
Form over Function
Teaching Beginners How to Construct Programs

Michael Sperber

Collaborators:
Marcus Crestani, Martin Gasbichler, 
Herbert Klaeren, Eric Knauel
@ University of Tübingen

Wednesday, September 12, 12



Back at the Ranch ...
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Volker Claus’s Trick
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So How Is This About 
Scheme?

Wednesday, September 12, 12



?U
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Self-Deception

• plagiarism

• stronger students are more vocal

• strong students teach themselves
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• Syntax

• Size

• Functional

• Easy to transition to X

Scheme Is Great For 
Beginners
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• Syntax

• Size

• Functional

• Easy to transition to X

Scheme Is Great For 
Beginners

Wrong 
Questions!
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What Is Important to 
You?
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Geometric Shapes

A geometric shape is one of the following:

• square (parallel to axes)

• circle

• overlay of 2 geometric shapes
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Geometric Shapes

Implement geometric shapes! Write a 
program that allows creating geometric 
shapes und to check whether a given point is 
inside our outside a geometric shape!
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Geometric Shapes

Shape

Square Circle Overlay
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Design Recipes

Page from English 6
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U ?
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Data Analysis

• shapes

• squares

• circles

• overlays

• points

• (2-dimensional plane)
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Mixed Data

A geometric shape is one of the following:

• a circle

• a square

• an overlay
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Composite Data

A circle has:

• center

• radius
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Design Recipe

“When your data analysis contains 
composite data, identify the signatures of the 
components. Then write a data definition 
starting with the following:
; An x consists of / has:
; - field1 (sig1)
; ...
; - fieldn (sign)
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Design Recipe

Then translate the data definition into a 
record definition:
(define-record-procedures sig
  constr pred?
  (select1 ... selectn)
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Design Recipe
Also write a constructor signature of the 
following form:

(: constr (sig1 ... sign -> sig))

Also, write signatures for the predicate and the 
selectors:
(: pred? (any -> boolean))
(: select1 (sig -> sig1))
...
(: selectn (sig -> sign))
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Circles

; A circle consists of:
; - center (point)
; - radius (real)
(define-record-procedures circle
  make-circle circle?
  (circle-center circle-radius))
(: make-circle (point real -> circle))
(: circle? (any -> boolean))
(: circle-center (circle -> point))
(: circle-radius (circle -> real))
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Composite Data

A square consists of:

• lower left corner

• size
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Squares

; A square consists of:
; - lower left corner (point)
; - size / edge length (real)
(define-record-procedures square
  make-square square?
  (square-corner square-size))
(: make-square (point real -> square))
(: square? (any -> boolean))
(: square-corner (square -> point))
(: square-size (square -> real))

Wednesday, September 12, 12



Composite Data
with Self Reference

On overlay consists of:

• a geometric shape

• and another geometric shape
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Overlays

; An overlay consists of:
; - a geometric shape “on top” (shape)
; - a geometric shape “on bottom” (shape)
(define-record-procedures overlay
  make-overlay overlay?
  (overlay-top-shape overlay-bot-shape))
(: make-overlay (shape shape -> overlay))
(: overlay? (any -> boolean))
(: overlay-top-shape (overlay -> shape))
(: overlay-bot-shape (overlay -> shape))

Wednesday, September 12, 12



Points

; A point consists of:
; - x coordinate (real)
; - y coordinate (real)
(define-record-procedures point
  make-point point?
  (point-x point-y))
(: make-point (real real -> point))
(: point? (any -> boolean))
(: point-x (point -> real))
(: point-y (point -> real))
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Geometric Shapes

; A geometric shape is one of the following:
; - a circle (circle)
; - a square parallel to the axes (square)
; - on overlay of two geometric figures (overlay)
(define shape
  (signature
   (mixed circle
          square
          overlay)))
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Examples
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Examples

(define p1 (make-point 10 20))   ; Point at X=10, Y=20
(define p2 (make-point 30 50))   ; Point at X=30, Y=50
(define p3 (make-point 40 30))   ; Point at X=40, Y=30
(define s1 (make-square p1 40))  ; Square w/ corner at p1, size 40
(define c1 (make-circle p2 20))  ; Circle around p2, radius 20
(define o1 (make-overlay c1 s1)) ; Overlay of circle und square
(define c2 (make-circle p3 15))  ; Circle around p3, radius 10
(define o2 (make-overlay o1 c2)) ; Overlay of o1 and c2
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First Steps
; is a point within a shape?
(: point-in-shape? (point shape -> boolean))

(check-expect (point-in-shape? p2 c1) #t)
(check-expect (point-in-shape? p3 c2) #t)
(check-expect (point-in-shape? (make-point 51 50) c1) #f)
(check-expect (point-in-shape? (make-point 11 21) s1) #t)
(check-expect (point-in-shape? (make-point 49 59) s1) #t)
(check-expect (point-in-shape? (make-point 9 21) s1) #f)
(check-expect (point-in-shape? (make-point 11 19) s1) #f)
(check-expect (point-in-shape? (make-point 51 59) s1) #f)
(check-expect (point-in-shape? (make-point 49 61) s1) #f)

(check-expect (point-in-shape? (make-point 40 30) o2) #t)
(check-expect (point-in-shape? (make-point 0 0) o2) #f)

short description

signature

examples
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Template

(define point-in-shape?
  (lambda (p s)
    ...))
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Skeleton

(define point-in-shape?
  (lambda (p s)
    ... p ... s ...
    ... (point-x p) ... (point-y p) ...
    (cond
      ((circle? s) ...)
      ((square? s) ...)
      ((overlay? s) ...))))
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More Skeleton

(define point-in-shape?
  (lambda (p s)
    ... p ... s ...
    ... (point-x p) ... (point-y p) ...
    (cond
      ((circle? s) 
       ... (circle-center s) ... (circle-radius s) ...)
      ((square? s)
       ... (square-corner s) ... (square-size s) ...)
      ((overlay? s) 
       ... (overlay-top-shape s) ... (overlay-bot-shape s) ...))))
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More Skeleton

(define point-in-shape?
  (lambda (p s)
    ... p ... s ...
    ... (point-x p) ... (point-y p) ...
    (cond
      ((circle? s) 
       ... (circle-center s) ... (circle-radius s) ...)
      ((square? s)
       ... (square-corner s) ... (square-size s) ...)
      ((overlay? s) 
       ... (point-in-shape? p (overlay-top-shape s))
       ... (point-in-shape? p (overlay-bot-shape s)) ...))))
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Definition
(define point-in-shape?
  (lambda (p s)
    (cond
      ((circle? s)
       (<= (distance p (circle-center s))
           (circle-radius s)))
      ((square? s)
       (and (>= (point-x p) (point-x (square-corner s)))
            (<= (point-x p) (+ (point-x (square-corner s))
                               (square-size s)))
            (>= (point-y p) (point-y (square-corner s)))
            (<= (point-y p) (+ (point-y (square-corner s))
                               (square-size s)))))
      ((overlay? s) 
       (or (point-in-shape? p (overlay-top-shape s))

Wednesday, September 12, 12



Refinement
(define point-in-shape?
  (lambda (p s)
    (cond
      ((circle? s)
       (<= (distance p (circle-center s))
           (circle-radius s)))
      ((square? s)
       (let ((corner (square-corner s)))
         (let ((cx (point-x corner))
               (cy (point-y corner))
               (size (square-size s))
               (x (point-x p))
               (y (point-y p)))
           (and (>= x cx)
                (<= x (+ cx size))
                (>= y cy)
                (<= y (+ cy size))))))
      ((overlay? s) 
       (or (point-in-shape? p (overlay-top-shape s))
           (point-in-shape? p (overlay-bot-shape s)))))))
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Enforcement
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Enforcement
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Enforcement
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?U
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Measure
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Observe & Measure
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Form
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How Many Forms?
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How Many Forms?
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Scheme

... is our business!
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Practice
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So Why Again Is 
Scheme Important?
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Signature violations
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Properties

(check-property
 (for-all ((a number)
           (b number))
   (= (+ a b) (+ b a))))
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Properties

(: commutativity 
   ((%a %a -> %b) signature -> property))
(define commutativity
  (lambda (op sig)
    (for-all ((a sig)
              (b sig))
      (expect (op a b) (op b a)))))
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Images
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Why Not Start With 
Types?

data Tool1 = ...

data ToolState1 = ...

data Tool2 = ...

data ToolState2 = ...

data Tool = Tool1 | Tool2

data ToolState = ToolState1 | ToolState2

Wednesday, September 12, 12



Summary

• Don’t love Scheme.

• Your students don’t have to love you.

• Only program what you can explain.

• Observe & measure.

• Kill your darlings.

• Fall in love with Scheme all over.
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Collaboration Record
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