Exceptional Continuationsin JavaScript

Florian Loitsch

Inria Sophia Antipolis
2004 route des Lucioles - BP 93
F-06902 Sophia Antipolis, Cedex,
France

http://www.inria.fr/mimosa/Florian.Loitsch

ABSTRACT

JavaScript, the main language for web-site developmemets dot
feature continuation. However, as part of client-servenicmni-
cation they would be useful as a means to suspend the cyrrentl
running execution.

In this paper we present our adaption of exception-basetinczn
tions to JavaScript. The enhanced technique deals witbr@esand
features improvements that reduce the cost of the workrairéor
the missinggoto-instruction. We furthermore propose a practical
way of dealing with exception-based continuations in theext of
non-linear executions, which frequently happen due tdeaaks.

Our benchmarks show that under certain conditions cortiions
are still expensive, but are often viable. Especially cdenpitrans-
lating to JavaScript could benefit from static control flovalgses

to make continuations less costly.

1. Introduction

Xml-http-requestare an integral part of Ajax and the now called
“Web 2.0". Basically they allow JavaScript (standardizesdEx-
masScript 9)) programs to interactively conminu
cate with the server: a request is sent to a given URL and drece t
server returns, a callback is invoked. Both synchronousaeyd-
chronous forms exist, but usually only the asynchronoum fis
usabld]
Due to the asynchronous naturexafl-http-requests program-
mers need to determine the work that needs to be done aftee-the
quests returns, and pack it into the callback function. Doations
could free developers from this work. Some languages (dwer8e
8)) feature first class continuations gven sim-
ple one-shot continuations (suspend/resume) would beciguri
for our tasil

1Whenxml-http-requests are used synchronously they block the User
Interface until the call is finished. A usually unacceptdiddavior.

2 An efficient suspend/resume implementation is also interesting for co-
operative threading (see for example Fair Threads (Seagall 2004)).

Proceedings of the 2007 Workshop on Scheme and Functioogtdmming
Universite Laval Technical Report DIUL-RT-0701

Scheme and Functional Programming 2007

JavaScript does not feature any construct similar to coatin
tions, though. Most interpreters carry the necessary méoion
to efficiently implement them, but as far as we know only Rhino
) gives access to its continuationsgéneral
continuations need to be implemented on top of JavaSchls
level constructs.
Continuation Passing Style (CPS) lends itself for this task
with sufficiently high level features (in particular closg) CPS
can be implemented as a simple source code transformagen (s
for example [(Stedle1976)). A program in CPS form, as the name
suggests, passes the current continuation directly asaampaer
to every function and the continuation is hence always alsl
This technique does indeed work in JavaScript, and some sys-
tems such as Link [I_2006) actually use it. Ikd.in
the continuations are not exposed to the developers eitigr,
are used internally for threading and transparent asynco
xml-http-requests.
CPS’s efficiency is however largely dependent on the speebbof
sure creation and tail call handling. Neither are fast imentrmain-
stream JavaScript implementations and two handwritterctzen
marks €ib andnested) were 30 and 130 times slower than the
native versions in our test setup. CPS transformed progfams
thermore change the call convention which makes it cumbagso
to interface with existing JavaScript code. We therefookéal for
different techniques without these drawbacks. Our focesally
concentrated on an exception-based technique similaretmie
presented by Tad_(Tdo 2001) or Sekiguehial. (Sekiguchi ef .
[2001). Their work does not present full fledged continuatibat
only a way of suspending and resuming executions. In thepiust
of the next section we will show how to adapt the technique to
JavaScript. One of our motivations for this work was a Scheme
to-JavaScript compiler where we need full-fledged contiona to
supportcall/cc. In the second part we show how we extended
the given technique for this more general form of contirarai
Work in this direction on a minimal language without sidéeefs
has already been publish 005).

1.1 Organization

Sectio® presents exception-based continuations and atiz&®
the work that has been done in this area. In Se€idiZP, 21[8Zn
we show how to adapt these existing techniques to JavaS8ept
tion[d then shows how we can implemerntl1/cc using similar
techniques. In Sectidd 4 we discuss some optimizations s\Way
handle callbacks are proposed in Secfibn 5. Seflion 6 pseten
result of our benchmarks. Related work is discussed in Geldti
and we finally conclude in Sectigih 8.

37

http://www.inria.fr/mimosa/Florian.Loitsch

2. Suspend/Resumewith Exceptions

This section summarizes existing work on exception-basetire
uatlons by Taol(Tab2001) and Sekiguetial. (Sekiguchi et 2l.
[2001). In both cases the technique has been developedriepaa
ent migration and checkpointing, and uses Java/JVM andfer C
as target-language. As our work is targetted at JavaScepuwilV
use JavaScript for all code samples, though. Also, we argygoi
ignore JavaScript's higher-order functions during théiahisum-
mary. A discussion of this property is delayed to Sedfioivehére
we evolve the summarized technique for higher order langgiag

21 ldea

1: function sleep(ms) {

2 suspend (function (resume) {

3: setTimeout (resume, ms);
4 ¥

&z }

Figure 1: Sleep implemented through suspend/resume

The goal ofsuspend/resume is to save the current state of an ex-
ecution and to be able to resume it later on. We propose ayibra
function suspend which, similarly to Scheme’'sall/cc takes a
function as parameteguspend executes the given procedure in
turn with a reified version of the current continuation asapae-
ter. Independent of the outcome of this call (in particubacep-
tions are ignored), it then halts the execution. The progisef-
fectively stopped, until an external event invokes the icauattion

to resume execution. Once resumed the continuation hasdserv
its purpose and becomes invalid, so it can not be invokedimult
ple times. Figur€]l shows hosuspend would be used to create
the missingsleep function in JavaScriptsuspend starts by ex-
ecuting the anonymous function of lire This procedure passes
the given continuatiomesume to JavaScript'setTimeout, which
prepares a timeout with the continuation as callback. Thnan
mous function then returns, asdspend halts the execution. After
ms milliseconds JavaScript triggers the timeout-event andkes
the stored callback (theesume-continuation), which resumes the
execution.

The implementation of theuspend function is not local and its
presence requires the instrumentation of all other funsti@€ach
function needs to be able to save its current activation drélo-
cal variables, and current position within the code) andeiare

it from this data. Contrary to CPS where the continuationlis a
ready given as parameter, we create the continuation ongnwh
the suspend function is called from inside the prograruspend
raises a special exceptfbwhich triggers the saving in each live
function. The important work during suspension is hencesdmn
each function separately.

As expected, restoration rebuilds the call-stack by askiagh
function to rebuild its activation frame. Once the callesthas been
rebuilt the continuation continues normally.

Although suspend and resume are tightly coupled we present
them in separate sections. This makes sense becausesthend
code might be used independently (see Sefidn 4.3).

2.2 Suspend

During suspension the whole call-stack needs to be saved. As

JavaScript does not give access to the stack itself, alltifomse

3The exception starting the saving gives the whole technitgugame, but
is itself not essential. Another convention could use aigpeeturn-value
to trigger the saving. Depending on the interpreter (or tledmpiler) this
could even be faster.

38

suspend: [e.h = h; throw e;

g:| try { .. suspend(h) .. } catch(e) { save; throw e; }
f: try { ... g() ...} catch(e) { save; throw e; }
toplevel: try { f() ...} catch(e) { save; throw e; }

l try { toplevel() } catch(e) { e.h(continuation); } l

Figure 2: A global view of saving mechanism.

are instrumented so they can save their activation frame.stim
of all these activation frames represents the completestadk.
To simplify the description (and implementation) we wrap tbp-
level into a function. The new top-level hence consists dfrgpke
call to a function which contains the original top-level.

Saving is initiated by theuspend function when it throws a special
exception. The exception triggers the saving code in eauttifan.
Figurel2 presents a high level view of the suspension mesimani
Whensuspend is called with paramets, it stores the given pro-
cedure in a special exception. It subsequently throws thepgion
which is intercepted by the first (youngest) function on ttaels.
After having saved its activation frame the function thetirewvs
the exception. The same exception is then intercepted byekie
function, until finally at the bottom a global exception hkardap-
tures the exception. The handler builds a proper contionaibject
out of the saved data, and passes it tditfienction which had been
given tosuspend. Whenh returns the execution is halted.

1: function sequence(f, g) {
2 print(’1: > + £(0));

3: return g();
4:

Figure 3: Running example

1: function sequence(f, g) {

2: var tmpl;

&9 var index = O;

4y |

5: index = 1; tmpl = £Q);

6: print(’1: ’ + tmpl);

s index = 2; return g();

8: } catch(e) {

9: if (e instanceof ContinuationException) {
10: var frame = new Object();

17 frame.index = index; // save position
12: frame.f = f; frame.g = g;

13: frame.tmpl = tmpil;

14: e.pushFrame (frame) ;

15: }

16: throw e;

17: }

18: }

Figure 4: with suspension code

Figure[3 takes a closer look at a single instrumented funclibe
original non-instrumented version can be found in Fiduiread-
dition to the previously mentionetkry/catch, anindex variable

has been introduced which represents the instruction groiNbte

that only calls potentially leading to suspend (dubbed “unsafe
calls”) need to be indexed. The call taint is safe, and there-
fore doesn’t update théndex variable. The correct identification

of safefunction calls needs be determined by static analyses (see
SectiodZB). Theatch part responsible for saving starts at liie

A new frame object is constructed and filled with the localalales

Scheme and Functional Programming 2007

and the index variable. In this example the exception itsetfes

as container for the continuation data, and the frame olgéeince 1: { 1: switch (goto) {
stored in the exception. Finally the exception is rethrown. @ el 2: case false: // default mode.
&g safe2; 38 // mo restoration
A8 unsafe(); 4: safel; safe2;
2.3 Resume 58 safe3; 5: // jump to unsafe statement
At the end of suspension the global exception handler irsvolke 6: } 6: case 1: goto = false;
function h which had been given teuspend (see SectiolL22), ’87-: ‘m;ag‘?();
but then halts the execution. The program can only resunas if o BB
external event triggers the invocation of the continuatidsually ’
h registers the continuation (which has been given as paesjrat
call-back. In the example of Figuk® 1 the continuation wasest 1: if (test) { 1: if ((goto && goto <= 2) ||
as call-back for the timeout-event. 2: unsafel(Q); 2: (‘goto & test)) {
3: unsafe2() ; &s switch (goto) {
4: } else A8 case 0: case 1:
1: function sequence(f, g) { s unsafe3(); 5 geite = TEllEes
2: var tmpl, goto = false; 6: unsafel();
3: if (RESTORE.doRestore) { & GG 28 o = HElEe;
A8 var frame = RESTORE.popFrame() ; s unsate2();
5: index = frame.index; 9: } else {
6: f = frame.f; g = frame.g; 10: goto = false;
s tmpl = frame.tmpi; 11: unsafe3();
8: goto = index; // emulate a jump 12: }
9: }
10: ... <suspension-code omitted> ... Figure 6: Goto examples
11: switch (goto) {
12: case false:
13: case 1: goto = false;
14: tmpl = £0; 1: function sequence(f, g) {
155 print(’1: ’ + tmpl); 2: var tmpl;
S pvic % B
16: // faEl—through 3: var index = 0;
17: case 2: goto = false; 4: var goto = false;
18: return gQO; 5: if (RESTORE.doRestore) {
1‘9': }) . 6: var frame = RESTORE.popFrame();
20: . <suspension-code omitted> index = frame.index;
21: } 8: f = frame.f; g = frame.g;
9: tmpl = frame.tmpil;
Figure 5: with restoration code ;‘1?-') Ebe = il
12: try {
When the continuation is invoked it starts by setting a globa ;j % f(iizz) {
restoration flagRESTORE.doRestore. Subsequently it calls the 15 case méo - false:
last (oldest) function of the saved stack (in our case thdeogl). 16+ index = 1; tmpl = £Q);
I_Each function is the_n responsible for_restormg |_ts_c_)r|gma|va- 17: print(’1: ’ + tmpl);
tion frame, and calling the next function of the initial dtadhe 18: case 2: goto = false;
global flag serves as switch for restoration mode. The saged a 19: index = 2; return g();
tivation frame itself too is accessible through a globaliatsle. 20:

Figure[® shows the instrumented version of our running examp 21: } catch(e) {

(Figure[B). A test first checks if the program is in restonatay 22 if (e instanceof ContinuationException) {
normal execution mode. In the first case it restores the saifithe 23: e Uieei s L
f : o 24: frame.index = index; // save position
local variables, and jumps to the saved position. Eventiiad ex- o5 frame.f = £; frame.g = g;
ecution arrives at the saved location and invokes the nextifon 26 frame.tmpl = tmpl;
(still in restoration mode), which in turn restores itseaifiacalls the 27- e .pushFrame (frame) ;
next function. The restoration is finished when gwspend func- 28:)
tion is reachedsuspend clears the restoration flag and returns. 29: throw e;
The execution then continues normally. 30: }

In our example &witch-statement was introduced to emulate the 31: }

jump to the target given by thindex variable. In general blocks

are converted intewitch statements and branching constructions Figure 7: with suspension and restoration code
are modified so they reenter the saved branch. Function aals
transformed into A-normal fornl_(Elanagan etlal._1993), soah
ready calculated parameters are not executed multiplestiffig- . .
ure[By gives somep examples of these transformatioﬁs. Adgltio 24 Suspend/Resumein Javascript

material can be found if_(Tido 2001) afd (SekiguchiEt al.1p001 The previous sections give an overview sxfspend/resume in
The goto emulation makes code examples more difficult to read first-order languages like C++ or Java/JVM. JavaScript, dvas;

and we will from now use an informagéto index;” form, too. is a higher order language and hence features functionssas fir
Figure[T shows the completequence-function with suspension class citizens. In this section we will discuss the implmwas of
and restoration instrumentation. this property.

Scheme and Functional Programming 2007 39

JavaScript's functions have semantics similar to Schenoeepr
dures. That is, free variables are lexically scoped andhduttie
creation of functions the current environment is saved endio-
sure. Closures contain hence references to variables ivhtan
framed This however poses problems when the original call-stack
is destroyed by a call teuspend. A similar call-stack is rebuilt
during theresume, but the closure’s references are still referenc-
ing variables of the old stack. The following example dent@tss
such a case:

1: function £() {

25 var x = 1; var y = 2;

33 var g = function() { print(x, y); };
4 suspendCall();

&g X = 3;
6: g(O; // should print 3, 2
7:)
When the program reaches lidghe stack structure resembles the
diagram of Figur€l8a. The call-stack contains a list of atidn
frames with£’s activation frame on top. The frame contaifis
three local variableg, y andg. The variableg points to a function
which in turn captures’s x andy. For explanatory purposes we
have marked locations of this original call-stack with star

During the call tosuspendCall the continuation mechanism
throws an exception and saves the variables of all stackefsa
When the execution is resumed a similar stack is reconstiuct
This new stack can be seen in Figlite 8b. The restored cak-i&a
(as intended) similar to the original call-stack, but thesdreg still
references variables of the old call-stack. This does nee @ny
problem for constant variables likg but is incorrect for all others.
In our example thex of the new frame is changed, bgiwill still
reference the unchangedand hence incorrectly prirt

Call-stack: Restored Call-stack:

f: x1 | y:2 [H Closure f: x:1 ‘ y:2 ‘ [H |» Closure
]
v v
(a) before (b) after

Restored Call-stack:

f:
< 2]]

(c) boxed
Figure 8: Call-stacks before and after callcc-call.

Our solution is to box all non-constant escaping variabéeson-
servative super set of the concerned variables). The dosilf
still reference an outdated variable, but the referenceddbdhe
escaped variables will be in sync with the equivalent véesiof
the new stack-frame (see Figlde Hc).

41n fact, most JavaScript implementations currently justesthe call-stack
itself in the closure.

5Scheme (and other) compiler writers will not be surprisedhgysolution.
Boxing of escaping variables is a common practice in Scheonepders
[[1946), but usually for entirely different reas.

40

Another subtle difficulty is introduced by pointers to fuiocts
(which could appear in C++ too). If the variable that holds ¢all-
target is modified the call will not work as expected. Fiduaec@n-
tains an example which demonstrates how this can be a problem

1: function() {
28 var g = function() {
&g g = false;
4 suspendCall();
5: I3
6: g0
7: }
(a) call-target g is modified
1: function() {
28 var g = function() {
&g g = false;
4 suspendCall();
5: I3
6: var tmp = g;
s tmp () ;
8:

(b) call-target is constant

Figure 9: modified call-target

The call at line6 depends on the local varialdenhich is modified
after the invocation. During restoratignis correctly restored to
false and the program then jumps to the call location. Just calling
g again is however not possible anymore. The solution to this
problem is simple. One just needs to introduce additioneallo
variables so that calls do not depend on variables that aegehl
outside their scope. Figui¢ 9b shows the corrected version.

3. Call/cc

Suspend/Resume is sufficient for asynchronous communication
and cooperative threading. In the context of Scheme (aret &ih-
guages) full fledged continuations are however needed s€aifon
presents the changes to evobiespend/resume to call/cc.
Suspend/resume basically pauses the control flow. Instead of
returning, suspend aborts the execution until an event invokes
the resume-continuations. With the exception of event-handling
code, the program continues semantically as if no instvndtiad
been executed between the end of gw@pend-function and its
continuation.

Call/cc-continuations, on the other hand, are more flexible. They
can be invoked at any time and multiple times. In particukers
are free to execute code between the returrzafl/cc and the
invocation of the captured continuation. This raises anoirrgmt
question: what happens to (stack-)variables that are neoldifiter
the continuation has been captured? Semantically theréware
possibilities: - either these variables are restored toséhae they
had when the continuation was captured; - or they should fbe le
at their new value. Whereas the first choice could be useful fo
checkpointing, etc. it is the latter one which is generatippted.
Similar to Scheme we want hence modifications to variablesine
when continuations are executed.

The function in Figur€llOa, for instance, would yield diéet re-
sults depending on the chosen semantics. After the firstatian

of the continuation therint in line 4 should obviously print,

but more importantly (due to the assignment in the following)
other invocations could then either continue printingvalue at
time of suspension) or could then prit 3, etc. We would like
our technique to print the incrementing sequence, but oewvipr
ous suspension technique ignores modifications that happen

Scheme and Functional Programming 2007

1: function () { 1: function () {
25 var x = 1; 2: // restoration code
3: callccCall(); 3 // producing ’frame’
4 print(x); 4 ce
5: X =x+ 1; 5: callccCall();
6: } 6: print(x);
7: x=x+1;
(a) call/cc example 8 if (frame)
9: frame.x = x;
10: }

(b) update at the end

1: function () {

29 var x;

3: var frame = false;

45 if (RESTORE.doRestore) {

5F; frame = RESTORE.popFrame() ;
6: index = frame.index;

78 x = frame.x;

8: goto index;

9: }

10: try {

11: x =1;

12: gotoTargetl: callccCall();

Ags print(x);

14: X =x + 1;

55 } catch (e) {

16: /* save-code */

17: } finally {

18: if (frame) { frame.x = x; }
19: }
20: }

(c) complete version with update in finally

Figure 10: Call/cc with side-effects

stack-variables after the continuation has been saveauldhave
printed1 all the time: as does not escape it is not boxed (see Sec-
tion[Z4) and during the construction of the continuatids saved
with value1. Every restoration of the original call-stack would sub-
sequently restore this value. There are (at least) two wayb1
tain the chosen behavior. One can either box all muted Vesaly
track the changes and update the continuation. Boxing isretas
implement but for efficiency reasons we use the second tgalni
Supposeframe is the name of the continuation structure that holds
all local variables. We could then just add a new line updgtire
continuation at the end of the function as in Figurk 10b.

If the function has already been suspended once, thefirthee
variable is notfalse and the value foxk is updated in lin&. The
program now correctly outputs, 2, etc. In general just updating
at the end of the function is however incorrect. There areyman
means to exit a function, and only few go through the last line
of a function. We therefore use finally clause of atry/-
catch (which incidentally has to be used for continuation support
anyway). This way variables are always updated beforerngatie
function. The complete version (still without suspensiode&) can

be found in Figur€lOc.

4. Suspend/Resumeand Call/cc Optimizations

This section presents some optimizations to the previopsty
sented implementation. All important technical aspectgehal-
ready been discussed in previous sections, and we will hemge
focus on implementation and efficiency issues. The teclesiqu
shown in this section do not add any functionality but suddee

Scheme and Functional Programming 2007

reducing the modifications to the original source code thaking

the code lighter and faster. In the remainder of the chapéewilt

usecall/cc andsuspend/resume indifferently as all optimiza-
tions apply for both scenarios.

We will first present our hoisting- and tail-call optimizatis in

separate sections and then discuss miscellaneous optonzén

the following section.

4.1 Hoisting Instructions

During the restoration of the call-stack the program need=xe-
cute a jump to the saved target which is an expensive oparitio
JavaScript. The following optimization moves the targetsater
locations (thereby skipping instructions) which gengraéiduces
the cost of the jumps. The skipped instructions are dugitat the
jump-origin, and are executed before the jump.

As discussed in Sectidn 2.3 JavaScript does not featurgauy
instruction, and the body of functions has to be transforred
emulate jumps. Most constructs surrounding a jump-targetirio
test if they are executing an emulatgsto or if they are executed
normally. We therefore define the cost of a jump-target totbe i
nesting-level. The more nested a target is, the more it egen in
normal operation, as the tests have to be done all the time).

The goal of this optimization is to reduce the cost of jumiméss. It
basically copies code from the jump-target to the jumpinrighe
copied instructions are then already executed before thp,jand
the jump-target can be advanced so it skips the copied cdue. T
moved jump-target might leave constructs, thereby redutie
nesting-level, and as a result one could avoid its instruatiem.

In Figure[T1 we demonstrate on an example the impact this opti
mization can have. In the first code-snippet we informalftesthe
need for a jump to the unsafe call (labeled with “target:'HeBec-
ond code-sample shows the expensive transformations théede
emulate thigsoto-instruction. As the unsafe call is embedded in a
while-loop and anif, both constructs need to be transformed for
the emulated jump. In Figufell1lc we copied the targets statem
to the jump-origin in line4. The call of linel5is therefore already
executed before the jump, and the jump-target has been eetvan
to the instruction following the call. Thef-statement is finished,
and the next instruction would thus be the test of whéle-loop
(line 9) which is equivalent to thehile-construct itself. The new
jump-target is hence just before thiei 1e-statement. Both the loop
and theif-statement do not contain any jump-targets anymore and
can hence be left untransformed (Figiite 11d).

The suspension code is left nearly untouched. The sole ehang
rectifies the scope of the suspenstaty/catch. As the restoration
code now contains calls to unsafe locations too, it is necgss
enlarge the exception-handler so thattlkg-keyword is before the
if-statement in the beginning of the function.

Due to implementation-specific reasons we currently retsthie
copied code to be at most the targeted call and a potentiginass
ment of its return-value. In the future we would like to reradkis
limit and experiment with bigger copies.

Concluding this section we would like to point out that thjgio
mization is not always beneficial. Blocks containing jurapgets
are generally transformed taritch-statements, with one excep-
tion: when there is only one jump-target and the target ist (@@
the first statement. In this case the block can be left untedichhe
presented optimization however advances jump-targetscanld
move the target from the first statement to the second stateme
In this case the previously untouched block would then bestra
formed into aswitch-statement. Our implementation does not yet
take into account this special case.

41

if (RESTORE.doRestore) {
goto target;

print (’before’) ;
while (testl) {
print (’loop’);
if (test2) {
doSomething;
} else {
print(Cif’);
target: unsafeCall();

}

print(’after’);

(a) goto-example

if (RESTORE.doRestore)

{

unsafeCall();
goto target;

print (’before’);
target:
while (testl) {
print (’loop’);
if (test2) {
doSomething;
} else {
print(’if’);
unsafeCall();

DHIDT>BH

10:
11:
12:
13:
14
15:
6: }

17: }

18: print(’after’);

(c) unsafe call copied to jump-origil

if (RESTORE.doRestore) {
goto = 1;
switch (goto) {
case false:
print (’before’) ;
case 1:
while (goto == 1 || testl) {
switch (goto) {

case false: print(’loop’);
// fall through

case 1:
if (goto == 0 && test2)
doSomething;
else

switch (goto) {
case false:
print(Cif’);
// fall through
case 1: goto = false;
unsafeCall();
}

}

print(’after’);

}

(b) jump to the call itself

if (RESTORE.doRestore) {
goto = 1;
switch (goto) {
1: unsafeCall(); break;
}
}
switch (goto) {
case false:
print (’before’);
case 1: goto = false;
while (testl) {
print(’loop’);
if (test2) {
doSomething;
} else {
print(Cif’);
unsafeCall();
}
}
print(’after’);

}

(d) with goto-emulation

Figure 11: jump to before and after the call.

done when it was suspended. Functfomould hence restore itself
and then reexecute the callgoIn the optimized versiot should
callh (a function which might not even be visible 3 directly to
skip g.

In this section we continue evolving our continuation teghe
so that a tail-call optimization becomes possible. In the wer-
sion functions save a pointer to themselves in addition &rth
activation-frame data. This pointer is then looked up dyrestora-
tion to retrieve the next function. Tail-calling functioase simply
skipped during saving and are hence removed in the resttaekl s
In our running example, the tail-callingwould not save its frame
and would hence not appear in the saved continuation datindu
restoration functions must not just call the same next foncas
before, but have to retrieve the function pointer in the riextne.
The functionf would retrieveh’s frame (asg did not register its
frame), and therefore callas next function.

The benefits of this optimization are twofold: the number cf-a
vation frames is reduced, and the instrumentation forcalil{o-
cations is simplified. Indeed, tail-calling functions wilbt be re-
stored, and it is hence unnecessary to add jump-emulaticheir
tail-call locations.

1: function sequence(f, g) {

25 var tmpl, index = 0, isTail = false;

3: if (RESTORE.doRestore) {

A8 var frame = RESTORE.popFrame() ;

B8 index = frame.index;

6: f = frame.f; g = frame.g;

7: tmpl = frame.tmpl;

8: // restore remaining stack:

9: var callCcTmp = RESTORE.callNext();

10: switch (index) {

11: case 1: tmpl = callCcTmp; break;

12: }

§SH goto index;

14: }

15: try {

16: index = 1; tmpl = £();

17: gotoTargetl: print(’1: ’ + tmpl);

18: isTail = true; return g();

19: } catch(e) {
20: if (e instanceof ContinuationException &&
21: 1isTail) {
22: var frame = new Object();

23: frame.index = index; // save position
24: frame.f = f; frame.g = g;

25: frame.tmpl = tmpil;

26: e.pushFrame (frame, this, arguments.callee);
27: }

28: throw e;

29: }

Figure 12: complete version with assignment in restoratimte.

Figure[I2 shows the new (suspension and restoration) code of
the sequence-example (Figur&l3). We will first focus on the sus-
pension code, and hence skip the restoraiibrfor now. As al-
ready mentioned in the summary a pointer to the currently run
ning function is saved during suspension. In JavaScriptghinter

is readily available as a combination of tha&is-keyword and
thearguments.callee (line 26). The tail-call optimization itself
can be seen in lind8 and line 21 Tail-calls are now specially
marked (theisTail-variable is set tzrue), and if a function is
tail-calling then it skips itself during saving (due to tlestin line
21). Tail-calling functions are hence ignored during saviagd it

is the restoration part’s responsibility to determine axetate the
next non-skipped function. The necessary informations&iethe

4.2 Tail-call Optimization

The continuation-technique which has been presented nowi
ensures that a restored call-stack is similar to the origine. Like
the original stack the restored stack would have the samédeum
of activation frames and each activation frame would hagestme
values as the original stack. Often not all of these framesstil
needed, though. Supposeallsg which in turn tail-callsh. When
the continuation has been captured durjig tail-call, then the
restoration could skig if £ calledh directly. In practice changing
the £'s call target is however not that easy. Each function restor
itself and is then responsible to reexecute shenecall as it had

42 Scheme and Functional Programming 2007

saved continuation through the means of the function-poéntn-
stead of calling the same previous call as before one justdas
retrieve the next function of the continuation-state arnole it in-
stead. In order to clarify the code we hide this operationus&la
method-call RESTORE. callNext) in line 9 instead.
The result is then assigned to their respective variabfeang).
Thanks to the hoisting-optimization this task is simplifiithe
original call in the body is left untouched, and the copiet
simply replaced by the temporary variakkel 1CcTmp which holds
the result of theallNext-call: whereas we previously would have
hadtmp1=f () ; in line 11, we now havetmpl=callCcTmp;.
We want to point out that this optimization is not a subs#tut
for (expensive) proper tail-recursion handling (as presgnn

I 7)). Frames are only discarded when
tinuations are taken or invoked, which is clearly not sudiitifor
proper tail-recursion (as required for Scheme). The maimefit is
hence not the removal of the frames but the removal of ingrim
tation for tail-calls. In some cases the optimization caoicthe
complete instrumentation for functions: if a function’ssafe calls
are only at tail-call-locations, then it does not need asgriormen-
tation at all.

4.3 Miscellaneous Optimizations

This section groups several optimizations that are eitheismall
to merit a separate section, or are not yet sufficiently expl¢and
hence subject for future work).
As call/cc is usually only present in few locations, most calls
do not (and often even can not) reach aay1/cc. An optimiz-
ing compiler should hence use standard compilation teciesiq

) to reduce the number of unsafe call-locetio
We dub “unsafe” call-location calls that might eventualgach a
call/cc. In JavaScript one can modify global variables through
several ways, most of which are difficult to detect (amongseis
theeval-function, and the globalhis-object). JavaScript itself is
hence difficult to optimize in this area. Even though it is gen
ally possible to mark most local functions as safe, callslobg
functions need to be considered unsafe. However, when dapaS
is used as compilation target for a different language, therh
an analysis can be often much more effective. We have imple-
mented an ad-hoc analysis in our Scheme-to-JavaScriptiEymp
(Scm2Js). Even though Scheme is highly dynamic this analysis
was able to detect the absence of continuations in 10 out of 11
benchmarks. The remaining benchmark (a meta circulapratsr
making heavy use of higher-order functions) had about 75%s of
functions instrumented.
One should also consider handling functions by hand. Eafeci
libraries are possible candidates for this special treatriéthe
library itself does not use continuations then only expbtigher-
order functions need to be instrumented. To keep librare®egc
we usually export both versions of these functions (one -unin
stremented and one instrumented). As a bonus even corndinuat
heavy programs might prefer calling the uninstrementedc-fun
tion when they can prove that the sent parameter does ndtenvo
call/cc. In ScmM2Jsimportant functions like or-each, map and
others have been implemented this way. The closures seimtge t
functions are often small anonymous lambdas that can bé easi
analyzed.
In a similar vein it can be beneficial to create versions witho
restoration-code (and hence withgutto-emulation). This version
is sufficient in all but one context: during stack restonatibe
full version is needed. The switch to full version can happen
several occasions: during saving a function might save tile f
version instead of itself; or theal1Next method of theRESTORE-
object could translate the original version to the full vensand
call the latter. Even without this optimization the codewgtio is

Scheme and Functional Programming 2007

already extensive and we therefore have not yet implemehted

technique. Initial tests omak (one of our benchmarks) showed
potential, though. The new version was about twice as fagteas
old one.

5. Callbacks

Using our call/cc-framework the top-level is responsible for
catching the suspension-exception. In web-browserdamitk oc-
cur however outside the dynamic extent of the original ®yel.

A call/cc inside a callback would hence fail. In this section we
review the importance of callbacks, and discuss our salutidhis
issue.

JavaScript is usually used in web-browsers where it is respte

for the user-interface. Web-browsers provide a (mostlghdard-
ized way, the Document Object Model (DOM)_(Hors et.al._2000),
for accessing visual elements through JavaScript. A re@upat-
tern involves the use of callbacks to react to events. Celttbare
functions stored in the DOM which are then invoked when ameve
occurs. Another form, not involving the DOM, can be found ig-F
ure[d where the timeout-callback had been used to resumexthe e
ecution of the suspended program. As already mentionedén Se
tion[Z2 suspended programs can only be awaken througmekter
callbacks. Due to the ubiquity of callbacks it is hence int@or to
allow call/cc to work inside callbacks with minimal effort for the
programmer.

The solution we adopted is completely transparent. dd18 /cc-
exception handler signals through a global fta@LCC.handler

its presence (or absence). Every function starts by tegtisgdlag.

If the handler is present the execution continues normiatlye flag

is not set, though, then the function is not inside the dycaxient

of a call/cc exception handler. In the latter case the function
creates the exception handler itself before continuing.

1: function callCcHandler(f, f_this, args) {
2: try {

&9 CALLCC.handler = ’present’;

4 f.apply(f_this, args);

5: } catch (e) {

6: coo

7: } finally {

8: CALLCC.handler = ’absent’;

9: }

0:

~

}

Figure 13:callCcHandler creates &all/cc-exception handler.

To avoid code duplication we have implemented the function
callCcHandler (Figure[IB) which contains thery/catch orig-
inally found in the top-level. It takes a function as paraenet
and invokes it inside thery/catch. Functions that are invoked
through the handler, are hence inside a dynamic extentafza/-
cc-exception handler.

Initially CALLCC.handler is set to’absent’. The first function
that is executed will hence encounter tigsent-state and there-
fore execute theallCcHandler function.callCcHandler cre-
ates atry/catch and set€ALLCC.handler t0 ’present’. The
following functions are then protected and do not need tbthal
handler again. When the top-level is leftal1CcHandler sets
CALLCC.handler to absent again. Callbacks that occur afterward
encounter the’ absent’-state again and will hence reinvoke the
callCcHandler.

Figure[I# shows the few lines that are added to each function.
If the function has been invoked outside the dynamic extérmt o
continuation-try/catch (as it happens for the top-levehdhe case

43

1: function f£(...) {

2: if (CALLCC.handler === ’absent’) {

&g return callCcHandler (arguments.callee,
4 this,

58 arguments) ;

6: }

7: ..

Figure 14:Try/catch is triggered on demand.

of callbacks) then the function invokes11CcHandler which cre-
ates an exception-handler. The functiai1CcHandler would set
CALLCC.handler to ’present’ and invoke the given function.
The variablesarguments.callee (a pointer to the running func-
tion), this andarguments contain enough information to restart
the function.

6. Benchmarks

Firefox trampolines & call/cc

Bl Suspend/Resume2 Call/cc2
1 2 3 4 5
Bague = ; ‘ ‘118% ‘ ‘
Fib = 133
Mb100 = L1
Mbrot = 501
Nested = = 13 0
Quicksort = 3174
Sieve = Ll
Tak = ‘ ‘ ‘ 3.4 4.1
Towers = 3%
= |
Ewal o
(a) Firefox
Opera suspend & call/cc
Bl Suspend/Resume2 Call/cc2
1 2 3 4 5 & 7 8 9 10

Bague = . > I % 4‘ T ‘ T ‘ T l T T T T
Fib = 582
Mb100 = 4.2
Mbrot = b0
Nested = L2407
Quicksort
Sieve = .8
s S— i i i i i i i : i i 116.9
Towers = 1011
Even/Odd 7331 1 ‘ ‘ ‘ ‘ ‘
Ewal 487 | | | |

(b) Opera

Konqueror trampolines & call/cc

Bl Suspend/Resume2 Call/cc2

1
Bague = . L34 ‘
Fib = 193
Mb100 = %
Mbrot = 19
Nested = L0 2
Quicksort = Ll s
Sieve = == 1.7
Tak = ‘ 20 13,1
Towers = %5
Even/Odd = 18
Ewal P

(c) Konqueror

Figure 15: Impact of suspend/resume and call/cc instruatient
Raw code is the 1.0 mark. Lower is better.

44

Exception-based continuations instrument the originalecand
thus slow down the program even when continuations are never
used. The impact however is largely dependent on the given pr
gram. A sequential program without function calls is neany
affected, whereas small functions with many function calte
significantly slowed down. A static analysis (like thatlofi\ins
(1991)) is usually able to reduce the number of instrumeftad-
tions, but if continuations are heavily used then such aryana
sis does not help either. Links_(Cooper dtial. 2006), forainse,
uses continuations to implement threading. Due to the huge n
ber of possible suspension points, nearly all functionstrbasn-
strumented. When, on the other hand, continuations are tased
simulate synchronous client-server communication on f@sgn-
chronousml-http-requests then only functions reaching these
requests need to be modified. In this case the penalties diomto
tinuations are furthermore usually insignificant comparedhe
time spent on the communication itself.

Our benchmarks are intended to measure realistic worst-sizes
narios for the latter use-case. In particular we are notésted by
the cost of the actual continuation-construction and -¢ation but
we want to determine the slow-down due to the instrumentatio
(even when not reaching argl11/cc).

We have added continuation support toM2Js, our Scheme-to-
JavaScript compilet_(Loitsch and Serriano 2007). As a typiass
eliminated all instrumentation for all but onewal) benchmark we
modified the original benchmarks to disturb the typing altton.
The benchmarks still make no use of the continuation suppott
the typing pass is not able to prove this anymore. As a resodt m
(but not all) functions are now instrumented. We left ouiriimg
pass activated too, which reduces the stress on very smatidns.
To evaluate the impact of continuation instrumentation are gur
benchmarks under three Internet browsers:

e Firefox 2.0.0.3,
e Opera 9.20 build 638, and
e Konqueror 3.5.7

All benchmarks were run on an Intel Pentium 4 3.40GHz, 1GB,
running Linux 2.6.21. Each program was run 5 times, and the
minimum time was collected. The time measurement was doiae by
small JavaScript program itself. Any time spent on the praen
(parsing, precompiling, etc.) was hence not measured. @dts

are shown in Figurg15.

We have noticed tremendous differences between the thoesérs.
Konqueror seems to be the least affected, but as it was npfagr

in the beginning, the time penalties are important. Opdrafgvior
largely depends on the benchmarks, but one can see thatwonti
ation support can be expensive. Even though Firefox hasewors
values than Konqueror one should note that Firefox was up to
ten times faster than Konqueror. Compared to the uninsintede
version continuation-enabled code was however up to 4.gstim
slower.

Despite these apparently bad results we think that cortionsaare
viable, as most benchmarks have been modified to exhibittwors
case scenarios. Even the most realistic benchmarkl] repre-
sents a non-optimal example for exception-based contonstlts
high number of anonymous functions and closures makesfiit dif
cult to analyze.

7. Related Work

Our work is an adaption and evolution of the suspension agdami
tion techniques presented in Tao’s thesis|(Tao2001) anid&$etk
et al's paperl(Sekiguchi et Al. 2001). Pettyjobiral. later extended
this technique forcall/cc (Pettyjohn et gll 2005) and formally

Scheme and Functional Programming 2007

showed the correctness of their approach on a minimal layjggua
without side-effects.
Several other projects implemented continuations in JayaiS
using different techniques: Narrative JavaScrint_[Mix} atjax

r) both unnest all constructs and explicitipdia the
control-flow. Code is within ashile (true)-loop and aswitch-
statement. Narrative JavaScript stores local variablesinbject,
whereas djax creates a closure at each invocation. In tiee tase
all local variables are declared outside the scope of thekaa
function, and are thereby captured.
jwacs [Wright) and Links[(Cooper etldl._2006) both use CPS to

implement continuations.

8. Conclusion

We have presented exception-based continuations for dagaS
Starting with an implementation ofuspend/resume for C++,
Java or JVM we have adapted the technique to JavaScript. Viée ha
then extended the techniquedal1/cc. We have presented several
optimizations that, most of which reduce the cost of geeo-
emulation. Finally we have discussed our implementatiodetal
with non-linear execution as happens with callbacks.

Our benchmarks show that full fledged continuations cah kil
expensive, but are now usable in many scenarios. Espeaibbyn
using JavaScript as target-language, static analyses etprirh-
proving the speed of exception-based continuations.

References

Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop.
Links: Web programming without tiers. submitted to ICFP 200
URL http://groups.inf.ed.ac.uk/links/papers/-
links-icfp06/links-icfp06.pdf, 2006.

ECMA. ECMA-262: ECMAScript Language Specificationhird
edition, 1999.

Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias
Felleisen. The essence of compiling with continuations. In
Proceedings ACM SIGPLAN 1993 Conf. on Programming Lan-
guage Design and Implementation, PLDI'93, Albuquerque, NM
USA, 23-25 June 199%olume 28(6), pages 237-247. ACM
Press, New York, 1993.

Hamish Friedlander. djax. URhttp://djax.mindcontrol-
dogs.com/.

A. Le Hors, P. Le Hegaret, G. Nicol, J. Robie, M. Champion, and
S. Byrne (Eds). “Document Object Model (DOM) Level 2 Core
Specification Version 1.0”. W3C Recommendation, 2000.

R. Kelsey, W. Klinger, and J. Rees. Revisaéport on the algo-
rithmic language Scheméligher-Order and Symbolic Compu-
tation, 11(1), August 1998.

David Kranz, Richard Kelsey, Jonathan Rees, Paul Hudakegdam
Philbin, and Norman Adams. Orbit: an optimizing compiler
for scheme. INSIGPLAN ’'86: Proceedings of the 1986 SIG-
PLAN symposium on Compiler constructiqmages 219-233,
New York, NY, USA, 1986. ACM Press. ISBN 0-89791-197-
0.

Florian Loitsch and Manuel Serrano. Hop client-side coatjmh.

In TFP 2007: Draft Proceedings of the 8th Symposium on Trends
in Functional ProgrammingApril 2007.

Neil Mix. Narrative javascript. URLhttp://neilmix.com/-
narrativejs/.

Mozilla Foundation. Rhino. URhttp://www.mozilla.org/-
rhino/.

S. Muchnick.Advanced Compiler Design & Implementatidvior-
gan Kaufmann, 1997. ISBN 1-55860-320-4.

Scheme and Functional Programming 2007

Greg Pettyjohn, John Clements, Joe Marshall, Shriram Kéash
murthi, and Matthias Felleisen. Continuations from gelRera
ized stack inspection. limternational Conference on Functional
Programming, ICFP 2005September 2005.

Tatsurou Sekiguchi, Takahiro Sakamoto, and Akinori Yomeza
Portable implementation of continuation operators in imafiee
languages by exception handling.ecture Notes in Computer
Science2022:217+, 2001.

Manuel Serrano, Frédéric Boussinot, and Bernard Serpett
Scheme fair threads. RPDP '04: Proceedings of the 6th ACM
SIGPLAN international conference on Principles and preeof
declarative programmingpages 203-214, New York, NY, USA,
2004. ACM Press. ISBN 1-58113-819-9.

Olin Grigsby Shivers. Control-Flow Analysis of Higher-Order
Languages or Taming LambdaPhD thesis, Carnegie Mellon
University, May 1991.

Guy L Steele. Lambda: The ultimate declarative. Techniepbrt,
Massachusetts Institute of Technology, Cambridge, MA, USA
1976.

Wei Tao. A portable mechanism for thread persistence and mi-
gration. PhD thesis, University of Utah, 2001. Adviser-Gary
Lindstrom.

James Wright. jwacs.
index.html.

URhttp://chumsley.org/jwacs/-

45

46

Scheme and Functional Programming 2007

	Introduction
	Organization

	Suspend/Resume with Exceptions
	Idea
	Suspend
	Resume
	Suspend/Resume in JavaScript

	Call/cc
	Suspend/Resume and Call/cc Optimizations
	Hoisting Instructions
	Tail-call Optimization
	Miscellaneous Optimizations

	Callbacks
	Benchmarks
	Related Work
	Conclusion

