
AspectScheme – Aspects in Higher-Order Languages

Christopher J. Dutchyn
Computer Science

University of Saskatchewan
dutchyn@cs.usask.ca

AspectScheme is an implementation of the Scheme program-
ming language [4] built on MzScheme [3], providing support for
pointcuts and advice aspect-oriented programming. In order to use
it, place

#lang racket
(require (planet dutchyn/aspectscheme:1:0/aspectscheme))

in your code, before using any AspectScheme features1.
AspectScheme is a lightweight language, constructed using the

continuation marks [2] and macro facilities offered by MzScheme.
It considers procedure application (call?) and procedure-body
execution (exec?) as join points, within a context of in-progress
join points2. An additional join point kind, adv?, is used to identify
join points which are calls to advice bodies. This has utility to avoid
introducing unexpected infinite recursion in advice bodies, but even
more useful for applying advice to advice.

These join points in context are recognized by pointcuts: predi-
cates over the join point and context (represented as lists of poste-
rior and anterior join points). When a pointcut matches, it returns a
list of selected values, which are used as arguments to the advice.
Primitive recognition pointcuts, (call?, exec?, and adv?), do not
return any bindings and can be used simple for join point selection.
Other primitive pointcuts, (target, args) return the procedure and
the arguments (respectively) at the join point, so they can be made
available to the advice.

call? exec? adv? ;kind recognition
target args ;binding
top bottom ;context bounds

Because pointcuts are user-level procedures, they can be com-
bined to provide precise join point selection. There are several stan-
dard patterns, and these are provided as utility pointcut combina-
tors:

call exec adv ;kinds with binding
&& || ;logic combination
! ;logic negation

1 This has been verified with versions up to Racket 5.3.
2 Arguably, these are not the only principled and nominal occurrences in a
Scheme program, but the other obvious candidate set! is frowned upon.

[Copyright notice will appear here once ’preprint’ option is removed.]

The variadic
(&& <pc1> <pc2> ...)

combinator concatenates values extracted from the matched <pcn>.
The variadic

(|| <pc1> <pc2> ...)

combinator short-circuits to the bindings from the first match; pro-
grammers are recommended to bind the same number of values in
each pcn, or exercise extreme caution. The unary negation combi-
nator ((! <pc>)) throws away any bindings. In order to maintain
these consistent-length binding lists, two utility binding pointcuts,

• (with-args <val> ...) injects values into binding lists
• (some-args <bool list>) selects only a subset of the bind-

ings using a boolean mask.

In the simplest example of binding and combinators, call is sim-
ply (&& call? args).

Pointcuts receive the join point in context: initially with the an-
terior join-point list empty, and the posterior join-point list showing
the entire stack of join points back to program start. With simple
shifting pointcut transformers, we can shift the focus of a point-
cut up (above) or down (below) the join-point stack. These focus-
shifting transformers are combined into the expected search the
context upward (cflowbelow) and downward (cflowabove). In
addition, a search may be bounded above or below by cflowtop
and cflowbottom respectively. All of these contextual pointcut
combinators rely on two primitive pointcuts, primitive top and
bottom to recognize absolute bounds.

below above ;focus shift
cflowbelow cflowabove ;search up/down
cflowtop cflowbottom ;bound search up/down

Finally, there are two utility pointcut transformers which cap-
ture the usual facilities in other aspect languages. (cflow <pc>) is
simply (&& <pc> (cflowbelow <pc>)). (within <pc>) en-
sures lexical containment by ensuring no intervening join points
(i.e. procedure calls).

cflow within ;historical convenience

Advice transforms the join point into a new procedure which
can invoke the original join point execution as proceed3. Advice
is a higher-order procedure, matching the template

(lambda (proceed)
(lambda bindings

<body>))

which may allow the join point (procedure) to proceed zero, one,
or more times, by calling it as (proceed <a1> <a2> ...) with
new values for the arguments.

3 Earlier versions called this jp, but proceed is more common in AOP.

1 2012/9/12

Aspects, consisting of a pointcut and an advice are introduced
by the around and fluid-around constructs:

(around <pc> <adv> (fluid-around <pc> <adv>
<body>...) <body>...)

which differ in the scoping of the aspect application. Static aspects
(around) apply only to join points present lexically within the
body. To wit, the join point matching <pc> must have the actual
call present in the <body>, not called deeper in the call hierarchy.
Dynamic aspects (fluid-around) apply to join points that are
present dynamically within the execution of the body. Last, top-
level aspects can be installed at top-level (e.g. in the REPL) with

(top-level-around <pc> <adv>)

There is no body to be advised, because it is the remainder of the
top-level scope. There is no way to remove top-level aspects, save
restarting the REPL.

For convenience, a number of standard aspect shapes are sup-
plied; the keyword below replaces around. These come in static
(unadorned), dynamic (prefixed by fluid-), and top-level-
variations.

1. before: execute <adv>, then proceed

2. after: proceed, then execute <adv>, returning the value from
the proceed

3. after-throwing: proceed, and execute <adv? only if an
exception is thrown4

Users should be aware that aspects can break tail-call proper-
ties of the join point; a trivial example is tracing function calls.
As expected, this will cause stack growth. Pointcuts can also break
tail-call properties by forcing continuations to be marked in order
to preserve calling context. We adopt a simple approach to con-
tinuation marks, and hence advised code may not remain tail-call
optimized.

For usage examples, please see tests.ss and tests2.ss
available at the Planet repository. For more details, please refer to
[6] or [5]. But, beware, this is an extended implementation, where
pointcuts are expected to return arguments from the matches.

We also include an extended version of let/let*/letrec that ac-
cepts the MIT-style curried lambdas, just like define. This makes
advice much easier to write: it looks like

(let ([((<adv> proceed) bindings ...) body...])
(around ...))

This was shamelessly appropriated from Eli Barzilay’s
swindle/base.ss [1].

References
[1] E. Barzilay. Swindle. Internet. http://barzilay.org/Swindle.

[2] J. Clements, M. Flatt, and M. Felleisen. Modelling an algebraic
stepper. In LNCS, number 2028. 2001.

[3] M. Flatt. PLT MzScheme: Language Manual. Rice University,
1997.

[4] R. Kelsey, W. Clinger, and J. Rees. Revised5 report on the
algorithmic language scheme. HOSC, 11(1), 1998.

[5] D. Tucker and S. Krishnamurthi. Pointcuts and advice in
higher-order languages. In AOSD, 2003.

[6] D. Tucker, S. Krishnamurthi, and C. Dutchyn. Aspects in
higher-order languages. Science of Computer Programming,
2006.

4 This design depends on the MzScheme exception subsystem.

2 2012/9/12

