Pushdown Control-Flow Analysis of Higher Order Programs

Christopher Earl1 Matthew Might1 David Van Horn2

1University of Utah \{cwearl,might\}@cs.utah.edu
2Northeastern University dvanhorn@ccs.neu.edu

August 21, 2010
Who uses function (calls)?
Who uses function (calls)?

Pushdown control-flow analysis models function calls precisely.
Simple example of merging return-points

(let* ((id (lambda (x) x))
 (a (id 3))
 (b (id 4)))
 a)
The big picture

Classical control-flow analysis is not precise enough.
The big picture

Classical control-flow analysis is not precise enough.

Pushdown control-flow analysis has better precision.
The big picture

Classical control-flow analysis is not precise enough.

Pushdown control-flow analysis has better precision.

We generalize k-CFA to a pushdown control-flow analysis.
The big picture

Classical control-flow analysis is not precise enough.

Pushdown control-flow analysis has better precision.

We generalize k-CFA to a pushdown control-flow analysis.

Our approach has several advantages:
 Direct-style
 Polyvariant
 Polynomial
Expressiveness of k-CFA = NFA
Control-flow analysis < pushdown control-flow analysis

Expressiveness of k-CFA = NFA

Expressiveness of PDCFA = PDA
Our approach
Target language/stack behavior

\[(\text{let } ((x \ e_1)) \ e_2) \implies \text{Push frame } (x, e_2, \ldots) \text{ onto stack.}\]
Target language/stack behavior

\[(\text{let } (x \ e_1)) \ e_2) \implies \text{Push frame } (x, e_2, \ldots) \text{ onto stack.}\]

\[a \implies \text{Pop top of stack.}\]
Target language/stack behavior

\[(\text{let } ((x \ e_1)) \ e_2) \implies \text{Push frame } (x, e_2, \ldots) \text{ onto stack.}\]

\[a \implies \text{Pop top of stack.}\]

\[(f \ a) \implies \text{Stack no-op.}\]
Concrete Semantics

A CESK machine.
Concrete Semantics

A CESK machine.

Configuration = State \times Stack
Concrete Semantics

A CESK machine.

Configuration = State \times Stack

State = Expression \times Environment \times Store
Abstract Semantics

Abstracted environment \Rightarrow
Abstract Semantics

Abstracted environment \implies environments = finite
Abstract Semantics

Abstracted environment \implies environments $=$ finite

Abstracted store \implies
Abstract Semantics

Abstracted environment \rightarrow environments $= \text{finite}$

Abstracted store \rightarrow stores $= \text{finite}$
Abstract Semantics

Abstracted environment \[\implies\] environments = finite

Abstracted store \[\implies\] stores = finite

Abstracted state \[\implies\]
Abstract Semantics

Abstracted environment \implies environments = finite

Abstracted store \implies stores = finite

Abstracted state \implies states = finite
Size of the abstract configuration-space

Using the stack \Rightarrow
Size of the abstract configuration-space

Using the stack \Rightarrow configuration-space $=$ infinite
Size of the abstract configuration-space

Using the stack \(\Rightarrow \) configuration-space = infinite

The configuration-space cannot be explicitly searched.
Size of the abstract state-space

State-space = finite
Always.
Finite model of pushdown control-flow analysis
Finite model of pushdown control-flow analysis

This representation is a PDA.
While finite, this naive PDA is inefficient:
While finite, this naive PDA is inefficient:

(Provably) unreachable configurations/states are included.
While finite, this naive PDA is inefficient:

(Provably) unreachable configurations/states are included.

Legal path from initial configuration/state →
While finite, this naive PDA is inefficient:

(Provably) unreachable configurations/states are included.

Legal path from initial configuration/state \Rightarrow reachable
Shortcut edges: finding the top of the stack
Dyck state graphs: a lean PDA representation

Only reachable states and configurations are included.
Our contributions
Direct-style

Polyvariant

Polynomial
Direct-style:
Direct-style: by the language (A-Normal Form)
Direct-style: by the language (A-Normal Form)

Polyvariant:
Direct-style: by the language (A-Normal Form)

Polyvariant: the abstract semantics can use a parameter, k, identical to the k in k-CFA
Polynomial: monovariance and store-widening

Standard (infinite) pushdown control-flow analysis:

Configuration = Expression \times Environment \times Store \times Stack

Frame = Variable \times Expression \times Environment
Dyck state graphs:

State = Expression \times Environment \times Store

Frame = Variable \times Expression \times Environment
Polynomial: monovariance and store-widening

Monovariant Dyck state graphs:

State = Expression \times Store

Frame = Variable \times Expression
Polynomial: monovariance and store-widening

Monovariant Dyck state graphs with store-widening:

State = Expression (with a global store)

Frame = Variable \times Expression
Recap

Pushdown control-flow analysis precisely models the stack.
Recap

Pushdown control-flow analysis precisely models the stack.

Our formulation only explores reachable configurations/states.
Recap

Pushdown control-flow analysis precisely models the stack.

Our formulation only explores reachable configurations/states.

Our formulation works for direct-style programs.
Recap

Pushdown control-flow analysis precisely models the stack.

Our formulation only explores reachable configurations/states.

Our formulation works for direct-style programs.

Our formulation allows for either:
Recap

Pushdown control-flow analysis precisely models the stack.

Our formulation only explores reachable configurations/states.

Our formulation works for direct-style programs.

Our formulation allows for either:

Polyvariance
Recap

- Pushdown control-flow analysis precisely models the stack.
- Our formulation only explores reachable configurations/states.
- Our formulation works for direct-style programs.
- Our formulation allows for either:
 - Polyvariance
 - Polynomial running-time
Questions?
O(n^6)