
Functional Data Structures for Typed Racket

Hari Prashanth and Sam Tobin-Hochstadt

Northeastern University

1

Motivation

Typed Racket has very few data structures

2

Motivation

Typed Racket has very few data structures

Lists

3

Motivation

Typed Racket has very few data structures

Lists

Vectors

4

Motivation

Typed Racket has very few data structures

Lists

Vectors

Hash Tables

5

Motivation

Typed Racket has very few data structures

Lists

Vectors

Hash Tables

Practical use of Typed Racket

6

Outline

Motivation

Typed Racket in a Nutshell

Purely Functional Data Structures

Benchmarks

Typed Racket Evaluation

Conclusion

7

Function definition in Racket

#lang racket

; Computes the length of a given list of elements
; length : list-of-elems -> natural
(define (length list)
 (if (null? list)

0
(add1 (length (cdr list)))))

8

Function definition in Typed Racket

#lang typed/racket

; Computes the length of a given list of integers
(: length : (Listof Integer) -> Natural)
(define (length list)
 (if (null? list)

0
(add1 (length (cdr list)))))

9

Function definition in Typed Racket

#lang typed/racket

; Computes the length of a given list of elements
(: length : (All (A) ((Listof A) -> Natural)))
(define (length list)
 (if (null? list)

0
(add1 (length (cdr list)))))

10

Data definition in Racket

#lang racket

; Data definition of tree of integers

; A Tree is one of
; - null
; - BTree

(define-struct BTree
 (left

elem
right))

; left and right are of type Tree
; elem is an Integer

11

Data definition in Typed Racket

#lang typed/racket

; Data definition of tree of integers

(define-type Tree (U Null BTree))

(define-struct: BTree
 ([left : Tree]

[elem : Integer]
[right : Tree]))

12

Data definition in Typed Racket

#lang typed/racket

; Polymorphic definition of Tree

(define-type (Tree A) (U Null (BTree A)))

(define-struct: (A) BTree
 ([left : (Tree A)]

[elem : A]
[right : (Tree A)]))

13

Outline

Motivation

Typed Racket in a Nutshell

Purely Functional Data Structures

Benchmarks

Typed Racket Evaluation

Conclusion

14

Destructive and Non-destructive update

e

15

Destructive and Non-destructive update

e ⇒

Destructive update

16

Destructive and Non-destructive update

e ⇒

Non-destructive update

17

Functional Queue

(define-struct: (A) Queue
 ([front : (Listof A)]

[rear : (Listof A)]))

18

Functional Queue

(define-struct: (A) Queue
 ([front : (Listof A)]

[rear : (Listof A)]))

19

Functional Queue

(: dequeue : (All (A) ((Queue A) -> (Queue A))))
(define (dequeue que)
 (let ([front (cdr (Queue-front que))]

[rear (Queue-rear que)])
 (if (null? front)

(Queue (reverse rear) null)
(Queue front rear))))

20

Functional Queue

Queue q

(for ([id (in-range 100)])
 (dequeue q))

21

Banker’s Queue [Okasaki 1998]

Lazy evaluation solves this problem

22

Banker’s Queue [Okasaki 1998]

Lazy evaluation solves this problem

(: val : (Promise Exact-Rational))

(define val (delay (/ 5 0)))

23

Banker’s Queue [Okasaki 1998]

Lazy evaluation solves this problem

Streams

(define-type (Stream A)
 (Pair A (Promise (Stream A))))

24

Banker’s Queue [Okasaki 1998]

Lazy evaluation solves this problem

(define-struct: (A) Queue
 ([front : (Stream A)]

[lenf : Integer]
[rear : (Stream A)]
[lenr : Integer]))

Invariant lenf >= lenr

25

Banker’s Queue [Okasaki 1998]

Lazy evaluation solves this problem

(: check :
(All (A) (Stream A) Integer (Stream A) Integer -> (Queue A)))

(define (check front lenf rear lenr)
 (if (>= lenf lenr)

(make-Queue front lenf rear lenr)
(make-Queue (stream-append front (stream-reverse rear))

(+ lenf lenr) null 0)))

26

Banker’s Queue [Okasaki 1998]

Lazy evaluation solves this problem

(make-Queue (stream-append front (stream-reverse rear))

(+ lenf lenr) null 0)

27

Banker’s Queue [Okasaki 1998]

Lazy evaluation solves this problem

Amortized running time of O(1) for the operations

enqueue, dequeue and head

28

Real-Time Queues [Hood & Melville 81]

29

Real-Time Queues [Hood & Melville 81]

Eliminating amortization by Scheduling

30

Real-Time Queues [Hood & Melville 81]

Eliminating amortization by Scheduling

Banker’s Queue - reverse is a forced completely

31

Real-Time Queues [Hood & Melville 81]

Eliminating amortization by Scheduling

(: rotate :

(All (A) ((Stream A) (Listof A) (Stream A) -> (Stream A))))

(define (rotate front rear accum)
 (if (empty-stream? front)

(stream-cons (car rear) accum)
(stream-cons (stream-car front)

(rotate (stream-cdr front)
(cdr rear)
(stream-cons (car rear) accum)))))

Incremental reversing

32

Real-Time Queues [Hood & Melville 81]

Eliminating amortization by Scheduling

Worst-case running time of O(1) for the operations

enqueue, dequeue and head

33

Binary Random Access Lists [Okasaki 1998]

Nat is one of
- 0
- (add1 Nat)

List is one of
- null
- (cons elem List)

34

Binary Random Access Lists [Okasaki 1998]

Nat is one of
- 0
- (add1 Nat)

List is one of
- null
- (cons elem List)

cons corresponds to increment

cdr corresponds to decrement

append corresponds to addition

35

Binary Random Access Lists [Okasaki 1998]

(define-type (RAList A) (Listof (Digit A)))

36

Binary Random Access Lists [Okasaki 1998]

(define-type (RAList A) (Listof (Digit A)))

(define-type (Digit A) (U Zero (One A)))

37

Binary Random Access Lists [Okasaki 1998]

(define-struct: Zero ())

38

Binary Random Access Lists [Okasaki 1998]

(define-struct: Zero ())

(define-struct: (A) One ([fst : (Tree A)]))

39

Binary Random Access Lists [Okasaki 1998]

(define-type (Tree A) (U (Leaf A) (Node A)))

40

Binary Random Access Lists [Okasaki 1998]

(define-type (Tree A) (U (Leaf A) (Node A)))

(define-struct: (A) Leaf ([fst : A]))

41

Binary Random Access Lists [Okasaki 1998]

(define-type (Tree A) (U (Leaf A) (Node A)))

(define-struct: (A) Leaf ([fst : A]))

(define-struct: (A) Node
 ([size : Integer]

[left : (Tree A)]
[right : (Tree A)]))

42

Binary Random Access Lists [Okasaki 1998]

(define-type (RAList A) (Listof (Digit A)))

43

Binary Random Access Lists [Okasaki 1998]

(define-type (RAList A) (Listof (Digit A)))

44

Binary Random Access Lists [Okasaki 1998]

(define-type (RAList A) (Listof (Digit A)))

45

Binary Random Access Lists [Okasaki 1998]

(define-type (RAList A) (Listof (Digit A)))

46

Binary Random Access Lists [Okasaki 1998]

(define-type (RAList A) (Listof (Digit A)))

47

Binary Random Access Lists [Okasaki 1998]

(define-type (RAList A) (Listof (Digit A)))

48

Binary Random Access Lists [Okasaki 1998]

(define-type (RAList A) (Listof (Digit A)))

49

Binary Random Access Lists [Okasaki 1998]

(define-type (RAList A) (Listof (Digit A)))

Worst-case running time of O(log n) for the operations

cons, car, cdr, lookup and update

50

VLists [Bagwell 2002]

(define-struct: (A) Base
 ([previous : (U Null (Base A))]

[elems : (RAList A)]))

(define-struct: (A) VList
 ([offset : Natural]

[base : (Base A)]
[size : Natural]))

51

VLists [Bagwell 2002]

List with one element - 6

52

VLists [Bagwell 2002]

cons 5 and 4 to the previous list

53

VLists [Bagwell 2002]

cons 3 and 2 to the previous list

54

VLists [Bagwell 2002]

cdr of the previous list

55

VLists [Bagwell 2002]

Random access takes O(1) average and O(log n) in
worst-case.

56

Our library

Library has 30 data structures which include

Variants of Queues

Variants of Deques

Variants of Heaps

Variants of Lists

Red-Black Trees

Tries

Sets

Hash Lists

57

Our library

Library has 30 data structures

58

Our library

Library has 30 data structures

Data structures have several utility functions

59

Our library

Library has 30 data structures

Data structures have several utility functions

Our implementations follows the original work

60

Outline

Motivation

Typed Racket in a Nutshell

Purely Functional Data Structures

Benchmarks

Typed Racket Evaluation

Conclusion

61

Benchmarks

(foldl enqueue que list-of-100000-elems)

62

Benchmarks

63

Benchmarks

64

Benchmarks

65

Benchmarks

66

Outline

Motivation

Typed Racket in a Nutshell

Purely Functional Data Structures

Benchmarks

Typed Racket Evaluation

Conclusion

67

ML to Typed Racket

ML idioms can be easily ported to Typed Racket

68

ML to Typed Racket

ML idioms can be easily ported to Typed Racket

type 'a Queue = int * 'a Stream * int * 'a Stream

(define-struct: (A) Queue
 ([lenf : Integer]

[front : (Stream A)]
[lenr : Integer]
[rear : (Stream A)]))

69

ML to Typed Racket

ML idioms can be easily ported to Typed Racket

type 'a Queue = 'a list * int * 'a list susp * int * 'a list

(define-struct: (A) Queue
 ([pref : (Listof A)]

[lenf : Integer]
[front : (Promise (Listof A))]
[lenr : Integer]
[rear : (Listof A)]))

70

Optimizer in Typed Racket

Optimizer based on type information

71

Optimizer in Typed Racket

72

Polymorphic recursion

(define-type (Seq A) (Pair A (Seq (Pair A A))))

Non-uniform type

73

Polymorphic recursion

(define-type (EP A) (U A (Pair (EP A) (EP A))))
(define-type (Seq A) (Pair (EP A) (Seq A)))

Uniform type

74

Conclusion

Typed Racket is useful for real-world software.

Functional data structures in Typed Racket are useful and
performant.

A comprehensive library of data structures is now available.

75

Thank you...

Library is available for download from

http://planet.racket-lang.org/

76

