
Scheme on the Web and in the Classroom
A Retrospective about the LAML Project

Kurt Nørmark
Department of Computer Science,

Aalborg University, Denmark
normark@cs.aau.dk

Abstract
LAML is a software system that brings XML languages into
Scheme as a collection of Scheme functions. The XML languages
are defined by XML document type definitions (DTDs). We re-
view the development of LAML during more than a decade, and
we collect the experiences from these efforts. The paper describes
four substantial applications that have been developed on top of the
LAML libraries.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features

General Terms Design, Documentation, Languages, Experimen-
tation.

Keywords Scheme, LAML, XML.

1. Introduction
This is a short paper about the use of LAML for creation of simple
web pages, complex collections of web materials, and interactive
web systems – many of which support my teaching in the areas of
programming and programming languages. The paper summarizes
the basic ideas behind LAML, and it gives an overview of the
different kinds of applications that are supported by LAML. The
paper systematically refers to all published papers about LAML,
or LAML related works. The readers are recommended to consult
these papers for detailed exposition of the LAML work, and for
references to similar work.

The work on LAML was started in 1999 [2]. LAML stands
for “Lisp Abstracted Markup Language”. The initial idea was to
use Lisp syntax instead of “HTML syntax” for the web source
files. More specifically, we wanted to have a Lisp function for each
“tag” in HTML, and more generally for each element in an XML
language.

The initial LAML ideas could be supported by different Lisp
languages. Emacs Lisp was considered as a candidate, mostly be-
cause I use Emacs for all my text editing and text management
needs. Common Lisp was also a candidate, of course. But Scheme
became the natural choice. Scheme was attractive because it was a
small, powerful and elegant language supported by several different

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Scheme’12 September 9, 2012, Copenhagen, Denmark
Copyright c© 2012 ACM [to be supplied]. . . $10.00

implementations. In comparison with Scheme, Emacs Lisp would
not have been practical for our purposes, because it is difficult to
run an Emacs Lisp program outside the scope of the interactive text
editor. Common Lisp felt too complex for the task.

I decided not to bind LAML to a single Scheme system. LAML
was intended to work on any R4RS/R5RS Scheme system – on
both Linux, Windows, and Macs. Missing pieces, especially related
to operating system interfaces, were organized in compatibility
library files. Compatibility files exist for many combinations of
Scheme implementations and operating systems.

The use of S-expressions for representation of HMTL/XML
documents has been explored in several Lisp contexts, and in other
functional languages as well. It is possible to go in at least two
different directions:

• The data direction. An HTML/XML fragment is an S-expres-
sion, which can be processed in different ways by passing it to
different functions.

• The program direction. An HTML/XML fragment corre-
sponds to a Lisp expression where each XML tag/element is
represented by a function. The Lisp expression is hereby pro-
cessed in a fixed way, as defined by the HTML/XML functions
that are involved.

I took the program direction in LAML. As a consequence, each
element of the markup language gives rise to a Scheme function
– a so-called mirror function (see Section 3). This is important,
because these Scheme functions can be used as “building blocks”
in a functional program. It is, for instance, possible to map the
functions over a list of subdocuments, and more generally to pass
the functions around as parameters in a Scheme program.

Clearly, the mirror functions must be generated automatically.
In the first couple of years of the LAML development process I
used considerable efforts to “get this right”. I ended up with func-
tions, with specialized parameter passing conventions, that gener-
ate an internal document form (a LAML AST). This is discussed
in Section 3. The LAML AST can subsequently be processed in
different ways, as described in Section 4.

2. Markup language versus Programming
Language

In contexts where program fragments and markup fragments are
used side by side – such as in server side programs – I realized
how unattractive such combined documents may appear. It led to
the identification of four different situations [8]:

• Program hosting: The outer structure is a program in which
pieces of markup appear in the program details.



• Markup hosting: The outer structure is a web document (in
HTML, or in an XML language) in which pieces of program
appear.

• Program subsumption: The markup fragments are eliminated,
and instead expressed in the programming language

• Markup subsumption: The program fragments are eliminated,
and instead expressed in the markup language.

Program hosting can be achieved by use of formatted printing
(printf in C, for instance). Markup hosting is common in frame-
works such as ASP and JSP. I consider these solutions as very prob-
lematic, because two entirely different languages are combined “in
strange ways”. Neither of the two languages have been designed
with any consciousness about the other. This is, at best, a tempo-
rary ad hoc solution, waiting for a better solution to appear.

LAML falls in the category of program subsumption. Markup
subsumption (in XML languages) is rare in web server contexts,
and probably bound to be problematic. The reason is that XML syn-
tax and programming language syntax do not fit nicely together. In
my opinion, XSL and XSLT are good examples of this observation.

Experience: A uniform syntax, which covers both a program-
ming notation and XML, is desirable instead of mixing pro-
gramming notation and XML notation.

3. LAML Basics
After a couple of initial “quick and dirty attempts” I decided to
develop a more solid base level of LAML. As explained already,
the idea is still that each element in an XML languages gives rise
to a mirror function in Scheme.

The mirror functions are generated from XML document type
definitions (DTDs). The first step parses the XML DTD. After
that comes a synthesizing phase that generates a file with Scheme
definitions (at the level of text). A part of a generated Scheme
definition embeds a finite automata (compactly represented in the
Scheme code) which validates the grammatical composition of the
web document. The validation is done at document generation time
– at Scheme run time. This is a natural choice in Scheme, because
Scheme is dynamically typed (type error are found at run time).
In statically typed functional programming languages the LAML
approach is considered as a primitive solution. The reason is that in
these languages, comprehensive error checking takes place before
the program is executed.

XML Schema soon became an attractive alternative to XML
DTDs. XML Schema is more complex (and more powerful that
DTDs). LAML does not support XML Schema.

Mirror functions in Scheme have a number of properties:

• Rule 1. An attribute name is a symbol in Scheme, which must
be followed by a string that plays the role as the attribute’s
value.

• Rule 2. Parameters which do not follow a symbol are content
elements (strings, numbers, or instances of elements).

• Rule 3. All content elements are implicitly separated by white
space.

• Rule 4. A boolean false value (which we conveniently bind to
a variable named underscore ) suppresses white space at the
location where the boolean value appears.

• Rule 5. Every place an attribute or a content element is accepted
we also accept a list, the elements of which are processed
recursively and spliced into the result.

• Rule 6. A Scheme procedure represents a delayed content item.
The delayed content item is a Scheme procedure of two param-
eters: the root AST and the immediate parent AST. The proce-
dure is called, in a post processing phase, when the document
AST has been constructed. The resulting content items and/or
attributes are spliced into the document, as a replacement of the
procedure.

The five initial rules are taken from the JFP paper about LAML
[11].

Experience: The recursive list flattening (the splicing of lists
into their contextual lists), as carried out by all mirror func-
tions, is extremely convenient.

Without automatic splicing a certain amount of explicit flat-
tening, or list appending, must be done. In approaches that go
in the data direction (instead of the program direction) where no
automatic list flattening is arranged for, this gives rise to use of
quasiquotation and unquote-splicing.

4. LAML Processing and Transformations
When a LAML expression is evaluated, an abstract syntax tree
(AST) is returned. The AST is the internal representation of the
document.

The AST can be linearized, and written to a file, or rendered in
to a client browser. In other situations (typically if the AST does
not belong to HTML or SVG) we want to transform the AST to a
form that can be rendered. In LAML, a so-called action procedure
may grab the AST and initiate the transformation process. Action
procedures typically exist for top-level forms only.

When a LAML document is processed, some contextual infor-
mation is passed to the LAML processor:

• The name of the source file, where the LAML expression(s)
reside.

• The absolute directory path of the source file.
• A number of additional and optional LAML program parame-

ters.

The LAML program parameters can be used to control the
course of the action procedures, and hereby facilitate more than
one possible kind or LAML document processing.

The transformation of LAML ASTs from one XML language to
another is facilitated by a small set of Scheme functions, such as

• (find-asts ast element-name [ast-transformer-fn])

• (transform-ast transf-spec-list source-list-ast)

The function find-asts searches for all sub-ASTs of ast named
element-name, and it applies an optional AST transformation
function on these before they are returned. A similar function uses
a predicate for selection, instead of comparing element names.
The function transform-ast applies a transformation from the
transformation specification on each element in the source AST list.
A transformation specification is a pair of a predicate and an AST-
transformer. The list of transformation specifications are tried out
sequentially until one of the predicates succeeds.

Experience: For all the AST transformation needs we have
encountered, a small repertoire of simple AST transformation
functions have been adequate.



With the power of Scheme, and with the ease of defining simple
recursive transformations functions in Scheme, there seems to be
no good reason to introduce a transformation framework from the
outside (such as XSLT).

5. LAML Applications
In this section we will give an overview of the most substantial
applications of LAML, and we will highlight our experiences with
these applications.

5.1 The LENO Lecture Notes
One of the first LAML applications was targeted at production of
lecture notes represented as interlinked HTML pages [3]. The sys-
tem should replace my use of Powerpoint

TM
for authoring of teach-

ing materials (annotated slides). I found it attractive to represent
slides as ordinary HTML pages, which could be smoothly inte-
grated with other resources on the web.

In addition to hosting the slides as HTML pages on the web,
I wanted a solution to a particular problem that is encountered if
programs are presented on slides: Two copies of the program exist
– one in the slides and one in a source file; Eventually, you change
one of them without changing the other. Changing a program in
a slide typically leads to errors in the program, because the slide
version of the program is never checked by a compiler.

In the LENO system, a source program is included in the teach-
ing material by transclusion. In practical terms, the program is in-
serted when the HTML pages are generated (upon LAML process-
ing of the LENO document). In LENO, the insertion of the source
program also involves (1) selection of a part the program and (2)
superimposition of colors on those program details which are im-
portant in the context of the surrounding slide.

Experience: The support of program source file inclusion in
lecture notes, without creating a copy of the program, is one
of the major assets of the LENO system.

The first version of the LENO system was developed as a func-
tion library on top of some early HTML mirror functions. Later on,
I reengineered the system based on a LENO XML DTD, and gen-
eration of Scheme mirror functions for that language. In order to
preserve backward compatibility (because a body of existing lec-
ture notes) I decided to transform a document in the new LENO
language to the old internal format.

Experience: In the long run it became too complicated to
maintain both the new LENO front end language and the old
kernel of the system. In some situations, it is better to skip the
first version of a system entirely, instead of building a bridge
from new to old software.

The LENO system supports four different views on lecture
notes. The slide view is intended for presentation in an auditorium.
The annotated slide view adds comments to the individual elements
on a slide, in a two column setup. The aggregated view shows
all slides on a single, long HTML page (supporting a format with
“margin notes”). The final, and most ambitious view, is envisioned
as a classical text book based on the slides. The main idea is to
create a text book source document on top of the lecture note
(slide) source document, called the secondary and primary source
respectively [13]. The secondary source refers to slide elements in
the primary source – and includes them by transclusion.

Experience: Despite several countermeasures, it is problem-
atic to keep both the text book representation and the lecture
note (slide) representations consistent with each other.

LENO has been used to write teaching materials for Java,
Scheme, C#, C, and C++.1 Since 1999, hundreds of students at
Aalborg University have been exposed to teaching materials in
LENO.

5.2 LAML SchemeDoc
The most fundamental parts of LAML are made up of libraries
with Scheme definitions. Some libraries are coded by hand – in the
conventional way. Others are derived from XML document type
definitions. In both cases, it is crucial for effective long term use
that the interfaces of the libraries are well-documented.

Soon, therefore, it became necessary to extract API informa-
tion from the LAML libraries. The extraction is based on some
simple conventions of specially marked documentation comments
in Scheme, similar to conventions used for many other program-
ming languages. A Scheme function, extract-documentation-
-from-scheme-file, is able to extract API documentation from
a Scheme library file.

LAML SchemeDoc [10] relies on an XML documentation lan-
guages, which is brought into Scheme via XML mirror functions.
The XML language allows manual authoring of documentation.2 It
also handles extracted API documentation, extracted XML DTD
documentation, and hybrids of extracted and manually authored
documentation. In the typical case, it only requires a tiny XML-
in-LAML document to setup a few parameters (such as author in-
formation, CSS presentation style, and some interlinking details)
for control of the extracted documentation.

Experience: LAML SchemeDoc has been an essential tool
for the use and organization of LAML software.

On top of LAML Schemedoc it is possible to create an index
– a documentation browser – of a number of libraries. This in-
cludes documentation of the functions and syntactical forms of the
Scheme language as such, via links into the R5RS Scheme report.

SchemeDoc makes API documentation available to other tools
as well, through list structures in so-called manual Lisp files. The
Emacs editor can read these file and utilize the documentation for
name completion, and for bringing up tooltip documentation boxes.
The major mode of an Emacs buffer is mapped to a list of desirable
manual Lisp files, from which documentation is brought into the
editor.

As the last element of SchemeDoc, it is possible to capture
examples of function calls via interactive unit testing [14]. In a
Scheme REPL, it is possible to collect test cases very easily by
stating that the entered expression (a function call of f) and the
calculated value are regarded as being a correct example of the use
of f. The collected test cases can be fused into an external Scheme
Unit testing tool, hereby enabling regression testing. The test cases
also serve as examples, which can be presented in SchemeDoc
manual pages. This is very attractive, because good examples are
often easier to grasp than textual explanations in English. Finally,
the examples can also be shown in Emacs, in the same style as the
more conventional documentation.

1 Links the these teaching materials appear on my homepage
http://people.cs.aau.dk/∼normark/
2 The manual authoring facility is only used in special situations (such as
for documentation of some aspects of SchemeDoc itself).



Experience: Concrete examples of function applications, and
their results, are effective parts of API documentation. It is
attractive to gather the examples from test cases.

5.3 The Scheme Elucidator
Elucidative Programming (EP) [4] grew out of a fascination of Lit-
erate Programming (LP), but it was also based a number of con-
cerns [5].3 LP and EP are both targeted at internal program docu-
mentation, in contrast to interface documentation (as supported by
SchemeDoc). EP relies on relations between entities in the docu-
mentation, and entities in the source programs. In contrast to LP,
the documentation and the program source files are separate in EP,
and the source files are not affected by the documentation efforts.
An elucidative program is presented in two frames of an inter-
net browser, with mutual navigation in between the documentation
frame and the program frame.

With the development of large Scheme programs, as parts of
LAML, it was attractive to implement a Scheme Elucidator. The
Scheme Elucidator processes a documentation file together with a
number of Scheme source files (together called a documentation
bundle), and it generates the necessary HTML pages. As a charac-
teristic of an elucidative program, the documentation and the pre-
sentations of the source files are heavily interlinked.

The first version of the Scheme Elucidator was based on doc-
umentation files that used simple and special-purpose markup. In
the next (and current) version, the documentation file was based on
XML-in-LAML markup, just like all the other LAML tools. This
turned out to be a better solution, because the availability and power
of the Scheme programming language makes a noticeable differ-
ence for authoring of complex documentation.

The processing of (Scheme) source files in a documentation
bundle was the major technical challenge during the implementa-
tion of the Scheme Elucidator. The Scheme source files are deco-
rated with a lot of links. Some links go to relevant places in the doc-
umentation (where a definition is discussed). Other links are cross
references to other places in the program, links into SchemeDoc
API documentation, or links to the R5RS Scheme Report.

Internally, a Scheme source file is first pre-processed, the same
way as done by LAML SchemeDoc. This turns comments into syn-
tactical constituents. Next, the source file is traversed simultane-
ously at the lexical level and at the syntactical level (where also
the comments are syntactical entities). This procedure is crucial for
creation of all the links, and for preservation of the original pro-
gram layout.

Processing of program source files, in preparation for compre-
hensive linking of source file names to surrounding entries, is useful
and valuable in other contexts than the Elucidator. LAML Scheme-
doc can be set up to activate such a processing of the Scheme source
programs. Hereby the interface documentation links to the underly-
ing Scheme source file, which is cross-linked as much as possible,
and which in turn links back to SchemeDoc pages.

Experience: The creation of richly linked program source
files is useful for a broad spectrum of program documentation
needs.

In retrospect, the Scheme Elucidator has been much less impor-
tant than SchemeDoc in the development process of LAML. The
by-product of the Elucidator – “the Scheme source program doco-
rator” – has turned out to be useful in its own right.

3 http://people.cs.aau.dk/ normark/litpro/issues-and-pro-
blems.

Experience: Independently of tool support it remains hard
to convince programmers (and yourself) to invest time and
efforts in writing internal documentation.

5.4 MIDI LAML
The last LAML application is completely different from the three
other applications discussed in this paper. This application is rooted
in a hobby activity. A few years ago, I decided to understand the
MIDI format for electronic music instruments – all the way to the
bottom. Recalling the quote of Kristen Nygaard – “to program is
to understand” – I decided to write a MIDI parser and an unparser.
Given my background in LAML and XML languages, I decided
to parse MIDI files to an XML format. By incidence, the MIDI
Manufacturers Association already had developed a MIDI XML
DTD, which I elaborated and extended for my purposes.

Based on the outcome of the MIDI parser it is possible do carry
out many systematic music transformations task in Scheme. I have
developed a rather comprehensive library of Scheme functions for
MIDI music transformation. On a regular basis, I use this library
for “real life” music transformation purposes [15].

As a functional programmer, it is attractive to work with lists of
MIDI events via the classical higher-order functions map, filter,
and reduce. I observed, however, that it was often more useful to
apply these functions on sublists of MIDI events than on individual
MIDI events. This prompted the work on mapping and filtering of
bites of lists [16]. A bite is a non-empty prefix of a list. Successive
“biting” results in a disjoint partitioning of a list, which turned
out to be useful as the starting point for many music related MIDI
transformation tasks. I have developed a collection of bite-mapping
and bite-filtering functions, together with a number of higher-order
functions that generates “biting functions”.

Experience: MIDI music transformation revealed an applica-
tion area where mapping and filtering is more useful on dis-
joint sublists than on individual list elements.

Half of the work on the MIDI LAML system has been directed
towards the programming of an operational MIDI LAML environ-
ment – a so-called MIDI sequencer – in the Emacs text editor. Al-
though the result is primitive compared to contemporary music se-
quencers and “DAWs”, the Emacs-based tool can be used for real
music-related problem solving. Most important, the MIDI LAML
system supports a music production process where Scheme pro-
gramming is used for non-trivial editing of your music.

6. Status
As of 2012 I still use LAML for all my web work (simple as
well as more complex web pages). The LENO lecture note system
is probably the part of LAML which I use most frequently. I
also regularly program CGI applications in LAML that support
teaching activities, along the lines of the system for submission
of programming assignments [17] and the one that supports peer
assessment of coursework [1]. My own use of LAML is based on a
legacy version of PLT MzScheme.

A lot of text has been authored in languages derived from XML
DTDs, in Scheme syntax. In other words, the Scheme programming
language has been used as a textual markup language in a number
of different application domains. Good editor support is crucial for
this to be successful. This includes support of a few generic editing
commands (embedding, nesting, string splitting, and their inverse
commands), as well as template support for the various applications
areas.



Experience: Scheme syntax can be used for textual markup
purposes, if supported by a few appropriate editing com-
mands. Authoring text in Scheme gives uniform access to pro-
gramming power, at any time, and at any place in a document.

The core LAML system consists of 75,000 lines of Scheme
program. The LAML environment support in the Emacs editor
includes 25,000 lines of Emacs Lisp program. 20 papers have been
published about LAML [1–17, 19–21].

Until late 2011, downloadable LAML distributions have been
derived as a subset of the development version. The latest is LAML
version 38. The distribution comes in three variants: The full ver-
sion with comprehensive documentation, a slim version where most
of the documentation is stripped, and a version with only LAML
SchemeDoc. In the early years I kept track of who downloaded the
system, by asking for registration before the actual download. The
number of downloads was quite low, typically around 20 pr. month.
Later, I gave up on the registration, and I do not longer keep any
record or statistics about the download frequency.

7. Conclusions
At the personal level, and in relation to the teaching activities that
I take care of, LAML has been a success.

In the beginning, I envisioned LAML to be a side activity,
mostly for personal enjoyment. Later on it became clear that an
array of different activities could take place on top of the basis
LAML libraries and tools. Seen in the light of the early expecta-
tions, it is satisfactory that 20 scientific papers have been published
in the slipstream of this work. The external use of LAML, as of
2012, is very low (if existing at all).

After software, like LAML, has been developed, a transition is
taken in the direction of maintenance. It is difficult to justify time
for software maintenance in a university job. You can spend time on
software development as long as it supports your research activities
(as long as you can write papers based on the developed software).
But you cannot afford to use lots of hours, just for keeping the
software alive.

For several reasons it is a burden to maintain 75,000 lines of
Scheme code. First, and most important, the R5RS Scheme system
on which I primarily depend (PLT/Racket) has changed a lot the
last few years.4 I have not been tempted to adapt LAML to R6RS
Scheme. Operating systems and Emacs also come in new versions
every now and then. The Department Computer Science at Aalborg
University shifted from Linux to Windows a couple of years ago
(forcing users from a Linux file server to a Windows file server).
On a broad scale (not least in relation to LAML) it caused a lot of
extra work. In the slipstream of this, our Apache Web server was
separated from our file server (due to legal issues).

Experience: Almost every contextual software element
around LAML has changed over a decade.

Eventually I expect to lose the battle against the changes of the
contextual software of LAML. Instead of continued patching of
old software, I anticipate the need for “a new beginning”. When
that happens, I hope that I can base the work on a modern and
high quality Scheme system which supports the old virtues of being
small, powerful and elegant.

4 At some point in time (in the transition to PLT 400) it was too time
demanding to update LAML relative to the changes in PLT Scheme. As
part of this, it would also be very difficult to keep LAML running in other
Scheme systems as well (based on a simple “compatibility library”).

Acknowledgments
I want to thank Olivier Danvy for encouraging me to write this
paper.

References
[1] H. Hüttel and K. Nørmark. Experiences with web-based peer assess-

ment of coursework. In Proceedings of the 4th International Confer-
ence on Computer Supported Education - CSEDU, April 2012.

[2] K. Nørmark. Using Lisp as a markup language—the LAML ap-
proach. In European Lisp User Group Meeting. Franz Inc., 1999.
URL http://people.cs.aau.dk/∼normark/laml/papers/-
lugm-laml.pdf. Available via [18].

[3] K. Nørmark. A suite of WWW-based tools for advanced course man-
agement. In Proceedings of the 5ht annual SIGCSE/SIGCUE Confer-
ence on Innovation and Technology in Computer Science Education.
ACM Press, July 2000. Available via [18].

[4] K. Nørmark. Elucidative Programming. Nordic Journal of Computing,
7(2):87–105, 2000. URL http://www.cs.helsinki.fi/njc/-
References/normark:87.html.

[5] K. Nørmark. Requirements for an elucidative programming environ-
ment. In Eight International Workshop on Program Comprehension.
IEEE, June 2000. Also available from http://people.cs.aau.-
dk/∼normark/elucidative-programming/.

[6] K. Nørmark. An elucidative programming environment for
Scheme. In Proceedings of NWPER’2000 - Nordic Work-
shop on Programming Environment Research, May 2000. Also
available from http://people.cs.aau.dk/∼normark/-
elucidative-programming/.

[7] K. Nørmark. Programmatic WWW authoring using Scheme and
LAML. In The proceedings of the Eleventh International World
Wide Web Conference - The web engineering track, May 2002. URL
http://www2002.org/CDROM/alternate/296/.

[8] K. Nørmark. The duality of XML markup and programming nota-
tion. In The proceedings of the IADIS International Conference on
WWW/Internet. IADIS, November 2003. Available via [18].

[9] K. Nørmark. XML transformations in Scheme with LAML - a mini-
malistic approach. In The proceedings of the International Lisp Con-
ference, ILC 2003. Association of Lisp Users, October 2003. Available
via [18].

[10] K. Nørmark. Scheme program documentation tools. In O. Shivers and
O. Waddell, editors, Proceedings of the Fifth Workshop on Scheme and
Functional Programming. Department of Computer Science, Indiana
University, September 2004. Technical Report 600.

[11] K. Nørmark. Web programming in Scheme with LAML. Jour-
nal of Functional Programming, 15(1), January 2005. URL
http://people.cs.aau.dk/∼normark/laml/papers/-
web-programming-laml.pdf.

[12] K. Nørmark. A graph library extension of SVG. In Proceed-
ings of SVG Open 2007, Tokyo, Japan, September 2007. URL
http://people.cs.aau.dk/∼normark/laml/papers/-
svg-open-2007/paper.html.

[13] K. Nørmark. Deriving a comprehensive document from a concise doc-
ument - document engineering in Scheme. In D. Dubé, editor, The
8th Workshop on Scheme and Function Programming. Départment
d’informatique et de Génie Logiciel, Université Laval, Canada. Tech-
nical Report DIUL-RT-0701, September 2007. URL http://-
sfp2007.ift.ulaval.ca/procPaper11.pdf.

[14] K. Nørmark. Systematic unit testing in an read-eval-print loop. Jour-
nal of Universal Computer Science, 16(2), 2010.

[15] K. Nørmark. MIDI programming in Scheme - supported by an Emacs
environment. Proceedings of the European Lisp Workshop 2010 (ELW
2010), June 2010. URL http://www.cs.aau.dk/∼normark/-
laml/papers/midi-laml-paper.pdf.

[16] K. Nørmark. Bites of lists - mapping and filtering sub-
lists. In The proceedings of the 4th European Lisp symposium,



March 2011. URL http://people.cs.aau.dk/ normark/-
laml/papers/bites-paper.pdf.

[17] K. Nørmark. A web support system for submission and han-
dling of programming assignments. In The proceedings of
E-Learning’11 - E-Learning and the Knowledge Society, Au-
gust 2011. URL http://people.cs.aau.dk/ normark/-
programming-assignments-paper.pdf.

[18] K. Nørmark. The LAML home page, 2012. http://people.cs.-
aau.dk/∼normark/laml/.

[19] T. Vestdam and K. Nørmark. Aspects of internal program documen-
tation - an elucidative perspective. In 10th International Workshop on
Program Comprehension. IEEE, June 2002.

[20] T. Vestdam and K. Nørmark. Maintaining program understanding -
issues, tools, and future directions. Presented at 11th Nordic Workshop
on Programming and Software Development Tools and Techniques -
NWPER’2004, May 2004.

[21] T. Vestdam and K. K. Nørmark. Towards documentation of program
evolution. In Proceedings of the 21st International Conference on
Software Maintenance, September 2005.


