
Form over Function
Teaching Beginners How to Construct Programs

Michael Sperber

Collaborators:
Marcus Crestani, Martin Gasbichler,
Herbert Klaeren, Eric Knauel
@ University of Tübingen

Wednesday, September 12, 12

Back at the Ranch ...

Wednesday, September 12, 12

Volker Claus’s Trick

Wednesday, September 12, 12

Wednesday, September 12, 12

Wednesday, September 12, 12

Wednesday, September 12, 12

So How Is This About
Scheme?

Wednesday, September 12, 12

?U

Wednesday, September 12, 12

Self-Deception

• plagiarism

• stronger students are more vocal

• strong students teach themselves

Wednesday, September 12, 12

• Syntax

• Size

• Functional

• Easy to transition to X

Scheme Is Great For
Beginners

Wednesday, September 12, 12

• Syntax

• Size

• Functional

• Easy to transition to X

Scheme Is Great For
Beginners

Wrong
Questions!
Wednesday, September 12, 12

What Is Important to
You?

Wednesday, September 12, 12

Geometric Shapes

A geometric shape is one of the following:

• square (parallel to axes)

• circle

• overlay of 2 geometric shapes

Wednesday, September 12, 12

Geometric Shapes

Implement geometric shapes! Write a
program that allows creating geometric
shapes und to check whether a given point is
inside our outside a geometric shape!

Wednesday, September 12, 12

Geometric Shapes

Shape

Square Circle Overlay

Wednesday, September 12, 12

Design Recipes

Page from English 6

Wednesday, September 12, 12

U ?

Wednesday, September 12, 12

Data Analysis

• shapes

• squares

• circles

• overlays

• points

• (2-dimensional plane)

Wednesday, September 12, 12

Mixed Data

A geometric shape is one of the following:

• a circle

• a square

• an overlay

Wednesday, September 12, 12

Composite Data

A circle has:

• center

• radius

Wednesday, September 12, 12

Design Recipe

“When your data analysis contains
composite data, identify the signatures of the
components. Then write a data definition
starting with the following:
; An x consists of / has:
; - field1 (sig1)
; ...
; - fieldn (sign)

Wednesday, September 12, 12

Design Recipe

Then translate the data definition into a
record definition:
(define-record-procedures sig
 constr pred?
 (select1 ... selectn)

Wednesday, September 12, 12

Design Recipe
Also write a constructor signature of the
following form:

(: constr (sig1 ... sign -> sig))

Also, write signatures for the predicate and the
selectors:
(: pred? (any -> boolean))
(: select1 (sig -> sig1))
...
(: selectn (sig -> sign))

Wednesday, September 12, 12

Circles

; A circle consists of:
; - center (point)
; - radius (real)
(define-record-procedures circle
 make-circle circle?
 (circle-center circle-radius))
(: make-circle (point real -> circle))
(: circle? (any -> boolean))
(: circle-center (circle -> point))
(: circle-radius (circle -> real))

Wednesday, September 12, 12

Composite Data

A square consists of:

• lower left corner

• size

Wednesday, September 12, 12

Squares

; A square consists of:
; - lower left corner (point)
; - size / edge length (real)
(define-record-procedures square
 make-square square?
 (square-corner square-size))
(: make-square (point real -> square))
(: square? (any -> boolean))
(: square-corner (square -> point))
(: square-size (square -> real))

Wednesday, September 12, 12

Composite Data
with Self Reference

On overlay consists of:

• a geometric shape

• and another geometric shape

Wednesday, September 12, 12

Overlays

; An overlay consists of:
; - a geometric shape “on top” (shape)
; - a geometric shape “on bottom” (shape)
(define-record-procedures overlay
 make-overlay overlay?
 (overlay-top-shape overlay-bot-shape))
(: make-overlay (shape shape -> overlay))
(: overlay? (any -> boolean))
(: overlay-top-shape (overlay -> shape))
(: overlay-bot-shape (overlay -> shape))

Wednesday, September 12, 12

Points

; A point consists of:
; - x coordinate (real)
; - y coordinate (real)
(define-record-procedures point
 make-point point?
 (point-x point-y))
(: make-point (real real -> point))
(: point? (any -> boolean))
(: point-x (point -> real))
(: point-y (point -> real))

Wednesday, September 12, 12

Geometric Shapes

; A geometric shape is one of the following:
; - a circle (circle)
; - a square parallel to the axes (square)
; - on overlay of two geometric figures (overlay)
(define shape
 (signature
 (mixed circle
 square
 overlay)))

Wednesday, September 12, 12

Examples

Wednesday, September 12, 12

Examples

(define p1 (make-point 10 20)) ; Point at X=10, Y=20
(define p2 (make-point 30 50)) ; Point at X=30, Y=50
(define p3 (make-point 40 30)) ; Point at X=40, Y=30
(define s1 (make-square p1 40)) ; Square w/ corner at p1, size 40
(define c1 (make-circle p2 20)) ; Circle around p2, radius 20
(define o1 (make-overlay c1 s1)) ; Overlay of circle und square
(define c2 (make-circle p3 15)) ; Circle around p3, radius 10
(define o2 (make-overlay o1 c2)) ; Overlay of o1 and c2

Wednesday, September 12, 12

First Steps
; is a point within a shape?
(: point-in-shape? (point shape -> boolean))

(check-expect (point-in-shape? p2 c1) #t)
(check-expect (point-in-shape? p3 c2) #t)
(check-expect (point-in-shape? (make-point 51 50) c1) #f)
(check-expect (point-in-shape? (make-point 11 21) s1) #t)
(check-expect (point-in-shape? (make-point 49 59) s1) #t)
(check-expect (point-in-shape? (make-point 9 21) s1) #f)
(check-expect (point-in-shape? (make-point 11 19) s1) #f)
(check-expect (point-in-shape? (make-point 51 59) s1) #f)
(check-expect (point-in-shape? (make-point 49 61) s1) #f)

(check-expect (point-in-shape? (make-point 40 30) o2) #t)
(check-expect (point-in-shape? (make-point 0 0) o2) #f)

short description

signature

examples
Wednesday, September 12, 12

Template

(define point-in-shape?
 (lambda (p s)
 ...))

Wednesday, September 12, 12

Skeleton

(define point-in-shape?
 (lambda (p s)
 ... p ... s ...
 ... (point-x p) ... (point-y p) ...
 (cond
 ((circle? s) ...)
 ((square? s) ...)
 ((overlay? s) ...))))

Wednesday, September 12, 12

More Skeleton

(define point-in-shape?
 (lambda (p s)
 ... p ... s ...
 ... (point-x p) ... (point-y p) ...
 (cond
 ((circle? s)
 ... (circle-center s) ... (circle-radius s) ...)
 ((square? s)
 ... (square-corner s) ... (square-size s) ...)
 ((overlay? s)
 ... (overlay-top-shape s) ... (overlay-bot-shape s) ...))))

Wednesday, September 12, 12

More Skeleton

(define point-in-shape?
 (lambda (p s)
 ... p ... s ...
 ... (point-x p) ... (point-y p) ...
 (cond
 ((circle? s)
 ... (circle-center s) ... (circle-radius s) ...)
 ((square? s)
 ... (square-corner s) ... (square-size s) ...)
 ((overlay? s)
 ... (point-in-shape? p (overlay-top-shape s))
 ... (point-in-shape? p (overlay-bot-shape s)) ...))))

Wednesday, September 12, 12

Definition
(define point-in-shape?
 (lambda (p s)
 (cond
 ((circle? s)
 (<= (distance p (circle-center s))
 (circle-radius s)))
 ((square? s)
 (and (>= (point-x p) (point-x (square-corner s)))
 (<= (point-x p) (+ (point-x (square-corner s))
 (square-size s)))
 (>= (point-y p) (point-y (square-corner s)))
 (<= (point-y p) (+ (point-y (square-corner s))
 (square-size s)))))
 ((overlay? s)
 (or (point-in-shape? p (overlay-top-shape s))

Wednesday, September 12, 12

Refinement
(define point-in-shape?
 (lambda (p s)
 (cond
 ((circle? s)
 (<= (distance p (circle-center s))
 (circle-radius s)))
 ((square? s)
 (let ((corner (square-corner s)))
 (let ((cx (point-x corner))
 (cy (point-y corner))
 (size (square-size s))
 (x (point-x p))
 (y (point-y p)))
 (and (>= x cx)
 (<= x (+ cx size))
 (>= y cy)
 (<= y (+ cy size))))))
 ((overlay? s)
 (or (point-in-shape? p (overlay-top-shape s))
 (point-in-shape? p (overlay-bot-shape s)))))))

Wednesday, September 12, 12

Enforcement

Wednesday, September 12, 12

Enforcement

Wednesday, September 12, 12

Enforcement

Wednesday, September 12, 12

?U

Wednesday, September 12, 12

Measure

Wednesday, September 12, 12

Observe & Measure

Wednesday, September 12, 12

Form

Wednesday, September 12, 12

How Many Forms?

Wednesday, September 12, 12

How Many Forms?

Wednesday, September 12, 12

Scheme

... is our business!

Wednesday, September 12, 12

Practice

Wednesday, September 12, 12

So Why Again Is
Scheme Important?

Wednesday, September 12, 12

Signature violations

Wednesday, September 12, 12

Properties

(check-property
 (for-all ((a number)
 (b number))
 (= (+ a b) (+ b a))))

Wednesday, September 12, 12

Properties

(: commutativity
 ((%a %a -> %b) signature -> property))
(define commutativity
 (lambda (op sig)
 (for-all ((a sig)
 (b sig))
 (expect (op a b) (op b a)))))

Wednesday, September 12, 12

Images

Wednesday, September 12, 12

Why Not Start With
Types?

data Tool1 = ...

data ToolState1 = ...

data Tool2 = ...

data ToolState2 = ...

data Tool = Tool1 | Tool2

data ToolState = ToolState1 | ToolState2

Wednesday, September 12, 12

Summary

• Don’t love Scheme.

• Your students don’t have to love you.

• Only program what you can explain.

• Observe & measure.

• Kill your darlings.

• Fall in love with Scheme all over.

Wednesday, September 12, 12

Collaboration Record

Wednesday, September 12, 12

