
Scheme Reports Working Group 1 Progress 2012

Alex Shinn

alexshinn@gmail.com

1. Introduction
After over two and a half years of work, the R7RS
“small” language specification is approaching comple-
tion. In the near future we will be publishing a sev-
enth and semi-final draft, based on all of our ballots
and the comments and feedback from the community.
The Steering Committee will then form an electorate
for ratification of the R7RS “small” language, and af-
ter the ratification vote any editorial corrections will be
incorporated into an eight and final draft.

This status report reviews the background and moti-
vations of the standard, the process and tribulations the
members encountered, and a summary of the resulting
standard as specified in the upcoming seventh draft.

2. Background
Historically, the minimalism and simplicity of Scheme
have led to it being widely used in academia, as a
teaching language and tool for programming language
research. Perhaps because of this image, or from a
misconception that minimalism is unsuited to building
large systems, Scheme never gained the commercial
support that even its relatively unpopular sister Com-
mon Lisp enjoys.

The result was that while other languages enjoyed
“practical” standards driven by commercial needs, or
the advantage of no standard but only a single refer-
ence implementation, Scheme remained a collection of
disparate communities centered around different im-
plementations. Sharing code was almost unknown, and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
2012 Workshop on Scheme and Functional Programming September 9,
2012, Copenhagen, Denmark.

implementations spent time re-inventing the same util-
ity libraries over and over.

An attempt at unification for practical programming
was first made in 1998, after the completion of the
R5RS, with the introduction of the Scheme Request for
Implementation (SRFI) process. Unfortunately, while
many useful and well designed SRFIs were produced,
there was still no mechanism for specifying how to
“load” a SRFI portably, or to write a portable library of
code. Despite all the syntactic power of Scheme, it was
still impossible to write a program with libraries which
would actually work on more than one implementation.

In 2003 work on a new and more ambitious standard,
the R6RS, was begun. Ratified in 2007, R6RS not only
provided a standardized module system and many new
features, it attempted to greatly reduce the amount of
unspecified semantics in the language. The whole re-
port was re-organized, and changed in spirit from be-
ing more prescriptive than descriptive. Fairly or not,
many implementors balked at the scope and style of the
changes, and the uptake of R6RS was not as widespread
as could be hoped. A parallel can be made with the
Common Lisp standardization process, in the follow-
ing comment from Kent Pitman1:

One problem was that Common Lisp was more
descriptive than prescriptive. That is, if two im-
plementation communities disagreed about how
to solve a certain problem, CLTL was written in
a way that sought to build a descriptive bridge be-
tween the two dialects in many cases rather than
to force a choice that would bring the two into
actual compatibility. This may even have been a
correct strategy since it was most important in the
early days just to get buy-in from the commu-
nity on the general approach. The notion that it

1 http://www.nhplace.com/kent/Papers/

cl-untold-story.html

1

http://www.nhplace.com/kent/Papers/cl-untold-story.html
http://www.nhplace.com/kent/Papers/cl-untold-story.html

mattered for two implementations to agree was at
that point a mostly abstract concern. There were
not a lot of programs moving from implemen-
tation to implementation yet. As the user base
later grew and program porting became a more
widespread practice, the community will to in-
vest in such matters grew. But at the time when
CLTL was published, a sense that the language
design must focus on true portability had not yet
evolved.

We are at the same point in the Scheme standardiza-
tion process. At this point in time, it’s far more impor-
tant to get the different implementations on the same
page first, and worry about finer portability issues later.

Hoping to take advantage of many of the improve-
ments of R6RS while at the same time producing
a common ground that more implementations could
agree on, the Scheme Steering Committee chose in
2009 to split the standard into two languages: a small
language suitable for education, research and embed-
ded systems, and a large language with all the batteries
included for modern programming. The small language
would focus on R5RS compatibility, while the large
language would be a superset of that, focusing on more
features and R6RS compatibility.

In this way the new standard would appeal both min-
imalists and pragmatists. Those who weren’t ready for
R6RS could restrict themselves to the small language,
but by doing so they would be using the same mod-
ule system and core language as the large language, al-
lowing for sharing of code and a smooth upgrade path.
Those who wanted the large language would have an
extended community from common core. The best fea-
tures of the large language would no doubt find their
way into even the most minimalist implementations.
We would be one step closer to a unified Scheme com-
munity.

It is the small language which is nearing completion.
As many members of the working groups formed to
create the two languages overlapped, and because the
large language is constrained by compatibility with the
small language, work on the latter was postponed until
completion of the former, and will thus be commencing
soon.

3. Process
The charter effectively requires compatibility with both
R5RS and R6RS, with the small language remaining

roughly the same size as R5RS. This is of course an
impossible goal, and from the beginning it was clear
that the small language would be for the most part a
line drawn between the past two standards. This is not
to suggest that there was little work to be done, nor that
the job was easy. Quite the contrary, it was a constant
and tiresome balancing act.

The work was divided into an initial fact-finding and
issue collection phase, a series of ballots where actual
changes were decided on, and a formal comments pe-
riod from the community which resulted in additional
ballots and changes. Because the entire process was
open, with the working group member’s discussion list
readable by the public as well as a public discussion
list open to anyone, we in fact received fairly constant
feedback throughout the process. The public comments
were overwhelmingly friendly and helpful, and we owe
a large debt to the community for helping to make the
standard what it is.

By now almost 500 tickets have been logged, result-
ing in 6 ballots and 7 drafts, all of which are publicly
visible. Discussion among the members has been pro-
ductive and collegial. As a group we have grown and
learned; we’ve not been afraid to admit when we were
wrong, change our votes, or revisit issues when there
was an oversight or when new arguments have come to
light.

On the other hand, we’ve tried hard to stay focused
and progressive, and not needlessly revisit issues with-
out good cause. Initially this was handled informally,
with the chair reviewing items and deciding whether
there was grounds for further discussion. More re-
cently, as we’ve been nearing completion, the process
was modified to require a formal nomination and sec-
ond before bringing a change proposal up for vote.

4. Difficult Issues
Naturally much of the active discussion revolved around
“bike-shedding” issues, syntactic extensions and names
of procedures and such which are easy to conceive and
for which variations have little or no interaction with
deeper semantics. These were often also the first things
to be commented on by the community. In particular,
the names of bytevectors were initially called blobs

to reflect the view that they were not just sequences
of bytes but could be treated as sequences of inte-
gers of different sizes depending on need. They were
only later changed to bytevector as a more descrip-

2

tive name which also provides R6RScompatibility, and
nearly changed back after comments from the commu-
nity.

There were also deep issues that generated large
amounts of discussion. The semantics of eqv? on num-
bers in particular was tricky. Because eqv? itself is a
collection of different specifications on different types,
it was natural to attack this one case at a time, such
as what is the result of (eqv? 0.0 -.0) or (eqv?

+nan.0 +nan.0). Unfortunately this led to us not see-
ing the forest for the trees, with a collection of incon-
sistent cases without a single guiding principle of what
eqv? “means”. Once this was recognized we of course
backtracked, and rephrased the question to define a
high-level description of the semantics from which in-
dividual cases should fall out naturally. The result is in
an operational semantics based on the IEEE 754 defi-
nition of numbers.

Some interesting comments from the community
were simply beyond the scope of our standard. Oleg
Kiselyov made a detailed and persuasive case against
undelimited continuations as in call/cc in favor of
delimited continuations as in shift and reset. Unfor-
tunately, though delimited continuations are not by any
means a new concept, they have relatively little support
among implementations in comparison to call/cc.
Moreover, our backwards-compatibility requirements
make it impossible to remove such a fundamental part
of the language. What we can and will do, however, is
provide delimited continuations in addition to call/cc
in the large language, and hope their support and use
increases so this can be revisited in later standards.

5. Changes in the Language
The following is a summary of notable changes since
the last two standards, as excerpted from the notes in
the latest draft.

5.1 Incompatibilities with R5RS
This section enumerates the incompatibilities between
this report and the “Revised5 report” [2].

• Case sensitivity is now the default in symbols and
character names. This means that code written un-
der the assumption that symbols could be written
FOO or Foo in some contexts and foo in other con-
texts must either be changed, be marked with a
#!fold-case directive, or be included in a library

using the include-ci library declaration. All stan-
dard identifiers are entirely in lower case.

• The syntax-rules construct now recognizes
(low line) as a wildcard, which means it cannot be
used as a syntax variable. It can still be used as a
literal, however.

• The R5RS procedures exact->inexact and
inexact->exact have been renamed to their R6RS
names, inexact and exact, respectively, as these
names are shorter and more correct. The former
names are still available in the R5RS compatibility
library.

• The guarantee that string comparison (with string<?
and the related predicates) is a lexicographical ex-
tension of character comparison (with char<? and
the related predicates) has been removed. The for-
mer set provide an implementation-defined compar-
ison as in R5RS; the latter set provide comparison
by Unicode code point.

• Support for the # character in numeric literals is no
longer required.

• The procedures transcript-on and
transcript-off have been removed.

5.2 Other language changes since R5RS
This section enumerates the additional differences be-
tween this report and the “Revised5 report” [2].

• Various minor ambiguities and unclarities in R5RS
have been cleaned up.

• Libraries have been added as a new program struc-
ture to improve encapsulation and sharing of code.
Some existing and new identifiers have been fac-
tored out into separate libraries. Libraries can be im-
ported into other libraries or main programs, with
controlled exposure and renaming of identifiers. The
contents of a library can be made conditional on the
features of the implementation on which it is to be
used.

• Exceptions can now be signalled explicitly with
raise, raise-continuable or SRFI 23[8] error,
and can be handled with with-exception-handler
and the guard syntax. Any object can specify an
error condition; the implementation-defined condi-
tions signalled by error have a predicate to de-
tect them and accessor functions to retrieve the ar-
guments passed to error. Conditions signalled by

3

read and by file-related procedures also have pred-
icates to detect them.

• New disjoint types supporting access to multiple
fields can be generated with SRFI 9’s[7]
define-record-type.

• SRFI 39-style[9] parameter objects can be created
with make-parameter, and dynamically rebound
with parameterize.

• Bytevectors, homogeneous vectors of integers in the
range [0, 255], have been added as a new disjoint
type. A subset of the procedures available for vec-
tors is provided. Bytevectors can be converted to and
from strings in accordance with the UTF-8 character
encoding. Bytevectors have a datum representation
and evaluate to themselves.

• A delay-force procedure based on SRFI 45[10]
lazy has been added, and force is required be
properly tail-recursive when applied to it. Promises
can be tested with the promise? predicate, and cre-
ated with make-promise.

• Vector constants evaluate to themselves.
• The procedure read-line is provided to make line-

oriented textual input simpler.
• Ports can now be designated as textual or binary

ports, with new procedures for reading and writing
binary data. The new predicate port-open? returns
whether a port is open or closed.

• String ports have been added as a way to read and
write characters to and from strings, and bytevector
ports to read and write bytes to and from bytevec-
tors.

• The procedures current-input-port and
current-output-port are now parameter ob-
jects, as is the newly introduced
current-error-port.

• The syntax-rules construct now allows the el-
lipsis symbol to be specified explicitly instead of
the default ..., allows template escapes with an
ellipsis-prefixed list, and allows tail patterns to fol-
low an ellipsis pattern.

• The syntax-error syntax has been added as a way
to signal immediate and more informative errors
when a macro is expanded.

• Internal define-syntax definitions are now al-
lowed wherever internal defines are.

• The letrec* binding construct has been added, and
internal define is specified in terms of it.

• Support for capturing multiple values has been en-
hanced with define-values, let-values, and
let*-values. Standard forms which introduce a
body now permit passing zero or more than one
value to the continuations of all non-final forms of
the body.

• The case conditional now supports a => syntax
analogous to cond.

• To support dispatching on the number of argu-
ments passed to a procedure, case-lambda has
been added in its own library.

• The convenience conditionals when and unless

have been added.
• Positive infinity, negative infinity, NaN, and negative

inexact zero have been added to the numeric tower
as inexact values with the written representations
+inf.0, -inf.0, +nan.0, and -0.0 respectively.
Support for them is not required. The representation
-nan.0 is synonymous with +nan.0.

• The procedures map and for-each are now re-
quired to terminate on the shortest list when the
inputs have different lengths.

• The procedures member and assoc now take an op-
tional third argument specifying the equality predi-
cate to be used.

• The procedures exact-integer? square, and
exact-integer-sqrt have been added.

• The procedures make-list, list-copy,
list-set!, string-map, string-for-each,
string->vector, vector-append, vector-copy,
vector-map, vector-for-each, vector->string,
vector-copy!, and string-copy! have been added
to round out the sequence operations. Some of these
support processing of part of a string or vector using
optional start and end arguments.

• Implementations may provide any subset of the
full Unicode repertoire that includes ASCII, but
implementations must support any such subset in
a way consistent with Unicode. Various character
and string procedures have been extended accord-
ingly. String comparison remains implementation-
dependent, and is no longer required to be consis-
tent with character comparison, which is based on
Unicode code points. The new digit-value pro-

4

cedure has been added to obtain the numerical value
of a numeric character.

• There are now two additional comment syntaxes: #;
to skip the next datum, and #| ... |# for nestable
block comments.

• Data prefixed with datum labels #<n>= can be refer-
enced with #<n>#, allowing for reading and writing
of data with shared structure.

• The aliases #true and #false have been added for
#t and #f.

• Strings and symbols now allow mnemonic and nu-
meric escape sequences, and the list of named char-
acters has been extended.

• The procedures file-exists? and delete-file

are available in the (scheme file) library.
• An interface to the system environment and com-

mand line is available in the
(scheme process-context) library.

• Procedures for accessing time-related values are
available in the (scheme time) library.

• A less irregular set of integer division operators is
provided with new and clearer names.

• The load procedure now accepts a second argument
specifying the environment to load into.

• The semantics of read-eval-print loops are now
partly prescribed, requiring the redefinition of pro-
cedures, but not syntax keywords, to have retroac-
tive effect.

5.3 Incompatibilities with the main R6RS
document

This section enumerates the incompatibilities between
R7RS and the “Revised6 report” [1].

• The syntax of the library system was deliberately
chosen to be syntactically different from R6RS, us-
ing define-library instead of library in order
to allow easy disambiguation between R6RS and
R7RS libraries.

• The library system does not support phase distinc-
tions, which are unnecessary in the absence of low-
level macros (see below), nor does it support ver-
sioning, which is an important feature but deserves
more experimentation before being standardized.

• Putting an extra level of indirection around the li-
brary body allows room for extensibility. The R6RS
syntax provides two positional forms which must be

present and must have the correct keywords, export
and import, which does not allow for unambiguous
extensions. The Working Group considers extensi-
bility to be important, and so chose a syntax which
provides a clear separation between the library dec-
larations and the Scheme code which makes up the
body.

• The include library declaration makes it easier to
include separate files, and the include-ci variant
allows case-insensitive code to be incorporated.

• The cond-expand library declaration based on
SRFI 0[3] allows for a more flexible alternative to
the R6RS .impl.sls file naming convention. The
list of identifiers that cond-expand treats as true is
available at run time using the features procedure.

• Since the R7RS library system is straightforward,
we expect that R6RS implementations will be able
to support the define-library syntax in addition
to their library syntax.

• The grouping of standardized identifiers into li-
braries is different from the R6RS approach. In
particular, procedures which are optional either ex-
pressly or by implication in R5RS have been re-
moved from the base library. Only the base library
is an absolute requirement.

• Identifier syntax is not provided. This is a useful fea-
ture in some situations, but the existence of such
macros means that neither programmers nor other
macros can look at an identifier in an evaluated po-
sition and know it is a reference — this in a sense
makes all macros slightly weaker. Individual imple-
mentations are encouraged to continue experiment-
ing with this and other extensions before further
standardization is done.

• Internal syntax definitions are allowed, but all ref-
erences to syntax must follow the definition; the
even/odd example given in R6RS is not allowed.

• The R6RS exception system was incorporated as-is,
but the condition types have been left unspecified.
Specific errors that must be signalled in R6RS re-
main errors in R7RS, allowing implementations to
provide their own extensions. There is no discussion
of safety.

• Full Unicode support is not required. Normaliza-
tion is not provided. Character comparisons are
defined by Unicode, but string comparisons are
implementation-dependent, and therefore need not

5

be the lexicographic mapping of the correspond-
ing character comparisons (an incompatibility with
R5RS). Non-Unicode characters are permitted.

• The full numeric tower is optional as in R5RS, but
optional support for IEEE infinities, NaN, and -0.0
was adopted from R6RS. Most clarifications on nu-
meric results were also adopted, but the R6RS pro-
cedures real-valued?, rational-valued?, and
integer-valued? were not. The R6RS division
operators div, mod, div-and-mod, div0, mod0 and
div0-and-mod0 are not provided.

• When a result is unspecified, it is still required to be
a single value, in the interests of R5RS compatibil-
ity. However, non-final expressions in a body may
return any number of values.

• Because of widespread SRFI 1[4] support and ex-
tensive code that uses it, the semantics of map and
for-each have been changed to use the SRFI 1
early termination behavior. Likewise assoc and
member take an optional equal? argument as in
SRFI 1, instead of the separate assp and memp pro-
cedures of R6RS.

• The R6RS quasiquote clarifications have been
adopted, but the Working Group has not seen con-
vincing enough examples of multiple-argument
unquote and unquote-splicing, so they are not
provided.

• The R6RS method of specifying mantissa widths
was not adopted.

5.4 Incompatibilities with the R6RS Standard
Libraries document

This section enumerates the incompatibilities between
R7RS and the R6RS [1] Standard Libraries.

• The low-level macro system and syntax-case

were not adopted. There are two general fami-
lies of macro systems in widespread use — the
syntax-case family and the
syntactic-closures family — and they have
neither been shown to be equivalent nor capable of
implementing each other. Given this situation, low-
level macros have been left to the large language.

• The new I/O system from R6RS was not adopted.
Historically, standardization reflects technologies
that have undergone a period of adoption, exper-
imentation, and usage before incorporation into a
standard. The Working Group was unhappy with the

redundant provision of both the new system and the
R5RS-compatible “simple I/O” system, which rel-
egated R5RS code to being a second-class citizen.
However, binary I/O was added using binary ports
that are at least potentially disjoint from textual ports
and use their own parallel set of procedures.

• String ports are compatible with SRFI 6[6] rather
than R6RS; analogous bytevector ports are also pro-
vided.

• The Working Group felt that the R6RS records
system was overly complex, and the two layers
poorly integrated. The Working Group spent a lot
of time debating this, but in the end decided to sim-
ply use a generative version of SRFI 9, which has
near-universal support among implementations. The
Working Group hopes to provide a more powerful
records system in the large language.

• R6RS-style bytevectors are included, but provide
only the “u8” procedures in the small language. The
lexical syntax uses #u8 for compatibility with SRFI
4[5], rather than the R6RS #vu8 style. With a library
system, it’s easier to change names than reader syn-
tax.

• The utility macros when and unless are provided,
but since it would be meaningless to try to use their
result, it is left unspecified.

• The Working Group could not agree on a single
design for hash tables and left them for the large
language.

• Sorting, bitwise arithmetic, and enumerations were
not considered to be sufficiently useful to include in
the small language. They will probably be included
in the large language.

• Pair and string mutation are too well established to
be relegated to separate libraries.

6

Acknowledgments
Thanks to the members of the Steering Committee
for their guidance, the editors John Cowan and Arthur
Gleckler and the working group for all their hard work,
and to the community for their invaluable feedback.

References
[1] Michael Sperber, R. Kent Dybvig, Mathew Flatt, and

Anton van Straaten, editors. The revised6 report on
the algorithmic language Scheme.

[2] Richard Kelsey, William Clinger, and Jonathan
Rees, editors. The revised5 report on the algorithmic
language Scheme.

[3] Marc Feeley. SRFI-0: Feature-based conditional
expansion construct. http://srfi.schemers.
org/srfi-0/, May 1999.

[4] Olin Shivers. SRFI-1: List Library. http://srfi.
schemers.org/srfi-1/, October 1999.

[5] Marc Feeley. SRFI-4: Homogeneous numeric vec-
tor datatypes. http://srfi.schemers.org/

srfi-4/, May 1999.
[6] William D Clinger. SRFI-6: Basic String Ports.

http://srfi.schemers.org/srfi-6/, July
1999.

[7] Richard Kelsey. SRFI-9: Defining Record Types.
http://srfi.schemers.org/srfi-9/, Septem-
ber 1999.

[8] Stephan Houben. SRFI-23: Error reporting mech-
anism. http://srfi.schemers.org/srfi-23/,
June 2001.

[9] Marc Feeley. SRFI-39: Parameter objects. http:
//srfi.schemers.org/srfi-39/, June 2003.

[10] Andre van Tonder. SRFI-45: Primitives for Ex-
pressing Iterative Lazy Algorithms. http://srfi.
schemers.org/srfi-45/, 2002.

7

http://srfi.schemers.org/srfi-0/
http://srfi.schemers.org/srfi-0/
http://srfi.schemers.org/srfi-1/
http://srfi.schemers.org/srfi-1/
http://srfi.schemers.org/srfi-4/
http://srfi.schemers.org/srfi-4/
http://srfi.schemers.org/srfi-6/
http://srfi.schemers.org/srfi-9/
http://srfi.schemers.org/srfi-23/
http://srfi.schemers.org/srfi-39/
http://srfi.schemers.org/srfi-39/
http://srfi.schemers.org/srfi-45/
http://srfi.schemers.org/srfi-45/

	Introduction
	Background
	Process
	Difficult Issues
	Changes in the Language
	Incompatibilities with R5RS
	Other language changes since R5RS
	Incompatibilities with the main R6RS document
	Incompatibilities with the R6RS Standard Libraries document

