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Abstract
Racket’s syntax parameters support the hygienic implementation of
syntactic forms that would otherwise introduce implicit identifiers
unhygienically.

1. Introduction
There are two common kinds of unhygienic macros in Scheme,
distinguished by whether the bindings they introduce are based
on identifiers from their arguments or completely independent. An
example of the first kind is the define-record-type form of
R6RS [Sperber (Ed.) 2007], which constructs identifiers that are
synthesized from the names explicitly given to the macro. The
unhygienic aspects of these macros do not lead to problems.

In contrast, the other common kind of unhygienic macro always
binds the same name or names, and these macros are notoriously
difficult to deal with. One example is a while loop form that
provides an escape procedure as a binding for an auxiliary abort
identifier. These auxiliary names are part of the macro’s interface
just like the literals that it recognizes: while and abort go together
like cond and else. Unhygienic binding introduction, however,
is a poor mechanism for implementing these auxiliary bindings.
In this paper, we present examples of macros that bind auxiliary
names, we show the problems that arise with existing hygienic and
unhygienic implementation approaches, and we present an elegant
solution, which we call syntax parameters.

In Section 2 we demonstrate the problem concretely using exam-
ples which motivate looking for a better solution. Section 3 inves-
tigates an alternative that frees us from the problems of unhygienic
binding entirely, which leads to syntax parameters, which are de-
scribed in Section 4. We then describe some of the existing uses of
this facility in the Racket code base in Section 5, as well as some
subtleties that macro writers may need to be aware of in Section 6.

But first, we begin with an introduction to the problem.

1.1 The Problem with Hygienic Macros

Although the benefits of hygienic macros are well established, there
are occasions when traditional hygienic bindings are insufficient.
Two well-known examples are looping macros that implicitly bind
abort for use in the loop body to escape the loop [Clinger 1991],
and “anaphoric conditionals” where the value of the tested expres-
sion is available as an it binding.

[Copyright notice will appear here once ’preprint’ option is removed.]

(define-syntax forever
(syntax-rules ()

[(forever body ...)
(call/cc (lambda (abort)

(let loop () body ... (loop))))]))

(define-syntax aif
(syntax-rules ()

[(aif test then else)
(let ([it test])

(if it then else))]))

In these examples, we wish to introduce the underlined identifiers
as-is, unhygienically. Before we do so, we note that another popular
design approach is to avoid unhygienic macros at all costs, which
in this case dictates that instead of making up a new identifier we
should make them part of the input to the macro. As we shall see
in Section 2.2, this leads to the same kind of code management
problem as the unhygienic solution.

Using a syntax-case macro system [Dybvig et al. 1993; Sper-
ber (Ed.) 2007], macros can “break” hygiene by constructing new
identifiers from a known name (a symbol) and the lexical scope
of an existing identifier. In the forever macro example, we intro-
duce abort unhygienically by giving it the lexical context of the
forever input keyword.

(define-syntax (forever stx)
(syntax-case stx ()

[(forever body ...)
(with-syntax ([abort (datum->syntax #’forever ’abort)])

#’(call/cc (lambda (abort)
(let loop () body ... (loop)))))]))

That is, forever binds abort, and this binding is available in
the body because the use of abort has the same context as the
use of forever. Using these solutions can be tempting when
datum->syntax is readily available and often serves as the classic
example for breaking hygiene when needed. Such uses are, how-
ever, often severely broken.

1.2 The Problem with Unhygienic Macros

The problem with this approach is that it does not compose well
with new macros that expand to uses of forever. For example,
suppose that a while macro is defined as follows, with a goal of
having abort as well:

(define-syntax while
(syntax-rules ()

[(while test body ...)
(forever (unless test (abort)) body ...)]))

The use of abort that is introduced by while works, because it
is introduced in the same context as the forever reference itself.
That context is different, however, from the context of the body
expressions, so abort is not available to the body expressions:

> (while #t (abort))
reference to undefined identifier: abort
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The problem is that the while macro definition is itself hygienic,
and therefore the implicit abort binding from forever is intro-
duced hygienically with respect to while, making abort unavail-
able to the while macro’s own body expressions. In terms of the
syntax-case hygiene algorithm [Dybvig et al. 1993], the abort
binding occurrence is created based on forever, which has a mark
from the expansion of while. The marked abort binding captures
the marked abort use that is also introduced by while, but not the
unmarked reference to abort in the while macro’s body expres-
sions.

We can attempt to fix this mismatch by making while introduce
forever itself unhygienically:

(define-syntax (while stx)
(syntax-case stx ()

[(while test body ...)
(with-syntax ([forever (datum->syntax #’while ’forever)])

#’(forever (unless test (abort)) body ...))]))

Now while fails in a different way: the abort that appears inside
the while macro implementation is unbound, because it does not
have the context of the while macro use. Another serious problem
with this definition of while is that we have no guarantee that
forever is bound where while is used. For example, a module
might define while in terms of forever but only export while.

Yet another attempt to fix the problem is to use the lexical context
of forms that come from the macro’s input:

(define-syntax (forever stx)
(syntax-case stx ()

[(forever body1 body ...)
(with-syntax ([abort (datum->syntax #’body1 ’abort)])

#’(call/cc (lambda (abort)
(let loop () body ... (loop)))))]))

This solution is too fragile: how do we know which input will
come from the end use? What about macros that generate that
first expression? But even if we ignore these questions, the main
problem is that it still fails in the same way as the previous version.

The core of the problem lies in the fact that we want abort to
be available for both the while macro code and its input code.
Given that our macro system is hygienic, these will inevitably be
two different scopes, and therefore two abort bindings are needed
for the two scopes.1

To make things worse, we run into similar problems in macros that
abstract over abort, such as an abort-when macro that expands to
a use of abort, intended to be used in forever and while loops.
Such macros must either be defined within the loop body, or they
must carefully construct the reference to abort unhygienically too.

In both cases the lack of hygiene is infectious. If a new macro
builds on an unhygienic macro, then the new macro must contain
some unhygienic construction of identifiers as well. The resulting
“chain of responsibility” hinders the creation and composition of
such macros. We therefore need some new mechanism for modular
binding of auxiliaries, one that does not hinder composition.

1.3 The Syntax Parameters Solution

An alternative solution is the subject of this paper: Racket’s syntax
parameters. In this solution, the abort and it identifiers of the
above macros get actual definitions as syntax parameters which

1 Faced with such problems, some people conclude that an unhygienic
macro system is superior: in such systems there is essentially a single global
lexical scope, and abort becomes a symbol that is bound throughout any
parts of any code.

are initially unusable (that is, their initial transformers always raise
errors),

(require racket/stxparam)
(define-syntax-parameter forever (syntax-rules ()))
(define-syntax-parameter aif (syntax-rules ()))

and then the corresponding macros “adjust” the meaning of these
bindings for expansion of code in their body

(define-syntax forever
(syntax-rules ()

[(forever body ...)
(call/cc (lambda (abort-k)

(syntax-parameterize
([abort (syntax-rules () [(_) (abort-k)])])

(let loop () body ... (loop)))))]))

(define-syntax aif
(syntax-rules ()

[(aif test then else)
(let ([t test])

(syntax-parameterize ([it (syntax-id-rules () [_ t])])
(if t then else)))]))

In other words, instead of breaking hygiene, we create proper
bindings of the auxiliary identifiers, which are then referred to like
any other bindings.

Before we describe this mechanism, we first motivate it by attempt-
ing to “fix” the unhygienic approach in the next section.

2. Writing Correct Macros
In this section, we show how to write working unhygienic macros,
by correctly linking the two contexts that are created by the unhy-
gienic macros in Section 1.2. We then automate the linking pro-
cess via a helper macro. In the end, we find that even this con-
veniently automated solution creates a chain of responsibility that
interferes with modularity. We then consider the typical hygienic
solution, and observe that it ends with even worse variation of the
same macro modularity problem.

2.1 Correct Unhygienic Macros

As we have seen, the hygienic macro framework means that we
have two different lexical scopes in the while macro: the first is
its implementation body, and the second is the scope of the user’s
body expressions which while consumes. Since we want abort to
be bound in both scopes, we need to introduce two different abort
identifiers, one for each scope, and somehow link the two identifiers
together so they have the same meaning. This is simple to do with
a let, leading to a correct macro:

(define-syntax (while stx)
(syntax-case stx ()

[(while test body ...)
(with-syntax (; abort* is accessible as ‘abort’

[abort* (datum->syntax #’while ’abort)])
#’(forever (let (; link the two bindings

[abort* abort])
(unless test (abort))
body ...)))]))

The abort binding that is introduced by forever covers the use of
abort in the unless expression. The let-bound abort covers the
body expressions. We assume that the body expressions have the
same lexical context as the while identifier—or if not, that they
also have code linking while’s abort to their own, just as this
macro links forever’s abort to while’s.

Using this approach we can layer an additional macro and verify
that the result works as expected.

2 2011/10/5



(define-syntax (until stx)
(syntax-case stx ()

[(until test body ...)
(with-syntax ([abort* (datum->syntax #’until ’abort)])

#’(while (not test)
(let ([abort* abort]) body ...)))]))

We now have a working solution that is almost mechanical enough
to be abstracted over by a higher-level macro. But there are two
technical problems that we need to address. First, using let works
in this case because abort is a variable binding—but this fails if
the unhygienic identifier is bound to a macro.

Fortunately, Racket’s macro system provides a solution for this
problem: (make-rename-transformer id ) creates a special
kind of an identifier indirection macro that expands to id [Flatt
and PLT 2010]. In fact, the resulting macro cooperates in additional
ways with Racket’s macro expander: for example, the identifier that
is bound to it is considered free-identifier=? to id . This fa-
cility allows us to perform our linking at the syntactic level. The
change is simple; instead of linking with let, we use let-syntax
instead:

(let-syntax ([abort* (make-rename-transformer #’abort)])
...)

The second problem is harder to deal with: the sketched solution
is not mechanical enough. We still need to know where to link
the two abort identifiers together—we cannot just wrap the whole
macro body with the linking let-syntax, since forever’s abort
binding is yet to be created. The linking code must go inside the
scope of the unhygienic binding. In the case of while, the linking
must be placed inside the forever body.

To address this problem, we define our macro so that the link-
ing point is marked explicitly with an L. We call the macro
define-syntax-rules/capture, and L serves as an auxiliary
binding for use in it. (Note that L is itself introduced unhygieni-
cally.)

Using this define-syntax-rules/capture macro, we can de-
fine while as follows, resulting in a macro that has the same be-
havior as the correct version that was written manually in the above:

(define-syntax-rules/capture while (abort) ()
[(while test body ...)
(forever (L (unless test (abort)) body ...))])

The define-syntax-rules/capture macro consumes a name
to be defined, a parenthesized sequence of unhygienic identifiers to
propagate through the new definition, and the usual keywords and
rewrite rules of syntax-rules. In the result templates, L marks
the let-syntax linking points.

The implementation of define-syntax-rules/capture is shown
in Figure 1. The definition is a little verbose and has a few
subtle points, including the use of another Racket extension,
syntax-local-introduce. However, the implementation is ir-
relevant for the purpose of our discussion—it suffices to know that
such a macro can be defined, resulting in a way to conveniently
define composable macros correctly.

Using define-syntax-rules/capture, we can even avoid writ-
ing the code that creates the initial unhygienic abort in the base
forever macro: we simply let define-syntax-rules/capture
do the required work for us. Our three looping macros are now suc-
cinctly defined as follows:

DEFINITION 1.
(define-syntax-rules/capture forever (abort) ()

[(forever body ...)
(call/cc (lambda (abort)

(L (let loop () body ... (loop)))))])

(define-syntax-rules/capture while (abort) ()
[(while test body ...)
(forever (L (unless test (abort)) body ...))])

(define-syntax-rules/capture until (abort) ()
[(until test body ...)
(while (L (not test)) (L body ...))])

Note that the first two links in the macro chain use abort, but
in the until definition it is not used. It would therefore seem
that we could replace that definition with a simpler one that uses
syntax-rules:

(define-syntax until
(syntax-rules ()

[(until test body ...)
(while (not test) body ...)]))

Doing so will, however, prevent “propagating” the abort binding
to users of until—eliminating the uses of L drops the wrong
abort binding.

Consider the following alternative definition of the three macros,
where while is the base-level one, then forever and until are
derived from it in sequence.

DEFINITION 2.
(define-syntax-rules/capture while (abort) ()

[(while test body ...)
(call/cc (lambda (abort)

(L (let loop ()
(when test body ... (loop))))))])

(define-syntax-rules/capture forever (abort) ()
[(forever body ...)
(while #t (L body ...))])

(define-syntax-rules/capture until (abort) ()
[(until test body ...)
(forever (L (unless test (abort))

body ...))])

In this implementation, forever does not need the abort binding.
If we further assume that it is not intended for public consumption,
for example, if it is an internal helper macro for the until defini-
tion, then it seems that defining it via syntax-rules should work
in this case. Such a definition will, again, break until since there
must be an explicit link that ties until to the abort that while
introduces.

Now that the code is clear of distractions, we can see the infectious
nature of these bindings at work: once a macro introduces an
identifier unhygienically, any other macro that is derived from
it must itself do a similar unhygienic introduction. Any macro
that fails to do so is breaking the chain, essentially making the
introduced identifier unavailable to it and to any code that uses it.
This is analogous to carrying arguments through a chain of function
calls: once a function fails to pass on an argument, it is unavailable
to other functions down the callee chain.

To conclude, this implementation strategy works, and we can even
conveniently automate the plumbing work. However, see that it re-
quires explicit linking, from the first macro that creates the bind-
ing, and up to all forms that are derived from it—either directly
or indirectly, and whether the derived macros need to use the in-
troduced identifier or not. This requirement is impractical: some
macros in the chain might come from libraries that are not under
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(define-syntax (define-syntax-rules/capture stx0)
(syntax-case stx0 ()

[(def name (capture ...) (keyword ...) [patt templ] ...)
(with-syntax ([L (datum->syntax #’def ’L)])

#’(define-syntax (name stx)
(syntax-case stx (keyword ...)
[patt (with-syntax ([user-ctx stx])

;; pass the original syntax as a context carrier
#’(with-links L user-ctx (capture ...) templ))]

...)))]))

(define-syntax with-links
(syntax-rules ()

[(with-links L user-ctx (capture ...) template)
(let-syntax

([L (lambda (stx)
(syntax-case stx ()
[(L e (... ...))
(with-syntax ([(id (... ...)) (list (datum->syntax #’L ’capture) ...)]

[(id* (... ...)) (list (syntax-local-introduce
(datum->syntax #’user-ctx ’capture))
...)])

#’(let-syntax ([id* (make-rename-transformer #’id)]
(... ...))

e (... ...)))]))])
template)]))

Figure 1. The definition of define-syntax-rules/capture

our control, and composing macros with different unhygienic key-
words makes for additional explicit linking. If we wish to create a
language where a fundamental form like if is extended with such
a keyword to create an anaphoric conditional, then we would need
to link up the introduced it in any derived macros. This makes the
effort of constructing and maintaining such languages prohibitively
expensive.

A similar problem occurs in ordinary programming. Programs that
perform I/O operate on an input port and an output port. Their be-
havior may also depend on a character encoding, a locale, a cur-
rent directory, and many other variables. Passing these values as
function arguments, even grouped together, is burdensome—and in
cases where a fundamental feature of the language such as the de-
fault I/O ports is concerned, such explicit argument passing makes
for a prohibitively expensive effort. Instead, they such values are
implemented as a kind of dynamically scoped values. Functions can
access and update them without enumerating them in their inter-
faces, and consequently they do not hinder functional composition.
We therefore consider that such dynamically scoped values can be
applied to our problem at the syntax level—with similar benefits.

2.2 Comparison with the Hygienic Solution

At this point it is worth re-considering the strictly hygienic solution,
where instead of making up identifiers unhygienically they are
passed as inputs to the macros. This is a popular solution to such
problems with unhygienic macros, yet it leads to exactly the same
issue with respect to layering macros. Specifically, if we define our
forever macro to take in abort as one of its inputs, then the
derived while will need to do so as well.

To see this identifier cascading in action we translate the code from
Definition 1 into this style. To make it more interesting, we add an
anaphoric conditional, aif, into the mix and use it to implement
while.

(define-syntax forever
(syntax-rules ()

[(forever abort body ...)
(call/cc (lambda (abort)

(let loop () body ... (loop))))]))

(define-syntax aif
(syntax-rules ()

[(aif it test then else)
(let ([it test]) (if it then else))]))

(define-syntax while
(syntax-rules ()

[(while abort it test body ...)
(forever abort

(aif it test (begin body ...) (abort)))]))

(define-syntax until
(syntax-rules ()

[(until abort it test body ...)
(while abort it (not test) body ...)]))

Note that the auxiliary identifiers—now hygienic—need to be car-
ried through all macros, essentially achieving a similar kind of ex-
plicitly specified linking, but with this approach things are more
complicated. Unlike the previous solution, however, the complica-
tion applies not only to the macro implementor, but to its users. For
example, end programmers who wish to use while must specify
both identifiers as well:

(while abort it (memq x l)
(display (car it))
(set! l (cdr it)))

In other words, the responsibility of maintaining the binding chain
exists whether we use unhygienic or hygienic binding.

3. Dynamic Binding
The key to staying clean with forever is to think about abort
differently. As we remarked in Section 1, forever and abort
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go together like cond and else. Scheme has a single definition
of the else auxiliary keyword. Similarly, instead of having every
occurrence of forever introduce a new local abort variable,
there should be a single definition of the abort auxiliary syntax,
defined at the same level that forever is—usually as a module top-
level binding. The forever macro should “adjust” the meaning of
abort within the context of the loop body, without introducing a
new binding. In other words, abort becomes a kind of a meta-
binding, dynamically adjustable for macro expansion. Since no new
binding is introduced, there is no need to break hygiene.

The concept of “adjusting the meaning of a binding” does not
exist in all macro systems; it would be a new feature for some.
This concept does have a known precedent for run-time bindings,
however, in the form of dynamic bindings.

Before we proceed to discuss the application of dynamic bindings
at the syntax level, we should consider existing mechanisms related
to dynamic scoping.

3.1 Dynamic Binding in the Runtime World

There are two common mechanisms to simulate dynamic bindings:
one such mechanism is the fluid-let construct; another mecha-
nism is based on parameter objects and the parameterize form.

The fluid-let simulation of dynamic scope mutates a set of bind-
ings on entry to the body, and ensures (using dynamic-wind) that
the old bindings are restored on exit from the body. For example,
a thunk-based implementation of a loop that uses a dynamically
scoped binding to abort the loop might be implemented as follows:

(define (abort)
(error "abort must be used in a loop"))

(define (thunk-forever body-thunk)
(call/cc
(lambda (k)

(fluid-let ([abort k])
(let loop () (body-thunk) (loop))))))

(thunk-forever
(lambda ()

(let ([c (read-char)])
(if (eof-object? c)

(abort)
(display (char-upcase c))))))

While fluid-let is properly simulating dynamic scope, it may
lead to problems if used indiscriminately. For example, (fluid-let
([cons +]) ...) is unlikely to be a good idea. Indeed, Scheme
dialects with a module system might prevent the assignment to
cons, on the grounds that a random expression in some library
should not be able to make such a global change. Even with such a
restriction on changes to module-provided bindings, fluid-let is
still too unrestricted in that there are still enough bindings for it to
mutate, leading to broken code.

Using fluid-let makes the most sense when it adjusts identifiers
that were defined with fluid-let in mind. For example, the above
definition of abort is designed as an initially useless function, to
be mutated into an abort continuation in the dynamic scope of a
thunk-forever loop. If programmers are required to make this
intent explicit, then dynamic binding can be implemented in a way
that does not compromise all other bindings.

Along these lines, the other common approach for implementing
dynamic bindings among Scheme systems is to provide a con-
structor for dynamic values and a way to adjust their value—
make-parameter and parameterize [Dybvig 2009b; Feeley
2003; Flatt and PLT 2010] or similar forms. Re-implementing the
above thunk-forever using parameters, we get:

(define current-abort
(make-parameter
(lambda () (error "abort must be used in a loop"))))

(define (abort) ((current-abort)))

(define (thunk-forever body-thunk)
(call/cc
(lambda (k)

(parameterize ([current-abort k])
(let loop () (body-thunk) (loop))))))

The parameter acts as a function that fetches its value when applied.
The parameterize form plays the role of fluid-let, but it
works only on parameter values, created by make-parameter. In
this example, abort retrieves the value of the current-abort
parameter,2 and then applies this value to invoke the continuation it
contains (or the default error function).

But abort serves another important role: it separates the right
to adjust a parameter from the right to access its value. In this
example, current-abort can be used to do both, but abort can
only retrieve the value. We can put the above implementation in a
module and provide only thunk-forever and abort out, making
it impossible for the value of current-abort to be modified by
any unknown code.

3.2 Dynamic Binding at the Syntax Level

Back at the syntax level, we can try the analogy to fluid-let, sug-
gesting a fluid-let-syntax form, as in Chez Scheme [Dybvig
2009a]:

(fluid-let-syntax ([id expression ] ...)
body ...)

A fluid-let-syntax form is similar to let-syntax, but the
transformers associated with existing id s are replaced with the new
transformers while expanding body . That is, fluid-let-syntax
does not introduce a new binding for each id .

The transformer adjustments for the id s apply “dynamically” dur-
ing the expansion of body ; that is, they apply not only to the id s
that appear within the original fluid-let-syntax form, but also
to any occurrences inserted by macros encountered during the ex-
pansion of body . Note that this form of “dynamic adjustments”
happens at the meta-level of macro expansion—it should not be
confused with dynamic scope in code.

Using fluid-let-syntax, our forever macro and its abort
auxiliary can be implemented correctly as follows:

;; outside of a loop, ‘abort’ is always a syntax error
(define-syntax abort

(syntax-rules ()))

(define-syntax forever
(syntax-rules ()

[(forever body ...)
(call/cc (lambda (abort-k)

(fluid-let-syntax
([abort (syntax-rules () [(_) (abort-k)])])

(let loop () body ... (loop)))))]))

With this definition, the derived while and until forms can be
defined as simple syntax-rules macros, they work as expected
since they do not need to deal with propagating the abort binding.

Of course, a binding may be further adjusted by nested instances
of fluid-let-syntax forms, so nested forever forms work as
expected; and a binding may be shadowed by a local variable or

2 In Racket, we frequently name parameters with a current- prefix.
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syntax binding, so a local let-binding of abort inside a forever
is a new binding, not the one that forever adjusts.

The problem with fluid-let-syntax is the same as the problem
with fluid-let: indiscriminate use of fluid-let-syntax can
expose the implementation details of a syntactic form that is defined
elsewhere. In particular, imagine trying to predict the effect of using
fluid-let-syntax on lambda; which syntactic forms expand
to lambda, and which do not? Forms that do expand to lambdas
could get utterly broken, much like the damage that (fluid-let
([cons +]) ...) can inflict.

The natural solution to this problem is the same as for dynamic run-
time values: introduce a new construct, so that a programmer who
writes such macros can control which identifiers can be adjusted
dynamically. We therefore continue with a similar analogy that is
based on parameters.

4. Syntax Parameters
Adding parameterize-like capability to the syntax layer requires
two new forms: one for declarations of adjustable bindings, and
another to adjust such bindings. In Racket, these two parts are
define-syntax-parameter and syntax-parameterize:

(define-syntax-parameter id expression )

(syntax-parameterize ([id expression ] ...)
body ...)

In both of these forms, the expression typically evaluates to a
macro transformer, typically using syntax-case, but these forms
are just as useful when used with simple syntax-rules macros.

A define-syntax-parameter form defines a macro, just like
define-syntax. Indeed, if syntax-parameterize is never
used, there is no difference between the two. Macro names defined
using define-syntax-parameter, however, can be updated to
use new transformers using syntax-parameterize.

The syntax-parameterize form is similar to fluid-let-syntax.
Unlike fluid-let-syntax, each id in syntax-parameterize
must refer to a syntax parameter defined in the environment where
the syntax-parameterize occurs.

Using these two forms, the forever macro can be implemented as
follows:

(define-syntax-parameter abort
(syntax-rules ()))

(define-syntax forever
(syntax-rules ()

[(forever body ...)
(call/cc (lambda (abort-k)

(syntax-parameterize
([abort (syntax-rules () [(_) (abort-k)])])

(let loop () body ... (loop)))))]))

Again, in Racket’s case we can use other macro-producing expres-
sions, such as (make-rename-transformer #’abort-k) which
we have previously mentioned.

If only forever should be allowed to adjust the syntax parameter,
then we can proceed in the same way we did with plain parameters:
change the name of the above syntax parameter from abort to
internal-abort. Then, forever can be exported from a library
along with an abort macro that accesses the syntax parameter (by
expanding to it) but does not grant an ability to update it:

(define-syntax abort
(syntax-rules ()

[(abort) (internal-abort)]))

The revised forever macro composes correctly with other macros,
in the sense that hygienic macros can reliably expand into forever
expressions. For example, the while macro works as expected,
allowing both uses of abort introduced by the macro and in the
original body expressions. Furthermore, a macro that abstracts over
uses of abort can be defined hygienically and possibly outside of
the loop body where it is used.

Besides preserving hygiene, syntax parameters have an important
additional advantage over implicit identifiers: the syntax parame-
ter identifier has the same status as other identifiers. When using a
module system, it can be prefixed, renamed, and excluded just like
the forever form, if the module system provides such functional-
ity. This is useful in multiple ways, for example, when identifiers
are translated to a different language, or if we wish to create a con-
text where while is available but abort is not.

4.1 Implementation

Syntax parameters are not implemented directly in Racket’s macro
expander. Instead, they are built using other features of Racket and
its macro system.

A use of define-syntax-parameter produces two syntax def-
initions. First, a fresh internal name is generated to represent the
state of the syntax parameter; it is defined with the syntax param-
eter’s initial value. Second, the syntax parameter name is defined
as a syntax-parameter transformer containing the internal identi-
fier. The syntax-parameter transformer is an applicable structure
(a structure that can be used as an (expander) function); when the
syntax parameter is used as a macro, it fetches the current value of
the syntax parameter as described below and uses it to complete the
macro transformation.

The current value of a syntax parameter is read and updated us-
ing syntax-local-get-shadower, a low-level function of the
Racket macro system. Given a syntax parameter’s internal name,
internal , the function returns an identifier, shadower , capable
of either referring to or shadowing the nearest enclosing bind-
ing that shadows internal . The syntax parameter’s value can
be read by accessing the shadower ’s compile-time value (using
Racket’s syntax-local-value) or updated by creating a new
let-syntax binding of shadower . Since shadower shadows
internal , references to the syntax parameter within the scope of
the new binding will find it as the nearest enclosing shadower of
internal .

A more direct approach would be for syntax-parameterize
to simply mutate compile-time state, or perhaps to use run-time
parameters at compile time. The problem with this approach is
that the side-effects are ephemeral; they are not preserved in
expanded—or partly expanded—code. In particular, this interferes
with Racket’s use of partial expansion to implement definition con-
texts, both for standard forms such as lambda and macros such as
class.

5. Other Uses
Although looping macros are a common example of unhygienic
bindings, syntax parameters are more useful in larger, more sophis-
ticated cases. A good example of such a case is the Racket class
system.

Identifiers like this and super take on special meanings within
Racket’s class form. For example, this is automatically bound
to the current instance object, just as in Java. To bring this into a
method’s scope, the class macro rewrites each method into a func-
tion with an additional first argument; syntax-parameterize
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connects the extra argument to this. That is, the conversion takes
methods in the following form:

(lambda formals method-body ...)

and rewrites them into the following:

(lambda (implicit-this-arg . formals)
(syntax-parameterize

((this (make-identifier-transformer
#’implicit-this-arg)))

method-body ...))

Since this is defined as a syntax parameter and exported from the
class-system library along with class, modules can rename this
on import, and macros can expand into uses of this. Meanwhile,
attempting to use this outside of a class form, is a syntax error.

In the original class implementation, this was introduced unhy-
gienically. Predictably, this unhygienic introduction created trou-
ble for macros like mixin that expand into class. One partial im-
provement was to have a variant of class where the identifier for
this is explicitly declared; macros like mixin could use that vari-
ant to introduce both the identifier and uses. However, mixin still
had to do the unhygienic work of introducing the identifier (so that
mixin methods could use it); furthermore, macros that expand into
mixin needed a variant of mixin with an explicit binding. Aside
from those problems, macros used within a class body could not
generally introduce references to this, even unhygienically, since
the name could be changed when specified explicitly. None of these
problems occur now that this is based on syntax parameters.

There are many other uses of syntax parameters in the Racket code
base, including:3

• The class system [Flatt et al. 2006] uses another syntax param-
eter internally to control whether a class form is expanded in
“trace” mode [Eastlund and Felleisen 2009].

• The match library provides a syntax parameter called fail that
can be used in a match clause to escape and try the next clause.

• In the define-struct form, struct-field-index converts
field names to integer indexes for use with structure properties.
For example, a structure instance can be made to act as a
procedure or as a synchronizable event by specifying the field
that implements the application or synchronization behavior.

• The contract system [Findler and Felleisen 2002] uses a syntax
parameter to implement contract regions, which allow blame to
be assigned at a finer granularity than modules [Strickland and
Felleisen 2010].

• The contract system uses another syntax parameter internally to
communicate information to nested contract forms.

• Utility macros for slideshow [Findler and Flatt 2004] use
syntax parameters to manage implicit “pict” (slide element)
combination functions and staging modes.

• In the lexer form [Owens et al. 2004], return-without-pos
plays a role similar to abort for loop, and it is implemented as
a syntax parameter.

• The syntax-parse [Culpepper and Felleisen 2010] form uses
a syntax parameter internally to store its failure continuation.

Beyond Racket, syntax parameters have been adapted to a macro
system for C-like syntax [Atkinson and Flatt 2011] to support
implicit names such as this.

3 It is worth nothing that some of these are used to communicate values in a
way that is more similar to runtime parameters, rather than adjust bindings.

6. Macros are Still Hard
Syntax parameters are a great tool for solving the problem of
macros that need to bind a known name. Unlike datum->syntax,
they make a robust solution that is convenient enough to use when
needed, and as a result they have become a common element of the
Racket macro toolset. Indeed, when the common “how do I break
hygiene when I need to?” question comes up on the Racket mailing
lists, we can often reply with “you don’t need to!”.

However, syntax parameters are not always the answer to the
question—there are certainly still cases where datum->syntax
is needed. For example, the include macro is one that is fun-
damentally a tool for “near textual inclusion” of code in some
lexical context, and as such it is intended to break hygiene in a
datum->syntax style. A similar facility that intentionally breaks
hygiene is the tangling process of a true literate programming
tool [Flatt et al. 2009].

In addition, syntax parameters come with some subtleties that
might puzzle macro writers. For example, programmers might ex-
pect the following two definitions to be equivalent:

(define a (lambda () (abort)))
(define-syntax a (syntax-rules () [(_) (abort)]))

However, they are actually different:

> (forever
(define a (lambda () (abort)))
(forever (display "inner\n") (a))
(display "outer\n")
(abort))

inner

> (forever
(define-syntax a (syntax-rules () [(_) (abort)]))
(forever (display "inner\n") (a))
(display "outer\n")
(abort))

inner
outer

This looks surprising at first sight, but on closer inspection, we can
see that in the first example a is a thunk that holds a reference
to the outer loop’s abort, whereas in the second example it is a
macro that expands to a use of abort—whatever the binding means
in the context it appears in. Another way to see the difference is
to consider what happens when the definition of a appears at the
toplevel: in the first case we get a syntax error since we get the
default “useless” binding of abort, but in the second we get a
macro definition that abstracts over whatever break is—which is,
in fact, a desirable feature (which was mentioned in Section 4).

For a related issue, prehaps less subtle, consider the following
macro definition:

(define-syntax ten-times
(syntax-rules ()

[(_ body ...)
(let loop ([n 10])

(when (> n 0) body ... (loop (- n 1))))]))

Given that we have a forever macro, it is reasonable to refactor
the macro to use it:

(define-syntax ten-times
(syntax-rules ()

[(_ body ...)
(let ([n 10])

(forever body ...
(set! n (- n 1))
(when (= n 0) (abort))))]))

However, this seemingly internal change to the implementation of
ten-times can affect code that uses it—for example,
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(forever (ten-times (display "hey\n") (abort)))

will loop infinitely with the second version of the macro. The rea-
son for the difference is that once ten-times is implemented using
while it effectively “inherits” abort, which becomes a visible part
of its interface. The same would happen even if there is a chain of
macro layers that eventually uses forever.

This is, of course, another aspect of the intended feature of syn-
tax parameters: we usually want to have abort accessible in all
macros that are derived from forever, otherwise we could use the
datum->syntax solution. For such rare cases when we want to
use such a macro but avoid exposing this use, Racket provides a
syntax-parameter-value function which can be used at expan-
sion time to get a hold of the adjusted value of a syntax parameter,
to be reinstated later on. In the case of the above ten-times, we
get the following code:

(define-syntax (ten-times stx)
(syntax-case stx ()

[(_ body ...)
(with-syntax ([old (syntax-parameter-value #’abort)])

#’(let ([n 10])
(forever (syntax-parameterize ([abort old]) body ...)

(set! n (- n 1))
(when (= n 0) (abort)))))]))

To summarize, syntax parameters might lead to subtle behavior
when we use macros to abstract over code, since it is essentially
a tool that is intended to cooperate with such macro-based abstrac-
tions. Fortunately, these subtleties are not common enough to pose
a problem in most practical cases.4 Furthermore, syntax parame-
ters are still a far better solution than the alternatives: novice macro
writers get the benefit from a solution that avoids the much harder
issues of hygiene, and experienced writers quickly acquire a good
intuition of the resulting behavior in these cases.

7. Conclusion
Racket’s syntax system, an extended dialect of the syntax-case
system, includes many experimental extensions. Among those ex-
tensions, syntax parameters stand out as a simple improvement
that solves a common problem for hygienic macro systems. It has
proven itself as an indispensable tool in many situations, and is no
longer considered experimental. As such, it can be a useful addition
to the toolbox of Scheme macro programmers of all flavors. The
“how do I break hygiene when I need to?” question is not common
only in a Racket context—it is one of the oldest issues with hy-
gienic macros, and a considerable factor in seeing defmacro linger
on in many implementations. Having a good answer to most occur-
rences of this question is long overdue. As we have seen, it is not
the answer to all such questions, but like syntax-rules, they pro-
vide a good answer for most requests for breaking hygiene—one
that avoids the need for such breakages.
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