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Abstract

The flat-closure model for the representation of first-class proce-
dures is simple, safe-for-space, and efficient, allowing the values
or locations of free variables to be accessed with a single memory
indirect. It is a straightforward model for programmers to under-
stand, allowing programmers to predict the worst-case behavior of
their programs. This paper presents a set of optimizations that im-
prove upon the flat-closure model along with an algorithm that im-
plements them, and it shows that the optimizations together elimi-
nate over 50% of run-time closure-creation and free-variable access
overhead in practice, with insignificant compile-time overhead. The
optimizations never add overhead and remain safe-for-space, thus
preserving the benefits of the flat-closure model.

1. Introduction

First-class procedures, i.e., indefinite extent procedural objects that
retain the values of lexically scoped variables, were incorporated
into the design of the Scheme programming language in 1975
and within a few years started appearing in functional languages
such as ML. It has taken many years, but they are fast becoming
commonplace, with their inclusion in contemporary languages such
as JavaScript and newer versions of other languages such as C# and
Perl.

First-class procedures are typically represented at run time as clo-
sures. A closure is a first-class object encapsulating some represen-
tation of a procedure’s code (e.g., the starting address of its machine
code) along with some representation of the lexical environment. In
1983, Cardelli [5] introduced the notion of flat closures. A flat clo-
sure resembles a vector, with a code slot plus one slot for each free
variable1. The code slot holds a code pointer, which might be the
address of a block of machine code implementing the procedure,
or it might be some other representation of code, such as byte code
in a virtual machine. The free-variable slots each hold the value
of one free variable. Because the same variable’s value might be
stored simultaneously in one or more closures and also in the origi-
nal location in a register or stack, mutable variables are not directly

1 In this context, free variables are those references within the body of a
procedure, but not bound within the procedure.
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supported by the flat-closure model. In 1987, Dybvig [8] addressed
this for languages, like Scheme, with mutable variables by adding
a separate assignment conversion step that converts the locations
of assigned variables (but not unassigned variables) into explicit
heap-allocated boxes, thereby avoiding problems with duplication
of values.

Flat closures have the useful property that each free variable (or lo-
cation, for assigned variables) is accessible with a single indirect.
This compares favorably with any mechanism that requires traver-
sal of a nested environment structure. The cost of creating a flat
closure is proportional to the number of free variables, which is of-
ten small. When not, the cost is more than compensated for by the
lower cost of free-variable reference, in the likely case that each
free variable is accessed at least once and possibly many times.
Flat closures also hold onto no more of the environment than the
procedure might require and so are “safe for space” [16]. This is
important because it allows the storage manager to reclaim storage
from the values of variables that are visible in the environment but
not used by the procedure.

This paper describes a set of optimizations of the flat-closure model
that reduce closure-creation costs and eliminate memory operations
without losing the useful features of flat closures. It also presents,
in detail, an algorithm that performs the optimizations and shows
that the optimizations reduce run-time closure-creation and free-
variable access overhead on a set of standard benchmarks by over
50%. These optimizations never do any harm, i.e., they never add
allocation overhead or memory operations relative to a naive im-
plementation of flat closures. Thus, a programmer can count on at
least the performance of the straight flat-closure model, and most
likely better. The algorithm adds a small amount of compile-time
overhead during closure conversion, but since it produces less code,
the overhead is more than made up for by the reduced overhead in
later passes of the compiler, hence the facetious title of this paper.

A key contribution of this work is the detailed description of the
optimizations and their relationships. While a few of the optimiza-
tions have been performed by our compiler since 1992, descriptions
of them have never been published. Various closure optimizations
have been described by others [3, 7, 9, 12, 13, 15, 16, 19], but most
of the optimizations described here have not been described pre-
viously in the literature, and many are likely novel. A second key
contribution is the algorithm to implement them, which is novel.

The remainder of this paper is organized as follows. Section 2
describes the optimizations, and Section 3 describes an algorithm
that implements them. Section 4 presents an empirical analysis
demonstrating the effectiveness of the optimizations. Section 5
describes related work, and Section 6 presents our conclusions.



2. The Optimizations

The closure optimizations described in this section collectively
act to eliminate some closures and reduce the sizes of others.
When closures are eliminated in one section of the program, the
optimizations can cascade to further optimizations that allow other
closures to be eliminated or reduced in size. They also sometimes
result in the selection of alternate representations that occupy fewer
memory locations. In most cases, they also reduce the number
of indirects required to access free variables. The remainder of
this section describes each optimization in turn, grouped by direct
effect:

• avoiding unnecessary closures (Section 2.1),
• eliminating unnecessary free variables (Section 2.2), and
• sharing closures (Section 2.3).

A single algorithm that implements all of the optimizations de-
scribed in this section is given in Section 3.

2.1 Avoiding unnecessary closures

A flat closure contains a code pointer and a set of free-variable val-
ues. Depending on the number of free variables and whether the
code pointer is actually used, we can sometimes eliminate the clo-
sure, sometimes allocate it statically, and sometimes represent it
more efficiently. We consider first the case of well-known proce-
dures.

Case 1: Well-known procedures

A procedure is known at a call site if the call site provably invokes
that procedure’s λ-expression, and only that λ-expression. A well-
known procedure is one whose value is never used except at call
sites where it is known. The code pointer of a closure for a well-
known procedure need never be used, because at each point where
the procedure is called, the call can jump directly to the entry point
for the procedure, via a direct-call label associated with the λ-
expression.

Depending on the number of free variables, we can take advantage
of this as follows.

Case 1a: Well-known with no free variables

If the procedure has no free variables and its code pointer is never
used, the closure itself is entirely useless and can be eliminated.

Case 1b: Well-known with one free variable x

If the procedure has one free variable and its code pointer is never
used, the only useful part of the closure is the free variable. In this
case, the closure can be replaced with the free variable everywhere
it is used.

Case 1c: Well-known with two free variables x and y

If the procedure has two free variables and its code pointer is never
used, it contains only two useful pieces of information, the values
of the two free variables. In this case, the closure can be replaced
with a pair. In our implementation, pairs occupy just two words
of memory, while a closure with two free variables occupies three
words.

Case 1d: Well-known with three or more free variables x ...

If the procedure has three or more free variables but its code pointer
is never used, we can choose to represent it as a closure or as
a vector. The size in both cases is the same: one word for each
free variable plus one additional word. The additional word for the
closure is a code pointer, while the additional word for the vector is

an integer length. This choice is a virtual toss-up, although storing
a small constant length is slightly cheaper than storing a full-word
code pointer, especially on 64-bit machines. We choose the vector
representation for this reason and also because it helps us share
closures, as described in Section 2.3.

We now turn to the case where the procedure is not well known.

Case 2: Not-well-known procedures

In this case, the procedure’s value might be used at a call site where
the procedure is not known. That call site must jump indirectly
through the closure’s code pointer, since it does not know the direct-
call label or labels of the closures that it might call. In this case, the
code pointer is needed, and a closure must be allocated.

We consider two subcases:

Case 2a: Not well-known with no free variables

In this case, the closure is the same each time the procedure’s λ-
expression is evaluated, since it contains only a static code pointer.
The closure can thus be allocated statically and treated as a con-
stant.

Case 2b: Not well-known with one or more free variables x ...

In this case, a closure must actually be created at run time.

2.2 Eliminating unnecessary free variables

On the surface, it seems like a closure needs to hold the values
of all of its free variables. After all, if a variable occurs free in
a procedure’s λ-expression, it might be referenced, barring dead
code that should have been eliminated by some earlier pass of the
compiler. Several cases do arise, however, in which a free variable
is not needed.

Case 1: Unreferenced free variables

Under normal circumstances, a variable cannot be free in a λ-
expression if it is not referenced there (or assigned, prior to assign-
ment conversion). This case can arise after free-variable analysis
has been performed, however, by the elimination of a closure under
Case 1a of Section 2.1. Call sites that originally passed the closure
to the procedure do not do so when the closure is eliminated, and
since no other references to a well-known procedure’s name ap-
pear in the code, the variable should be removed from any closures
in which it appears.

Case 2: Global variables

The locations of global variables, i.e., variables whose locations are
fixed for an entire program run, need not be included in a closure,
since the address of the location can be incorporated directly in the
code stream, with appropriate support from the linker.

Case 3: Variables bound to constants

If a variable is bound to a constant, references to it can be replaced
with the constant (via constant propagation), and the binding can
be eliminated, e.g.:

(let ([x 3])
(letrec ([f (lambda () x)])

))

can be rewritten as:

(letrec ([f (lambda () 3)])
)

If this transformation is performed in concert with the other opti-
mizations described in this section, a variable bound to a constant
can be removed from the sets of free variables in which it appears.
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Figure 1. Function f with a self-reference in its closure

Our compiler performs this sort of transformation prior to closure
optimization, but this situation can also arise when a closure is allo-
cated statically and treated as a constant by Case 2a of Section 2.1.
For structured data, such as closures, care should also be taken to
avoid replicating the actual structure when the variable is refer-
enced at multiple points within its scope. Downstream passes of
our compiler guarantee that this is the case, in cooperation with the
linker, effectively turning the closure into a constant.

Case 4: Aliases

A similar transformation can take place when a variable x is bound
directly to the value of another variable y, e.g.:

(let ([x y])
(letrec ([f (lambda () x)])

))

can be rewritten (via copy propagation) as:

(letrec ([f (lambda () y)])
)

This transformation would not necessarily be valid if either x or y
were assigned, but we are assuming that assignment conversion has
already been performed.

In cases where both x and y are free within the same λ-expression,
we can remove x and leave just y. For example, x and y both appear
free in the λ-expression bound to f :

(let ([x y])
(letrec ([f (lambda () (x y))])

))

yet if references to x will be replaced with references to y, only y
should be retained in the set of free variables.

Again, our compiler eliminates aliases like this in a pass that runs
before closure optimization, but this situation can arise as a result
of Case 1b of Section 2.1, in which a closure for a well-known pro-
cedure with one free variable is replaced by its single free variable.
It can also arise as the result of closure sharing, as discussed in
Section 2.3

Case 5: Self-references

A procedure that recurs directly to itself through the name of the
procedure has its own name as a free variable. For example, the
λ-expression in the code for f below has f as a free variable:

(define append
(lambda (ls1 ls2)

(letrec ([f (lambda (ls1)
(if (null? ls1)

ls2
(cons (car ls1)

(f (cdr ls1) ls2))))])
(f ls1))))
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Figure 2. Mutual references for even? and odd?
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Figure 3. Mutual references for even? and odd?

From the illustration of the closure in Figure 1, it is clear that this
self reference is unnecessary. If we already have f ’s closure in hand,
there is no need to follow the indirect to find it. In general, a link
at a known offset from the front of any data structure that always
points back to itself is unnecessary and can be eliminated.

Thus, a procedure’s name need not appear in its own list of free
variables.

Case 6: Unnecessary mutual references

A similar situation arises when two or more procedures are mu-
tually recursive and have only the variables of one or more of the
others as free variables. For example, in:

(letrec ([even? (lambda (x)
(or (= x 0)

(odd? (- x 1))))]
[odd? (lambda (x) (not (even? x)))])

)

even? has odd? as a free variable only to provide odd? its clo-
sure, and vice versa. Neither is actually necessary. This situation is
illustrated in Figure 2.

On the other hand, in the modified version below:

(lambda (z)
(letrec ([even? (lambda (x)

(or (= x z)
(odd? (- x 1))))]

[odd? (lambda (x) (not (even? x)))])
))

z is free in even?, so even? really does need its closure to hold
z, and odd? needs its closure to hold even?. This situation is
illustrated in Figure 3.

2.3 Sharing closures

If a set of closures cannot be eliminated, perhaps they can be
shared. For example, in the second even? and odd? example of
Section 2.2, perhaps we can use a single closure for both even?
and odd?. The combined closure would have just one free variable,
z, since the pointer from odd? to even? would become a self ref-
erence and thus be unnecessary. Furthermore, when even? calls



odd?, it would just pass along the shared closure rather than indi-
recting its own to obtain odd?’s closure. The same savings would
occur when odd? calls even?.

There are three challenges, however. First, our representation of
closures does not have space for multiple code pointers. This can
be addressed with support from the storage manager, although not
without some difficulty.

Second, more subtly, if two procedures have different lifetimes,
some of the free variable values might be retained longer than
they should be. In other words, the representation is no longer
“safe for space” [16]. This problem does not arise if either (a) the
procedures have the same lifetime, or (b) the set of free variables
(after removing mutually recursive references) is the same for all
of the procedures.

Third, even more subtly, if two procedures have different lifetimes
but the same set of free variables, and one or more are not well-
known, one of the code pointers might be retained longer than
necessary. In systems where all code is static, this is not a problem,
but our compiler generates code on the fly, e.g., when the eval
procedure is used, and anything that can be dynamically allocated
must be subject to garbage collection, including code. This is not a
problem when each of the procedures is well-known, assuming we
choose the vector representation over the closure representation in
Case 1d of Section 2.1.

Thus, we can share closures in the following two cases:

Case 1: Same lifetime, single code pointer

Without extending our existing representation to handle multiple
code pointers, we can use one closure for any set of procedures that
have the same lifetime, as long as at most one of them requires its
code pointer. Proving that two or more procedures have the same
lifetime is difficult in general, but it is always the case for sets of
procedures where a call from one can lead directly or indirectly to a
call to each of the others, i.e., sets that are strongly connected [20]
in a graph of bindings linked by free-variable relationships.

Case 2: Same free variables, no code pointers

If a set of well-known procedures all have the same set of free vari-
ables, the procedures can share the same closure, even when they
are not part of the same strongly connected group of procedures.
No harm is done if one outlasts the others, since the shared closure
directly retains no more than what each of the original closures
would have indirectly retained. In determining this, we can ignore
variables naming members of the set, since these will be eliminated
as self references in the shared closure.

In either case, sharing can result in aliases that can lead to reduc-
tions in the sizes of other closures (Section 2.2 Case 4).

2.4 Example

Consider the letrec expression in the following program:

(lambda (x)
(letrec ([f (lambda (a) (a x))]

[g (lambda () (f (h x)))]
[h (lambda (z) (g))]
[q (lambda (y) (+ (length y) 1))])

(q (g))))

As the first step in the optimization process, we identify the free
variables for the procedures defined in the letrec: x is free in
f ; x, f , and h are free in g; and g is free in h. q contains no free
variables. We do not consider + or length to be free in q, since the
locations of global variables are stored directly in the code stream,

as discussed in Case 2 of Section 2.2. Additionally, we note that f ,
g, h, and q are all well-known.

Next, we partition the bindings into strongly connected compo-
nents, producing one letrec expression for each [10, 22]. g and h
are mutually recursive, and so must be bound by the same letrec
expression, while f and q each get their own. Since f appears in g,
the letrec that binds f must appear outside the letrec that binds
g and h. Since q neither depends on nor appears in the other pro-
cedures, we can place its letrec expression anywhere among the
others. We arbitrarily choose to make it the outermost letrec.

After these partitions we have the following program:

(lambda (x)
(letrec ([q (lambda (y) (+ (length y) 1))])

(letrec ([f (lambda (a) (a x))])
(letrec ([g (lambda () (f (h x)))]

[h (lambda (z) (g))])
(q (g))))))

We can now begin the process of applying optimizations. Since q
is both well-known and has no free variables, its closure can be
completely eliminated (Case 1a of Section 2.1). f is a well-known
procedure and has only one free variable, x, so its closure is just
x (Case 1b of Section 2.1). g and h are mutually recursive, so it
is tempting to eliminate both closures as described by Case 6 of
Section 2.2. However, g still has x as a free variable, and therefore
needs its closure. h also needs its closure so that it can hold g. Be-
cause g and h are well-known and are part of the same strongly
connected component, they can share a closure (Case 1 of Sec-
tion 2.3). Additionally, since f ’s closure has been replaced by x,
there is only a single free variable, x, so the closures for g and h are
also just x (Case 1b of Section 2.1). If another variable, y, were free
in one of g or h, the result would be a shared closure represented
by a pair of x and y (Case 1c of Section 2.1). If, further, g were not
well known, a shared closure for g and h would have to be allocated
with the code pointer for g and x and y as its free variables (Case 1
of Section 2.3).

3. The Algorithm

We now turn to a description of an algorithm that can be used to
perform the optimizations described above. To simplify the pre-
sentation, we describe the algorithm using the small core language
defined in Figure 4. The grammar enforces a few preconditions on
the input:

• variables are not assigned,
• letrec expressions are pure, i.e., bind (unassigned) variables

to λ-expressions, and
• λ-expressions appear nowhere else,

The first precondition can be arranged via standard assignment con-
version [8, 14], while the second requires some form of letrec pu-
rification [10, 22]. The third precondition can be arranged trivially
via the following local transformation on λ-expressions.

(lambda (x) e)→ (letrec ([f ′
(lambda (x) e)]) f ′

)

where f ′ is a fresh variable.

The algorithm requires one more precondition not enforced by the
grammar:

• variables are uniquely named.



This precondition can be arranged via a simple alpha renaming.

In broad strokes, the closure optimization algorithm is as follows,
with details provided in the referenced sections:

1. Gather information about the input program, including the free
variables of each λ-expression and whether each λ-expression
is well-known (Section 3.1).

2. Partition the bindings of each input letrec expression into
separate sets of bindings known to have the same lifetimes, i.e.,
sets of strongly connected bindings (Section 3.2).

3. When one or more bindings of a strongly connected set of
bindings is well-known (i.e., they are bindings for well-known
procedures), decide which should share a single closure (Sec-
tion 3.3).

4. Determine the required free variables for each closure, leaving
out those that are unnecessary (Section 3.4).

5. Select the appropriate representation for each closure and
whether it can share space with a closure from some outer
strongly connected set of bindings (Section 3.5).

6. Rebuild the code based on this selection (Section 3.6).

The final output of the algorithm is in the intermediate language
shown in Figure 9 on page 6.

3.1 Gathering information

Before it can proceed, the main part of the algorithm requires a
few pieces of information to be teased out of the program via static
analysis:

• each λ-expression’s free variables,
• call sites where the callee is known, and
• whether each λ-expression is well-known.

The set of free variables can be determined for each λ-expression
via a straightforward recursive scan of the input program in which
two values are returned at each step: (1) a new expression that
records free variables at each λ-expression, and (2) the set of
variables free in the expression. The base cases are variables and
constants. The set of variables free in a variable reference includes
just the variable itself, while the set of variables free in a constant
is empty. The set of variables free in a lambda, let, or letrec
is the union of the sets of variables free in each subform minus
those bound by the form2. The set of variables free in a call or
primitive application is the union of the sets of variables free in
the subforms. The result of this scan is the intermediate language
shown in Figure 5, which differs from the core language only in the
appearance of a free variable set in the syntax for lambda. The free
variable set, fvs, is the set of variables free in the lambda.

Determining the known-call sites and whether each λ-expression is
well known is a bit more tricky. The desired result is the intermedi-
ate language shown in Figure 6, which differs from the preceding
language in the addition of a label, l, and a well-known flag, wk, to
each lambda, along with the addition of a label or bottom, denoted
by l?, to each call. Each label represents the entry point of one λ-
expression. A label is recorded in a call only if we can prove that
the corresponding lambda is the only one ever called (directly) by
that call. Similarly, the well-known flag, wk, on a lambda is true

2 For (let (x e1) e2), x cannot appear free in e1, since variables are
uniquely named.

e ::= c
| x
| (let (x e1) e2)
| (letrec ([x1 f1] . . . ) e)
| (call e0 e1)
| (prim e . . . )

f ::= (lambda (x) e)

c ∈ Const , x ∈ Var , prim ∈ Prim, e ∈ Exp, f ∈ Fun

Figure 4. The core intermediate language.

e ::= c
| x
| (let (x e1) e2)
| (letrec ([x1 f1] . . . ) e)
| (call e0 e1)
| (prim e . . . )

f ::= (lambda fvs (x) e)

fvs ∈ P(Var)

Figure 5. After uncovering free variables.

only if we can prove that its name is used only at call sites where it
is known, i.e., at call sites where the label is recorded.

A completely accurate determination is generally impossible, but
it is straightforward to compute a conservative approximation effi-
ciently as follows. First, create an environment mapping variables
to labels and a separate store mapping variables to well-known
flags, both initially empty. Then, for each letrec, create a fresh la-
bel for each of its λ-expressions; mark each variable well-known in
the store; process its body and the bodies of each of its lambda sub-
forms in an extended environment that maps each LHS variable to
the corresponding label; and rebuild using the processed subforms.
For each of the rebuilt lambda subforms, record the corresponding
label and the store’s final value of the corresponding well-known
flag. To process a call whose first subexpression is a variable that
the environment maps to a label, process the second subexpression
and rebuild the call with the label in the first position, followed by
the variable and the processed second subexpression. To process
any other call, process the subforms and rebuild with ⊥ in the first
position. To process a variable outside of the first position of a call,
mark the variable not-well-known in the store. To process a let or
primitive application, process the subforms and rebuild using the
processed subforms. No processing is needed for constants. This
process is linear in the size of the code.

The analysis above uncovers known calls only when the name of
a λ-expression is in scope at the point of call. A more precise
approximation can be made using a more elaborate form of control-
flow analysis, as described by Serrano [15], or a type recovery
that differentiates between individual procedures, as described by
Adams et al. [1].

3.2 Partitioning bindings into strongly connected sets

The next step in the algorithm is to determine sets of bindings we
can prove have the same lifetimes, since these are the ones that can
potentially share closures without leading to space safety issues.
As discussed in Section 2.3, proving that two or more procedures
have the same lifetime is difficult in general, so we use a conserva-



e ::= c
| x
| (let (x e1) e2)
| (letrec ([x1 f1] . . . ) e)
| (call l? e0 e1)
| (prim e . . . )

f ::= (lambda l wk fvs (x) e)
l? ::= l | ⊥

l ∈ Label , wk ∈ Bool

Figure 6. After uncovering known calls.

e ::= c
| x
| (let (x e1) e2)
| (scletrec ([x1 f1] . . . ) e)
| (call l? e0 e1)
| (prim e . . . )

f ::= (lambda l wk fvs (x) e)
l? ::= l | ⊥

Figure 7. After computing strongly connected sets

e ::= c
| x
| (let (x e1) e2)
| (scletrec (([x1 f1] . . . ) . . . ) e)
| (call l? e0 e1)
| (prim e . . . )

f ::= (lambda l wk fvs (x) e)
l? ::= l | ⊥

Figure 8. After choosing subsets for sharing

e ::= c
| x
| l
| (let (x e1) e2)
| (labels ([l1 f1] . . . ) e)
| (call l? e0? e1)
| (prim e . . . )

f ::= (lambda cp?(x) e)
l? ::= l | ⊥
e? ::= e | ⊥

cp? ::= cp | ⊥

cp ∈ Var

Figure 9. Final output language.

(make-closure code length)
(closure-set! closure index value)
(closure-ref closure index)
(vector e ...)
(vector-ref vector index)
(cons e1 e2)
(car pair)
(cdr pair)

Figure 10. Closure-related primitives.

tive approximation, which is to assume the same lifetime only for
members of each set of bindings that are strongly connected [20] in
a graph of bindings linked by free-variable relationships. In deter-
mining strongly connected sets of letrec bindings, it is sufficient
to consider each letrec form individually, since the bindings of
two separate letrec forms can be connected via free-variable links
in at most one direction.

Sets of strongly connected letrec bindings also happen to be the
minimal sets that must be allocated and initialized together so that
links can be established among them, as described in Section 3.6.

The result of this step of the algorithm is a program in the new
intermediate language shown in Figure 7, which differs only in
that letrec forms have been replaced with scletrec forms. In
general, each letrec form is replaced by one or more scletrec
forms nested so that if the λ-expressions of one scletrec refer-
ence bindings of another scletrec, the first is nested within the
second.

If letrec purification has been performed via the algorithm de-
scribed by Ghuloum and Dybvig [10], the letrec expressions have
already been split into strongly connected sets of bindings, and this
step need not be repeated.

3.3 Combining bindings

Once our letrec forms have been split into strongly connected
sets represented by scletrec forms, we are ready to determine
the subsets of each set that will share a single closure.

If our representation allowed closures to have multiple code slots,
we could use a single closure for all of the bindings of the set. Since
the representation permits us just one code slot, however, we must
arrange that at most a single code pointer is needed by the members
of each subset.

A code pointer is needed only for not-well-known bindings, since a
well-known λ-expression is invoked via its direct-call label. Thus,
if there are no not-well-known bindings in the set, no code pointer
is required, and we can group all of the bindings together. This leads
eventually to a run-time representation without any code pointer, as
covered by Case 1 of Section 2.1.

If there are not-well-known bindings in the set, however, we must
have at least one closure for each. There is no advantage to creating
a separate closure for the well-known bindings, so we arrange for
each of the well-known bindings to share a closure with one of the
not-well-known bindings. Thus, we end up with exactly as many
subsets as there are not-well-known bindings in the set.

When more than one not-well-known binding exists in a set, it
is unclear how to distribute the well-known bindings among the
resulting subsets. If possible, we would like to combine the not-
well-known bindings with well-known bindings in a way that leads
to minimizing the total number of free variables in each closure.
However, this situation arises infrequently enough in the programs
we tested that we were not able to determine a generally useful
heuristic, so our algorithm presently groups all of the well-known
bindings in with an arbitrary pick of the not-well-known bindings.
This transformation never does any harm, but it might not be as
beneficial as some other combination in some circumstances.

The output of this step is in the intermediate language shown in
Figure 8, in which the bindings of the scletrec are grouped into
subsets that will share a single closure.



3.4 Determining required free variables

As discussed in Section 2.2, we need not include in our free variable
sets all of the variables that actually occur free within our λ-
expressions. In fact, we must eliminate any letrec-bound variable
that is neither bound nor referenced in the final output because
its closure has been eliminated under Case 1a of Section 2.1. We
can also eliminate global variables, variables bound to constants,
aliases for other variables already included, self references, and
unnecessary mutual references.

To eliminate aliases and variables bound to constants, we use an
environment that maps variables to expressions or ⊥ :

ρ ∈ Env = Var → Exp ∪ {⊥}

For the purposes of determining required free variables, the envi-
ronment need map variables only to constants, other variables, and
⊥, but we need other expressions when rebuilding the code, as de-
scribed in Section 3.6.

If a local variable x is an alias for another variable y, ρ maps x to
y. Similarly, if x is bound to a constant c, ρ maps x to c. If x is
unbound in the final output, ρ maps x to ⊥. Otherwise, ρ maps x
to itself.

In our compiler, global variables are distinct from local variables
and are referenced and assigned via static locations embedded in
the code stream. Thus, they never appear in our free variable lists
and hence need not be eliminated. If this were not the case, we
could recognize the case where ρ does not contain a mapping for a
variable and treat it as global.

We construct the environment and determine the required free vari-
ables via an outermost to innermost traversal of the input program,
starting with an empty environment and augmenting it when we
encounter a let or scletrec. For (let (x e1) e2), the environ-
ment ρ′ used while processing e2 is the result of augmenting ρ as
follows:

• if e1 is a variable y, ρ′x = ρy;
• if e1 is a constant c, ρ′x = c;
• otherwise, ρ′x = x.

In the first case, ρ′ maps x to ρy rather than y because y might itself
be an alias, bound to a constant, or unbound.

For scletrec, we select representations as described in the follow-
ing section and augment the environment used while processing the
lambda and letrec bodies based on the representations selected,
as follows.

• if a letrec-bound variable x is not needed because its closure
has been eliminated, ρ′x = ⊥;

• if the closure for x is a constant closure c, i.e., one containing
just a code pointer, ρ′x = c;

• if the closure for x is just the value of the free variable y,
ρ′x = y;

• similarly, if the closure (or other data structure) for x is shared
with a closure to which another variable y has been bound,
ρ′x = y;

• otherwise, ρ′x = x.

Because the traversal proceeds from outermost to innermost, by
the time it is ready to process a given scletrec form, information
about the free variables of its λ-expressions, except those bound

by the scletrec form itself, are available in the environment.
We optimistically assume that none of the variables bound by the
scletrec form is needed until we have proved otherwise, and so
compute initial free-variable sets for each group of bindings based
only on free variables that are not bound by the current scletrec
form, using the environment to eliminate unbound variables, con-
stants, and aliases.

To be precise, if a variable x ∈ fvs for any fvs among the λ-
expressions of one group of bindings of an scletrec, ρx is in-
cluded in the initial free variable set of the group if and only if ρx
is a variable. This effectively omits unbound variables and variables
bound to constants. It also eliminates aliases, since if the environ-
ment maps x and y to z (where z might be x, y, or some variable
distinct from x and y), only z appears in the resulting set.

We must still decide which of the variables bound by the current
scletrec must be included in the free variable sets of each group.
At most one variable bound by each group needs to be included,
since each of the variables will be bound to the same closure (if
any). Thus, we pick an arbitrary representative variable rep from
the set of variables bound by each group, and decide whether to
include it in the free-variable sets of the others.

We never include rep in the free-variable set of its own group,
effectively eliminating self references (Case 5 of Section 2.2). If
all of the initial free variable sets are empty, no representatives
are added, and the final free variable sets are also empty. This
effectively eliminates unnecessary mutual references. (Case 5 of
Section 2.2).

If, however, the free-variable set of any group is non-empty, we
must add the representative rep of each groupG to the free-variable
set of each other group H if G has a nonempty set of free variables
and rep ∈ fvs for some fvs among the λ-expressions of H . Each
group must have at least one of the other representatives in one or
more fvs, so in this case, each of the final free-variable sets is non-
empty.

The products of this step are the final free variable sets, one for
each group of bindings of a single scletrec form. The selected
representative rep for each group must also be communicated to
the next step.

3.5 Selecting representations

Once we have the final set of free variables for each group, we are
ready to decide how each group’s closure is represented. This step
is performed for each scletrec during the outermost to innermost
traversal of the program described in Section 3.4. For each group in
an scletrec, we select the representation determined by the cases
in Section 2.1 as follows:

Case 1a: Well-known with no free variables

Because we have opted to combine all well-known bindings with
a not-well-known binding if one exists, this case and the other
well-known cases occur only if there is a single group whose λ-
expressions are all well known.

In this case, no closure is needed, and ρ′ maps rep and the other
variables bound by the group to ⊥.

Case 1b: Well-known with one free variable x

In this case, the closure is just the value of x, and ρ′ maps rep and
the other variables bound by the group to x.

Case 1c: Well-known with two free variables x and y

In this case, the closure is a run-time allocated pair containing the
values of x and y. ρ′ maps each of the variables bound by the



group to rep, and code to create the pair and bind rep to the pair
is generated as described in Section 3.6.

Case 1d: Well-known with three or more free variables x ...

In this case, the closure is a run-time allocated vector containing the
values of x .... ρ′ maps each of the variables bound by the group
to rep, and code to create the vector and bind rep to the vector is
generated as described in Section 3.6.

Case 2a: Not well-known with no free variables

In this case, the closure is a constant closure c containing just a
code pointer, and ρ′ maps rep and the other variables bound by the
group to c.

Case 2b: Not well-known with one or more free variables x ...

In this case, the closure is a run-time allocated closure whose code
pointer is the label of the single not-well-known binding in the
group, and its free variable slots hold the values of x .... ρ′ maps
each of the variables bound by the group to rep, and code to produce
the closure and bind rep to the closure is generated as described in
Section 3.6.

In cases 1c and 1d, we have a further opportunity, which is to locate
a binding created by an outer scletrec that would have exactly
the same set of free variables if the pair or vector were shared. For
example, an outer closure might be represented as a pair with free
variables x and y. If the new closure would also have just x and y
as free variables, there is no harm in borrowing the pair used for
the outer closure. Furthermore, if the new closure has f as a free
variable as well as x and y, it can still use the outer pair, since f
becomes a self reference and hence is not needed.

To implement this form of sharing, the algorithm maintains an
additional compile-time environment, bank, that maps sets of free
variables to the representative variables of closures available to be
borrowed. We deposit into bank only closures represented as pairs
or vectors, since we cannot borrow a closure with a code pointer
without possibly retaining the code pointer too long, as described
in Section 2.3. For any well-known procedure with more than one
free variable, we check to see if a closure with a compatible set
of free variables already exists in bank and, if so, map rep and the
other variables bound by the group to the representative variable of
the borrowed closure. While processing the body of a λ-expression,
we withdraw from bank those closures whose names do not appear
free in the λ-expression, since they are not visible in the body.

3.6 Rebuilding the code

The final step of the algorithm is to produce the output code. This
step is performed for each scletrec during the traversal of the
code described in Section 3.4, based on the decisions made in
Section 3.5. The intermediate language for the final output is shown
in Figure 9 and may require some or all of the primitive operations
shown in Figure 10. Producing the output code involves:

• generating a labels form binding labels to lambda expres-
sions,

• adding a closure-pointer (cp) variable to each λ-expression that
requires its closure,

• rewriting variable references, and
• generating code to create the required pairs, vectors, and clo-

sures.

The generated labels form binds the label associated with each λ-
expression in each group of the scletrec form to the correspond-
ing λ-expression. Although the labels form appears where the

scletrec form originally appeared, the scope of each label is the
entire input program, so that any call can jump directly to the code
produced by the corresponding λ-expression. In fact, since the re-
sulting λ-expressions access their free variables, if any, through an
explicit closure argument, all labels forms and the λ-expressions
within them can be moved to the top level of the program as part of
this or some later transformation, if desired.

If a λ-expression has any free variables, it is given a closure-
pointer (cp) variable; when code is ultimately generated for the λ-
expression, cp must be assigned to the incoming closure (or pair or
vector), just as the formal parameter x is assigned to the incoming
actual parameter. In essence, cp is merely an additional formal
parameter, and the closure is merely an additional actual parameter.

Each reference to a free variable within a λ-expression must be re-
placed by an expression to retrieve the value of the free variable
from the closure. Similarly, a reference to a variable bound to a
constant must be replaced by the constant, a reference to a variable
bound to another variable must be replaced by a reference to the
other variable, and references to unbound variables must be elim-
inated. Sufficient information already exists in the incoming envi-
ronment ρ to handle the latter set of cases, where each reference to
a variable x is simply replaced during the outermost to innermost
traversal by ρx. Unbound variables arise only from well-known
procedures and can thus appear only in the second (closure) posi-
tion of a call, and only when the call’s label is not⊥. When this
happens, the variable maps to ⊥, and the reference to the variable
is replaced in the call by ⊥, which frees the caller from passing
any sort of closure to the callee.

To handle free variables, ρ is augmented to create an environment
ρ′ as follows:

• for a self reference x, ρ′x = cp;
• for a procedure represented by one of its free variables x,
ρ′x = cp;

• for a procedure represented by a pair of x and y, ρ′x =
(car cp), and ρ′y = (cdr cp);

• for a procedure represented by a vector of x1 . . . xn, ρ′xi =
(vector-ref cp i) for 0 ≤ i < n;

• for a procedure represented by a closure of x1 . . . xn, ρ′xi =
(closure-ref cp i) for 0 ≤ i < n.

The augmented environment ρ′ is used while processing the body
of each lambda form as well as the body of the scletrec form,
since references to the letrec-bound variables can occur in both
contexts.

Generating code to create the required pairs, vectors, and closures
is straightforward, with one minor twist. Since the links among the
non-constant closures created for the set of groups in an scletrec
necessarily form one or more cycles, the code to create them allo-
cates all of the closures before storing the values of the free vari-
ables. For example, if an scletrec form with body e has two
groups: one with representative r1, label l1, and free variables r2
and y; and one with representative r2, label l2, and free variable r1;
the scletrec form is replaced with the following:

(let ([r1 (make-closure l1 2)]
[r2 (make-closure l2 1)])

(closure-set! r1 0 r2)
(closure-set! r1 1 y)
(closure-set! r2 0 r1)
e)



The order of the bindings and the order of the closure-set!
forms does not matter.

4. Results

Our implementation extends the algorithm described in Section 3
to support the full R6RS Scheme language [18]. To determine the
effectiveness of closure optimization, we ran the optimization over
a standard set of 67 R6RS benchmarks [6] and instrumented the
compiler and resulting machine code to determine:

• statically,

the number of closures eliminated and

the reduction in the total number of free variables; and
• dynamically,

the reduction in allocation cost and

the reduction in the number of memory references.

Overall the optimization performs well, on average statically elim-
inating 56.94% of closures and 44.89% of the total free variables
and dynamically eliminating, on average, 58.25% of the allocation
and 58.58% of the memory references attributable to closure ac-
cess3.

These numbers are gathered after a pass that performs aggressive
inlining, constant propagation, constant folding, and copy propaga-
tion [21]. It also follows a pass that recognizes loops and converts
them into the equivalent of labels and gotos. As a result, the num-
bers do not include the benefits of eliminating variables bound to
constants or other variables, except where these situations arise dur-
ing closure optimization. Inlining and loop recognition also elimi-
nate the need for some closures and can impact the number of free
variables (potentially increasing this number in some cases and de-
creasing it in others). Global variables are not counted as free vari-
ables, as they are stored at a fixed location and accessed via primi-
tives that set or retrieve their values.

Constant closures and those replaced by a single free variable are
considered eliminated in our numbers, since neither incurs run-time
overhead. In counting the allocation of vectors and closures, we
include the space required for the length (in the case of vectors)
and the code pointer (in the case of closures), as well as the space
required to hold the free-variable values4.

In addition to the overall numbers, we ran in isolation optimizations
that eliminate self-references, eliminate mutual references, share
closures in strongly connected sets of bindings, borrow closures
from outer sets of bindings, and select more efficient representa-
tions. Table 1 shows the breakdown in the percentage of eliminated
closures, free-variables, memory references, and allocation by op-
timization. The table shows that running the optimizations together
results in greater benefits than running the optimizations separately.
This is because some of the optimizations can lead to opportunities
for the others.

The results for the complete set of benchmarks are impressive
but vary from benchmark to benchmark. Some of the benchmarks
are simpler benchmarks for running functions like factorial, Tak,
and Fibonacci. It is interesting to see how much these benefit, but
ultimately, the larger programs within the benchmark suite help to

3 The percentage of memory stores attributable to closure initialization also
decreases in direct proportion with the reduction in allocation.
4 The numbers do not include pad words required to maintain object align-
ment, e.g., double-word alignment on 32-bit machines.

Optimization Closure FV Mem. Ref. Alloc.

Self-ref. 0.00% 25.41% 45.64% 19.33%
Mutual-ref. 0.00% 7.91% 32.55% 6.14%
Representation 29.65% 3.48% 1.23% 20.78%
Sharing 1.91% 3.17% 0.00% 0.58%
Borrowing 0.20% 0.28% 0.00% 0.02%

All 56.94% 44.89% 58.58% 58.25%

Table 1. Eliminated closures (Closure), free-variables (FV), mem-
ory references (Mem. Ref.), and allocation (Alloc.) by optimization

provide a better indicator of how well these optimizations will work
on real-world programs. The R6RS “compiler” benchmark is the
largest, in terms of source code, and has the most closures initially.
Statically, 40.85% of closures and 31.9% of free variables are
eliminated, and dynamically, 31.52% of the allocation and 27.59%
of the memory references attributable to closure creation and access
are eliminated. This example might be more typical of the average
real-world program.

The R6RS “simplex” benchmark is an example of a benchmark that
does not benefit much from our closure optimization eliminating
statically only 8.00% of the closures and 14.97% of free variables
while eliminating dynamically 13.96% of the allocation and 9.84%
of the memory references attributable to closure creation and ac-
cess. The benchmark is written as a set of functions that mutate
data structures pointed to from free variables. Since most of the
free variables are not other closures (and some that are have al-
ready been inlined by the source optimization pass) there are not
many closures that can be eliminated.

The R6RS “nucleic” benchmark is an example of a longer bench-
mark that performs better than average, eliminating 67.74% of the
closures and 66.23% of the free variables statically, and 37.43% of
the allocation and 72.69% of the memory references attributable to
closure creation and access at run time. This benchmark has many
top-level definitions that are either λ-expressions or constants, so
the free variables tend to be other closures. While data structures
are also mutated here, they tend to be passed as arguments rather
than stored as free variables in the closure. In a program like this,
we expect to see many of the closures eliminated.

In addition to the benchmarks, we also measured the effectiveness
of the optimization algorithm when run on the sources for our own
compiler. Statically, 45.67% of closures and 32.36% of free vari-
ables are eliminated, and dynamically, 47.52% of the allocation and
47.00% of the memory references attributable to closure creation
and access are eliminated.

We also measured how our optimizations affected the run times of
our benchmarks. The decrease in run times ranged from negligible
up to 20%, with an average decrease of 3.6%. Run times actually
increased for a few of the benchmarks. Since our optimizations sup-
posedly guaranteed not to add overhead, we examined one of those
whose run time increased and determined that its poor performance
was due to bad caching. Rearranging the code led to equivalent per-
formance between the optimized and unoptimized versions of the
code. Several of the benchmarks spend most of their time in proce-
dures recognized as loops earlier and do not benefit at all from the
closure optimization. Larger programs tended to experience greater
improvement in runtime, which correlates well with the other mea-
surements. Memory allocation in our implementation is fast, av-
eraging around three instructions plus one store to initialize each
field. For implementations with slower or even out-of-line alloca-
tion, the decrease in run time due to reduction in closure allocation
would be greater. Similarly, implementations that do not perform



inlining or loop recognition would likely benefit more from the op-
timizations. On the other hand, systems with higher overhead in
other places would likely benefit less.

Case 1 of Section 2.3 discusses the possibility of extending our
implementation to support multiple code pointers so that all of
the bindings of a strongly connected set of bindings can share the
same closure, even if more than one is not well-known. Because
making this change to our system would be a major undertaking,
we decided to determine the potential benefit of the optimization
before proceeding. Our test showed that this optimization would
affect less then one tenth of one percent of letrec bindings, which
led us to abandon the idea.

Our implementation of the optimization algorithm employs stan-
dard techniques to avoid the implied overhead of creating and up-
dating the sets required by the algorithm. For example, it associates
a seen flag with each variable to indicate when a free-variable has
already been added to a set. Although we have yet to create a proof,
we believe that the implementation is linear in the number of vari-
ables free in all λ-expressions in the program, which is the best any
implementation of the flat-closure model can achieve 5. In other
words, our implementation adds at most constant overhead to the
naive flat-closure model, and can sometimes improve the speed
of downstream passes via the elimination of closure operations.
Indeed, the optimization adds essentially no measurable compile-
time overhead in our compiler, with compile times varying by an
average of less than 1% with the optimization disabled or enabled.

5. Related Work

Our replacement of a well-known closure with a single free variable
is a degenerate form of lambda lifting [12], in which each of the
free variables of a procedure are converted into separate arguments.
Increasing the number of arguments can lead to additional stack
traffic, particularly for non-tail-recursive routines, and it can also
increase register pressure whenever two or more variables are live
in place of the original single package (closure) with two or more
slots. Limiting our algorithm to doing this replacement only in the
single-variable case never does any harm, since we are replacing a
single package of values with just one value.

Serrano [15] describes a closure optimization based on control-flow
analysis [17]. His optimization eliminates the code part of a closure
when the closure is well-known; in this, our optimizations overlap,
although our benefit is less, since the code part of a closure in his
implementation occupies four words, while ours occupies just one.
He also performs lambda lifting when the closure is well-known
and its binding is in scope wherever it is called.

Steckler and Wand [19] describe a closure-conversion algorithm
that creates “light-weight closures” that do not contain free vari-
ables that are available at the call site. This is a limited form of
lambda lifting and, as with full lambda lifting, can sometimes do
harm relative to the straight flat-closure model.

Kranz [13] describes various mechanisms for reducing closure allo-
cation and access costs, including allocating closures on the stack
and allocating closures in registers. The former is useful for clo-
sures created to represent continuations in an implementation that
uses continuation passing style [11] and achieves part of the benefit
of the natural reuse of stack frames in a direct-style implementa-
tion. The latter is useful for procedures that act as loops and re-
duces the need to handle loops explicitly in the compiler. Our opti-

5 In the worst case, the number of such free variables is quadratic in the
size of the program [16], although the worst case appears to be approached
rarely in practice.

mizations are orthogonal to these optimizations but they do overlap
somewhat in their benefits.

Shao and Appel [16] describe a nested representation of closures
that can reduce the amount of storage required for a set of closures
that share some but not all free variables, while maintaining space
safety. The sharing never results in more than one level of indi-
rection to obtain the value of a free variable. Since a substantial
portion of the savings reported resulted from global variables [2],
which we omit entirely, and we operate under the assumption that
free-variable references are typically far more common than clo-
sure creation, we have chosen to stick with the flat closure model
and focus instead on optimizing that model.

Fradet and Métayer [9] describe various optimizations for imple-
mentations of lazy languages. They discuss reducing the size of a
closure by omitting portions of the environment not needed by a
procedure, which is an inherent feature of the flat closure model
preserved by our mechanism. They also discuss avoiding the cre-
ation of multiple closures when expressions are deferred by the lazy
evaluation mechanism in cases where a closure’s environment, or
portions of it, can be reused when the evaluation of one expression
provably precedes another, i.e., when the lifetime of one closure
ends before the lifetime of another begins.

Dragoş [7] describes a set of optimizations aimed at reducing the
overhead of higher-order functions in Scala. A closure elimination
optimization is included that attempts to determine when free vari-
ables are available at the call site or on the stack to avoid creating
a larger class structure around the function. It also looks for heap-
allocated free variables that are reachable from local variables or
the stack to avoid adding them to closure. The optimization helps
eliminate the closures for well-known calls by lambda lifting, if
possible.

Appel [4] describes the elimination of self references and allow-
ing mutually recursive functions (strongly connected sets of letrec
bindings) to share a single closure with multiple code pointers.
These optimizations are similar to our elimination of self references
and sharing of well known closures, though in our optimization we
only allow one not well-known closure in a shared closure.

A few of the optimizations described in this paper have been per-
formed by Chez Scheme since 1992: elimination of self references,
elimination of mutual references where legitimate, and allocation
of constant closures (though without the propagation of those con-
stants). Additionally, we have seen references to the existence of
similar optimizations in various newsgroups and blogs. While other
systems may implement some of the optimizations we describe,
there is no mention of them or an algorithm to implement them in
the literature.

6. Conclusion

The flat closure model is a simple and efficient representation for
procedures that allows the values or locations of free variables to
be accessed with a single memory reference. This paper presents
a set of flat-closure compiler optimizations and an algorithm for
implementing them. Together, the optimizations result in an av-
erage reduction in run-time closure-creation and free-variable ac-
cess overhead on a set of standard benchmarks by over 50%, with
insignificant compile-time overhead. The optimizations never add
overhead, so a programmer can safely assume that a program will
perform at least as well with the optimizations as with a naive im-
plementation of flat closures.
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