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Who uses function (calls)?

Pushdown control-flow analysis models function calls precisely.
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Simple example of merging return-points

(let* ((id (lambda (x) x))
(a (id 3))
(b (id 4)))

a)



The big picture

Classical control-flow analysis is not precise enough.

Pushdown control-flow analysis has better precision.

We generalize k-CFA to a pushdown control-flow analysis.

Our approach has several advantages:
Direct-style
Polyvariant
Polynomial
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Target language/stack behavior

(let ((x e1)) e2) =⇒ Push frame (x , e2, . . . ) onto stack.

a =⇒ Pop top of stack.

(f a) =⇒ Stack no-op.
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Abstract Semantics
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Abstracted store =⇒ stores = finite
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The configuration-space cannot be explicitly searched.
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Size of the abstract state-space

State-space = finite
Always.
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Shortcut edges: finding the top of the stack
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Dyck state graphs: a lean PDA representation
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Only reachable states and configurations are included.
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Polynomial: monovariance and store-widening

Standard (infinite) pushdown control-flow analysis:

Configuration = Expression × Environment × Store × Stack

Frame = Variable × Expression × Environment
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Polynomial: monovariance and store-widening

Monovariant Dyck state graphs:

State = Expression × Store

Frame = Variable × Expression



Polynomial: monovariance and store-widening

Monovariant Dyck state graphs with store-widening:

State = Expression (with a global store)

Frame = Variable × Expression
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Pushdown control-flow analysis precisely models the stack.

Our formulation only explores reachable configurations/states.

Our formulation works for direct-style programs.

Our formulation allows for either:

Polyvariance

Polynomial running-time
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Questions?



O(n6)


