
Structure Vectors and their Implementation

Benjamin Cérat
Université de Montréal

ceratben@iro.umontreal.ca

Marc Feeley
Université de Montréal
feeley@iro.umontreal.ca

Abstract
The typical representation of structures (a.k.a. records) in-
cludes a header and type descriptor that are a considerable
overhead when the structures have few fields and the pro-
gram allocates a large number of them. We propose structure
vectors that group many structures of the same type, remov-
ing the need for a header and type descriptor for each con-
tained structure. This paper describes our implementation of
structure vectors within the Gambit Scheme system. Micro-
benchmarks indicate that structure allocation is faster, struc-
ture access is roughly the same speed, and type checking is
substantially slower. On real applications we have observed
speedups of 7% to 15%.

1. Introduction
Scheme structures (a.k.a. records) of f fields can be straight-
forwardly implemented as a specially tagged vector of length
f +1 containing a reference to a type descriptor and the val-
ues of the fields. The type descriptor is useful to attribute
to the structure a unique type different from all other types
of structures. It is also a convenient place to store meta in-
formation such as the field names used for pretty-printing,
and the super type in systems supporting structure type in-
heritance. In a typical memory management system, mem-
ory allocated objects are prefixed by a header containing the
object’s primary type (e.g. to distinguish vectors from struc-
tures), a length, and fields used by the garbage collector. For
a structure, the space for this header and the type descriptor
adds an overhead that can be relatively high when the num-
ber of fields is small.

In the Gambit Scheme system (a Scheme to C compiler),
the header, type descriptor, and the fields, each occupy a ma-
chine word (32 or 64 bits). Moreover, small objects (less than

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Scheme ’14, November 19, 2014, Washington, D.C., H Street NW, USA.
Copyright c© 2014 ACM 978-1-nnnn-nnnn-n/14/11. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

(define-type point x y)

HD TD x y

AAA…AAA01
reference to

structure

Figure 1: A 2D point structure type definition and its repre-
sentation with a header, type descriptor and x and y fields

256 words) are managed using a Cheney-style compacting
garbage collector with a factor of two memory use bloat due
to the unused but reserved space in the tospace (i.e. an ob-
ject of length n words causes 2n words of memory to be
reserved for it). Given that structures are often small, there
is a considerable space overhead and a run time overhead
for managing structures. Figure 1 shows the layout of a 2D
point structure with fields x and y and a tagged reference
to the structure. Note that Gambit uses the two lower bits
for the tag, and memory allocated objects are either tagged
with 11 for pairs, or 01 for all other types). The state of
the structure is stored in 4 words, but a total of 8 words of
memory will be reserved for this structure by the memory
manager (the tospace remains live between garbage collec-
tions to guarantee that a garbage collection can always be
performed without running out of memory).

In some applications, it is necessary to manage many
structures of the same type and there is a delimited region
of code where these structures are live. An example is the
construction of a 3D polygon-based model composed of 3D
points to be sent to a GPU for rendering. The data becomes
dead after it is sent to the GPU.

For such applications we propose structure vectors, a
compact representation of a group of structures of the same
type. The type descriptor is only stored once in the structure
vector, and each contained structure occupies space for its
fields only. Figure 2 shows the layout of a 3 element struc-
ture vector of 2D points. In typical uses, structure vectors
are large objects so they are managed by a non-compacting
garbage collector that does not suffer from the factor of two
bloat of the copying garbage collector. The allocation of an n
element structure vector of structures with f fields requires

HD TD x y x y x y

AAA…AAA01
reference to

structure vector

BBB…BBB11
reference to second
contained structure

Figure 2: Representation of a structure vector containing 3
2D points

2 + nf words. This compares well to the 2n(2 + f) words
required for allocating the structures individually. For a large
n there is a factor of 2 + 4/f space savings (e.g. a factor of
4 for f = 2, a factor of 3.333 for f = 3, a factor of 3 for
f = 4).

There are a few important issues to address in imple-
menting structure vectors. To allow handling each contained
structure individually, e.g. passing them to a function expect-
ing a structure, it is necessary to have internal references to
the elements of the structure vector. Operations on structures
(access to fields, type checking, etc) must work transparently
on individually allocated structures and contained structures.
To access the type descriptor of a contained structure, and
implement the garbage collector, there must be a way to find
the structure vector that contains the structure given a refer-
ence to that structure.

This is solved by storing all structure vectors in a single
fixed depth container tree, similar to the page tables used
in the implementation of virtual memory (Silberschatz et al.
[1]), that maps addresses to the structure vectors that span
that address. A single container tree is needed for managing
all live structure vectors. The use of a fixed depth tree has
the advantage that an address lookup can be done with a fast
to execute fixed number of unconditional indirection.

In the next section, we cover the algorithms used to
construct and maintain the container tree. In section 3, we
present the modifications to the Gambit Scheme runtime re-
quired by the implementation of structure vectors. This is
followed by a brief performance evaluation and a discussion
of related work.

2. Container Tree
The container tree maps contained structure references to
the structure vector that contains them. This tree spans the
whole memory and is indexed using a fixed number of bit
fields from the reference (Figure 3). Some of the lower bits
of a reference are unused in the container tree indexing pro-
cess. This is possible because of the alignment constraint
imposed on structure vectors that are aligned to addresses
that are multiples of 4096. The container tree is allocated in
the C heap using malloc and only one instance is created for
the runtime. It is accessed through the C functions that im-
plement container allocations, etc. It is also accessible to the

NULL NULL

NULL NULL NULL NULL

HD TD x y x y HD TD x y x y x y

index

index

32 bit reference to
contained structure

11 bits 9 bits 12 bits

ROOT

BBBBBBBBBBBBB11

Figure 3: Container tree and access using a 32 bit reference
to a contained structure

garbage collector that keeps it up to date during collection
(but it is not a GC root).

The nodes at a given level of the tree are vectors of the
same power of 2 size containing pointers to nodes at the
next level of the tree, or to structure vectors at the leaves
of the tree. Different layouts for the two supported word
sizes (32 and 64 bits) are used to minimize the amount
of memory used. Whenever a structure vector is allocated
or freed, the tree is automatically updated to reflect those
changes using runtime methods hooked to the allocator and
garbage collector respectively. Accesses to the leaves of the
container tree are performed by an unconditional chain of
indirection calculated directly from the structure reference.

2.1 Managing Nodes
The container tree is composed of two levels on 32 bit word
platforms and five levels on 64 bit platforms. A reference to
the top level node is kept in a global variable (ROOT) so as to
make it available to the runtime. Each node contains a field
for every distinct value possible in the set of bits indexing
it. The root node is slightly larger than the others since it is
unique while at least one new node is usually allocated for
typical (large) vector. References to the vectors are chained
through the nodes with a pointer to the next node being left in
the corresponding field. The leaves of the tree contain boxed
pointers to the structure vectors.

In order to simplify testing for unused paths and preserve
space while ensuring that every single path down the tree has
the same length, we use the NULL pointer as a marker for ab-
sent subtrees. This allows testing if a path is used through a
simple pointer comparison. We can guarantee through run-
time type tests that only internal references will ever be fol-
lowed in the container tree since only contained structures
have the correct tag.

To add a structure vector to the tree, we first need to add
nodes to the tree to ensure that the addresses spanned by
the vector have corresponding full depth subtrees in the con-
tainer tree. To do so, we recursively go down in the subtree

#if ___WORD_WIDTH == 32

#define ___GET_CONTAINER(ref) \
(ROOT[(ref)>>21] \

[((ref)>>12) & 0x1FF])

#else

#define ___GET_LOW_OFS(n) \
(___WORD_WIDTH - (n*10) - 9)

#define ___GET_CONTAINER(ref) \
(ROOT[(ref)>>52] \
[((ref)>>(___GET_LOW_OFS(1))) & 0x3FF]\
[((ref)>>(___GET_LOW_OFS(2))) & 0x3FF]\
[((ref)>>(___GET_LOW_OFS(3))) & 0x3FF]\
[((ref)>>(___GET_LOW_OFS(4))) & 0x3FF])

#endif

Figure 4: Container tree access macros

spanned by the vector adding a node each time we come
across a NULL pointer. Once all the nodes have been added,
we write references to the vector in every leaf that corre-
sponds to the addresses it spans. Note that the allocation can
be optimized to add at most 3 nodes to each level of the tree
because the middle node can be reused (it is an array con-
taining the same pointer).

Since structure vectors are managed by the garbage col-
lector, we add a hook to ensure that all references to the vec-
tor are removed from the container tree before it is freed.
As we always allocate the vector as a non-movable object,
we don’t have to worry about a change in the contained ad-
dress (which would require rebuilding the whole tree) during
the collection. To prune the now unneeded subtree, we recur-
sively check whether the nodes are shared and then free them
if they are not. By construction, only the outermost nodes at
a given level may be shared because structure vectors span
contiguous addresses so we can get away with only check-
ing these. We make sure that all references that belong to the
vector we are removing are set to NULL.

2.2 Accessing the Vectors
The container tree has a fixed depth for a given architecture
and every path for a live contained structure is guaranteed
to have that depth. This property allows us to navigate it
to fetch the structure vector corresponding to an address
without any conditional tests. We do this by systematically
extracting the relevant bits for a given level to calculate the
index at which the reference to the next level will be stored.
The last such reference will be a boxed pointer to the vector.

The container tree is used by the garbage collector when
it encounters a reference to a contained structure by allow-
ing it to find the structure vector containing the contained
structure. This structure vector is then considered live by the
garbage collector.

(define-type foo x y z)
(define c (make-foo-vector 1000000))
(define s (foo-vector-ref c 999))
(foo-vector-set! c 999 11 22 33)
(foo-x s) ;; => 11
(foo-y-set! s 44)
(foo? s) ;; => #t

Figure 5: Example of structure vector functions

Scheme code also accesses the container tree when get-
ting the type descriptor of a contained structure, using the
function ##contained-type that is directly inlined in the gen-
erated code.

3. Structure Vectors
Our implementation of structure vectors use the define-type
(Figure 5) macro as an interface. The macro was extended
to generate definitions for a structure vector constructor, and
getter and setter specialized to the type. Those definitions
(whether functions or macros) are constructed from the type
information using a set of new primitives. Several changes to
the Gambit runtime were made to introduce these, notably
to the tagging scheme, to define-type and to the garbage
collector.

3.1 Tagging
In order to maintain compatibility with existing accessors,
we re-purpose the tag used by pairs, i.e. 11, to dedicate it to
contained structures (pairs now use the 01 tag and the header
needs to be accessed by the pair? primitive). Consequently,
a reference to a structure can be tagged with 01, when it is
an individually allocated structure, or with 11, when it is a
structure contained in a structure vector.

The type-checking primitives for structures must account
for the two possible structure layouts. Given that there are
now two different tags denoting structures, we must also
switch our field access primitives from using a simple sub-
straction (which the C compiler is normally able to opti-
mize away) to a mask removing the tag bits when unbox-
ing a reference (Figure 6). In other words, we must use

UNTAG(obj) rather than UNTAG AS(obj, tSUBTYPED).
Since Gambit does not currently optimize redundant boxing
and unboxing, these extra operations represent a significant
overhead on structure accesses.

3.2 Structure Vector Primitives
For a structure type name foo, the make-foo-vector, foo-
vector-ref and foo-vector-set! definitions are built as calls
to primitives. The first allocates a large non-movable object
as a structure vector and then adds it to the container tree. To
ensure that no structure vector shares the same page, extra
memory equal to the page size is allocated at the end of
the object. This form of allocation is managed by a mark
and sweep collector and is reserved for large objects (over 1

#define ___TB 2

#define ___tSUBTYPED 1
#define ___tCONTSTRUCT 3

#define ___TAG(ptr,tag) \
(((___WORD)ptr)+(tag))

#define ___UNTAG(obj) \
((___WORD*)((obj)&-(1<<___TB)))

#define ___UNTAG_AS(obj,tag) \
((___WORD*)((obj)-(tag)))

Figure 6: C macros to tag and untag references

#define ___CONTAINERREF(c,s,i) \
___TAG(((___WORD*) \

___UNTAG_AS(c,___tSUBTYPED))+ \
(___INT(i) * ___INT(s)), ___tCONTSTRUCT)

Figure 7: Code generated to access a contained structure

(define (##structure-type obj)
(if (##contained? obj)

(##contained-type obj)
(##vector-ref obj 0)))

Figure 8: Type access primitive

kilobytes). Fragmentation of this memory space is no worse
then using C’s malloc since only large memory blocks are
allocated there.

The definition for foo-vector-ref is compiled to a C macro
(Figure 7) that simply bumps the pointer to the vector
and retags it to the contained structure tag. The offset is
calculated by passing it the index of the structure and it’s size
(in words). The structure’s size is provided by the define-
type macro. In order to maintain full transparency when
using regular structure functions on contained structures, the
pointer returned by the accessor is offset by the usual amount
from the first field and thus points two fields into the previous
structure.

The macro or function (foo-vector-set!) supplements the
normal constructor (make-foo). It initializes a structure in
the vector by setting all of its fields to the values passed in
parameters. The compiled code thus resembles closely the
normal constructor without, of course, the allocation.

We have modified the primitives that deal with type test-
ing (##structure-type, ##structure-instance-of?, etc.) to dif-
ferentiate internal references from normal structures (Figure
8) and to recover their type descriptor through the container
tree instead of accessing the first field in the structure.

All the primitives provided except the allocator (where al-
most all the work is done directly in C anyway) are automat-
ically inlined to C macros in code declared as unsafe. Type

(declare (standard-bindings) (extended-bindings)
(fixnum) (not safe) (block) (inlining-limit 0))

Figure 9: Declaration used for the benchmarks

checks in those primitives are also automatically removed by
specializing the calls to the unchecked version.

3.3 Changes to the Garbage Collector
The addition of structure vector primitives requires slight
modifications to the garbage collector. First we need to en-
sure that the container tree is updated whenever a vector is
reclaimed. To do so we introduce a new subtype for struc-
ture vectors (several values are still unused in our subtyping
scheme so this does not pose any problem). Whenever we
reclaim a non-movable object, we test to see if it matches
this subtype and call a method to prune the tree as necessary.
We also need to ensure that a vector is never freed while
a reference to a structure it contain is still live. To do so,
whenever we encounter a reference to a contained structure
(with the tag tCONTSTRUCT), we recover the vector it-
self with GET CONTAINER and substitute it to the object
being scanned.

4. Evaluation
To assess the performance of the new primitives, we use
benchmarks that are implemented both using individually al-
located structures (baseline) and with structure vectors. To
remove outliers, we run each benchmarks 20 times and re-
move the highest and lowest value. We then take the geo-
metric mean of the remaining values. We have set the var-
ious programs to have execution times of at least around 1
second. All the benchmarks were run in both 32 bits and 64
bits mode on a machine with a 2.2 GHz Intel core i7 with 8
GB of RAM.

Our benchmark programs were compiled by using gsc to
generate an executable file. To ensure similar execution be-
tween the baseline and structure vector versions, we use a
set of declarations (Figure 9). The standard-bindings and
extended-bindings declarations allow the compiler to assume
that primitives are never redefined and can thus be inlined.
The fixnum declaration allows the use of fixed precision in-
tegers instead of the generic numeric tower. Not safe lets the
compiler specialize primitives into unsafe versions and per-
form other optimization. Block specifies that the whole pro-
gram is contained in the file. The inlining-limit sets a max-
imum factor of growth that is acceptable during inlining. It
is set to 0 (no growth) to prevent different loop unrolling be-
tween comparable benchmarks. To avoid making unneces-
sary function calls, we also specify that all type definitions
generate their methods as macros.

4.1 Benchmarks
To evaluate important aspects of our system’s performance,
we have a series of benchmarks testing specific aspects:
structure alloc, structure20 alloc, structure access, structure
set!, type access and prop-access. The structure alloc pro-
gram allocates a vector and sets every field to a new point
structure with 2 fields. To do this, the baseline version allo-
cates a vector and sets each field to a reference to the result
of a call to the structure constructor. The version using struc-
ture vectors will allocate one (and initialize the type tree)
and then set internal fields using point-vector-set!. The same
operation is done on structures of 20 fields in structure20 al-
loc. We also measure the time spent on garbage collection
(structure20 alloc gc) and on time taken without factoring
the initial allocation of the vector and the initialization of
the type tree in the new primitive’s case (structure20 alloc
no-init). The structure access program repeatedly accesses
every structure stored in a plain vector of individually allo-
cated structures or a structure vector, structure set! sets them
to a new value instead. The type access and prop-access pro-
grams access the type descriptor or field of a single structure
that is either an internal reference or a normal structure using
the typical accessors defined by define-type. An obvious so-
lution to large sets of small structures would be to ditch the
structure mechanics and write theirs fields inline in a vector
of size #fields× #structures. These fields are not compatible
with the usual structure operations, but benchmarks are in-
cluded where appropriate to show how the basic operations
would compare with structures and structure vectors.

Three other programs, convex envelope, quicksort and
distance sort are also used to cover more normal use cases.
The first uses Jarvis’ algorithm [2] to calculate the convex
envelope of a set of points in a plane. The others uses selec-
tion and quick sort to sort a set of points by distance from the
origin. We use a naive sorting algorithm to have somewhat
of a worst case with regard to the ratio of accesses to alloca-
tions since this sorts a relatively small set of points. We also
ran quicksort and convex-envelope using (declare (safe)) in-
stead to evaluate the performance hit caused by the runtime
type checks.

4.2 Results
The results presented in Table 1 correspond to the imple-
mentation using normal vectors (baseline), the results for
structure vectors and the ratio of structure vector/baseline
(ratio). The implementation using normal vectors with each
fields written directly are under the column vector. The sub-
column 32 and refers to 32 bits and 64 bits results respec-
tively.

Allocating large numbers of structures by using structure
vectors is quite fast. It takes roughly 2% of the time taken by
the baseline version. The time taken to allocate larger struc-
tures shows improvement for the baseline because allocating
fewer larger chunks puts less pressure on the garbage col-

(define-type point id: point macros: x y)

(define count 4000000)

(define (run)
(let ((v (make-vector count #f)))
(let loop ((i (- count 1)) (result #f))
(if (>= i 0)

(begin
(vector-set! v i (make-point 11 22))
(loop (- i 1) v))

v))))

(define s (##exec-stats run))

Figure 10: Baseline structure alloc

lector. The contained version still takes only approximately
12% of the time the baseline takes. We notice that, in the
baseline program, the majority of the time is spent in garbage
collection whereas the structure vector version spends al-
most all of its time mutating the container along with a sub-
stantial time spent initializing the container tree in 64 bits.
Using vectors containing the fields directly instead of struc-
tures yields similar performance to structure vector albeit
slightly worse due to separate calls to vector-set! for every
fields and the arithmetic required to compute the offset.

Accesses to contained structures and their fields takes be-
tween 1.23x (32 bits) and 1.48x (64 bits) as long as the base-
line versions while mutating all the fields in contained struc-
tures takes less than a third of the time taken for normal
structures. Accessing the type descriptor of internal struc-
tures is, as expected, much slower (3.59x and 4.51x). This
requires traversing the container tree, thus doing several in-
direction versus a simple field reference made directly on the
structure. For the normal vector alternative, we obviously
cannot access the type descriptor since it is not stored, but
access to fields is faster then both the baseline and structure-
vector implementations.

The convex envelope benchmark is slightly faster using
a structure vector as large amounts of allocations are per-
formed and balance the actual computation which use many
references. In safe mode, the cost of these references is larger
because of the extra cost associated with type checks and
make the version using a structure vector slightly slower then
the baseline.

On the other hand, we have minimal gains (ratios of
.87 and .85 for 32 bits and 64 bits) on the distance sort
benchmark since we allocate only a few thousand points.
The slight overhead on accesses probably compensates for
most of the gains made in allocation. For the more efficient
quicksort, with its much larger set of points, the ratios vary
from close to one in unsafe mode to around two in safe
mode.

The differences in performance between the baseline and
structure vector versions follow roughly the same trends

baseline structure vector vector
32 64 32 64 32 64

structure alloc 78.47 72.01 1.26 (.02) 1.42 (.02) 1.10 (.01) 3.07 (.04)
structure20 alloc 5.00 5.17 .35 (.07) .65 (.12) 1.46 (.29) 1.40 (.27)
structure20 alloc gc 4.45 4.55 .00 (.00) .00 (.00) .00 (.00) .00 (.00)
structure20 alloc no-init 4.85 5.23 .34 (.07) .57 (.11) 1.46 (.30) 1.40 (.27)
structure access 1.32 1.24 1.63 (1.23) 1.84 (1.48) .95 (.72) .63 (.51)
structure set! 4.64 4.19 1.24 (.27) 1.24 (.30) 1.13 (.24) 2.14 (.51)
type access 2.07 1.85 7.42 (3.59) 8.35 (4.51)
prop-access 1.33 .93 1.19 (.90) .94 (1.01) .95 (.71) .63 (.68)
convex envelope .87 .62 .82 (.93) .55 (.89)
distance sort 3.42 3.52 2.96 (.87) 3.00 (.85)
quicksort 1.36 .81 1.20 (.89) .85 (1.05)
convex envelope safe 6.91 5.50 7.66 (1.11) 5.95 (1.08)
quicksort safe 2.10 1.71 3.67 (1.75) 3.58 (2.09)

Table 1: Benchmark results

in 32 bits but are somewhat more pronounced on both ex-
tremes. With the much reduced costs of initializing and
maintaining the container tree, allocations observe over 60x
speedup for small structures compared to the baseline bench-
mark and a 10x speedup for larger structures. Overall muta-
tions, allocation, field access, type access and distance sort
observe speedups from 64 bits while structure access and
convex envelope are more expensive. Type accesses’ over-
head (ratios of 3.59 vs. 4.51) is slightly reduced by the shal-
lower container tree despite the much smaller amount of
work needed.

We also compared Gambit with structure vectors against
the implementation without on the normal benchmark suit
to measure the impact of the multiple structure type tags on
generic use cases. We found that the average running time
increased by 4% in 32 bits and 9% in 64 bits.

5. Related Works
The idea of compacting data representation by grouping
similar objects together is not new. Region allocation[4–7]
is somewhat commonly done in statically typed languages,
whether manually or automatically. Other approaches to-
ward reducing individual structures’ size have been tried in
Scheme like Chez Scheme’s ftypes [3] that use structures of
foreign data (like smaller integers for instance) similar to
C structs. A similar system allowing statically typed fields
in structures has also been implemented in Gambit Scheme
and is orthogonal to structure vectors. The container tree al-
gorithm is also largely based on the Multics multilevel pag-
ing system introduced in 1975 [1, 8] and frequently used in
operating systems.

5.1 Multilevel Paging System
Paging systems split the whole memory in discrete chunks
(pages) and use an indexing scheme to recover the appropri-
ate page when a reference is made to its content. Multilevel
tables separate the reference into groups of bits and use those

groups to index the various levels in a tree of tables. This is
also essentially what is done by our type tree algorithm with
the reservation that we do not need (nor want) to index the
whole memory and that our pages won’t all be of the same
size. This implies that we need a mechanism to dynamically
add or remove subtrees when necessary in order to preserve
memory.

5.2 Allocation by Regions
Allocating objects of the same type together in memory is
a common strategy to facilitate memory reuse and data lo-
cality. Several approaches are used ranging from manually
managed object pools [6] to statically managed regions per-
forming automatic memory management through a variant
of typed lambda calculus [5]. Those approaches are used in
statically typed languages and make use of type erasure for
efficient representation. They don’t need to bother with run
time type checking so objects don’t have to include typing
information and allocation by regions doesn’t alter the rep-
resentation of objects.

5.3 Chez Scheme’s Ftypes
Keep and Dybvig have introduced C struct analogs in Chez
Scheme to allow interoperability with C functions. These are
used as part of the FFI to specify data structures with stati-
cally typed fields. These fields permit more compact repre-
sentation of structures by possibly using only the required
number of bits and discarding tagging. These structures still
require a header and typing information to allow garbage
collection and must be allocated individually.

6. Conclusion
The implementation of structure vectors in Gambit Scheme
provides programmers with a way to significantly reduce
the memory footprint of large sets of small structures and
group them for better locality. This is done by allocating
the structures in one go in a vector and adding the header

and type descriptor only to the vector instead of keeping
this information on every single instance of the structure.
This more compact representation allow the allocation of n
structures of size f to take up only 2 + fn words instead of
the n(2 + f) words taken by the normal allocation method.

We introduce a multilevel container tree indexed using
the bits in references to unconditionally recover the type de-
scriptors in constant time. This container tree is kept updated
on the allocation and freeing of structure vectors by hooks
added to the runtime and is exposed to the Scheme program
through primitives that are used during dynamic type checks
and accesses. This allows the contained structures to be used
transparently with the existing structure primitives dealing
with the type descriptor.

To make the structure vectors available to the program-
mer, we have introduced a set of new primitives and mod-
ified the define-type macro to generate functions or macros
that use them. These primitives include a constructor and
getter and setter for contained structures. We also ensured
that every method dealing with structures could take an in-
ternal reference without modifications.

Our performance evaluation demonstrate that gains can
be had using structure vectors. On a 64 bits platform, we
observe significant speedups in allocation time and struc-
ture mutation using structure vectors and limited overhead
for most other operations. Predictably, there is a slowdown
(4.51x) on accesses to the type descriptor of internal struc-
tures and to contained structures (1.48x). In 32 bits, the trend
is similar but more pronounced, with large speedups on al-
location and mutations and minor gains to slight overhead
for most other operations except type accesses with a 3.59x
slowdown.

Acknowledgments
This work was supported in part by the Natural Sciences and
Engineering Research Council of Canada.

References
[1] A. Silverschatz, and B. Galvin. Operating System Concepts,

5th Edition, Wiley, 1999

[2] R. A. Jarvis. On the identification of the convex hull of a finite
set of points in the plane, Information Processing Letters, vol. 2,
no. 1, p. 18-21, 1973

[3] R. K. Dybvig, and A. W. Keep. Ftypes: Structured foreign
types, Workshop on Scheme and Functional Programming, 2011

[4] R. Jones, A. Hosking, and E. Moss .The Garbage Collection
Handbook: The Art of Automatic Memory Management,
Chapman & Hall/CRC, 2011

[5] M. Totfe, and J.-P. Talpin. Region-based Memory Management,
Information and Computation, vol. 132, p. 109-176, 1997

[6] D. Gay, and A. Aiken. Memory Management with Explicit
Regions, SIGPLAN, vol. 33, p. 313-323, 1998

[7] C. Lattner, and V. Adve. Automatic Pool Allocation: Improving
Performance by Controlling Data Structure Layout in the Heap,
SIGPLAN, vol. 40, p. 129-142, 2005

[8] B. S. Greenberg, and S. H. Webber. The multics multilevel
paging hierarchy, Multics Technical Bulletin, vol. 170, 1975

