
Towards Compatible and Interderivable Semantic Specifications
for the Scheme Programming Language, Part II:

Reduction Semantics and Abstract Machines

Małgorzata Biernacka

Institute of Computer Science
University of Wroclaw

�
�������	�
������������������������

Olivier Danvy

Department of Computer Science
University of Aarhus

�
� ���������	���������� ���

Abstract
We present a context-sensitive reduction semantics for a
lambda-calculus with explicit substitutions and store and we
show that the functional implementation of this small-step
semantics mechanically corresponds to that of an abstract
machine. This abstract machine is very close to the abstract
machine for Core Scheme presented by Clinger at PLDI’98.
This lambda-calculus with explicit substitutions and store
therefore aptly accounts for Core Scheme.

1. Introduction
Motivation: Our motivation is the same as that of the sec-
ond author in the companion paper “Towards Compatible
and Interderivable Semantic Specifications for the Scheme
Programming Language, Part I: Abstract Machines, Natural
Semantics, and Denotational Semantics” [11]. We wish for
semantic specifications that are mechanically interderivable,
so that their compatibility is a corollary of the correctness of
the derivations.

This work: We build on our previous work on the syntac-
tic correspondence between context-sensitive reduction se-
mantics and abstract machines for a  -calculus with explicit
substitutions [3, 4]. Let us review each of these concepts in
turn:

!
ul. Joliot-Curie 15, PL-50-383 Wroclaw, Poland"$#%#'&
(*)%),+%+%+
-/.%.�-10%23.�-1+$465$7�-1&98%);:=<?>'@3.

A
IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark"$#%#'&
(*)%),+%+%+
-1@$4?.B7%C�-ED'F9)9:GD$>'2$H%I

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

2008 Workshop on Scheme and Functional Programming

J Abstract machines: An abstract machine is a state-
transition system modeling the execution of programs.
Typical abstract machines for lambda calculi treat substi-
tution as a meta-operation and include it directly in the
transitions of the machine. This approach is often used
to faithfully model evaluation based on term rewriting.
Alternatively, since Landin’s SECD machine [15], sub-
stitution is explicitly implemented in abstract machines
using environments. The two approaches are used inter-
changeably in the literature (even for the same language),
depending on the context of use, but their equivalence is
rarely treated formally.J A  -calculus with explicit substitutions: Since Plotkin’s
foundational work on  -calculi and abstract machines
[18], it has become a tradition to directly relate the result
of abstract machines with the result of weak-head nor-
malization, regardless of whether the abstract machines
treat substitution implicitly as a meta-operation or explic-
itly with an environment. As an offshoot of his doctoral
thesis [6,7], Curien proposed a ‘calculus of closures,’ the
 
K -calculus, that would, on the one hand, be faithful to
the  -calculus, and on the other hand, reflect more accu-
rately the computational reality of abstract machines by
delaying substitutions into environments. In so doing he
gave birth to calculi of explicit substitutions [1], which
promptly became a domain of research on their own.

In our thesis work [2, 9], we revisited the  �K -calculus
and proposed a minimal extension for it, the  �LK -calculus,
that is closed under one-step reduction. We then sys-
tematically applied Danvy and Nielsen’s refocusing tech-
nique [13] on several reduction semantics and obtained a
variety of known and new abstract machines with envi-
ronments, including the Krivine machine for call by name
and the CEK machine for call by value [3].J Context-sensitive reduction semantics: In his thesis
work [14], Felleisen introduced a continuation-semantics
analogue of structural operational semantics, reduction
semantics: a small-step operational semantics with an ex-

37



plicit representation of the reduction context. As Strachey
and Wadsworth originally did with continuation seman-
tics [19], he then took advantage of this explicit repre-
sentation of the rest of the reduction to make contraction
rules context sensitive, and operate not just on a potential
redex,1 but also on its context, thereby providing the first
small-step semantic account of control operators.

In our thesis work [2, 9], we considered context-
sensitive contraction rules for  �LK -calculi. We then sys-
tematically applied the refocusing technique on several
context-sensitive reduction semantics and obtained a va-
riety of known and new abstract machines with environ-
ments [4].

In this article, we present a variant of the  �LK -calculus that,
through refocusing, essentially corresponds to Clinger’s ab-
stract machine for Core Scheme as presented at PLDI’98 [5].
Curien’s original point therefore applies and reductions in
this calculus reflect the execution of Scheme programs ac-
curately. We therefore put the  �LK -calculus forward as an apt
calculus for Core Scheme.

Prerequisites and domain of discourse: Though one could
of course use PLT Redex [17], we use a pure subset of
Standard ML as a metalanguage here, for consistency with
the companion paper. We otherwise expect some familiarity
with programming a reduction semantics and with Clinger’s
PLDI’98 article [5]. For the rest, we have aimed for a stand-
alone presentation but the reader might wish to consult our
earlier work [3,4] or first flip through the pages of the second
author’s lecture notes [8, 10].

Terminology:
J Notion of contraction: To alleviate the overloading of

the term ‘reduction’ (as in, e.g., “reduction semantics,”
“notion of reduction,” “reduction strategy,” and “reduc-
tion step”), we refer to Barendregt’s ‘notion of reduc-
tion’ as ‘notion of contraction.’ A notion of contraction
is therefore the definition of a partial contraction func-
tion mapping a potential redex to a contractum.J Eval/continue abstract machine: As pointed out in the
companion paper, an ‘eval/apply’ abstract machine [16]
would be more accurately called ‘eval/continue’ since the
apply transition function, together with the data type of
contexts, often form the defunctionalized representation
of a continuation. We therefore use this term here.

Overview: We first present the signatures of the store and
the environment (Section 2), and then the syntax (Section 3)
and the reduction semantics (Section 4) of a Core Scheme
calculus of closures. The resulting evaluation function is
reduction-based in that it is defined as the iteration of a one-
step reduction function that enumerates all the intermediate
closures in the reduction sequence. We make it reduction-
free by deforesting all these intermediate closures in the

1 A potential redex is either an actual one or is stuck.

course of evaluation, using Danvy and Nielsen’s refocus-
ing technique (Section 5). We successively present an eval/-
continue abstract machine for the Core Scheme calculus of
closures that embodies the chosen reduction strategy (Sec-
tion 5.1), and then an eval/continue abstract machine for
terms and with environments (Section 5.2). We then analyze
this machine (Section 6) before concluding (Section 7).

2. Domain of discourse
In the interest of brevity and abstractness, and as in the
companion paper, we only present ML signatures for the
store (Section 2.1) and the environment (Section 2.2).

2.1 Store

A store is a mapping from locations to storable values. We
specify it as a polymorphic abstract data type with the usual
algebraic operators to allocate fresh locations and initialize
them with given storable values, dereference a given location
in a given store, and update a given store at a given location
with a given storable value.

signature STO = sig
type ’a sto
type loc

val empty : ’a sto

val new : ’a sto � ’a �
�
loc � ’a sto

val news : ’a sto � ’a list �
�

loc list � ’a sto

val fetch : loc � ’a sto �
�
’a option

val update : loc � ’a � ’a sto �
�
’a sto

end

structure Sto : STO = struct
( � deliberately omitted � )

end

2.2 Environment

An environment is a mapping from identifiers to denotable
values. We specify it as a polymorphic abstract data type
with the usual algebraic operators to extend a given environ-
ment with new bindings and to look up identifiers in a given
environment.
signature ENV = sig
type ’a env

val empty : ’a env
val emptyp : ’a env �

�
bool

val extend : ide � ’a � ’a env �
�
’a env

val extends : ide list � ’a list � ’a env �
�
’a env

val lookup : ide � ’a env �
�
’a option

end

structure Env : ENV = struct
( � deliberately omitted � )

end

In the present study, the denotable values are locations in a
store.

38



3. Syntax
The following module implements the internal syntax of
Core Scheme [5, Figure 1].

structure Syn = struct
datatype quotation = QBOOL of bool�

QNUMB of int�
QSYMB of ide�
QPAIR of Sto.loc � Sto.loc

( �
�
QVECT of ... � )

( �
�
... � )

datatype term = QUOTATION of quotation�
VAR of ide�
LAM of ide list � term�
APP of term � term list�
CND of term � term � term�
SET of ide � term�
UNSPECIFIED�
LAM LOC of ide list � term �

Sto.loc
end

Terms include all the constructs of Core Scheme considered
by Clinger: quoted values, identifiers, lambda abstractions,
applications, conditional expressions and assignments. Two
new syntax constructors occur for the course of reduction:
one to account for the result of assignments (special term
UNSPECIFIED) and one to account for lambda-closures being
associated to a store location.2

We consider a language of closures built on top of terms.
The following module defines the syntactic category of clo-
sures (in the data type closure) and store closures (in the
data type closure store).

As initiated by Landin and continued by Curien, a ground
closure is a term paired with a syntactic representation of
its environment (this pairing is done with the constructor
CLO GND). In a calculus of closures, small-step evaluation
is defined (e.g., by a set of rewriting rules) over closures
rather than over terms. Ground closures, however, are usu-
ally not expressive enough to account for one-step reduc-
tions (though they may suffice for big-step evaluation). In-
deed, one-step reduction can require the internal structure
of a closure to be changed in such a way that it no longer
conforms to the form “(term, environment).” We therefore
introduce three more constructors in the data type of clo-
sures that represent intermediate results of one-step reduc-
tions for conditional expressions, applications and assign-
ments. These additional constructors are used to propagate
the environment in sub-terms.

structure Clo = struct
datatype closure =

CLO GND of Syn.term � environment�
CLO COND of closure � closure � closure�
CLO APP of closure � closure list�
CLO SET of closure � closure

withtype environment = Sto.loc Env.env

2 In an extended version of this article, we address Clinger’s permute/unper-
mute functions. There, we need a third syntax constructor for the course of
reduction, to account for applications whose sub-terms have been permuted.

type store = closure Sto.sto
type closure store = closure � store

datatype answer = VALUE of closure store�
STUCK of string

end

Moreover, the notion of contraction for Core Scheme de-
pends not only on closures built out of terms and environ-
ments, but also on the store. Therefore we introduce the cate-
gory of store closures, the entity on which reductions operate
(rather than just on terms or just ground closures).

Any terminating reduction sequence starting from a store
closure either leads to a store closure (a value store closure)
or becomes stuck. The result of a non-diverging evaluation
is reflected in the above data type of answers.

4. Reduction semantics
A reduction semantics is a small-step operational semantics
with an explicit representation of the reduction context. It
consists in a grammar of terms (here, the grammar of store
closures from Section 3), a notion of contraction specifying
the basic computation steps, and a reduction strategy em-
bodied by a grammar of reduction contexts. In this section,
we present a reduction semantics for the calculus of closures
introduced in Section 3.

4.1 Potential redexes and contraction

The notion of contraction is displayed in Figure 1 with a
data type for potential redexes and a contraction function.
Let us review each of these potential redexes and how they
are contracted:

J
LOOKUP – fetching the value of an identifier from the store
(via its location in the environment); it succeeds only if
the location corresponding to the identifier is defined in
the store – otherwise the reduction is stuckJ
BETA – performing the usual � -reduction for n-ary func-
tions; it can only take place if the function argument is al-
ready represented by the LAM LOC constructor, i.e., when
a location in the store has been allocated for the functionJ
UPDATE – updating the value of an identifier in the store
and returning the “unspecified” closure, i.e., a closure
built from the term UNSPECIFIEDJ
CONDITIONAL – selecting one of the branches of a condi-
tional expression, based on the value of its testJ
ABSTRACTION – allocating a fresh location in the store
(with an unspecified value) for a source lambda abstrac-
tion and converting this abstraction to LAM LOCJ
PROP APP, PROP COND, and PROP SET – propagating the en-
vironment into all subterms of an application, a condi-
tional expression, and an assignment, respectively

While most of the contractions account directly for the
reductions in the language, the last three – the propagation

39



structure Redexes = struct
datatype potential redex =
LOOKUP of ide � Sto.loc Env.env � Clo.closure Sto.sto�
BETA of Clo.closure � Clo.closure list � Clo.closure Sto.sto�
UPDATE of Clo.closure � Clo.closure � Clo.closure Sto.sto�
CONDITIONAL of Clo.closure � Clo.closure � Clo.closure � Clo.closure Sto.sto�
ABSTRACTION of ide list � Syn.term � Sto.loc Env.env � Clo.closure Sto.sto�
PROP APP of Syn.term � Syn.term list � Sto.loc Env.env � Clo.closure Sto.sto�
PROP COND of Syn.term � Syn.term � Syn.term � Sto.loc Env.env � Clo.closure Sto.sto�
PROP SET of ide � Syn.term � Sto.loc Env.env � Clo.closure Sto.sto

datatype contractum = CLO of Clo.closure store�
STUCK of string

fun contract (LOOKUP (i, r, s)) ( � potential redex �
�

contractum � )
= (case Env.lookup (i, r)

of SOME l
=

�
(case Sto.fetch (l, s)
of SOME v

=
�

CLO (v, s)�
NONE
=

�
STUCK "attempt to read an invalid location")�

NONE
=

�
STUCK "attempt to reference an undeclared variable")�

contract (BETA (Clo.CLO GND (Syn.LAM LOC (is, t, ), r), vs, s))
= let val (ls, s’) = Sto.news (s, vs)

in CLO (Clo.CLO GND (t, Env.extends (is, ls, r)), s’) end�
contract (UPDATE (c as Clo.CLO GND (Syn.VAR i, r), v, s))
= (case Env.lookup (i, r)

of SOME l
=

�
CLO (Clo.CLO GND (Syn.UNSPECIFIED, r), Sto.update (l, v, s))�

NONE
=

�
STUCK "attempt to assign an undeclared variable")�

contract (CONDITIONAL (Clo.CLO GND (Syn.QUOTATION (Syn.QBOOL false), r), c1, c2, s))
= CLO (c2, s)�
contract (CONDITIONAL ( , c1, c2, s))
= CLO (c1, s)�
contract (ABSTRACTION (is, t, r, s))
= let val (l, s’) = Sto.new (s, Clo.CLO GND (Syn.UNSPECIFIED, Env.empty))

in CLO (Clo.CLO GND (Syn.LAM LOC (is, t, l), r), s’) end�
contract (PROP APP (t, ts, r, s))
= let val (c :: cs) = rev (map (fn t =

�
Clo.CLO GND (t, r)) (t :: ts))

in CLO (Clo.CLO APP (c, cs), s) end�
contract (PROP COND (t0, t1, t2, r, s))
= CLO (Clo.CLO COND (Clo.CLO GND (t0, r), Clo.CLO GND (t1, r), Clo.CLO GND (t2, r)), s)�
contract (PROP SET (i, t, r, s))
= CLO (Clo.CLO SET (Clo.CLO GND (Syn.VAR i, r), Clo.CLO GND (t, r)), s)

end

Figure 1. Notion of contraction for the Core Scheme calculus of closures

contractions – are “administrative” reductions necessary to
maintain the proper syntactic structure of closures after each
reduction step.

4.2 Reduction strategy

The reduction strategy is embodied in the grammar of reduc-
tion contexts (defined in the data type context in the mod-
ule below) and the associated function plug that reconstructs
the closure given a (sub)closure and a context. Similarly, the
function plug sto reconstructs a store closure from its de-
composition.

The only deviation from Clinger’s reduction strategy is
that we consider fixed, right-to-left order of reducing func-
tion arguments. (We address Clinger’s permute/unpermute
functions in an extended version of this article.)

structure Contexts = struct
datatype context =

HALT�
SELECT of Clo.closure � Clo.closure � context�
ASSIGN of Clo.closure � context�
PUSH of Clo.closure list � Clo.closure list �

context

40



structure Decomposition : DECOMPOSITION
= struct

datatype decomposition = VAL of Clo.closure store�
DEC of Redexes.potential redex � Contexts.context

( � decompose’ : (closure � store) � Contexts.context �
�

decomposition � )
fun decompose’ ((Clo.CLO GND (Syn.QUOTATION q, r), s), rc)

= decompose’ aux (rc, s, (Clo.CLO GND (Syn.QUOTATION q, r)))�
decompose’ ((Clo.CLO GND (Syn.VAR i, r), s), rc)
= DEC (Redexes.LOOKUP (i, r, s), rc)�
decompose’ ((c as Clo.CLO GND (Syn.LAM (is, t), r), s), rc)
= DEC (Redexes.ABSTRACTION (is, t, r, s), rc)�
decompose’ ((Clo.CLO GND (Syn.APP (t,ts), r), s), rc)
= DEC (Redexes.PROP APP (t, ts, r, s), rc)�
decompose’ ((Clo.CLO GND (Syn.CND (t0, t1, t2), r), s), rc)
= DEC (Redexes.PROP COND (t0, t1, t2, r, s), rc)�
decompose’ ((Clo.CLO GND (Syn.SET (i, t), r), s), rc)
= DEC (Redexes.PROP SET (i, t, r, s), rc)�
decompose’ ((Clo.CLO APP (c0, cs), s), rc)
= decompose’ ((c0, s), Contexts.PUSH (cs, nil, rc))�
decompose’ ((Clo.CLO SET (c0, c1), s), rc)
= decompose’ ((c1, s), Contexts.ASSIGN (c0, rc))�
decompose’ ((Clo.CLO COND (c0, c1, c2), s), rc)
= decompose’ ((c0, s), Contexts.SELECT (c1, c2, rc))�
decompose’ ((Clo.CLO GND (Syn.UNSPECIFIED, r), s), rc)
= decompose’ aux (rc, s, Clo.CLO GND (Syn.UNSPECIFIED, r))�
decompose’ ((c as Clo.CLO GND (Syn.LAM LOC (is, t, l), r), s), rc)
= decompose’ aux (rc, s, c)

( � decompose’ aux : Contexts.context � store � closure �
�

decomposition � )
and decompose’ aux (Contexts.HALT, s, c)

= VAL (c, s)�
decompose’ aux (Contexts.PUSH (cnext::cs, vcs, rc), s, c)
= decompose’ ((cnext, s), Contexts.PUSH (cs, c::vcs, rc))�
decompose’ aux (Contexts.PUSH (nil, vcs, rc), s, c)
= DEC (Redexes.BETA (c, vcs, s), rc)�
decompose’ aux (Contexts.SELECT (c1, c2, rc), s, c)
= DEC (Redexes.CONDITIONAL (c, c1, c2, s), rc)�
decompose’ aux (Contexts.ASSIGN (c0, rc), s, c)
= DEC (Redexes.UPDATE (c0, c, s), rc)

fun decompose (c, s) ( � decompose : closure store �
�

decomposition � )
= decompose’ ((c, s), Contexts.HALT)

end

Figure 2. The decomposition structure for the calculus of closures

( � Clo.closure � context �
�

Clo.closure � )
fun plug (c, HALT)

= c�
plug (c, SELECT (c1, c2, rc))
= plug (Clo.CLO COND (c, c1, c2), rc)�
plug (c, ASSIGN (c0, rc))
= plug (Clo.CLO SET (c0, c), rc)�
plug (c, PUSH (tcs, nil, rc))
= plug (Clo.CLO APP (c, tcs), rc)�
plug (c, PUSH (tcs, v::vcs, rc))
= plug (Clo.CLO APP (v, vcs@(c::tcs)), rc)

( � Clo.closure store � context �
�

context store � )
fun plug sto ((c, sto), rc)

= (plug (c, rc), sto)
end

The constructors in the definition of contexts define re-
spectively: the empty context, the context of a condition in a
conditional expression, the context of a value to be assigned
to a variable, and the context of an immediate subterm in an
application.

Decomposition: The role of the decomposition function is
to traverse a closure in a context according to the given re-
duction strategy and to locate the first redex to be contracted,
if there is any. The decomposition function is total: it re-
turns the closure if this closure is a value, and otherwise it
returns a potential redex together with its reduction context.
The signature of the decomposition function is shown below,
and its implementation is displayed in Figure 2. In particu-
lar, decompose is called at the top level and its role is to call

41



an auxiliary function, decompose’, with a store closure to
decompose and the empty context. In turn, decompose’ tra-
verses a closure and accumulates the current context until a
potential redex or a value closure is found; in the latter case,
decompose’ aux is called in order to dispatch on the accu-
mulated context for this given value.
signature DECOMPOSITION = sig

datatype decomposition =
VAL of Clo.closure store�
DEC of Redexes.potential redex �

Contexts.context

val decompose : closure store �
�

decomposition
end

The decomposition function can be expressed in a variety
of ways. In Figure 2, we have conveniently specified it as
a big-step abstract machine with two transition functions,
decompose’ and decompose’ aux.

4.3 One-step reduction

One-step reduction can now be defined with the following
steps: (a) decomposing a non-value closure into a potential
redex and a reduction context, (b) contracting the potential
redex if it is an actual one, and (c) plugging the contractum
into the context.
( � reduce : Clo.closure � Clo.store

�
�
Clo.closure option � )

fun reduce (c, s)
= (case Decomposition.decompose (c, s)

of Decomposition.VAL cs
=

�
SOME cs�

Decomposition.DEC (pr, rc)
=

�
(case Redexes.contract pr

of Redexes.CLO c
=

�
SOME
(Contexts.plug sto

(c, rc))�
Redexes.STUCK s

=
�

NONE))

4.4 Reduction-based evaluation

Finally, we can define evaluation as the iteration of one-
step reduction. It is implemented by the following function
evaluate.
fun iterate (Decomposition.VAL c)

= Clo.VALUE c�
iterate (Decomposition.DEC (r, rc))
= (case Redexes.contract r

of Redexes.CLO c
=

�
iterate
(Decomposition.decompose

(Contexts.plug sto
(c, rc)))�

Redexes.STUCK s
=

�
Clo.STUCK s)

fun evaluate t
= iterate

(Decomposition.decompose
(Clo.CLO GND (t, nil), Sto.empty))

5. Refocusing for reduction-free evaluation
We use Danvy and Nielsen’s refocusing technique to me-
chanically transform the iteration of one-step reduction im-
plemented in Section 4 into an abstract machine. In this sec-
tion we show the main steps of this procedure and their effect
on the Core Scheme calculus of closures.

The reduction sequence as described in Section 4 consists
in repeating the following steps: decomposing a term into a
redex and a context, contracting the redex, and plugging the
contractum in the context. The plugging operation creates an
intermediate term which is then immediately decomposed
in the next iteration. Using refocusing, we can bypass the
creation of intermediate terms and proceed directly from one
redex to the next. The method is based on the observation
that the composition of functions plug and decompose can
be replaced by a more efficient function, called refocus,
which is extensionally equal to (and optimally implemented
by) decompose’. The situation is depicted in the following
diagram:

�
�������	��
�����

  @
@@

@@
@@

@@
@

�
�������	��
�����

  @
@@

@@
@@

@@
@

//____ � ���	�������	��� // �


������ >>~~~~~~~~~~
�����������  //________ � ���	�������	��� //

5.1 An eval/continue abstract machine over closures

First, we fuse the functions plug and decompose into one
function refocus that given a closure and its surrounding
context, searches for the next redex according to the given
reduction strategy. The result is a small-step state-transition
system, where refocus performs a single transition to the
next redex site, if there is one, and iterate implements its
iteration (after performing the contraction).

Next, we distribute the calls to iterate in the defini-
tion of refocus in order to obtain a big-step state-transition
system [12]. The difference between the big-step and the
small-step transition system is that in the former, the func-
tion refocus does not stop on encountering a redex site; it
calls the function iterate directly. The resulting big-step
transition system is presented in Figure 3. (The definition
of refocus and refocus aux is a clone of the definition of
decompose’ and decompose’ aux in Figure 2.)

This resulting transition system is staged in that the call
to the contraction function is localized in iterate whereas
refocus and refocus aux implement the congruence rules,
i.e., the navigation in the closure towards the next redex. In-
lining the definition of iterate (and thus making do with-
out the data type decomposition) yields an eval/continue ab-
stract machine with two mutually recursive transition func-
tions: refocus that dispatches on closures, and refocus aux

that dispatches on contexts. This machine operates on store
closures and is presented in Figure 4.

42



structure BS TS = struct
datatype decomposition = VAL of Clo.closure store�

DEC of Redexes.contractum � Contexts.context

fun refocus ((Clo.CLO GND (Syn.QUOTATION q, r), s), rc)
= refocus aux (rc, s, (Clo.CLO GND (Syn.QUOTATION q, r)))�

refocus ((Clo.CLO GND (Syn.VAR i, r), s), rc)
= iterate (DEC

(case Env.lookup (i, r)
of SOME l =

�
(case Sto.fetch (l, s)

of SOME v =
�

Redexes.CLO (v, s)�
NONE =

�
Redexes.STUCK "attempt to read an invalid location")�

NONE =
�

Redexes.STUCK "attempt to reference an undeclared variable", rc))�
refocus ((c as Clo.CLO GND (Syn.LAM (is, t), r), s), rc)
= iterate (DEC (let val (l, s’) = Sto.new (s, Clo.CLO GND (Syn.UNSPECIFIED, Env.empty))

in Redexes.CLO (Clo.CLO GND (Syn.LAM LOC (is, t, l), r), s’) end, rc))�
refocus ((Clo.CLO GND (Syn.APP (t,ts), r), s), rc)

= let val (c :: cs) = rev (map (fn t =
�

Clo.CLO GND (t, r)) (t :: ts))
in iterate (DEC (Redexes.CLO (Clo.CLO APP (c, cs), s), rc)) end�

refocus ((Clo.CLO GND (Syn.CND (t0, t1, t2), r), s), rc)
= iterate (DEC (Redexes.CLO (Clo.CLO COND (Clo.CLO GND (t0, r),

Clo.CLO GND (t1, r),
Clo.CLO GND (t2, r)), s), rc))�

refocus ((Clo.CLO GND (Syn.SET (i, t), r), s), rc)
= iterate (DEC (Redexes.CLO (Clo.CLO SET (Clo.CLO GND (Syn.VAR i, r), Clo.CLO GND (t, r)), s),

rc))�
refocus ((Clo.CLO APP (c0, cs), s), rc)
= refocus ((c0, s), Contexts.PUSH (cs, nil, rc))�
refocus ((Clo.CLO SET (c0, c1), s), rc)
= refocus ((c1, s), Contexts.ASSIGN (c0, rc))�
refocus ((Clo.CLO COND (c0, c1, c2), s), rc)
= refocus ((c0, s), Contexts.SELECT (c1, c2, rc))�
refocus ((Clo.CLO GND (Syn.UNSPECIFIED, r), s), rc)
= refocus aux (rc, s, Clo.CLO GND (Syn.UNSPECIFIED, r))�
refocus ((c as Clo.CLO GND (Syn.LAM LOC (is, t, l), r), s), rc)
= refocus aux (rc, s, c)

and refocus aux (Contexts.HALT, s, c)
= iterate (VAL (c, s))�
refocus aux (Contexts.PUSH (cnext :: cs, vcs, rc), s, c)
= refocus ((cnext, s), Contexts.PUSH (cs, c :: vcs, rc))�
refocus aux (Contexts.PUSH (nil, vcs, rc), s, c0 as Clo.CLO GND (Syn.LAM LOC (is, t, ), r))
= let val (ls, s’) = Sto.news (s, vcs)

in iterate (DEC (Redexes.CLO (Clo.CLO GND (t, Env.extends (is, ls, r)), s’), rc)) end�
refocus aux (Contexts.SELECT (c1, c2, rc), s, Clo.CLO GND (Syn.QUOTATION (Syn.QBOOL false), r))
= iterate (DEC (Redexes.CLO (c2, s), rc))�
refocus aux (Contexts.SELECT (c1, c2, rc), s, )
= iterate (DEC (Redexes.CLO (c1, s), rc))�
refocus aux (Contexts.ASSIGN (c0 as Clo.CLO GND (Syn.VAR i, r), rc), s, c)
= iterate (DEC (case Env.lookup (i, r)

of SOME l =
�

Redexes.CLO (Clo.CLO GND (Syn.UNSPECIFIED, r), Sto.update (l, c, s))�
NONE =

�
Redexes.STUCK "attempt to assign an undeclared variable", rc))

and iterate (VAL c) = Clo.VALUE c�
iterate (DEC (Redexes.CLO c, rc)) = refocus (c, rc)�
iterate (DEC (Redexes.STUCK s, rc)) = Clo.STUCK s

fun evaluate t
= refocus ((Clo.CLO GND (t, nil), Sto.empty), Contexts.HALT)

end

Figure 3. The staged big-step state-transition system over closures

43



structure EC AM = struct
fun refocus ((Clo.CLO GND (Syn.QUOTATION q, r), s), rc)
= refocus aux (rc, s, (Clo.CLO GND (Syn.QUOTATION q, r)))�

refocus ((Clo.CLO GND (Syn.VAR i, r), s), rc)
= (case Env.lookup (i, r)

of SOME l
=

�
(case Sto.fetch (l, s)
of SOME v

=
�

refocus ((v, s), rc)�
NONE
=

�
Clo.STUCK "attempt to read an invalid location")�

NONE
=

�
Clo.STUCK "attempt to reference an undeclared variable")�

refocus ((c as Clo.CLO GND (Syn.LAM (is, t), r), s), rc)
= refocus (let val (l, s’) = Sto.new (s, Clo.CLO GND (Syn.UNSPECIFIED, Env.empty))

in (Clo.CLO GND (Syn.LAM LOC (is, t, l), r), s’)
end, rc)�

refocus ((Clo.CLO GND (Syn.APP (t,ts), r), s), rc)
= let val (c::cs) = rev (map (fn t =

�
Clo.CLO GND (t, r)) (t::ts))

in refocus ((Clo.CLO APP (c, cs), s), rc) end�
refocus ((Clo.CLO GND (Syn.CND (t0, t1, t2), r), s), rc)
= refocus ((Clo.CLO COND (Clo.CLO GND (t0, r), Clo.CLO GND (t1, r), Clo.CLO GND (t2, r)), s), rc)�
refocus ((Clo.CLO GND (Syn.SET (i, t), r), s), rc)
= refocus ((Clo.CLO SET (Clo.CLO GND (Syn.VAR i, r), Clo.CLO GND (t, r)), s), rc)�
refocus ((Clo.CLO APP (c0, cs), s), rc)
= refocus ((c0, s), Contexts.PUSH (cs, nil, rc))�
refocus ((Clo.CLO SET (c0, c1), s), rc)
= refocus ((c1, s), Contexts.ASSIGN (c0, rc))�
refocus ((Clo.CLO COND (c0, c1, c2), s), rc)
= refocus ((c0, s), Contexts.SELECT (c1, c2, rc))�
refocus ((Clo.CLO GND (Syn.UNSPECIFIED, r), s), rc)
= refocus aux (rc, s, Clo.CLO GND (Syn.UNSPECIFIED, r))�
refocus ((c as Clo.CLO GND (Syn.LAM LOC (is, t, l), r), s), rc)
= refocus aux (rc, s, c)

and refocus aux (Contexts.HALT, s, c)
= Clo.VALUE (c, s)�
refocus aux (Contexts.PUSH (cnext::cs, vcs, rc), s, c)
= refocus ((cnext, s), Contexts.PUSH (cs, c::vcs, rc))�
refocus aux (Contexts.PUSH (nil, vcs, rc), s, Clo.CLO GND (Syn.LAM LOC (is, t, ), r))
= let val (ls, s’) = Sto.news (s, vcs)

in refocus ((Clo.CLO GND (t, Env.extends (is, ls, r)), s’), rc) end�
refocus aux (Contexts.SELECT (c1, c2, rc), s, Clo.CLO GND (Syn.QUOTATION (Syn.QBOOL false), r))
= refocus ((c2, s), rc)�
refocus aux (Contexts.SELECT (c1, c2, rc), s, )
= refocus ((c1, s), rc)�
refocus aux (Contexts.ASSIGN (c0 as Clo.CLO GND (Syn.VAR i, r), rc), s, c)
= (case Env.lookup (i, r)

of SOME l
=

�
refocus ((Clo.CLO GND (Syn.UNSPECIFIED, r), Sto.update (l, c, s)), rc)�

NONE
=

�
Clo.STUCK "attempt to assign an undeclared variable")

fun evaluate t
= refocus ((Clo.CLO GND (t, nil), Sto.empty), Contexts.HALT)

end

Figure 4. The eval/continue abstract machine over closures

44



structure Env EC AM = struct
type environment = Sto.loc Env.env

type closure = Syn.term � environment

type store = closure Sto.sto

datatype context = HALT�
SELECT of closure � closure � context�
ASSIGN of closure � context�
PUSH of closure list � closure list � context

datatype answer = VALUE of closure � store�
STUCK of string

fun refocus (Syn.QUOTATION q, r, s, rc)
= refocus aux (rc, s, (Syn.QUOTATION q, r))�

refocus (Syn.VAR i, r, s, rc)
= (case Env.lookup (i, r)

of SOME l =
�

(case Sto.fetch (l, s)
of SOME (t, r) =

�
refocus (t, r, s, rc)�

NONE =
�

STUCK "attempt to read an invalid location")�
NONE =

�
STUCK "attempt to reference an undeclared variable")�

refocus (Syn.LAM (is, t), r, s, rc)
= let val (l, s’) = Sto.new (s, (Syn.UNSPECIFIED, Env.empty))

in refocus aux (rc, s’, (Syn.LAM LOC (is, t, l), r)) end�
refocus (Syn.APP (t, ts), r, s, rc)

= let val ((t, r) :: cs) = rev (map (fn t =
�

(t, r)) (t :: ts))
in refocus (t, r, s, PUSH (cs, nil, rc)) end�

refocus (Syn.CND (t0, t1, t2), r, s, rc)
= refocus (t0, r, s, SELECT ((t1, r), (t2, r), rc))�
refocus (Syn.SET (i, t), r, s, rc)
= refocus (t, r, s, ASSIGN ((Syn.VAR i, r), rc))�
refocus (Syn.UNSPECIFIED, r, s, rc)
= refocus aux (rc, s, (Syn.UNSPECIFIED, r))

and refocus aux (HALT, s, c)
= VALUE (c, s)�
refocus aux (PUSH ((t,r) :: cs, vcs, rc), s, c)
= refocus (t, r, s, PUSH (cs, c :: vcs, rc))�
refocus aux (PUSH (nil, vcs, rc), s, c0 as (Syn.LAM LOC (is, t, ), r))
= let val (ls, s’) = Sto.news (s, vcs)

in refocus (t, Env.extends (is, ls, r), s’, rc) end�
refocus aux (SELECT (c1, (t2, r2), rc), s, (Syn.QUOTATION (Syn.QBOOL false), r))
= refocus (t2, r2, s, rc)�
refocus aux (SELECT ((t1, r1), c2, rc), s, )
= refocus (t1, r1, s, rc)�
refocus aux (ASSIGN (c0 as (Syn.VAR i, r), rc), s, c)
= (case Env.lookup (i, r)

of SOME l =
�

refocus (Syn.UNSPECIFIED, r, Sto.update (l, c, s), rc)�
NONE =

�
STUCK "attempt to assign an undeclared variable")

fun evaluate t
= refocus (t, nil, Sto.empty, HALT)

end

Figure 5. The eval/continue abstract machine over terms and environments

5.2 An abstract machine with environments

The result of applying refocusing to the calculus of closures
is a machine operating on store closures, as shown in Sec-
tion 5.1. Since we are not interested in modeling the execu-
tion of programs in the closure calculus, but in Core Scheme,
i.e., with explicit terms and environments, we go the rest of

the way and bypass closure manipulation using the method
developed in our previous work [3, 4].

To this end, we first short-circuit the transitions corre-
sponding to building intermediate closures – these are the
transition corresponding to the propagation of environments
in closures: specifically, we observe that each of the clo-

45



sures built with CLO COND, CLO APP and CLO SET is immedi-
ately consumed in exactly one of the clauses of refocus af-
ter being constructed. Since these closures were only needed
to express intermediate results of one-step reduction (and
they do not arise from the Core Scheme term language), we
can merge the two clauses of refocus for each such closure.
We then obtain a machine that operates only on CLO GND clo-
sures, which are pairs of terms and environments. Hence, we
can unfold a closure CLO GND (t, s) into a term and an en-
vironment. (The reader is directed to our previous work for
numerous other examples of this derivation [3, 4, 8].) This
final machine is shown in Figure 5. It is an eval/continue
abstract machine for Core Scheme terms, in which a config-
uration consists of a term, an environment, a store (all three
arising by unfolding a store closure) and a reduction context.

6. Analysis
Overall, the abstract machine of Figure 5 is an ‘eval/con-
tinue’ one. The ‘eval’ transition function operates on a
quadruple—a term, an environment, a store, and a context—
and dispatches on the term. The ‘continue’ transition func-
tion operates on a triple—a value, a store, and a context—
and dispatches on the context.3 In comparison, Clinger’s
machine has one configuration and one transition function.
This single configuration is a quadruple, and this single tran-
sition function is, so to speak, the union of our two transition
functions.

The single real difference between Clinger’s machine and
the one of Figure 5 is that it dissociates sub-terms and the
current environment. In contrast, the propagation rules of
the  �LK -calculus ensures that terms and environments stick
together at all times.

Finally, Clinger’s machine also features permutations/un-
permutations functions to account for the unspecified se-
quencing order to evaluate the sub-terms of an application.
In an extended version of this article, we modify the reduc-
tion semantics to syntactically account for these permuta-
tions/unpermutations functions as we did for associating lo-
cations to lambda-closures in Section 4.1. The resulting ab-
stract machine then essentially coincides with Clinger’s.

Ergo, the variant of the  �LK -calculus presented here aptly
accounts for Core Scheme. An obvious next step is to scale
this calculus to full Scheme and to compare it with the
reduction semantics in the R � RS. One could also refocus the
reduction semantics of the R � RS to obtain the corresponding
abstract machine. This abstract machine would then provide
a sound alternative semantics for the R � RS.

3 This machine is the same one as in the companion paper [11]. As pointed
out there, this abstract machine is in defunctionalized form: refunctional-
izing it yields the continuation-passing evaluation function of a natural se-
mantics, and closure-unconverting this evaluation function yields the com-
positional valuation function of a denotational semantics.

7. Conclusion and perspectives
We have presented a version of the  �LK -calculus with a store
and its reduction semantics, and we have transformed a func-
tional implementation of this reduction semantics into the
functional implementation of an abstract machine. This ab-
stract machine is very close to the abstract machine for Core
Scheme presented by Clinger at PLDI’98. The transforma-
tions are the ones we have already used in the past to derive
other abstract machines from other reduction semantics, or
to posit a reduction semantics and verify whether transform-
ing it yields a given abstract machine.

This work is part of a larger effort to inter-derive semantic
specifications soundly and consistently.

Acknowledgments: The authors are grateful to the anony-
mous reviewers for their comments, and to Will Clinger for
extra precisions.

This work is partly supported by the Danish Natural Sci-
ence Research Council, Grant no. 21-03-0545.

References
[1] Martı́n Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-

Jacques Lévy. Explicit substitutions. Journal of Functional
Programming, 1(4):375–416, 1991. A preliminary version
was presented at the Seventeenth Annual ACM Symposium
on Principles of Programming Languages (POPL 1990).

[2] Małgorzata Biernacka. A Derivational Approach to the
Operational Semantics of Functional Languages. PhD thesis,
BRICS PhD School, University of Aarhus, Aarhus, Denmark,
January 2006.

[3] Małgorzata Biernacka and Olivier Danvy. A concrete
framework for environment machines. ACM Transactions on
Computational Logic, 9(1):1–30, 2007. Article #6. Extended
version available as the research report BRICS RS-06-3.

[4] Małgorzata Biernacka and Olivier Danvy. A syntactic cor-
respondence between context-sensitive calculi and abstract
machines. Theoretical Computer Science, 375(1-3):76–108,
2007. Extended version available as the research report
BRICS RS-06-18.

[5] William D. Clinger. Proper tail recursion and space
efficiency. In Keith D. Cooper, editor, Proceedings of the
ACM SIGPLAN’98 Conference on Programming Languages
Design and Implementation, pages 174–185, Montréal,
Canada, June 1998. ACM Press.

[6] Pierre-Louis Curien. An abstract framework for environment
machines. Theoretical Computer Science, 82:389–402, 1991.

[7] Pierre-Louis Curien. Categorical Combinators, Sequential
Algorithms and Functional Programming. Progress in
Theoretical Computer Science. Birkhaüser, 1993.

[8] Olivier Danvy. From reduction-based to reduction-free
normalization. In Sergio Antoy and Yoshihito Toyama,
editors, Proceedings of the Fourth International Workshop
on Reduction Strategies in Rewriting and Programming
(WRS’04), volume 124(2) of Electronic Notes in Theoretical
Computer Science, pages 79–100, Aachen, Germany, May
2004. Elsevier Science. Invited talk.

46



[9] Olivier Danvy. An Analytical Approach to Program as Data
Objects. DSc thesis, Department of Computer Science,
University of Aarhus, Aarhus, Denmark, October 2006.

[10] Olivier Danvy. From reduction-based to reduction-free
normalization. In Advanced Functional Programming, Sixth
International School, Lecture Notes in Computer Science,
Nijmegen, The Netherlands, May 2008. Springer-Verlag. To
appear.

[11] Olivier Danvy. Towards compatible and interderivable se-
mantic specifications for the Scheme programming language,
Part I: Denotational semantics, natural semantics, and ab-
stract machines. In Will Clinger, editor, Proceedings of the
2008 ACM SIGPLAN Workshop on Scheme and Functional
Programming, Victoria, British Columbia, September 2008.
Available in the present proceedings.

[12] Olivier Danvy and Kevin Millikin. On the equivalence
between small-step and big-step abstract machines: a simple
application of lightweight fusion. Information Processing
Letters, 106(3):100–109, 2008.

[13] Olivier Danvy and Lasse R. Nielsen. Refocusing in
reduction semantics. Research Report BRICS RS-04-26,
DAIMI, Department of Computer Science, University of
Aarhus, Aarhus, Denmark, November 2004. A preliminary
version appeared in the informal proceedings of the Second
International Workshop on Rule-Based Programming (RULE
2001), Electronic Notes in Theoretical Computer Science,
Vol. 59.4.

[14] Matthias Felleisen. The Calculi of
�

-v-CS Conversion: A
Syntactic Theory of Control and State in Imperative Higher-
Order Programming Languages. PhD thesis, Computer
Science Department, Indiana University, Bloomington,
Indiana, August 1987.

[15] Peter J. Landin. The mechanical evaluation of expressions.
The Computer Journal, 6(4):308–320, 1964.

[16] Simon Marlow and Simon L. Peyton Jones. Making
a fast curry: push/enter vs. eval/apply for higher-order
languages. In Kathleen Fisher, editor, Proceedings of
the 2004 ACM SIGPLAN International Conference on
Functional Programming (ICFP’04), SIGPLAN Notices,
Vol. 39, No. 9, pages 4–15, Snowbird, Utah, September
2004. ACM Press.

[17] Jacob Matthews, Robert Bruce Findler, Matthew Flatt, and
Matthias Felleisen. A visual environment for developing
context-sensitive term rewriting systems. In Vincent van
Oostrom, editor, Rewriting Techniques and Applications,
15th International Conference (RTA 2004), number 3091 in
Lecture Notes in Computer Science, pages 301–311, Aachen,
Germany, June 2001. Springer-Verlag.

[18] Gordon D. Plotkin. Call-by-name, call-by-value and the
�

-calculus. Theoretical Computer Science, 1:125–159, 1975.

[19] Christopher Strachey and Christopher P. Wadsworth. Contin-
uations: A mathematical semantics for handling full jumps.
Technical Monograph PRG-11, Oxford University Com-
puting Laboratory, Programming Research Group, Oxford,
England, 1974. Reprinted in Higher-Order and Symbolic
Computation 13(1/2):135–152, 2000, with a foreword [20].

[20] Christopher P. Wadsworth. Continuations revisited. Higher-
Order and Symbolic Computation, 13(1/2):131–133, 2000.

47



48


