
Form over Function
Teaching Beginners How to Construct Programs

(Distilled Tutorial)

Michael Sperber
Active Group GmbH

michael.sperber@active-group.de

Marcus Crestani
University of Tübingen

crestani@informatik.uni-tuebingen.de

Abstract
Teaching beginners how to construct programs is hard work. This
is partly because teaching how do any sufficiently complex activity
is hard work. Another part of the problem is that our knowledge
about the systematic construction of programs is quite young, and
thus our knowledge about the didactics of the discipline is even
younger. This makes us question reports of sweeping successes in
introductory-programming classes by use of a single device, be it
the use of a specific programming language, specific accompanying
book, software — or robots. That does not mean the choice of
individual devices does not matter. However, designing a successful
introductory-programming course is a comprehensive activity, in
teachers should be ready to consider and continually question all
aspects of the course.

It starts with a clear idea of what we want to teach: We believe
that much of programming should be done systematically, with a
clearly defined path from problem to program. Matthias Felleisen’s
group pioneered the Program by Design approach [3], and we have
been following in their footsteps [4]. Everything we do flows from
our desire to enable students to construct programs systematically.
However, this has been exceedingly difficult: The very idea of
programming systematically is controversial among practitioners
as well as educators, and the idea of doing anything systematically
is anathema to many of our students.

In the tutorial, we will try to distill the basic ideas and insights
that have driven the development of our introductory course, which
has since been adopted by the Universities of Freiburg and Kiel.

In particular, a number of conclusions about effective teaching
were not as we had originally expected:

1. Form matters more than working programs.

2. Our students are not like us.

3. The requirements for a teaching language are different than the
requirements for a production language.

4. Students have to like neither us nor Scheme to learn success-
fully.

5. Telling students that what they are learning is worthwhile does
not matter.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ACM SIGPLAN Workshop on Scheme and Functional Programming September 9,
2012, Copenhagen, Denmark
Copyright c© 2012 ACM [to be supplied]. . . $10.00

6. Personal supervision is important.

7. Traditional teaching evaluations are almost worthless.

8. Continual evaluation of teaching success is important.

9. Grade pressure works.

10. Cheating is a significant problem.

Despite #3, we use a variant of Scheme introduced through a
sequence of language levels [1]. We do see Scheme as only a
means to an end, however: Just because a language is great does
not mean it is great for teaching beginners. The one killer feature
that Scheme offers the educator, however, is that it enables us to
change the language we present to beginners easily, through macros
and other language-defining features of the Racket programming
environment (formerly DrScheme) [2]. In fact, in the early phases
of developing our course, we changed the language on an almost
weekly basis as we observed that students were having trouble with
individual aspects of it. Over the years, our languages have diverged
more and more from the Scheme professional programmers use,
and we expect that trend to continue in the long run.

Categories and Subject Descriptors D.2.10 [Software Engineer-
ing]: Design—Methodologies; K.3.2 [Computers and Education]:
Computer and Information Science Education—Computer Science
Education

General Terms Design, Languages

Keywords Introductory Programming

References
[1] M. Crestani and M. Sperber. Growing programming languages for

beginning students. In S. Weirich, editor, Proceedings International
Conference on Functional Programming 2010, Baltimore, Maryland,
USA, Sept. 2010. ACM Press, New York.

[2] M. Felleisen, R. B. Findler, M. Flatt, and S. Krishnamurthi. The
DrScheme project: An overview. SIGPLAN Notices, 33(6):17–23, June
1998.

[3] M. Felleisen, R. B. Findler, M. Flatt, and S. Krishnamurthi. How to
Design Programs. MIT Press, 2001.

[4] H. Klaeren and M. Sperber. Die Macht der Abstraktion. Teubner Verlag,
1st edition, 2007.

