
Microscheme: Functional programming for the Arduino

Ryan Suchocki

ryan@ryansuchocki.co.uk

Dr. Sara Kalvala

sara.kalvala@warwick.ac.uk

Abstract
The challenges of implementing high level, functional lan-
guages on extremely resource-constrained platforms such as
micro-controllers are abundant. We present Microscheme:
a functional language for the Arduino micro-controller.
The constraints of the Arduino platform are discussed, and
the particular nuances of Microscheme are justified. Mi-
croscheme is novel among compact Scheme implementa-
tions in that it uses direct compilation rather than a virtual
machine approach; and an unconventional compiler archi-
tecture in which the tree structure of the input program is
determined during lexical analysis.

Keywords Scheme, Arduino, Functional programming,
Micro-controllers, Compilers

1. Introduction
Micro-controllers are becoming increasingly popular among
hobbyists, driven by the availability of low-cost, USB-
programmable micro-controller boards, and by interest in
areas such as robotics and home automation. The Arduino
project [9]—which provides a range of Atmel and ARM-
based development boards—is notable for its active commu-
nity and extensive wealth of supporting materials. The offi-
cial Arduino IDE supports only C and C++, relying on the
avr-gcc [10] compiler, and the avr-libc [11] and wiring [14]
libraries. The Arduino community, however, consists largely
of hobbyists and hackers, who have no overriding predispo-
sition for working in C. Therefore, by providing a functional
language targeting the Arduino hardware, there is an op-
portunity to introduce a new group of users to the world of
functional programming.

We present Microscheme: a functional programming lan-
guage for the Arduino micro-controller. Microscheme is pre-
dominantly a subset of R5RS Scheme [1]. Specifically, ev-
ery syntactically valid Microscheme program is a syntacti-
cally valid Scheme program (up to primitive naming). Mi-
croscheme is tailored specifically to micro-controller appli-
cations, targeting the 8-bit ATMega chips used on most Ar-
duino boards.

The targeted controllers are 8-bit, Harvard architecture ma-
chines (meaning code and data occupy physically separate
storage areas), with between 2KB and 8KB of RAM, run-
ning at 16 MHz. Implementing high-level, dynamic, func-

tional features on such a constrained platform is a significant
challenge, and so the Microscheme language has been de-
signed to accommodate realistic micro-controller programs,
rather than achieving standard-compliance. Microscheme is
currently lacking first-class continuations, garbage collec-
tion, and a comprehensive standard library. Also, its treat-
ment of closures is slightly unsatisfactory. Nonetheless, it
has reached a state where useful functional programs can be
run natively and independently on real Arduino hardware,
and is novel in that respect.

The contents of this short paper are focussed on the design
of the language and runtime system, and the particular diffi-
culties of the target platform. Far more detail can be found in
the report [8] or via the project website www.microscheme.
org. Following in the spirit of the work of Ghuloum [5], it
is hoped that this project might help to de-mystify the world
of functional language compilation. The compiler was con-
structed using the methodology set out in [5], by producing
a succession of working compilers, each translating an in-
creasingly rich subset of the goal language. This exploits
the hierarchical characteristic of Scheme, whereby a small
number of fundamental forms describe the syntax of ev-
ery valid Scheme program; and an implementation-specific
collection of primitive procedures are provided for conve-
nience. Thus, exploiting “how small Scheme is when the
core structure is considered independently from its syntactic
extensions and primitives.” [4] These primitive procedures,
which add input/output capabilities and efficient implemen-
tations for low-level tasks, can all be compiled as special
cases of the ‘procedure call’ form. This methodology also
simplifies the building of a type system, because most of
the prototyping can be done with the integer and procedure
types, while richer types such as characters, strings, lists and
vectors are bolted on later.

There are a number of great materials on Scheme imple-
mentation in Scheme, and indeed there are many shortcuts
to be enjoyed by writing a self-hosting Scheme processor.
However, the implementation of Scheme is itself an exercise
of great educational worth, even to those who are not pro-
ficient Scheme programmers. Therefore, we posit that there
is a place in our field for Scheme implementations in lan-
guages other than Scheme. The Microscheme compiler is
a recursive-descent, 4-pass cross-compiler, hand-written in
pure C (99), directly generating AVR assembly code which



is in turn assembled by the ‘avr-gcc’ assembler, and up-
loaded using the ‘avrdude’ tool [12]. It is designed to run
on any platform on which the avr-gcc/avrdude toolchain will
run. (And therefore, any platform on which the official Ar-
duino IDE will run.)

2. The Language
Microscheme is based around ten fundamental forms: con-
stants, variable references, definitions, ‘set!’, ‘begin’, ‘if’,
lambda expressions and procedure calls as well as the ‘and’
and ‘or’ control structures. ‘Let’ blocks are compiled as
lambda expressions via the canonical equivalence. An ‘in-
clude’ form is provided to enable code re-use. The available
primitive procedures include arithmetic operators, type pred-
icates, vector and pair primitives, Arduino-specific IO and
utility functions. Microscheme has comments and strings
(compiled as vectors of chars). There is no provision for
hygienic macros, of a ‘foreign function interface’. Mi-
croscheme has no Symbol type and no ‘quote’ construct,
but has a variadic (list a b c ...) primitive for build-
ing lists.

The following code listing shows a successful Microscheme
program for driving a four-wheeled robot using stepper mo-
tors. The speed and direction of stepper motors are con-
trolled by sending pulses to a number of ‘coils’. Stepper
motor control is achieved in Microscheme by defining a list
of 4 integers for each motor, corresponding to digital I/O
pins, to which pulses are sent in sequence to achieve rotation.
The ‘list.ms’ Microscheme library provides common higher-
order functions such as ‘for-each’ and ‘reverse’, which are
used throughout this program.

The following program runs comfortably inside even the
leanest Arduino device. But, due to its lack of garbage col-
lection, some Microscheme programs will simply run out
of available RAM before completion. In fact, it is possi-
ble to program in a heap-conservative style. By making sure
that expressions causing new heap space to be allocated are
placed outside of “loops” in the program, and using mutable
data structures, programs can easily be written which do not
run out of RAM. Even programs which run indefinitely can
be designed to survive without garbage collection. This is
unsatisfactory, however, because such a style is a departure
from the established and intended character of Scheme.

Microscheme currently contains an unorthodox, last-resort
primitive for memory recovery of the form (free! ...).
The expressions within the free! form are evaluated, but any
heap space allocated by them is re-claimed afterwards. This
feature is a bad idea for all sorts of reasons, and it is best
characterised as “avoiding garbage collection by occasion-
ally setting fire to the trash can”. On the other hand, since
Microscheme has no provision for multi-threading, it is pos-
sible to use it safely.

;; Include UNO pin number mappings

(include "libraries/io_uno.ms")

;; And common list processing functions

(include "libraries/list.ms")

; The left and right stepper motors are

defined as lists of four I/O pins ,

set as outputs.

(define mleft (list 4 5 6 7))

(define mright (list 11 10 9 8))

(for-each output mleft)

(for-each output mright)

; This procedure takes two lists of pins ,

and sends pulses to them in sequence

(define (cycle2 m1 m2)

(or (null? m1) (null? m2)

(begin

(high (car m1))

(high (car m2))

(pause 4)

(low (car m1))

(low (car m2))

(cycle2 (cdr m1) (cdr m2)))))

; To move the robot forward X units ,

cycle both motors 32*X times.

(define (forward x)

(for 1 (* x 32) (lambda (_)

(cycle2 mleft mright))))

; To rotate the robot to the right , cycle

the left motor fowards and the right

motor in reverse. &vv.

(define (right x)

(for 1 (div (* x 256) 45) (lambda (_)

(cycle2 mleft (reverse mright)))))

(define (left x)

(for 1 (div (* x 256) 45) (lambda (_)

(cycle2 (reverse mleft) mright))))

; This procedure recursively defines one

side of a Koch snowflake

(define (segment level)

(if (zero? level)

(forward 1)

(begin

(segment (- level 1))

(left 60)

(segment (- level 1))

(right 120)

(segment (- level 1))

(left 60)

(segment (- level 1)))))

; Drive the robot around one side of a

third order Koch snowflake

(segment 3)



Type Upper Byte Lower Byte
b7 b6 b5 b4 b3 b2 b1 b0 b7 b6 b5 b4 b3 b2 b1 b0

Integer 0 data× 15
Pair 1 0 0 address× 13

Vector 1 0 1 address× 13
Procedure 1 1 0 address× 13
Character 1 1 1 0 0 - - - char × 8

Null 1 1 1 0 1 - - - - - - - - - - -
Boolean 1 1 1 1 1 0 0 b - - - - - - - -

Unused 1 1 1 1 0 - - - - - - - - - - -

Table 1: Data tagging arrangement

3. Runtime System Design
3.1 Type System

Scheme has a strong, dynamic, latent type system. It is
strong in the sense that no type coercion occurs, any value
stored in memory has a definite type, and procedures are
only valid for a specific set of types. It is dynamic in the
sense that variable names are not prescribed types by the
programmer, and a given identifier can be bound to values
of any type during runtime. Therefore, it is necessary for
values to ‘carry around’ type information at runtime, which
is referred to as latent typing. A consequence of dynamic
typing that functions might be presented with values at run-
time which are not of the expected type, and so runtime
exceptions must be caught and reported. The built-in types
supported by Microscheme are procedures (functions), in-
tegers1, characters, Booleans, vectors, pairs and the empty
list (a.k.a. null), which is considered to be a unique type.
Linked lists are built recursively using pairs and the empty
list. Strings are supported by the compiler, and are com-
piled as vectors of characters. Though this range of built-
in types is minimal, it is powerful enough that richer types
may be implemented ‘on top’. For example, ‘long integer’
and ‘fixed-point real’ libraries have been developed for Mi-
croscheme, which use pairs of integers to represent numbers
with higher precision. Providing a ‘numerical stack’ by com-
bining simpler types is precisely in the spirit of Scheme min-
imalism.

Table 1 shows the data tagging scheme used. It was chosen
to use fixed memory cells of 16 bits for all global variables,
procedure arguments; closure, vector and pair fields. Cells
of 16 bits are preferable because they can neatly contain
13-bit addresses (for 8KB of addressable RAM), as well
as 15-bit integers. Although 32-bits or more is the modern
expectation for integer types; this is a 8-bit computer, and so
a compromise was made. The instruction set contains some
restricted 16-bit operations such as addition ‘ADDIW’ and

1 We choose to say ‘integer’ rather than ‘fixnum’, to maximise familiarity
for all readers

subtraction ‘SBIW’, so 16-bit arithmetic is reasonably fast.
(Those instructions are restricted in the sense that they can
only be used on certain register pairs.)

The tagging scheme is biassed to give maximum space for
the numeric type. The MSB (most significant bit) of every
value held by Microscheme is dedicated to differentiating
between ‘integers’ and ‘any other type’. It is important that
the MSB is zero for integer values, rather than one, because
this simplifies the evaluation of arithmetic expressions. Nu-
meric values can be added together, subtracted, multiplied or
divided without first removing the data tag. A mask must still
be applied after the arithmetic, because the calculation could
overflow into the MSB and corrupt the data tag. At the other
end of the spectrum, Booleans are represented inefficiently
under this scheme, with 16 bits of memory used to store a
single Boolean value. The richer types are represented fairly
efficiently, with 13-bit addressed pointing to larger heap-
allocated memory cells. Overall, this system provides a com-
pact representation for the most commonly used data types;
as necessitated by the constraints of the Arduino platform.
There is scope for the addition of extra built-in types in the
future, as values beginning 11110− are currently unused.

Microscheme’s strong typing is achieved by type checking
built-in to the primitive procedures. When bit tags are used
to represent data types, type checking is achieved by apply-
ing bit masks to data values, which corresponds directly with
assembly instructions such as ‘ANDI’ (bitwise AND, imme-
diate) and ‘ORI’ (bitwise OR, immediate). Therefore, low-
level type checking is achieved in very few instructions. The
tagging scheme allows for ‘number’ type checking in even
fewer operations, using a special instruction which tests a
single bit within a register:

SBRC CRSh , 7

; skip next if bit 7 of CRS is clear

JMP error_notnum

; jump to the 'not a number ' error

This is precisely how type checking is achieved on the argu-
ments to arithmetic primitives.



3.2 The Stack

By eschewing first-class continuations, it is possible to im-
plement Scheme using activation frames allocated in a last-
in first-out data structure, as in a conventional call stack,
rather than a heap-allocated continuation chain; thus exploit-
ing the efficient built-in stack instructions with which most
microprocessor architectures are equipped. Microscheme
uses a call stack in this way.

Since a program without first-class continuations will always
be evaluated by a predictable traversal of the nested con-
structs of the language, activation frames on the stack can
safely be interleaved with other data, providing a pointer
to the current activation frame (AFP = Activation Frame
Pointer) is maintained. Therefore, the stack is also used
freely within lower-level routines such as arithmetic prim-
itives, so the stack is used at once as a call stack and an
evaluation stack. Any Microscheme procedure takes its ar-
guments from the stack, and stores a single result in a special
register (CRS = Current ReSult).

3.3 Memory Layout

The available flash memory (RAM) is allocated the address
range 0x200 to 0x21FF for the Arduino MEGA (and 0x100

to 0x8FF for the Arduino UNO). Such differences are han-
dled by model-specific assembly header files, included au-
tomatically at compile-time, containing definitions (such as
RAM start/end addresses, dependant on the installed mem-
ory size) derived from the relevant technical data sheets. Dif-
ferent ATMega chips could easily be supported by writing
equivalent definition files. Microscheme uses the first 2× n
bytes of RAM for global variable cells, where n is the num-
ber of global variables in the program. The remainder of the
space is shared between the heap and the stack, in the famil-
iar “heap upwards, stack downwards” arrangement.

Objects on the heap are not restricted to the two-byte cell
size used elsewhere. The built-in procedures to work with
heap-allocated objects determine the size of each particular
object from the information contained within it. Procedures,
pairs, and vectors are heap-allocated types. When a value
of these types is held by a variable, the 2-byte variable
cell contains the appropriate data type tag, followed by a
13-bit memory address, pointing to the start of the area of
heap space allocated to that structure. Therefore, there is a
built-in layer of indirection with these types. Figure 1 shows
the layout of the objects in detail. Note that the closure
object contains a ‘parent closure’ reference. This forms a
traversable chain of closures for each procedure object to
its enclosing procedures, as required for lexical scoping.

3.4 Register Allocation

The ATmega series of micro-controllers are purported to
have 32 general-purpose registers [2]. In reality, most of
these registers are highly restricted in function, and the nu-

. . .

car low Reference Address

car high Ref + 1

cdr low Ref + 2

cdr high Ref + 3

Pair object

. . .

length low Reference Address

length high Ref + 1

element 1 low Ref + 2

element 1 high Ref + 3

element 2 low Ref + 4

element 2 high Ref + 5

. . .

element n low Ref + 2n

element n high Ref + 2n+ 1

Vector object

. . .

arity Reference Address

entry low Ref + 1

entry high Ref + 2

parent closure low Ref + 3

parent closure high Ref + 4

cell 1 low Ref + 5

cell 1 high Ref + 6

cell 2 low Ref + 7

cell 2 high Ref + 8

. . .

cell n low Ref + 2n+ 3

cell n high Ref + 2n+ 4

Closure object

. . .

Figure 1: Heap-allocated object layout

For details of the stack layout, see section 3.5.

ances in the following allocation are crucial to the feasibility
of Microscheme.



r0 MULX r16 GP1
r1 r17
r2 TCSS r18 GP2
r3 r19
r4 falseReg r20 GP3
r5 zeroReg r21
r6 unused r22 PCR
r7 r23 unused
r8 unused r24 CCP
r9 r25

r10 unused r26 HFP
r11 r27
r12 unused r28 CRS
r13 r29
r14 unused r30 AFP
r15 r31

Table 2: Register Allocation Table

The Microscheme runtime system requires 4 registers to be
reserved for special purposes. The ‘CCP’ (Current Closure
Pointer) stores a reference to the ‘closure’ or ‘procedure
object’ of the currently executing procedure, if any. The
‘HFP’ (Heap Free Pointer) stores the address of the next
available byte of heap-storage; where any new heap object
should be allocated. The ‘CRS’ (Current ReSult) stores the
result of the most recently evaluated expression, or sub-
expression. Finally, the ‘AFP’ (Activation Frame Pointer)
points to the first byte of the current ‘Activation Frame’
on the stack. This is where procedure arguments are found.
These four values require 16 bits each, and are placed in
the register pairs (24:25) to (30:31) so that 16-bit arithmetic
operations may be used, as discussed in section 3.1.

The first major challenge with these allocations is that each
of the CCP, HFP, CRS and AFP will—at some point—
hold memory addresses to be dereferenced. However, the
instruction for indirect memory access is only valid on the
final three register pairs. The chosen solution is to place the
CCP in register pair (24:25). When the CCP is dereferenced,
Microscheme swaps it into the pair (26:27), performs the
necessary memory access, then swaps it back again. This is
based on the plausible estimation that closure lookup is less
frequent than argument lookup, writing to the heap or using
the result of the previous calculation.

The allocation is further restricted by the fact that the
IJMP instruction—for branching to a code address stored in
memory—is only valid on the register pair (30:31). Ideally,
therefore, this pair should be reserved for use when calling
a procedure. This would mean relegating the HFP, CRS or
AFP to another register pair, as with the CCP, and swap-
ping them in when necessary. This is really not acceptable,
because those registers are frequently used in all programs.
The chosen solution is to temporarily ‘break’ the register

allocation during a procedure call. When a procedure call is
reached, the register pair (30:31) is temporarily overwritten
with the target code address, and the callee is expected to re-
store the value. This arrangement works out neatly, because
the value of the Activation Frame Pointer changes during a
procedure call. Its new value is equal to that of the Stack
Pointer, immediately after the context switch. Therefore, the
callee procedure can restore the AFP with two simple in-
structions: IN AFPl, SPl and IN AFPh, SPh.

The final restriction to the allocation table is that the in-
structions ‘LDD’ and ‘STD’, for indirect memory address
with constant displacement, are only available on the final
two register pairs. This instruction is crucial for working ef-
ficiently with heap-allocated objects. Figure 1 shows how
heap-allocated objects are structured with a single reference
address, followed by data fields which appear at some calcu-
lable displacement from it. Using the ‘LDD’ and ‘STD’ in-
structions, those fields can be accessed with a single instruc-
tion. Therefore, the CRS is allocated to register pair (28:29),
because it will sometimes store references to heap-allocated
objects. By elimination, the HFP must be allocated to regis-
ters (26:27).

Altogether, the register allocation is extremely dense, and
deals with a large number of instruction set nuances to min-
imise the number of instructions generated. Some of the re-
maining registers (with restricted uses) are used to speed up
certain low-level routines, and registers 6 thru 15 are avail-
able for use by future features such as a garbage collector.
The register/instruction set restrictions are a significant lim-
iting factor to the provision of high-level language features.
By eschewing first-class continuations, a design has been
found that produces reasonably few instructions, while re-
taining a nucleus of functional features (including first class
functions, higher order functions, lexical scope and closures)
and is recognisably a subset of Scheme.

3.5 Calling Convention

Figures 2, 3 and 4 show typical assembly listings for a
procedure call, and the layout of activation frames. Between
them, these demonstrate the calling convention for standard
(non tail-recursive) procedure calls.

The code for a procedure call is rather long, in comparison to
a typical C function call, because a Scheme procedure call
is a rather more sophisticated act. Scheme has a dynamic
type system, and allows any expression to take the place of
‘procedure name’ in the procedure call form. This is a cru-
cial part of the ‘functions are first-class values’ idea, as it
allows for higher-order procedure calls: where the result of
a procedure is itself a procedure, which is, in turn, called.
However, it is not practicable to determine, before runtime,
whether that expression will in fact evaluate to a procedure.
By the same token, it is not possible to determine before-
hand whether the correct number of arguments are given



PUSH AFPh ; Push the current AFP onto the stack

PUSH AFPl

LDI GP1 , hi8(pm(proc_ret_χ)) ; Push the return address onto the stack

PUSH GP1

LDI GP1 , lo8(pm(proc_ret_χ))
PUSH GP1

PUSH CCPh ; Push the current CCP onto the stack

PUSH CCPl

; Repeat for each argument:

[code for argument i] ; Evaluate each outgoing argument

PUSH CRSl ; and push it onto the stack

PUSH CRSh

[code for procedure expression] ; Evaluate the procedure expression

MOV GP1 , CRSh ; Mask out the lower 7 bits of the

ANDI GP1 , 224 ; upper byte of the result

LDI GP2 , 192 ; Check that we 're left with the type

CPSE GP1 , GP2 ; tag for a procedure. Otherwise:

RJMP error_notproc ; jump to the 'not a procedure ' error

ANDI CRSh , 31 ; Mask out the data tag from the procedure

MOV CCPh , CRSh ; The remaining value is the address

MOV CCPl , CRSl ; of the incomming closure object.

LD GP1 , Y; Y=CRS ; Fetch the expected number of arguments

LDI PCR , α ; from the closure object.

CPSE GP1 , PCR ; Check against the given number. Otherwise:

RJMP error_numargs ; jump to the 'number of args ' error

LDD AFPh , Y+1; Y=CRS ; Load the procedure entry address

LDD AFPl , Y+2; Y=CRS ; from the closure into register Z (AFP)

IJMP; context switch ; Jump to that address.

proc_ret_χ: ; On return from the procedure:

POP AFPl ; restore the AFP.

POP AFPh

Figure 2: Procedure Call Routine (Caller Side)

χ = an identifier unique to this procedure call
α = 2× arity of this procedure

proc_entry_χ:
IN AFPl , SPl ; The new activation frame starts wherever

IN AFPh , SPh ; the stack pointer is now

[code for procedure body]

ADIW AFPl , α ; Set the AFP just below the arguments

OUT SPl , AFPl ; Set the stack pointer just below the arguments

OUT SPh , AFPh

POP CCPl ; Restore the old CCP from the stack

POP CCPh

POP AFPl ; Pop the return address , from the stack ,

POP AFPh ; into register Z (AFP)

IJMP ; Jump to that address

Figure 3: Procedure Call Routine (Callee Side)

χ = an identifier unique to this procedure
α = 2× arity of this procedure



. . .

argument n low ← AFP (Activation Frame Pointer)

argument n high AFP + 1

. . .

argument 2 low AFP + 2n− 4

argument 2 high AFP + 2n− 3

argument 1 low AFP + 2n− 2

argument 1 high AFP + 2n− 1

previous CCP l AFP + 2n

previous CCP h AFP + 2n+ 1

previous AFP l AFP + 2n+ 2

previous AFP h AFP + 2n+ 3

return address l AFP + 2n+ 4

return address h AFP + 2n+ 5

Activation Frame

. . .

Figure 4: Activation Frame Layout

for the procedure. These two conditions must be checked
at runtime; costing in the order of 20 clock cycles per pro-
cedure call. The procedure call code has been designed so
that a large segment of it (including those two checks) is
constant across all procedure calls, and can be ‘outlined’ to
a subroutine at the assembly level, saving hundreds of lines
of assembly code (i.e. hundreds of bytes) in the generated
executable.

The calling convention and activation frame are designed
with tail recursion in mind, but are also influenced by the
register restrictions described in the previous section. The
CCP and AFP are changed upon a procedure call, and must
be restored when that procedure returns. The new CCP is set
by the caller, while the AFP must be updated by the callee.
The previous values are saved in the activation frame, along
with the return address and arguments. The AFP is stored
in register pair (30:31), which is also needed for jumping to
instruction addresses held in memory. Therefore, it must be
restored after by the caller, after the procedure has returned.

3.6 Tail Recursion

Scheme implementations are required [1] to be properly
tail recursive. Tail-call-elimination is performed by the Mi-
croscheme compiler at the parsing stage. Procedure calls are
eagerly transformed into tail-calls whenever they are in a tail
context. Unlike ordinary procedure calls, tail calls reuse part

[code for argument i]

PUSH CRSl

PUSH CRSh

[code for procedure expression]

MOVW TCSl , CRSl ; Save proc

ADIW AFPl , [2*α]
OUT SPl , AFPl

OUT SPh , AFPh

SBIW AFPl , [α + β]
LDD GP1 , Z+[β - i]

PUSH GP1

. . .
MOVW CRSl , TCSl ; Restore proc

LDI PCR , %i

MOV GP1 , CRSh

ANDI GP1 , 224

LDI GP2 , 192

CPSE GP1 , GP2

RJMP error_notproc

ANDI CRSh , 31

MOV CCPh , CRSh

MOV CCPl , CRSl

LD GP1 , Y;CRS

CPSE GP1 , PCR

RJMP error_numargs

LDD AFPh , Y+1; Y=CRS

LDD AFPl , Y+2; Y=CRS

IJMP; context switch

Repeat for each incom-
ing argument

Shift all the incoming
arguments down into
the activation frame

This code is the same
for every procedure
call, so it is outlined (at
the assembly level) to a
subroutine

Figure 5: Tail Call Routine (Caller Side)

χ = an identifier unique to this procedure
α = 2× arity of outgoing procedure
β = 2× arity of incoming procedure

of the current activation frame; thus ensuring constant-space
performance for recursive calls, and releasing memory ear-
lier for non-recursive calls. The activation frame (figure 4)
is designed with this operation in mind. The ‘return’ infor-
mation for the enclosing procedure is left in-tact, while the
arguments are overwritten. This causes the callee procedure
to ‘return’ to the enclosing context, instead of the current
context. Figure 5 shows the caller-side calling convention
listing for a tail call.

3.7 Exception Handling

Due to Scheme’s dynamic nature, runtime exceptions are
unavoidable. As well as the procedure call exceptions de-
scribed in section 3.5, there are type, bounds and arithmetic
exceptions, and a ’custom’ exception that may be raised pro-
gramatically (for example, to constrain the domain of a func-
tion). The arduino is a standalone device, with no direct text-
based output, and there is no guarantee that the user will con-
nect any sort of output device to the Arduino. However, the
Arduino standard does guarantee that an LED is connected



to digital pin 13 on any compliant board; and so this is the
only assured means of communicating with the user. There-
fore, digital pin 13 is reserved by Microscheme as a status
indicator. The LED is switched off during normal operation;
but flashes in a predetermined pattern when an exceptional
state is reached. (One flash for ‘not a procedure’, two flashes
for ‘wrong number of arguments’, and so on.) Conversely,
there is no guaranteed means of input whatsoever; so Mi-
croscheme does not support any kind of exception recovery.
When an exceptional state is reached, the device must be re-
set. There is no convenient way of reporting the location at
which the exception occurred, so it is left to the programmer
to determine the program fault by its behaviour up until the
exception.

3.8 Syntactic Sugar

The compiler supports strings, comments and ‘includes’.
Strings are not a distinct type, but are compiled as vec-
tors, where each element of the vector is a character con-
stant. The expression (define message "Hello!") is
syntactic sugar for the less convenient expression (define

message (vector #\H #\e #\l #\l #\o #\!)). True
vectors use approximately half the space of cons-based lists,
and were included in Microscheme specifically to enable
the efficient storage of strings. The disadvantage with vec-
tors is that they cannot easily be concatenated in-place; but
since memory space is at such a premium on the Arduino,
the denser representation is preferable. The (include . . .)
form is treated as an instruction to the parser to include an
external program as a node in the abstract syntax tree (as
is the nature of tree structures). The parser simply calls the
‘lexer’ and ‘parser’ functions separately on the included file,
and makes the resultant Abstract Syntax Tree a node in the
overall tree. ‘Include’ and commenting allow for the devel-
opment of a suite of libraries, and a richer numerical stack.

4. Related Work
Other notable micro-controller-targeting Scheme implemen-
tations include PICOBIT, BIT and ARMPIT Scheme. PICO-
BIT [7] consists of a front-end compiler, and a virtual ma-
chine designed to run on micro-controllers comparable to
the Arduino (less than 10 kB of RAM). This arrangement
is interesting, because the implementation is portable to any
micro-controller platform for which the virtual machine can
be compiled. PICOBIT deliberately targets a subset of the
Scheme standard, on the basis of “usefulness in an embed-
ded context”. First-class continuations, threads and unbound
precision integers are considered useful, while floating-point
numbers and a distinct vector type2 are left out. While the
aims of PICOBIT are closely aligned to this project, Mi-
croscheme will occupy quite a different Scheme subset.

2 Efficient vectors are contiguous arrays, rather than linked lists.

Another impressive virtual-machine based implementation
is BIT [3], which features real-time garbage collection, and
has been ported to different micro-controllers.

ARMPIT Scheme [6] (targeting ARM micro-controllers) is
a well-documented, open-source software project, with a
large number of real-world working examples. Unusually,
ARMPIT’s designers intend that the micro-controller is used
interactively, with a user issuing expressions and awaiting
results via a serial connection. In other words, ARMPIT
turns the micro-controller into a physical REPL (read-eval-
print-loop) machine.

There are other projects which allow control of a micro-
controller via a functional language running on some con-
nected PC, such as via the Firmata library [13]. Though
these tools present a way of ‘controlling an Arduino from
a functional language’, they are clearly an altogether differ-
ent kind of tool than a native compiler. Using such a library,
one could never program an autonomous machine that strays
away from its creator’s workstation.

5. Conclusion
While Microscheme requires further work (notably: research
into the feasibility of garbage collection and provision of a
full suite of libraries) before it can be considered a complete
programming tool, a significant amount of ground has been
covered, and the compiler is in a usable state. By program-
ming in a memory-conservative style (which, in any case,
is an inevitability with this class of device) the adventur-
ous Scheme programmer or Arduino hacker can very rapidly
start writing programs to run natively on the Arduino, and
such programs have proven successful, including:

• Robotic control programs, such as in section 2
• Programs recursively drawing fractals (~200 LOC) Demon-

strating the correctness of the calling convention over
thousands of recursive calls

• Library programs providing functions for digital I/O,
long and fixed-point numeric types, standard higher-
order list functions, ASCII manipulation and interfacing
with LCD modules (~400 LOC)

• ‘Countdown’ program driving a multi-segment LED dis-
play (~200 LOC)

• Program for testing vintage SRAM chips (~300 LOC)
• Program for reading RPM signal from a car engine, driv-

ing a bar-graph LED display (~200 LOC)
• Various programs using an LCD module for text display

Moreover, the details presented here will hopefully find
some educational use, or otherwise fill a gap in the litera-
ture surrounding Scheme implementation.



References
[1] H. Abelson, R. K. Dybvig, C. T. Haynes, et al. Revised5

report on the algorithmic language scheme. Higher-order and
symbolic computation, 11(1):7–105, 1998.

[2] A. Corporation. Atmel ATmega2560 Datasheet, 2009.

[3] D. Dubé and M. Feeley. Bit: A very compact scheme system
for microcontrollers. Higher-order and symbolic computa-
tion, 18(3-4):271–298, 2005.

[4] R. Dybvig. The Scheme Programming Language. MIT Press,
2003. ISBN 9780262541480.

[5] A. Ghuloum. An incremental approach to compiler construc-
tion. In Proceedings of the 2006 Scheme and Functional Pro-
gramming Workshop, Portland, OR. Citeseer, 2006.

[6] H. Montas. Armpit scheme, 2006. URL http://armpit.

sourceforge.net/.

[7] V. St-Amour and M. Feeley. Picobit: a compact scheme sys-
tem for microcontrollers. In Implementation and Application
of Functional Languages, pages 1–17. Springer, 2011.

[8] R. Suchocki. A functional language and compiler for the Ar-
duino micro-controller. Dissertation (u/g), University of War-
wick. Available at www.ryansuchocki.co.uk.

[9] Various. Arduino website, 2014. URL http://www.

arduino.cc.

[10] Various. Avr-gcc website, 2014. URL http://gcc.gnu.

org/wiki/avr-gcc.

[11] Various. Avr-libc website, 2014. URL http://www.

nongnu.org/avr-libc.

[12] Various. Avrdude website, 2014. URL http://www.

nongnu.org/avrdude.

[13] Various. Firmata website, 2014. URL http://www.

firmata.org.

[14] Various. Wiring website, 2014. URL http://wiring.org.

co.


