
Pushdown Control-Flow Analysis of
Higher Order Programs

Christopher Earl1 Matthew Might1 David Van Horn2

1University of Utah
{cwearl,might}@cs.utah.edu

2Northeastern University
dvanhorn@ccs.neu.edu

August 21, 2010

Who uses function (calls)?

Pushdown control-flow analysis models function calls precisely.

Who uses function (calls)?

Pushdown control-flow analysis models function calls precisely.

Simple example of merging return-points

(let* ((id (lambda (x) x))
(a (id 3))
(b (id 4)))

a)

The big picture

Classical control-flow analysis is not precise enough.

Pushdown control-flow analysis has better precision.

We generalize k-CFA to a pushdown control-flow analysis.

Our approach has several advantages:
Direct-style
Polyvariant
Polynomial

The big picture

Classical control-flow analysis is not precise enough.

Pushdown control-flow analysis has better precision.

We generalize k-CFA to a pushdown control-flow analysis.

Our approach has several advantages:
Direct-style
Polyvariant
Polynomial

The big picture

Classical control-flow analysis is not precise enough.

Pushdown control-flow analysis has better precision.

We generalize k-CFA to a pushdown control-flow analysis.

Our approach has several advantages:
Direct-style
Polyvariant
Polynomial

The big picture

Classical control-flow analysis is not precise enough.

Pushdown control-flow analysis has better precision.

We generalize k-CFA to a pushdown control-flow analysis.

Our approach has several advantages:
Direct-style
Polyvariant
Polynomial

Control-flow analysis < pushdown control-flow analysis

Expressiveness of k-CFA = NFA

Expressiveness of PDCFA = PDA

Control-flow analysis < pushdown control-flow analysis

Expressiveness of k-CFA = NFA

Expressiveness of PDCFA = PDA

Our approach

Target language/stack behavior

(let ((x e1)) e2) =⇒ Push frame (x , e2, . . .) onto stack.

a =⇒ Pop top of stack.

(f a) =⇒ Stack no-op.

Target language/stack behavior

(let ((x e1)) e2) =⇒ Push frame (x , e2, . . .) onto stack.

a =⇒ Pop top of stack.

(f a) =⇒ Stack no-op.

Target language/stack behavior

(let ((x e1)) e2) =⇒ Push frame (x , e2, . . .) onto stack.

a =⇒ Pop top of stack.

(f a) =⇒ Stack no-op.

Concrete Semantics

A CESK machine.

Configuration = State × Stack

State = Expression × Environment × Store

Concrete Semantics

A CESK machine.

Configuration = State × Stack

State = Expression × Environment × Store

Concrete Semantics

A CESK machine.

Configuration = State × Stack

State = Expression × Environment × Store

Abstract Semantics

Abstracted environment =⇒

environments = finite

Abstracted store =⇒ stores = finite

Abstracted state =⇒ states = finite

Abstract Semantics

Abstracted environment =⇒ environments = finite

Abstracted store =⇒ stores = finite

Abstracted state =⇒ states = finite

Abstract Semantics

Abstracted environment =⇒ environments = finite

Abstracted store =⇒

stores = finite

Abstracted state =⇒ states = finite

Abstract Semantics

Abstracted environment =⇒ environments = finite

Abstracted store =⇒ stores = finite

Abstracted state =⇒ states = finite

Abstract Semantics

Abstracted environment =⇒ environments = finite

Abstracted store =⇒ stores = finite

Abstracted state =⇒

states = finite

Abstract Semantics

Abstracted environment =⇒ environments = finite

Abstracted store =⇒ stores = finite

Abstracted state =⇒ states = finite

Size of the abstract configuration-space

Using the stack =⇒

configuration-space = infinite

The configuration-space cannot be explicitly searched.

Size of the abstract configuration-space

Using the stack =⇒ configuration-space = infinite

The configuration-space cannot be explicitly searched.

Size of the abstract configuration-space

Using the stack =⇒ configuration-space = infinite

The configuration-space cannot be explicitly searched.

Size of the abstract state-space

State-space = finite
Always.

Finite model of pushdown control-flow analysis

· · ·

 B
BB

BB
BB

B · · ·

ς̂1
φ̂+

��?
??

??
??

ς̂5

>>||||||||

ς̂2
ε // ς̂3

ε // ς̂4

φ̂−
??�������

This representation is a PDA.

Finite model of pushdown control-flow analysis

· · ·

 B
BB

BB
BB

B · · ·

ς̂1
φ̂+

��?
??

??
??

ς̂5

>>||||||||

ς̂2
ε // ς̂3

ε // ς̂4

φ̂−
??�������

This representation is a PDA.

While finite, this naive PDA is inefficient:

· · ·

 B
BB

BB
BB

B · · ·

ς̂1
φ̂+

��?
??

??
??

ς̂5

>>||||||||

ς̂2
ε // ς̂3

ε // ς̂4

φ̂−
??�������

φ̂′−

//___

φ̂′′− ��?
?

?
? ς̂6

ς̂7

(Provably) unreachable configurations/states are included.

Legal path from initial configuration/state =⇒ reachable

While finite, this naive PDA is inefficient:

· · ·

 B
BB

BB
BB

B · · ·

ς̂1
φ̂+

��?
??

??
??

ς̂5

>>||||||||

ς̂2
ε // ς̂3

ε // ς̂4

φ̂−
??�������

φ̂′−

//___

φ̂′′− ��?
?

?
? ς̂6

ς̂7

(Provably) unreachable configurations/states are included.

Legal path from initial configuration/state =⇒ reachable

While finite, this naive PDA is inefficient:

· · ·

 B
BB

BB
BB

B · · ·

ς̂1
φ̂+

��?
??

??
??

ς̂5

>>||||||||

ς̂2
ε // ς̂3

ε // ς̂4

φ̂−
??�������

φ̂′−

//___

φ̂′′− ��?
?

?
? ς̂6

ς̂7

(Provably) unreachable configurations/states are included.

Legal path from initial configuration/state =⇒

reachable

While finite, this naive PDA is inefficient:

· · ·

 B
BB

BB
BB

B · · ·

ς̂1
φ̂+

��?
??

??
??

ς̂5

>>||||||||

ς̂2
ε // ς̂3

ε // ς̂4

φ̂−
??�������

φ̂′−

//___

φ̂′′− ��?
?

?
? ς̂6

ς̂7

(Provably) unreachable configurations/states are included.

Legal path from initial configuration/state =⇒ reachable

Shortcut edges: finding the top of the stack

· · ·

 B
BB

BB
BB

B · · ·

ς̂1
φ̂+

��?
??

??
??

ς̂5

>>||||||||

ς̂2
ε //

ε

��
ς̂3

ε // ς̂4

φ̂−
??�������

φ̂′−

//___

φ̂′′− ��?
?

?
? ς̂6

ς̂7

Shortcut edges: finding the top of the stack

· · ·

 B
BB

BB
BB

B · · ·

ς̂1
φ̂+

��?
??

??
??

ε // ς̂5

>>||||||||

ς̂2
ε //

ε

��
ς̂3

ε // ς̂4

φ̂−
??�������

φ̂′−

//___

φ̂′′− ��?
?

?
? ς̂6

ς̂7

Shortcut edges: finding the top of the stack

ς̂0
φ̂′+

��?
??

??
??

· · ·

ς̂1
φ̂+

��?
??

??
??

ε // ς̂5

>>~~~~~~~~

ς̂2
ε //

ε

��
ς̂3

ε // ς̂4

φ̂−
??�������

φ̂′−

//___

φ̂′′− ��?
?

?
? ς̂6

ς̂7

Shortcut edges: finding the top of the stack

ς̂0
φ̂′+

��?
??

??
??

ς̂8

ς̂1
φ̂+

��?
??

??
??

ε // ς̂5

φ̂′−
??�������

ς̂2
ε //

ε

��
ς̂3

ε // ς̂4

φ̂−
??�������

φ̂′−

//___

φ̂′′− ��?
?

?
? ς̂6

ς̂7

Shortcut edges: finding the top of the stack

ς̂0
φ̂′+

��?
??

??
??

ε // ς̂8

ς̂1
φ̂+

��?
??

??
??

ε // ς̂5

φ̂′−
??�������

ς̂2
ε //

ε

��
ς̂3

ε // ς̂4

φ̂−
??�������

φ̂′−

//___

φ̂′′− ��?
?

?
? ς̂6

ς̂7

Dyck state graphs: a lean PDA representation

ς̂0
φ̂′+

��?
??

??
??

ε // ς̂8

ς̂1
φ̂+

��?
??

??
??

ε // ς̂5

φ̂′−
??�������

ς̂2
ε //

ε

��
ς̂3

ε // ς̂4

φ̂−
??�������

Only reachable states and configurations are included.

Our contributions

Direct-style

Polyvariant

Polynomial

Direct-style:

by the language (A-Normal Form)

Polyvariant: the abstract semantics can use a parameter, k,
identical to the k in k-CFA

Direct-style: by the language (A-Normal Form)

Polyvariant: the abstract semantics can use a parameter, k,
identical to the k in k-CFA

Direct-style: by the language (A-Normal Form)

Polyvariant:

the abstract semantics can use a parameter, k,
identical to the k in k-CFA

Direct-style: by the language (A-Normal Form)

Polyvariant: the abstract semantics can use a parameter, k,
identical to the k in k-CFA

Polynomial: monovariance and store-widening

Standard (infinite) pushdown control-flow analysis:

Configuration = Expression × Environment × Store × Stack

Frame = Variable × Expression × Environment

Polynomial: monovariance and store-widening

Dyck state graphs:

State = Expression × Environment × Store

Frame = Variable × Expression × Environment

Polynomial: monovariance and store-widening

Monovariant Dyck state graphs:

State = Expression × Store

Frame = Variable × Expression

Polynomial: monovariance and store-widening

Monovariant Dyck state graphs with store-widening:

State = Expression (with a global store)

Frame = Variable × Expression

Recap

Pushdown control-flow analysis precisely models the stack.

Our formulation only explores reachable configurations/states.

Our formulation works for direct-style programs.

Our formulation allows for either:

Polyvariance

Polynomial running-time

Recap

Pushdown control-flow analysis precisely models the stack.

Our formulation only explores reachable configurations/states.

Our formulation works for direct-style programs.

Our formulation allows for either:

Polyvariance

Polynomial running-time

Recap

Pushdown control-flow analysis precisely models the stack.

Our formulation only explores reachable configurations/states.

Our formulation works for direct-style programs.

Our formulation allows for either:

Polyvariance

Polynomial running-time

Recap

Pushdown control-flow analysis precisely models the stack.

Our formulation only explores reachable configurations/states.

Our formulation works for direct-style programs.

Our formulation allows for either:

Polyvariance

Polynomial running-time

Recap

Pushdown control-flow analysis precisely models the stack.

Our formulation only explores reachable configurations/states.

Our formulation works for direct-style programs.

Our formulation allows for either:

Polyvariance

Polynomial running-time

Recap

Pushdown control-flow analysis precisely models the stack.

Our formulation only explores reachable configurations/states.

Our formulation works for direct-style programs.

Our formulation allows for either:

Polyvariance

Polynomial running-time

Questions?

O(n6)

