to insert every pair of that list into a hash
table.

The results of this benchmark are shown in Figure 5. The con-
servative transport-guardian mechanism (labeled CTG) is slightly
slower than the transport-link-cell mechanism (TLC) for all sizes
because of the additional storage overhead for the transport guardians.
The rehash-on-failed-lookup mechanism (ROFL) is actually faster
at smaller table sizes because the pairs used for the hash table
buckets are smaller than the transport-link cells. It suffers at larger
table sizes due to the cost of rehashing. As the table grows, garbage
collections are triggered. On the first insertion of a new element
after a collection, all elements of the table are rehashed. While we
took care to make sure that the rehashing procedure performs no
new allocation (by reusing existing bucket cells), this rehashing is
significantly more costly for ROFL because it rehashes all objects
rather than just those in younger generations. Although not obvious
from the logarithmic table, ROFL takes approximately seven times
longer than TLC to construct a table with 10 million elements table.

Garbage Collection: Next, we measure the effect a fully popu-
lated hash table has on garbage collection times. To do this, we
construct a hash table as before, keep a pointer to the table in order
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Figure 5. Hash Table Construction. Hash table sizes are shown
on the horizontal axis, and table-construction times on the vertical
axis. Both axes are in scaled logarithmically.

to prevent it from being reclaimed, trigger the garbage collector
1000 times, and measure the amount of time required versus the
amount of time required to collect the base system’s heap 1000
times.

The results of this benchmark are shown in Figure 6. As we
would expect, collection times for each mechanism increase lin-
early with table size. Collection is faster for the ROFL mechanism
than for TLC and faster for TLC than for CTG due to the relative
sizes of the internal data structures. None of the mechanisms have
to rehash elements since there are no accesses to the hash table.

Rehashing Times Next, we measure the effects of rehashing after
collections, independent of table allocation. As in the previous
benchmark, we construct a fully populated hash table in advance
and trigger the garbage collector 1000 times. The difference here
is that we attempt to access a (non-existent) key from the table
after every garbage collection run. This forces ROFL to rehash all
elements, while TLC rehashes only those that have actually moved,
and CTG rehashes those that it’s mechanism cannot prove did not
move.

The results of this benchmark are shown in Figure 7. TLC again
has a small advantage over CTG, and both have a sizable advantage
over ROFL. This advantage is even more clearly illustrated by the
table below, which gives the percentage increase in run times for
this third benchmark (collection followed by a failed access) over
the second benchmark (collection only).

TLC CTG ROFL
10,000 82% 81% 7,938%

100,000 59% 79% 8,319%
1,000,000 52% 73% 8,046%

10,000,000 43% 50% 8,803%

While the rehashing costs are close to collection costs for TLC and
CTG, rehashing costs for ROFL are much larger.
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Figure 6. Garbage Collection Times. Hash table sizes are shown
on the horizontal axis and the time required to perform one thou-
sand garbage collection runs on the vertical axis. Both axes are
scaled logarithmically.

Our results clearly establish the superiority of the transport-
link cell and conservative transport guardian mechanisms over the
rehash-on-failed-access mechanism for large hash tables. The ad-
vantage of transport-link cells over conservative transport guardians
is less extreme, but still significant. The latter runs 1.8–2.8 times
slower than the former on the allocation test, 1.1–1.2 times slower
on the collection test, and 1.2–1.4 times slower on the collection
and access test.

7. Extensions
To illustrate the generality of transport link cells (TLCs), we de-
scribe three extensions to eq hash tables that may be implemented
using TLCs. Each can be implemented as a user level library, i.e.,
without modifying the underlying run-time architecture or garbage
collector.

7.1 Weak Hash Tables
Weak hash tables are a variant of hash tables in which the keys
are weakly held by the collector. Objects that are reachable only
via weak pointers can be reclaimed and the weak pointers to these
objects are replaced by a special broken weak pointer object. Weak
hash tables enable reclaiming key/value pairs when the key is no
longer reachable through any strong pointers.

Some programming languages or implementations support
weak boxes (a box that weakly holds a single value) or weak pairs
(a pair whose head is weakly held). In such systems, adding sup-
port for weak hash tables can be achieved simply by making the
key field of the TLC point to a weak pointer to the actual key. As
long as the weak box never resides in an older generation than the
key it points to, the generation tracking by the TLC is sufficient to
guarantee that no key is moved in memory without its weak box
also moving in memory.

Another approach to implementing weak hash tables is by mak-
ing the TLCs’ key field a weak pointer by default, making every
hash table in the system a weak hash table. Implementing strong
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Figure 7. Garbage Collection and Access. Hash table sizes are
shown on the horizontal axis and, on the vertical axis, the time
required to perform one thousand garbage collection runs while
accessing the hash table after every collection. Both axes are scaled
logarithmically.

hash tables in terms of weak hash tables is a simple matter of adding
a separate strong pointer to the key. This can be achieved by mak-
ing the value field point to a tuple containing both the key and value
pair.

7.2 Eqv Hash Tables
Some programming languages (e.g., Scheme (Sperber et al. 2007))
require an Eqv Hash Table in which some object types are hashed
by identity while other objects (e.g., numbers, characters, etc.) are
hashed by value. Additionally, some implementations (e.g., GNU
CLISP (Haible et al.)) define a user-extensible class of objects that
contain an internal hash value. Implementing hash tables in which
the address of the key may not enter into the value of the hash
function is achieved by using TLCs that are initialized by having
a null value in their initial tconc field. This effectively disables the
unneeded address tracking for TLCs that point to keys that are not
hashed by identity.

7.3 Iteration Operations
The implementation of hash tables that we explored supported
lookup and delete operations on hash tables. Iteration operations
are a natural extension to hash tables and may be required my some
programming languages (e.g., Scheme (Sperber et al. 2007), Com-
mon LISP (American National Standards Institute and Information
Technology Industry Council 1996), etc.).

One may think that since the garbage collector cannot disturb
the locations in which the keys reside, one can traverse the hash
table directly, bucket by bucket, while performing iteration opera-
tions. This approach is incorrect however if any lookup or update
operation is performed on the table during iteration. Performing
lookup may rehash some elements in the table and consequently
may cause some elements to be used zero, one, or more than one
time.

In order to overcome this difficulty, we augment our hash tables
with an auxiliary doubly-linked list that holds pointers to all the
elements stored in the table. The value field of a TLC would point
to a data structure that contains pointers to the next and previous
TLC in the hash table in addition to the value associated with the
key.

8. Conclusion and Future Work
In this paper, we presented a generation-friendly implementation
strategy for eq hash tables. Our implementation is efficient since
the cost of rehashing objects that moved by the garbage collector
is O(1) amortized over the lifetime of the hash table. Our imple-
mentation is also extensible since many variants of hash tables can
be implemented without the need to modify the garbage collector.
The transport-link cells that are used in our implementation provide
accurate address tracking, efficiently, and without complicating the
garbage collector.

For implementations that already support guardians, hash tables
based on conservative transport guardians rather than transport-
link cells are an attractive alternative. While the cost differential
is significant in our tests, the difference will be less significant in
applications for which hash table operations do not account for
a large share of overall run time. Transport-link cells are simpler
to implement than guardians, however, and should be chosen over
guardians if the additional generality of the latter is not required.

Our present implementation of eq hash tables is not thread-
safe. We could make it so easily and with reasonable efficiency
by performing direct lookups optimistically and locking the table
only if rehashing is required. Any locking is undesirable, however,
so one goal for future research is to extend our mechanism to allow
lock-free threaded execution.
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