
Workshop on Scheme and Functional Programming, Montréal 2010; Barland, Findler, Flatt

The Design of a Functional Image Library

Ian Barland
Radford University
ibarland@radford.edu

Robert Bruce Findler
Northwestern University

robby@eecs.northwestern.edu

Matthew Flatt
University of Utah
mflatt@cs.utah.edu

1



Workshop on Scheme and Functional Programming, Montréal 2010; Barland, Findler, Flatt

Goals

Wanted: A 2-D image library for racket, “2htdp/image”, usable
by beginners on day one, yet rich enough to make interesting
programs... 

2



Workshop on Scheme and Functional Programming, Montréal 2010; Barland, Findler, Flatt

Goals

Wanted: A 2-D image library for racket, “2htdp/image”, usable
by beginners on day one, yet rich enough to make interesting
programs... i.e., video games.

3



Workshop on Scheme and Functional Programming, Montréal 2010; Barland, Findler, Flatt

Goals

Wanted: A 2-D image library for racket, “2htdp/image”, usable
by beginners on day one, yet rich enough to make interesting
programs... i.e., video games.

• Efficient equality checking for images

• Intuitive functions for overlaying images

• Include rotation, scaling, flipping, cropping.

We give an experience report on design decisions, and unexpected
complications.

4



Workshop on Scheme and Functional Programming, Montréal 2010; Barland, Findler, Flatt

Roadmap

• API tour (w/ commentary)

• Issues with equality

• Implementation data definition

• Lessons Learned

5



Workshop on Scheme and Functional Programming, Montréal 2010; Barland, Findler, Flatt

Tour: atomic shapes

• (circle 35 "outline" "black") → 

6



Workshop on Scheme and Functional Programming, Montréal 2010; Barland, Findler, Flatt

Tour: atomic shapes

• (circle 35 "outline" "black") → 

• (isosceles-triangle 90
                      130
                      "solid"
                      "lightseagreen") →

7



Workshop on Scheme and Functional Programming, Montréal 2010; Barland, Findler, Flatt

Tour: atomic shapes (cont.)

• (regular-polygon 25 7 "solid" "red") → 

• (star-polygon 25 7 2 "outline" "blue") → 

• (rhombus 40 60 "outline" "black") → 

8



Workshop on Scheme and Functional Programming, Montréal 2010; Barland, Findler, Flatt

Tour: atomic shapes (cont.)

• (regular-polygon 25 7 "solid" "red") → 

• (star-polygon 25 7 2 "outline" "blue") → 

• (rhombus 40 60 "outline" "black") → 

• (text "J'♥ Montréal" 45 "olive") →
laértnoM ♥'J

9



Workshop on Scheme and Functional Programming, Montréal 2010; Barland, Findler, Flatt

Tour: atomic shapes (cont.)

• (regular-polygon 25 7 "solid" "red") → 

• (star-polygon 25 7 2 "outline" "blue") → 

• (rhombus 40 60 "outline" "black") → 

• (text "J'♥ Montréal" 45 "olive") →
laértnoM ♥'J

• (bitmap "plt-logo-small.png") → 

10



Workshop on Scheme and Functional Programming, Montréal 2010; Barland, Findler, Flatt

Tour: composite shapes

• (crop 0 30 40 40 (circle 40 "solid" "orange"))

→ 

• (rotate 30 (ellipse 60 30 "solid" "blue")) →

N.B. no reference-point, for rotate.

11



Workshop on Scheme and Functional Programming, Montréal 2010; Barland, Findler, Flatt

Tour: composite shapes (cont.)

• (add-curve
(rectangle 200 50 "solid" "black")
10 40 30 1/2
190 40 -90 1/5
(make-pen "white" 4

"solid" "round" "round")) →

12



Workshop on Scheme and Functional Programming, Montréal 2010; Barland, Findler, Flatt

Tour: composite shapes (cont.)

• (add-curve
(rectangle 200 50 "solid" "black")
10 40 30 1/2
190 40 -90 1/5
(make-pen "white" 4

"solid" "round" "round")) →

• (above
(star 60 "solid" "firebrick")
(scale/xy
1 1/2
(flip-vertical
(star 60 "solid" "gray"))))  

13



Workshop on Scheme and Functional Programming, Montréal 2010; Barland, Findler, Flatt

Tour: composite shapes (cont.)

• (add-curve
(rectangle 200 50 "solid" "black")
10 40 30 1/2
190 40 -90 1/5
(make-pen "white" 4

"solid" "round" "round")) →

• (above
(star 60 "solid" "firebrick")
(scale/xy
1 1/2
(flip-vertical
(star 60 "solid" "gray")))) → 

14



Workshop on Scheme and Functional Programming, Montréal 2010; Barland, Findler, Flatt

Tour: composite shapes (cont.)

• (beside (square 40 "solid" "blue")
(ellipse 30 60 "solid" "green")) 

15



Workshop on Scheme and Functional Programming, Montréal 2010; Barland, Findler, Flatt

Tour: composite shapes (cont.)

• (beside (square 40 "solid" "blue")
(ellipse 30 60 "solid" "green")) →

16



Workshop on Scheme and Functional Programming, Montréal 2010; Barland, Findler, Flatt

Tour: composite shapes (cont.)

• (beside (square 40 "solid" "blue")
(ellipse 30 60 "solid" "green")) →

• (above/align "right"
(star 30 "solid" "orange")
(rectangle 120 20 "solid" "blue")
(triangle 40 "solid" "red"))

→ 

17



Workshop on Scheme and Functional Programming, Montréal 2010; Barland, Findler, Flatt

Tour: overlay

• (overlay (square 30 "solid" "orange")
(square 40 "solid" "blue"))  → 

• (overlay img1 img2): “overlay  img1 on top of img2”,
not “ img1 is overlaid with img2”.

18



Workshop on Scheme and Functional Programming, Montréal 2010; Barland, Findler, Flatt

Tour: overlay

• (overlay (square 30 "solid" "orange")
(square 40 "solid" "blue"))  → 

• (overlay img1 img2): “overlay  img1 on top of img2”,
not “ img1 is overlaid with img2”.

• (overlay/xy (square 30 "solid" "orange")
0 7
(square 40 "solid" "blue"))  →

19



Workshop on Scheme and Functional Programming, Montréal 2010; Barland, Findler, Flatt

Tour: overlay

• (overlay (square 30 "solid" "orange")
(square 40 "solid" "blue"))  → 

• (overlay img1 img2): “overlay  img1 on top of img2”,
not “ img1 is overlaid with img2”.

• (overlay/xy (square 30 "solid" "orange")
0 7
(square 40 "solid" "blue"))  →

• Coordinate system: origin at top-left (as graphics), not lower-left
(as math).

20



Workshop on Scheme and Functional Programming, Montréal 2010; Barland, Findler, Flatt

Tour: overlay’s relatives

• (underlay/xy (square 40 "solid" "seagreen")
35 5
(circle 10 "solid" "orange"))

 

21



Workshop on Scheme and Functional Programming, Montréal 2010; Barland, Findler, Flatt

Tour: overlay’s relatives

• (underlay/xy (square 40 "solid" "seagreen")
35 5
(circle 10 "solid" "orange"))

→ 

• underlay/xy, for the common task “put object onto a
background at dx,dy”.

22



Workshop on Scheme and Functional Programming, Montréal 2010; Barland, Findler, Flatt

Tour: overlay’s relatives

• (underlay/xy (square 40 "solid" "seagreen")
35 5
(circle 10 "solid" "orange"))

→ 

• underlay/xy, for the common task “put object onto a
background at dx,dy”.

• (place-image (circle 10 "solid" "orange")
35 5
(square 40 "solid" "seagreen"))

 

23



Workshop on Scheme and Functional Programming, Montréal 2010; Barland, Findler, Flatt

Tour: overlay’s relatives

• (underlay/xy (square 40 "solid" "seagreen")
35 5
(circle 10 "solid" "orange"))

→ 

• underlay/xy, for the common task “put object onto a
background at dx,dy”.

• (place-image (circle 10 "solid" "orange")
35 5
(square 40 "solid" "seagreen"))

→ 

• place-image: as overlay/xy but crop, and place img2’s
center (not origin); like underlay the coords are relative to
background.

24



Workshop on Scheme and Functional Programming, Montréal 2010; Barland, Findler, Flatt

Tour: equality checking

• (equal? (circle 20 "solid" "red")
(ellipse 40 40 "solid" (color 255 0 0)))

→ #t

• Critical for unit testing.  For example:
(check-expect
(draw-world (move-right initial-world))
(overlay/xy player-image 5 0 initial-image))

25



Workshop on Scheme and Functional Programming, Montréal 2010; Barland, Findler, Flatt

Related work

Many other functional image libraries:

• Functional Pictures (Henderson 1982)

• PIC (Kernighan 1991)

• MLGraph (Chaillous and Cousineau, 1992)

• Functional Postscript (Sae-Tan and Shivers, 1996)

• Pictures (Finne and Peyton Jones, 1995)

• Functional Images (Elliot 2003)

• ...and more.

Our work (a) is designed for use in an intro programming course
and (b) emphasizes equality-checking.

26



Workshop on Scheme and Functional Programming, Montréal 2010; Barland, Findler, Flatt

Roadmap

• API tour (w/ commentary)

• Issues with equality

• Implementation data definition

• Lessons Learned

27



Workshop on Scheme and Functional Programming, Montréal 2010; Barland, Findler, Flatt

Image Equality: what does it mean?

Ideally, “Observationally Equivalent”: we want to say two images
are equal iff they behave the same under any series of operations.
This may not be the same as drawing identically at their current
scale (e.g. a 0.8-pixel square vs a 0.9-pixel square).

We explore reasons why the ideal answer is both (too) difficult to
compute, and is arguably not the correct pedagogic choice after all.

28



Workshop on Scheme and Functional Programming, Montréal 2010; Barland, Findler, Flatt

Image Equality: difficulties

Consider the following four ways of representing a rectangle:

• (rectangle 10 20 "outline" "blue")

• (rotate 90 (rectangle 20 10 "outline" "blue"))

• a polygon connecting (0,0), (10,0), (10,20), (0,20).

• four entirely disjoint line segments and straight curves, rotated and
placed above or beside each other to achieve the same rectangle.

29



Workshop on Scheme and Functional Programming, Montréal 2010; Barland, Findler, Flatt

Image Equality: difficulties

Consider the following four ways of representing a rectangle:

• (rectangle 10 20 "outline" "blue")

• (rotate 90 (rectangle 20 10 "outline" "blue"))

• a polygon connecting (0,0), (10,0), (10,20), (0,20).

• four entirely disjoint line segments and straight curves, rotated and
placed above or beside each other to achieve the same rectangle.

One can think of ways to work around these, but there are more
difficulties...

30



Workshop on Scheme and Functional Programming, Montréal 2010; Barland, Findler, Flatt

Image Equality: difficulties (cont)

What are different ways to construct an image equivalent to 
?

• (beside (square 30 "solid" "orange")
(square 30 "solid" "blue"))

• (overlay/align "left" "center"
(rectangle 60 30 "solid" "blue")
(square 30 "solid" "orange"))

• (overlay/xy ... 5 5 (circle 2 "solid" "orange"))

31



Workshop on Scheme and Functional Programming, Montréal 2010; Barland, Findler, Flatt

Image Equality: difficulties (cont)

What are different ways to construct an image equivalent to 
?

• (beside (square 30 "solid" "orange")
(square 30 "solid" "blue"))

• (overlay/align "left" "center"
(rectangle 60 30 "solid" "blue")
(square 30 "solid" "orange"))

• (overlay/xy ... 5 5 (circle 2 "solid" "orange"))

One can think of ways to work around these, but there are still
more difficulties...

32



Workshop on Scheme and Functional Programming, Montréal 2010; Barland, Findler, Flatt

Image Equality: difficulties (cont)

• Cropping ellipses and curves can lead to complicated (disjoint)
shapes; checking equality becomes difficult.

• Floating point error: rotating 30°!3 vs 45°!2.

33



Workshop on Scheme and Functional Programming, Montréal 2010; Barland, Findler, Flatt

Image Equality: difficulties (cont)

• Cropping ellipses and curves can lead to complicated (disjoint)
shapes; checking equality becomes difficult.

• Floating point error: rotating 30°!3 vs 45°!2.

Aaagh!

34



Workshop on Scheme and Functional Programming, Montréal 2010; Barland, Findler, Flatt

Image Equality: difficulties (cont)

• Cropping ellipses and curves can lead to complicated (disjoint)
shapes; checking equality becomes difficult.

• Floating point error: rotating 30°!3 vs 45°!2.

Aaagh!  ...And if you do extensive work to handle all these,
students (and others) might still be baffled when two
identically-drawn images aren’t considered equal?.

35



Workshop on Scheme and Functional Programming, Montréal 2010; Barland, Findler, Flatt

Image Equality: difficulties (cont)

Two other issues:

• The text function might introduce ligatures or kerning;
(text "Wifi") might not draw the same as  placing
individual letters beside each other.

36



Workshop on Scheme and Functional Programming, Montréal 2010; Barland, Findler, Flatt

Image Equality: difficulties (cont)

Two other issues:

• The text function might introduce ligatures or kerning;
(text "Wifi") might not draw the same as  placing
individual letters beside each other.
(2htdp/image patches this by passing each individual letter to
the underlying text-draw function and  besideing the results.)

• Zero-width rectangles can invisibly change the bounding box.

37



Workshop on Scheme and Functional Programming, Montréal 2010; Barland, Findler, Flatt

Image Equality: difficulties (cont)

Two other issues:

• The text function might introduce ligatures or kerning;
(text "Wifi") might not draw the same as  placing
individual letters beside each other.
(2htdp/image patches this by passing each individual letter to
the underlying text-draw function and  besideing the results.)

• Zero-width rectangles can invisibly change the bounding box.
(2htdp/image currently considers such images  non-equal?.)

38



Workshop on Scheme and Functional Programming, Montréal 2010; Barland, Findler, Flatt

Roadmap

• API tour (w/ commentary)

• Issues with equality

• Implementation data definition

• Lessons Learned

39



Workshop on Scheme and Functional Programming, Montréal 2010; Barland, Findler, Flatt

Data definition (part 1)

Images represented as a straightforward tree of structures.

(image
(bounding-box width height baseline)
(Rec Shape

(U Atomic-Shape  ; includes ellipses,
; text, bitmaps, etc

   Polygon-Shape ; includes rectangles,
; lines, curves, etc

   (overlay Shape Shape)
   (translate dx dy Shape)
   (scale sx sy Shape)
   (crop (Listof point) Shape))))

40



Workshop on Scheme and Functional Programming, Montréal 2010; Barland, Findler, Flatt

Data definition (part 2)

When drawing or comparing images, normalize them first:

(Rec Normalized-Shape
(U (overlay Normalized-Shape CN-Shape)

CN-Shape))
(Rec CN-Shape

(U (crop (Listof point)
Normalized-Shape)

(translate num num Atomic-Shape)
Polygon-Shape))

Overlay-of-overlays are linearized; translates,rotates,scales pushed
down to leaves.

Time complexity of draw/equality-check is still linear.

41



Workshop on Scheme and Functional Programming, Montréal 2010; Barland, Findler, Flatt

Equality: resolution

Equality is implemented in two parts:

• First try checking structural equality of normalized shapes;

• if that can’t show them equal, fall back to comparing bitmaps.

This strategy well-suited for reasonable unit tests which pass.

42



Workshop on Scheme and Functional Programming, Montréal 2010; Barland, Findler, Flatt

Equality: resolution

Equality is implemented in two parts:

• First try checking structural equality of normalized shapes;

• if that can’t show them equal, fall back to comparing bitmaps.

This strategy well-suited for reasonable unit tests which pass.

43



Workshop on Scheme and Functional Programming, Montréal 2010; Barland, Findler, Flatt

Roadmap

• API tour (w/ commentary)

• Issues with equality

• Implementation data definition

• Lessons Learned (three of ’em)

44



Workshop on Scheme and Functional Programming, Montréal 2010; Barland, Findler, Flatt

Lesson: Rotate is linear-time — example

Consider the following examples. Which vertices determine
overall bbox?

(define r (rectangle 40 20 "solid" "red"))
(define (rot-above p)
  (above (rotate 40 p) r))

• (rot-above r) → 

• (rot-above
(rot-above r)) → 

45



Workshop on Scheme and Functional Programming, Montréal 2010; Barland, Findler, Flatt

Lesson: Rotate is linear-time — example

Consider the following examples. Which vertices determine
overall bbox?

(define r (rectangle 40 20 "solid" "red"))
(define (rot-above p)
  (above (rotate 40 p) r))

• (rot-above (rot-above r)) → 

• (rot-above
(rot-above (rot-above r))) → 

46



Workshop on Scheme and Functional Programming, Montréal 2010; Barland, Findler, Flatt

Lesson: Rotate is linear-time — example

Consider the following examples. Which vertices determine
overall bbox?

(define r (rectangle 40 20 "solid" "red"))
(define (rot-above p)
  (above (rotate 40 p) r))

• (rot-above
(rot-above (rot-above r))) → 

• (rot-above
(rot-above
(rot-above (rot-above r)))) → 

47



Workshop on Scheme and Functional Programming, Montréal 2010; Barland, Findler, Flatt

Lesson: Don’t push cropping to the leaves

Initially, cropping (like rotating, translating) was pushed to leaves.
But this (with overlay) leads to quadratic blowup when
normalizing.

(crop
r1
(crop
r2
(crop
r3
(overlay s1 s2))))

48



Workshop on Scheme and Functional Programming, Montréal 2010; Barland, Findler, Flatt

Lesson: Don’t push cropping to the leaves

Initially, cropping (like rotating, translating) was pushed to leaves.
But this (with overlay) leads to quadratic blowup when
normalizing.

(crop
r1
(crop
r2
(crop
r3
(overlay s1 s2))))

⇒

(overlay
(crop r1

(crop r2
(crop r3 s1)))

(crop r1
(crop r2

(crop r3 s2))))

49



Workshop on Scheme and Functional Programming, Montréal 2010; Barland, Findler, Flatt

Lesson: Don’t push cropping to the leaves

Initially, cropping (like rotating, translating) was pushed to leaves.
But this (with overlay) leads to quadratic blowup when
normalizing.

(crop
r1
(crop
r2
(crop
r3
(overlay s1 s2))))

⇒

(overlay
(crop r1

(crop r2
(crop r3 s1)))

(crop r1
(crop r2

(crop r3 s2))))

Resolution: in a normalized shape, nodes are overlays or crops.

50



Workshop on Scheme and Functional Programming, Montréal 2010; Barland, Findler, Flatt

Lesson: filled-pixels vs lines

Consider drawing a solid 3x3 rectangle: lines from (0,0), (0,3), (3,3),
(3,0). But isn’t that off-by-one?

51



Workshop on Scheme and Functional Programming, Montréal 2010; Barland, Findler, Flatt

Lesson: filled-pixels vs lines

Consider drawing a solid 3x3 rectangle: lines from (0,0), (0,3), (3,3),
(3,0). But isn’t that off-by-one?

No — coordinates reside at the corner of the square pixel.

52



Workshop on Scheme and Functional Programming, Montréal 2010; Barland, Findler, Flatt

Lesson: filled-pixels vs lines

Consider drawing a solid 3x3 rectangle: lines from (0,0), (0,3), (3,3),
(3,0). But isn’t that off-by-one?

No — coordinates reside at the corner of the square pixel.

But when drawing outline rectangles: Drawing between pixels with
a pen will appear as a 2-pixel-wide line.

53



Workshop on Scheme and Functional Programming, Montréal 2010; Barland, Findler, Flatt

Lesson: filled-pixels vs lines

Consider drawing a solid 3x3 rectangle: lines from (0,0), (0,3), (3,3),
(3,0). But isn’t that off-by-one?

No — coordinates reside at the corner of the square pixel.

But when drawing outline rectangles: Drawing between pixels with
a pen will appear as a 2-pixel-wide line.

Solution: offset all polygon outline coordinates by (0.5,0.5).
54



Workshop on Scheme and Functional Programming, Montréal 2010; Barland, Findler, Flatt

Thanks

Thanks to Stephen Bloch, Carl Eastlund, Matthias Felleisen,
Guillaume Marceau, and Jean-Paul Roy for helpful discussions, work
and ideas.

55



Workshop on Scheme and Functional Programming, Montréal 2010; Barland, Findler, Flatt

Thanks

Thanks to Stephen Bloch, Carl Eastlund, Matthias Felleisen,
Guillaume Marceau, and Jean-Paul Roy for helpful discussions, work
and ideas.

Questions?
Ian Barland

Radford University
ibarland@radford.edu

Robert Bruce Findler
Northwestern University

robby@eecs.northwestern.edu

Matthew Flatt
University of Utah
mflatt@cs.utah.edu

56


