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Properly devised, stack-precise control-flow analyses—those that model control using a pushdown system—

exhibit the natural and appealing property of context irrelevance under which the result of an evaluation does

not depend on its continuation. The addition of abstract garbage collection to such analyses destroys context

irrelevance as the precise abstract transitions taken during the evaluation of the expression depend on (the

root set of reachability contained in) the continuation. This paper reconciles context irrelevance and abstract

garbage collection by narrowing the scope of the store to just the local environment. Within this narrowed

scope, garbage collection is trivially straightforward. However, with the store no longer acting as a global

repository of effects, we require an explicit channel between evaluations to communicate effects. We define

an effect log for each evaluation to act as this channel, which we can apply to explicitly propagate effects.

After the dust settles, we’re left with a fully-compositional analysis that exhibits the benefits of perfect stack

precision, garbage collection, and context irrelevance.
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1 INTRODUCTION
Abstract garbage collection [Might and Shivers 2006] and the use of pushdown systems [Earl et al.

2010; Vardoulakis and Shivers 2011] each enhance the precision of control-flow analysis (CFA).

Abstract garbage collection reduces the use of abstract heap space, thereby avoiding the conflation

of distinct heap data by CFA. The use of pushdown systems to model control flow allows abstract

returns to be matched precisely with their corresponding calls, thereby avoiding the conflation of

distinct control paths by CFA.

A natural question is whether these enhancements can be combined so that a CFA can benefit

from both simultaneously. A difficulty arises because a pushdown analysis decreases the information

the analysis can obtain about the stack at any given point while abstract garbage collection demands

fairly comprehensive access to the stack to calculate the root set of reachability. Earl et al. [2012]

overcome this difficulty with an intricate mechanism to provide the garbage collector with an

overapproximation of the root set without revealing the precise structure of the stack. Thus, they

are able to reconcile the tension between these two enhancements and the resultant analysis

simultaneously enjoys the increased precision each offers.

However, this reconciliation comes at the cost of context irrelevance [Johnson and Van Horn

2014], the property that a given evaluation, absent control effects, should be independent of its

continuation. (In general, stack-precise CFAs—i.e. CFAs that model control flow using pushdown

systems—natively exhibit this property.) Context irrelevance allows us to, e.g., reason locally about

evaluation and memoize our (abstract) interpreters. The issue is that, contrary to the concrete

Authors’ addresses: Kimball GermaneBrigham Young University; Michael D. AdamsUniversity of Utah.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

2475-1421/2019/7-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

2019-07-20 00:19. Page 1 of 1–15. Proc. ACM Program. Lang., Vol. Scheme, No. 1, Article . Publication date: July 2019.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


2 Kimball Germane and Michael D. Adams

setting, garbage collection is semantically relevant in the abstract setting: its presence influences

the state space explored by the analysis. Hence, an approach to abstract garbage collection which

relies on the stack (e.g. for reachability roots) causes evaluation (state-space exploration) to depend

on the continuation (stack) and thereby violate context irrelevance.

This paper introduces an alternative reconciliation of abstract garbage collection and pushdown

systems which preserves context irrelevance.

The key idea is to narrow the scope of the store to only its associated configuration—expression

and closing environment. So narrowed, the store does not close the continuation and therefore

garbage collection does not need to obtain reachability roots from the stack to proceed. Of course,

the continuation needs to be closed to preserve future evaluation. Our key insight is that, when

control flow is modelled by a pushdown system (so that returns are precisely matched to their calls),

the store of the caller is available at the return point. This store closes the caller frame, making it

unnecessary for the callee store to close it. By similar reasoning, the caller’s store itself need not

close the frame of the caller’s caller. Inductively, each stack frame is closed by its own store.

When the role of the store is limited in this way, the store of the caller is restored in a particular

sense when the call returns. In other words, this role induces a compositional treatment of the store

(as opposed to threading it through evaluation). Of course, when the store is no longer threaded

through evaluation, it can no longer be used to accumulate bindings and communicate effects, such

as mutation. We fill this gap by communicating effects through an effect log produced by each

evaluation. This log can be applied to the caller’s store to replay the relevant effects performed

during evaluation of the call. Effect logs are compositional also: when evaluating compound

expressions, we can compose the effect logs of the subexpressions’ evaluation to obtain the effect

log of the overall expression’s evaluation.

Once we have made this change in the analysis, the environment and store are each treated

compositionally. But we observe that, almost naturally, we treat the abstract time compositionally

as well, rather than threading it through evaluation. The effect of this treatment is a shift from the

last-k-call-sites context abstraction of k-CFA [Shivers 1991] to the top-m-stack-frames abstraction

ofm-CFA [Might et al. 2010]. This appearance ofm-CFA’s context abstraction is, to our knowledege,

the first in a setting with perfect stack precision.

In the end, by treating each of the machine components compositionally, we are able to craft a

control-flow analysis that enjoys the benefits of perfect stack precision, garbage collection, context

irrelevance, and the highly-effectivem-CFA context abstraction.

We introduce the core language we will use throughout the paper in the next section. We review

abstract garbage collection in Section 3 by adding it to a small-step semantics for our language. We

then transition toward an alternative approach to garbage collection through a series of big-step

semantics in Section 4. In Section 5, we abstract the culmination of this series to obtain a sound,

computable control-flow analysis using this alternative approach. We discuss related work in

Section 6 and conclude in Section 7.

2 A-NORMAL FORM λ-CALCULUS
For presentation, we keep the language small: we use a unary λ-calculus in A-normal form [Flana-

gan et al. 1993], the grammar of which is given below.

Exp ∋ e ::= ce | letx = ce in e

CExp ∋ ce ::= ae | (ae0 ae1) | set!x ae

AExp ∋ ae ::= x | λx .e

Var ∋ x [an infinite set of variables]
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Stack-Liberated Abstract Garbage Collection 3

A proper expression e is a let-expression or a call expression ce. A let-expression binds a variable to

the result of a call expression. (Restricting the bound expression to a call expression prevents let-
expressions from nesting there, a hallmark ofA-normal form.) A call expression e is an application,

a set!-expression, or an atomic expression ae. An atomic expression ae is a variable reference or a λ
abstraction.

Atomic expressions are trivial [Reynolds 1998]. We include set!-expressions to produce mutative

effects that must be threaded through evaluation. For our purposes, we consider a set!-expression
"serious" [Reynolds 1998] since it has an effect on the store.

A program is a closed expression; we assume (without loss of generality) that programs are

alphatised—that is, each bound variable has a distinct name.

We will refer to the set of application expressions by App at various places throughout the paper.

3 ABSTRACT GARBAGE COLLECTION
Might and Shivers [2006] introduced abstract garbage collection in a stack-imprecise CFA

1
of a

small-step semantics. Earl et al. [2012] ported abstract garbage collection to a stack-precise CFA of

a small-step semantics. In this section, we define a small-step semantics over our language and add

garbage collection to it. The resultant small-step semantics with garbage collection will then serve

as a common framework in which to discuss details of stack-imprecise and stack-precise CFAs

within it.

We first establish some semantic domains in the next subsection. Elements of these domains

appear in the following sections as well as Section 4. We then formally define a small-step semantics

over our language using these domains. We then add abstract garbage collection to our semantics.

Once we’ve reached this point, we discuss stack-imprecise and stack-precise CFAs of it.

3.1 Semantic Domains
Following are some semantic components that we will use heavily throughout the rest of the paper.

v ::= (λx .e, ρ) ρ ∈ Env = Var ⇀ BindContext

c ∈ BindContext = App∗ σ ∈ Store = Var × BindContext ⇀ Val

Cont ∋ κ ::= mt | lt(x, ρ, e, c,κ)
A value v is closure, a pair of a λ abstraction and an environment which closes it. An environment

ρ is a finite map from variables x to binding contexts c . Let ρ |e denote the restriction of the domain

of the environment ρ to the free variables of e . A binding context c is a finite sequence of call sites.
A store σ is a map from bindings to values where a binding consists of a variable and a context. A

continuation κ is either the empty continuation or the continuation of a let binding.

3.2 A Small-Step Abstract Machine Semantics
We define our first concrete semantics as a small-step relation over abstract machine states. The

state space of our machine is given formally as follows.

ς ∈ State =Eval + Apply

ςev ∈ Eval =Exp × Env × Store × Cont × BindContext

ςap ∈ Apply =Store × Cont × Val

Machine states come in two variants. An Evalmachine state represents a point in execution in which

an expression will be evaluated; it contains registers for an expression e , its closing environment ρ,
the store σ , the continuation κ, and the binding context c . An Apply machine state represents a

1
By which we mean a CFA which does not precisely match returns to the corresponding calls.
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4 Kimball Germane and Michael D. Adams

Let

ev(letx = ce in e, ρ,σ ,κ, c) →ev ev(ce, ρ,σ , lt(x, ρ, e, c,κ), c)

Call

(λx .e, ρ ′) = aeval(σ , ρ, ae0) v = aeval(σ , ρ, ae1) c ′ = (ae0 ae1) :: c
σ ′ = σ [(x, c ′) 7→ v] ρ ′′ = ρ ′[x 7→ c ′]

ev((ae0 ae1), ρ,σ ,κ, c) →ev ev(e, ρ ′′,σ ′,κ, c ′)

Set!

v = aeval(σ , ρ, ae) a = (x, ρ(x)) σ ′ = σ [a 7→ v]

ev(set!x ae, ρ,σ ,κ, c) →ev ap(σ ′,κ, (λx.x,⊥))

Atomic

v = aeval(σ , ρ, ae)

ev(ae, ρ,σ ,κ, c) →ev ap(σ ,κ,v)

Apply

ρ ′ = ρ[x 7→ c ′] σ ′ = σ [(x, c ′) 7→ v]

ap(σ , lt(x, ρ, e, c ′,κ),v) →ap ev(e, ρ ′,σ ′,κ, c ′)

Fig. 1. Small-step abstract machine semantics

point in execution at which a value is in hand and must be delivered to the continuation; it contains

registers for the store σ , the continuation κ, and the value v to deliver.

Figure 1 contains the definitions of two relations over machine states, the union of which

constitutes the small-step relation. The →ev relation transitions an Eval state to its successor. The

Let rule pushes a continuation frame to save the bound variable, environment, body, and binding

context. The resultant Eval state is poised to evaluate the bound expression ce. The Call rule uses
aeval to obtain values for each of the operator and argument. After deriving a new binding context,

it extends the store and environment with the new context and arranges for evaluation of the

operator body in the new context. The Set! rule remaps a location in the store designated by a

given variable (which is resolved in the environment) to a value obtained by aeval. It returns the
identity function. The Atomic rule evaluates an atomic expression.

aeval(σ , ρ, x) = σ (x, ρ(x)) aeval(σ , ρ, λx .e) = (λx .e, ρ |λx .e )

The Apply rule applies a continuation to a value, extending the environment and store, restoring

the binding context, and arranging for the evaluation of the let body.
It’s worth mentioning which quantities we thread through evaluation and which we treat

"compositionally". The store and continuation are threaded through evaluation; each transition

passes each of them, or some close derivative, to the next state. On the other hand, environments

are treated compositionally. This is necessary because the language is lexically-scoped, so the

environment within an evaluation context must be restored when evaluation concludes. In a k-CFA,
a timestamp which is threaded through evaluation serves as the binding context. Here, rather than

threading a timestamp, we introduce a new binding context for the evaluation of procedure bodies

but restore the old when the procedure returns. By treating it this way, we obtain them-CFA context

abstraction [Might et al. 2010] which is arguably superior in general to the k-CFA abstraction. We

will continue to treat it compositionally even after the transition to a stack-precise CFA, yielding

pushdownm-CFA, a combination which has not appeared in the literature to our knowledge.
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3.3 Garbage-Collecting Concrete Semantics
We now extend the semantics presented in the previous section with garbage collection. This

extension will have no effect on the behavior of programs—at least in this exact setting.

We perform garbage collection on Apply states where root set of reachability lies in the continu-

ation and value components. We define a family root of functions to extract the reachability root

set from these and related components.

rootv (λx .e, ρ) = rootρ (ρ) rootκ (mt) = ∅

rootρ (ρ) = ρ rootκ (lt(x, ρ, e, c,κ)) = rootρ (ρ |e ) ∪ rootκ (κ)

The rootv metafunction extracts the root addresses from a closure by using rootρ to extract the root
addresses from its environment. By the rootρ metafunction, the root addresses of an environment

are simply the variable–context pairs that define it. That is, the definition of rootρ views its

argument ρ extensionally as a set of variable–context pairs. The rootκ metafunction extracts the

root addresses from a continuation. The empty continuation has no root addresses whereas the

root addresses of a non-empty continuation are those of its stored environment combined with

those of the continuation it extends.

We then define a reachability relation →σ over addresses parameterized by a store σ defined by

a0 →σ a1 ⇔ a1 ∈ rootv (σ (a0))

We then define the reachability of a root set with respect to a store

R(σ ,A) = {a′ : a ∈ A,a →∗
σ a′}

where→∗
σ is the reflexive, transitive closure of →σ . From here, we obtain the transition

GC

A = rootκ (κ) ∪ rootv (v) σ ′ = σ |R(σ ,A)

ap(σ ,κ,v) →GC ap(σ ′,κ,v)

where σ |R(σ ,A) is σ restricted to the reachable addresses R(σ ,A). We compose this garbage-

collecting transition with the standard Apply transition so that the garbage-collected semantics are

→ev ∪ →GC ◦ →ap.

3.4 Stack-Imprecise CFA with Garbage Collection
With a small-step abstract machine semantics with garbage collection, we can apply a systematic

abstraction technique such as Abstracting Abstract Machines (AAM) [Van Horn and Might 2010] to

obtain a stack-imprecise CFA of them. For space reasons, we elide a full formal presentation of the

CFA but instead focus on some relevant features.

The AAM abstraction technique largely applies component-wise to the semantic domains of

the analysis and leaves the overall structure of the semantic state space intact. The top level in

particular is largely preserved and becomes�State =Êval +�Apply
Êval =Exp × Ênv × �Store × �ContAddr × �BindContext�Apply =�Store × �ContAddr × V̂al

where each component is replaced by a counterpart abstract component. The two exceptions to

this are the expression component Exp which remains untouched and the continuation component

Cont which becomes a continuation address
�ContAddr identifying a store-allocated continuation.

One critical aspect of the abstraction process is the finitization of the store: whereas the domains of
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concrete stores are unbounded, the domains of abstract stores are explicitly bounded. In consequence,

the analysis will often obtain an address at which to map some abstract resource only to find that

it is already in use. In this case, the analysis joins the resources, and any access at that address will

yield an approximation of each. As we discuss shortly, this phenomenon is strongly intertwined

with garbage collection.

The first relevant observation about the abstracted semantics is that the structure of the abstract

continuation is embedded completely within the store. Since each
�Apply contains the entirety of

its continuation component, performing abstract garbage collection is largely a matter of porting

the machinery from the exact semantics, and is straightforward.

The second relevant observation about the abstracted semantics concerns the abstracted version

of the Call rule, defined
Call

(λx .e, ρ̂ ′) ∈ �aeval(σ̂ , ρ̂, ae0) v̂ = �aeval(σ̂ , ρ̂, ae1) ĉ ′ = ⌊(ae0 ae1) :: ĉ⌋m
σ̂ ′ = σ̂ [(x, ĉ ′) 7→ v̂] ρ̂ ′′ = ρ̂ ′[x 7→ ĉ ′]

ev((ae0 ae1), ρ̂, σ̂ , α̂, ĉ)→̂evev(e, ρ̂ ′′, σ̂ ′, α̂, ĉ ′)

Modulo the metavariable names denoting abstracted elements, this rule is identical to that of the

exact semantics except for two aspects: First, the abstract evaluation of the operator ae0 may yield

multiple closures and the analysis considers the application of each.
2
Second, the binding context

ĉ ′ is defined as the length-m prefix of its concrete counterpart (obtained via ⌊·⌋m ).

Regular application of abstract garbage collection reaps stale bindings from the store. Then, later

allocations that would have found an address in use will instead find it free. In effect, garbage

collection causes addresses to map to fewer abstract values which we observe in particular when

we determine the value of an operator.

3.5 Stack-Precise CFA with Garbage Collection
Stack-imprecise CFAs typically allocate the continaution in the store, subjecting it to the same

nondeterminism that afflicts store-allocated values. Where value nondeterminism manifests as

evaluation yielding multiple values, continuation nondeterminismmanifests as evaluation returning

to multiple points. Stack-precise CFAs, on the other hand, do not allocate it in the store but instead

factor it out of machine states to manage it globally. (Some CFAs factor the store out of machine

states to manage globally, part of widening the store. In a sense, factoring out the continuation is

part of widening the continuation.) Once factored, the state space of machine states is defined

State =Eval + Apply

Eval =Exp × Env × Store × BindContext

Apply =Store × Val

before abstraction. Eval states become evaluation configurations and Apply states become evaluation
results. Except for the presence of the binding context, these are the same shapes one finds in actual

stack-precise CFAs [Darais et al. 2017; Vardoulakis and Shivers 2011; Wei et al. 2018].

However, factoring the continuation out and ceding control of it to the analysis presents an

obstacle to abstract garbage collectionwhich needs to extract the root set of reachable addresses from

it. Earl et al. [2010] developed a technique by which the analysis could introspect the continuation

and offer as a primitive the extraction of the root set of reachable addresses from the continuation.

Johnson et al. [2014] refined this "fully-precise" technique and offered an "approximate" technique

2
Due to the inherent imprecision of analysis, not every abstractly-applied closure will necessarily appear in a corresponding

call under the exact semantics. Such closures, initiating spurious control paths, waste analysis effort and this waste

compounds as the exploration of spurious paths leads to the discovery of yet more.
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that introduced this set of root addresses as a component in the evaluation configuration. Darais

et al. [2017] showed that the Abstracting Definitional Interpreters-approach is compatible with this

latter technique.

These techniques, while effective at admitting abstract garbage collection to stack-precise CFAs,

violate context irrelevance (in spirit, if not outright). In terms of the initial semantics of Sec-

tion 3.2, context irrelevance is the property that ev(e, ρ,σ ,κ, c) →+ ap(σ ′,κ,v) if and only if

ev(e, ρ,σ ,κ ′, c) →+ ap(σ ′,κ ′,v) which is to say that the evaluation of a configuration is unaffected

by its continuation. A stack-precise CFA of this small-step semantics (but without abstraction

garbage collection) exhibits context irrelevance in this same way. Because abstract garbage col-

lection modifies the store non-monotonically, it prevents (spurious) control paths from being

explored and changes the store yielded by those that are explored. Thus, the abstract evaluation of

a configuration becomes dependent on (the reachability roots embedded in) its continuation. The

"approximate" technique that introduces the set of root addresses as a component in the evalua-

tion configuration vacuously restores context irrelevance by distinguishing otherwise-identical

configurations based on the continuation. That is, the states ev(e, ρ,σ ,κ, c) and ev(e, ρ,σ ,κ ′, c)
with identical configurations but distinct continuations become the continuation-less evaluation

configurations ev(e, ρ,σ ,A, c) and ev(e, ρ,σ ,A′, c) with distinct root address sets A and A′
. This

address set is a close approximation of the continuation and effectively preserves context relevance
in the semantics.

4 FROM THREADED TO COMPOSITIONAL STORES
In this section, we present a series of four semantics that gradually transition from a threaded

treatment of stores without garbage collection to a compositional treatment of stores with garbage

collection. We define each of these semantics in terms of big-step judgments of (or close to) the

form σ , ρ, c ⊢ e ⇓ (v,σ ′). This judgment expresses that the evaluation configuration consisting of

the expression e under the store σ , environment ρ, and timestamp c evaluates to the evaluation
result consisting of the value v and the store σ ′

.

Formulating our semantics in big-step style offers two advantages to our setting: First, we can

readily express them by big-step definitional interpreters at which point we can apply systematic

abstraction techniques [Darais et al. 2017; Wei et al. 2018] to obtain corresponding CFAs exhibiting

perfect stack precision. Second, they emphasize the availability of the configuration store at

the delivery point of the evaluation result; this availability is crucial to our ability to shift to a

compositional treatment of the store.

4.1 Threaded-Store Semantics
To orient ourselves to the big-step setting, we present the reference semantics for our language in

big-step style in Figure 2. This reference semantics is equivalent to the reference semantics given in

small-step style in Section 3.2 except that there is no correspondingApply rule; its responsibility—to

deliver a value to a continuation—is handled implicitly by the big-step formulation. In terms of big-

step semantics, this reference semantics is characterized by the threading of the store through each

rule; the resultant store of evaluation is the configuration store plus the allocation and mutation

incurred during evaluation. Hence, we refer to this semantics as the threaded-store semantics. We

use natural numbers as store subscripts in each rule to emphasize the store’s monotonic increase.

A program pr is evaluated in an initial configuration with an empty store ⊥, an empty envi-

ronment ⊥, and an empty binding context ⟨⟩. In such a configuration, pr evaluates to a value v if

⊥,⊥, ⟨⟩ ⊢ pr ⇓ (v,σ ).
The Let rule evaluates the bound call expression ce under the incoming environment and store.

If evaluation results in a value–store pair, this incoming environment is extended with a binding

2019-07-20 00:19. Page 7 of 1–15. Proc. ACM Program. Lang., Vol. Scheme, No. 1, Article . Publication date: July 2019.
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Let

σ0, ρ, c ⊢ ce ⇓ (v0,σ1) ρ ′ = ρ[x 7→ c] σ2 = σ1[(x, c) 7→ v0] σ2, ρ
′, c ⊢ e ⇓ (v,σ3)

σ0, ρ, c ⊢ letx = ce in e ⇓ (v,σ3)

Call

((λx .e, ρ0),σ1) = aeval(σ0, ρ, ae0) (v1,σ2) = aeval(σ1, ρ, ae1) c ′ = (ae0 ae1) :: c
ρ1 = ρ0[x 7→ c ′] σ3 = σ2[(x, c

′) 7→ v1] σ3, ρ1, c
′ ⊢ e ⇓ (v,σ4)

σ0, ρ, c ⊢ (ae0 ae1) ⇓ (v,σ4)

Set!

(v,σ1) = aeval(σ0, ρ, ae) σ1 = σ0[(x, ρ(x)) 7→ v]

σ0, ρ, c ⊢ set!x ae ⇓ ((λx.x,⊥),σ1)

Atomic

σ , ρ, c ⊢ ae ⇓ aeval(σ , ρ, ae)

Fig. 2. The threaded-store semantics

derived from the bound variable and incoming binding context.
3
The resultant store is extended

with mapping from that binding to the resultant value. The body expression is evaluated under the

extended environment and store and its result becomes that of the overall expression.

Contrasting the treatment of the environment and the store by the Let rule is instructive. On the

one hand, the environment is treated compositionally: the incoming environment of evaluation is

restored and extended after evaluation of the bound value. On the other hand, the store is treated

non-compositionally: the store resulting from the evaluation of the bound expression is extended

after it has accumulated the effects of its evaluation. By this reasoning, we classify the treatment

of the binding context as compositional rather than threaded; this treatment is a departure from

typical practice of CFA.

The Call rule evaluates the atomic expressions ae0 and ae1 for the operator and argument,

respectively. It then derives a new binding context, extends the environment and store with a

binding using that context, and evaluates the operator body under the extended environment, store,

and derived binding context. The result of evaluation the body is that of the overall expression.

The Set! rule evaluates the atomic body expression ae and updates the binding of the referenced

variable in the store. Its result is the identity function paired with the updated store.

The Atomic rule evaluates an atomic expression ae using the aeval atomic evaluation metafunc-

tion. Foreshadowing the succeeding semantics, we define aeval to return a pair of its calculated

value and the given store. In this semantics, the store is passed through unmodified; in forthcoming

semantics, it will be altered according to the calculated value.

aeval(σ , ρ, x) = (σ (x, ρ(x)),σ ) aeval(σ , ρ, λx .e) = ((λx .e, ρ |λx .e ),σ )

4.2 Threaded-Store Semantics with Effect Log
The second semantics enhances the reference semantics with an effect log ξ which explicitly records

themutation that occurs through evaluation. The effect log is considered part of the evaluation result;

accordingly the effect log semantics are in terms of judgments of the form σ , ρ, c ⊢ e ⇓! (v,σ
′), ξ .

Figure 3 presents the effect log semantics, identical to the reference semantics except for (1) the

addition of the effect log and (2) the use of the metavariable a to denote an address (x ,c). (This
usage continues in all subsequent semantics as well.)

3
Because the program is alphatised, the binding of a let-bound variable in a particular calling context will not interfere with

the binding of any other variable.
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Let

σ0, ρ, c ⊢ ce ⇓! (v0,σ1), ξ0
ρ ′ = ρ[x 7→ c] σ2 = σ1[(x, c) 7→ v0] σ2, ρ

′, c ⊢ e ⇓! (v,σ3), ξ1

σ0, ρ, c ⊢ letx = ce in e ⇓! (v,σ3), ξ1 ◦ extendlog((x, c),v0,σ1) ◦ ξ0

Call

((λx .e, ρ0),σ1) = aeval(σ0, ρ, ae0) (v1,σ2) = aeval(σ1, ρ, ae1) c ′ = (ae0 ae1) :: c
ρ1 = ρ0[x 7→ c ′] σ3 = σ2[(x, c

′) 7→ v1] σ3, ρ1, c
′ ⊢ e ⇓! (v,σ4), ξ

σ0, ρ, c ⊢ (ae0 ae1) ⇓! (v,σ4), ξ ◦ extendlog((x, c ′),v1,σ2)

Set!

(v,σ1) = aeval(σ0, ρ, ae)
a = (x, ρ(x)) σ1 = σ0[a 7→ v]

σ0, ρ, c ⊢ set!x ae ⇓! ((λx.x,⊥),σ1), extendlog(a,v,σ1)

Atomic

σ , ρ, c ⊢ ae ⇓! aeval(σ , ρ, ae), λσ .σ

Fig. 3. Threaded-store semantics with an effect log

The effect log is represented by a function from store to store. The definition of each log is given

by either a literal identity function, a use of the extendlog metafunction, or the composition of effect

logs. The extendlog metafunction is defined

extendlog(a,v,σ ′) = λσ .σ [a 7→ v] ∪ σ ′

where the union of the extended store σ [a 7→ v] and the value-associated store σ ′
treats each store

as a relation but the result is always a function (in the sense that no binding is related to more than

one value). The effect log of the Atomic rule is the identity function, reflecting that no allocation

or mutation is performed when evaluating an atomic expression. The effect log of the Set! rule is

constructed by the metafunction extendlog ; the store argument to extendlog is the store after the
mutation has occurred. The use of this store is necessary to propagate the mutative effect and

ensures that its union with the store on which this log is replayed agrees on all common bindings.

The effect log of the Call rule is composed of the effect log of evaluation of the body and an entry

for the allocation of the bound variable. Finally, the effect log of the Let rule is composed of the

effect logs of evaluation of both the body and binding expression interposed by an entry for the

allocation of the bound variable.

The intended role of the effect log is captured by the following lemma, which states that one

may obtain the resultant store by applying the resultant log to the initial store of evaluation.

Lemma 4.1. If σ , ρ, c ⊢ e ⇓! (v,σ ′), ξ , then σ ′ = ξ (σ ).

The proof proceeds straightforwardly by induction on the judgment’s derivation.

4.3 Compositional-Store Semantics
The third semantics (seen in Figure 4) shifts the previous semantics from threading the store to

treating it compositionally. Under this treatment, evaluation results still consist of a value, store,

and effect log, but the store is associated directly to the value—at least conceptually—and not treated

as a global effect repository. This alternative role is particularly apparent in the Let rule: the store

resulting from evaluation of the bound expression is not extended to be used as the initial store of

evaluation of the body. instead, the effect log resulting from evaluation of the bound expression is

applied to the initial store (of the overall let expression). We emphasize this compositional treatment

2019-07-20 00:19. Page 9 of 1–15. Proc. ACM Program. Lang., Vol. Scheme, No. 1, Article . Publication date: July 2019.



10 Kimball Germane and Michael D. Adams

Let

σ , ρ, c ⊢ ce ⇓◦ (v ′,σv ′), ξ ′ σ ′ = ξ ′(σ )
(ρ ′,σ ′′) = extend(ρ,σ ′, x, c,v ′,σv ′) σ ′′, ρ ′, c ⊢ e ⇓◦ (v,σv ), ξ

σ , ρ, c ⊢ letx = ce in e ⇓◦ (v,σv ), ξ ◦ extendlog((x, c),v ′,σv ′) ◦ ξ ′

Call

((λx .e, ρ0),σ0) = aeval(σ , ρ, ae0) (v1,σ1) = aeval(σ , ρ, ae1) c ′ = (ae0 ae1) :: c
(ρ ′,σ ′) = extend(ρ0,σ0, x, c ′,v1,σ1) σ ′, ρ ′, c ′ ⊢ e ⇓◦ (v,σv ), ξ

σ , ρ, c ⊢ (ae0 ae1) ⇓◦ (v,σv ), ξ ◦ extendlog((x, c ′),v1,σ1)

Set!

(v,σv ) = aeval(σ , ρ, ae)
a = (x, ρ(x)) σ ′ = σv [a 7→ v]

σ , ρ, c ⊢ set!x ae ⇓◦ ((λx.x,⊥),σ ′), extendlog(a,v,σ ′)

Atomic

σ , ρ, c ⊢ ae ⇓◦ aeval(σ , ρ, ae), λσ .σ

Fig. 4. The compositional-store semantics

by no longer using numeric subscripts, suggesting an "evolution" of the store, and instead using

ticks, suggesting distinct (but related) instances.

We ensure that the store associated with each value closes that value. A store σ closes a value v
if σ contains an entry for each address (variable–binding pair) transitively reachable from v . The
reachability of addresses is straightforward:

• An address (x ,c) is reachable from ρ if x is in the domain of ρ and ρ(x) = c .
• An address a is reachable from a value (λx .e ,ρ) if it is reachable from ρ.
• An address a is reachable from an address a′ with respect to a store σ if a is reachable from

σ (a′).

We use the extend metafunction to bind a value to a variable in a given binding context within a

given environment and store, defined

extend(ρ,σ , x, c,v,σv ) = (ρ[x 7→ c],σ [(x, c) 7→ v] ∪ σv )

When we extend a store with a mapping for a value, we also copy all of the mappings from that

value’s associated store. In this semantics, the newly-extended store will always already have them.

In the next semantics, in which we introduce garbage collection, it won’t necessarily. In both this

semantics and the next, however, the newly-extended store and the value’s store will agree on any

common bindings.

Although the role of the store has changed, the same lemma holds in this semantics as does in

the previous. We repeat it in terms of this semantics.

Lemma 4.2. If σ , ρ, c ⊢ e ⇓◦ (v,σv ), ξ , then ξ (σ ) = σv .

Like the previous lemma, its proof can be obtained by induction on the judgment’s derivation.

4.4 Compositional-Store Semantics with Garbage Collection
Our final semantics (seen in Figure 5) continues the compositional treatment of the store but adds

garbage collection to remove bindings unreachable from a root set. Because the role of each store is

to close a value (i.e. house values for each binding transitively reachable from its environment), this

root set consists solely of the bindings in the value’s environment; in particular, the environments

residing in the stack are irrelevant to reachability.

Proc. ACM Program. Lang., Vol. Scheme, No. 1, Article . Publication date: July 2019. 2019-07-20 00:19. Page 10 of 1–15.
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Let

(ρce,σce) = restrict(ce, ρ,σ ) σce, ρce, c ⊢ ce ⇓gc (v ′,σv ′), ξ ′ σ ′ = ξ ′(σ )
(ρ ′,σ ′′) = extend(ρ,σ ′, x, c,v ′,σv ′) (ρe,σe) = restrict(e, ρ ′,σ ′′) σe, ρe, c ⊢ e ⇓gc (v,σv ), ξ

σ , ρ, c ⊢ letx = ce in e ⇓gc (v,σv ), ξ ◦ extendlog((x, c),v ′,σv ′) ◦ ξ ′

Call

((λx .e, ρ0),σ0) = aevalgc(σ , ρ, ae0) (v1,σ1) = aevalgc(σ , ρ, ae1) c ′ = (ae0 ae1) :: c
(ρ ′,σ ′) = extend(ρ0,σ0, x, c ′,v1,σ1) (ρe,σe) = restrict(e, ρ ′,σ ′) σe, ρe, c

′ ⊢ e ⇓gc (v,σv ), ξ

σ , ρ, c ⊢ (ae0 ae1) ⇓gc (v,σv ), ξ ◦ extendlog((x, c ′),v1,σ1)

Set!

(v,σv ) = aevalgc(σ , ρ, ae)
a = (x, ρ(x)) σ ′ = σv [a 7→ v]

σ , ρ, c ⊢ set!x ae ⇓gc ((λx.x,⊥),⊥), extendlog(a,v,σ ′)

Atomic

σ , ρ, c ⊢ ae ⇓gc aevalgc(σ , ρ, ae), λσ .σ

Fig. 5. The compositional-store semantics with garbage collection

This semantics uses a particular atomic evaluation function aevalgc which garbage collects the

store associated with a value. It is defined

aevalgc(σ , ρ, x) = (v, gc(v,σ )) where v = σ (x, ρ(x))

aevalgc(σ , ρ, λx .e) = (v, gc(v,σ )) where v = (λx .e, ρ |λx .e )

where gc(v,σ ) prunes the unreachable bindings from σ with respect to v . Since the reachability
calculation and projection is unchanged from the garbage-collection operation of Section 3.3, we

elide its definition.

This semantics is careful to ensure that each evaluation is performed under a store with no

provably unreachable bindings residing within by frequent use of the restrict metafunction. For

a given expression e , closing environment ρ, and closing store σ , the restrict metafunction first

determines the restriction of ρ to the free variables of e and then the bindings of σ reachable

from that restriction; it then garbage-collects the store by pruning unreachable bindings. Formally,

restrict is defined

restrict(e, ρ,σ ) = (ρ ′, gc(ρ ′,σ )) where ρ ′ = ρ |e

where gc(ρ,σ ) prunes the unreachable bindings from σ with respect to ρ.
The Let rule proceeds by first obtaining the restriction of the environment and store with

respect to the bound expression ce, before evaluating ce under that restriction. The evaluation of ce
produces a value v ′

, an associated store σv ′ which closes only that value, and an effect log ξ ′. The
Let rule then replays the effect log ξ ′ on the initial store σ thereby accumulating any mutation

(and allocation it depends on) which occurred. After replaying the log, it extends the resultant store

σ ′
and initial environment ρ with a binding for v ′

and copies the bindings of its associated store

σv ′ . Finally, the extended environment and store are restricted with respect to the body expression

e before e’s evaluation under them.

The Call rule proceeds by atomically evaluating the operator and argument expressions. After

calculating the new binding context c ′, the operator value environment and store are extended

with the new binding. Before evaluation of the body e commences, the extended environment and

store are restricted with respect to it.
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12 Kimball Germane and Michael D. Adams

The Set! rule atomically evaluates the expression ae producing the assigned value. It returns the

identity function which, with an empty environment, is closed by an empty store.

The Atomic rule evaluates an atomic expression with aevalgc .
To connect this semantics to the previous, we show that the addition of garbage collection has

no semantic effect by the following lemma.

Lemma 4.3. If σ , ρ, c ⊢ e ⇓◦ (v,σv ), ξ and σ ′ = gc(ρ |e ,σ ) then σ ′, ρ, c ⊢ e ⇓gc (v,σ
′
v ), ξ

′ where
σ ′
v = gc(v,σv ).

In prose, this lemma states that two evaluation configurations, identical except that one’s store is

the other’s with unreachable bindings pruned, will yield the same evaluation result: their evaluation

will produce the same value and, modulo unreachable bindings, the same closing store.

5 ABSTRACT COMPOSITIONAL-STORE SEMANTICSWITH GARBAGE COLLECTION
We now abstract the compositional-store semantics with garbage collection—the final semantics

of the preceding section. Abstracting the semantics involves (1) defining a finite counterpart of

each component of the evaluation configuration and result and (2) defining a counterpart of each

semantic rule in terms of these finite components. With each component of the configuration

finite, configurations themselves become finite. Then we show that each abstracted rule simulates
its counterpart—that it admits the full range of its counterpart’s behavior. Doing this for each

rule ensures that the abstract semantics includes every behavior included by the exact semantics.

Once that’s complete, we can directly implement our big-step semantics in an abstract definitional

interpreter [Darais et al. 2017; Wei et al. 2018] to obtain a control-flow analysis.

We begin by abstracting each configuration component.�Store ∋ σ̂ = �Address → V̂al V̂al ∋ v̂ = P(Ĉlo)�Address ∋ â = Var × �BindContext Ĉlo = Lam × Ênv

L̂og ∋ ˆξ = �Address → V̂al �BindContext ∋ ĉ = App≤m

Ênv ∋ ρ̂ = Var ⇀ �BindContext

Like its concrete counterpart, an abstract store σ̂ maps an abstract address to an abstract value.

Abstract addresses remain a pair of a variable and binding context, only the context is abstract.

An abstract value v̂ , however, is a set of abstract closures rather than a single closure. An abstract

closure is a λ paired with an abstract environment ρ̂ which itself is a finite map from variables to

binding contexts. An abstract binding context ĉ is a sequence of at mostm application sites, where

m is a parameter to the analysis.
4
We represent an abstract log

ˆξ with the same structure as an

abstract store but interpret it as the mappings we must add to the initial store—a kind of store delta.
We define abstract join, composition, and application operators by

σ̂0 ⊔ σ̂1 = λâ.σ̂0(â) ∪ σ̂1(â) ˆξ0◦̂ ˆξ1 = ˆξ0 ⊔ ˆξ1 ˆξ (σ̂ ) = σ̂ ⊔ ˆξ

Formally connecting these abstract domains to their concrete counterparts is critical to establish-

ing the simulation relationship between the exact and abstract semantics. We make this connection

by means of a polymorphic abstraction function | · |5, defined for all domains except stores by

|ρ | = λx .|ρ(x)| |c | = ⌊c⌋m |(λx .e, ρ)| = {(λx .e, |ρ |)} |ξ | = |ξ (⊥)|

4
The parameterm is used similarly to the parameter k of k-CFA.

5
The abstraction function is typically accompanied by a complementary concretization function to complete a Galois

connection. For simplicity here, we leave it incomplete.
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Let

(ρ̂ce, σ̂ce) =�restrict(ce, ρ̂, σ̂ ) σ̂ce, ρ̂ce, ĉ ⊢ ce ˆ⇓ (v̂ ′, σ̂v ′), ˆξ ′ σ̂ ′ = ˆξ ′(σ̂ )

(ρ̂ ′, σ̂ ′′) = �extend(ρ̂, σ̂ ′, x, ĉ, v̂ ′, σ̂ ′
v ) (ρ̂e, σ̂e) =�restrict(e, ρ̂ ′, σ̂ ′′) σ̂e, ρ̂e, ĉ ⊢ e ˆ⇓ (v̂, σ̂v ), ˆξ

σ̂ , ρ̂, ĉ ⊢ letx = ce in e ˆ⇓ (v̂, σ̂v ), ˆξ ◦̂ ˆξ ′

Call

(v̂0, σ̂0) = �aeval(σ̂ , ρ̂, ae0) (λx .e, ρ̂0) ∈ v̂0
(v̂1, σ̂1) = �aeval(σ̂ , ρ̂, ae1) ĉ ′ = ⌊(ae0 ae1) :: ĉ⌋m

(ρ̂ ′, σ̂ ′) = �extend(ρ̂0, σ̂0, x, ĉ ′, v̂1, σ̂1) (ρ̂e, σ̂e) =�restrict(e, ρ̂ ′, σ̂ ′) σ̂e, ρ̂e, ĉ
′ ⊢ e ˆ⇓ (v̂, σ̂v ), ˆξ

σ̂ , ρ̂, ĉ ⊢ (ae0 ae1) ˆ⇓ (v̂, σ̂v ), ˆξ

Set!

(v̂, σ̂v ) = �aeval(σ̂ , ρ̂, ae)
(_, ˆξ ) = �extend(⊥,⊥, x, ρ̂(x), v̂, σ̂v )
σ̂ , ρ̂, ĉ ⊢ set!x ae ˆ⇓ ({(λx.x,⊥)},⊥), ˆξ

Atomic

σ̂ , ρ̂, ĉ ⊢ ae ˆ⇓ �aeval(σ̂ , ρ̂, ae),⊥
Fig. 6. The abstract compositional-store semantics with garbage collection

and for stores by

|σ | = λâ.
⋃
|a |=â

|σ (a)|

Abstracting a store groups entries by their abstracted address in a large set. Abstracting an envi-

ronment ρ abstracts its range. Abstracting a binding context c takes its at-most-m-length prefix.

Abstracting a closure produces a singleton of that closure with an abstracted environment. Finally,

abstracting a log ξ produces the abstract store that results from apply the log to the empty store ⊥

and then abstracting.

Figure 6 defines the abstract compositional-store semantics with garbage collection. Structurally,

nearly every rule is identical to the exact counterpart that it abstracts; most of thework of abstraction

is defining the abstract domains and metafunctions and connecting them to those of the exact

semantics. The Call rule differs structurally from its exact counterpart in two notable ways: First,

because an abstract value is a set of closures, it applies for each such closure in the operator set.

Second, it defines the new binding context ĉ ′ to be the prefix of the application site prepended to

the previous abstract time ĉ and limited to a length of at mostm. The abstract
�aeval metafunction

is defined �aeval(σ̂ , ρ̂, x) = (v̂, ĝc(v̂, σ̂ )) where v̂ = σ̂ (ρ̂(x))�aeval(σ̂ , ρ̂, λx .e) = (v̂, ĝc(v̂, σ̂ )) where v̂ = {(λx .e, ρ̂ |λx .e )}

For space, we omit straightforward definitions for the abstract variants of ĝc, �restrict, and �extend.
As a final step before we establish the simulation relationship, we define an ordering on stores

(and logs, extending it in the natural way):

σ̂0 ⊑ σ̂1 ⇔ ∀â ∈ �Address.σ̂0(â) ⊆ σ̂1(â) v̂0 ⊑ v̂1 ⇔ v̂0 ⊆ v̂1
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14 Kimball Germane and Michael D. Adams

Once again, these semantics maintain the invariant that the resultant store σ ′
contains only data

reachable from v . We establish the invariant by an initial derivation ⊥,⊥, ⟨⟩ ⊢ pr ˆ⇓ (v̂, σ̂ ), ˆξ which

obtains when a program pr evaluates to a value v closed by σ .
We formally connect this semantics with the previous by the following abstraction theorem.

Theorem 5.1. If |σ | ⊑ σ̂ and |ρ | = ρ̂ and |c | = ĉ and σ , ρ, c ⊢ e ⇓gc (v,σv ), ξ , then σ̂ , ρ̂, ĉ ⊢

e ˆ⇓ (v̂, σ̂v ), ˆξ where |v | ⊑ v̂ and |σv | ⊑ σ̂v and |ξ | ⊑ ˆξ .

This theorem states that if the configuration components are related by abstraction, then, for

any given derivation in the exact semantics, there is an derivation in the abstract semantics which

yields an abstraction of its results. It can be proved by induction on the derivation.

6 RELATEDWORK
This work has its roots in abstract interpretation [Cousot and Cousot 1977] and is an instance of

control-flow analysis [Shivers 1991].

There have been various efforts to obtain perfect stack precision in control-flow analysis. The first

realizations were CFA2 [Vardoulakis and Shivers 2011] and PDCFA [Earl et al. 2010]. Successive

realizations [Gilray et al. 2016; Johnson and Van Horn 2014] sought to decrease both its time

complexity and implementation burden. Current realizations [Darais et al. 2017; Wei et al. 2018] are

formulated as abstract definitional interpreters [Reynolds 1998]. These realizations are particularly
apt as they provide the most straightforward implementation technique for the big-step abstract

semantics we introduced.

Might and Shivers [2006] introduced abstract garbage collection to Shivers-style control-flow

analysis. Earl et al. [2012] reconcile the technique with pushdown systems using an approach

whereby each control state includes a set of reachability roots as a component. Johnson et al. [2014]

refine the technique, calling it "fully-precise", and introduce an "approximate" variant in which the

analyzer traverses the abstract stack to gather reachability roots. Darais et al. [2017] show that

abstract definitional interpreters easily accommodate abstract garbage collection; essentially they

use the fully-precise technique within a state monad. Each of these three combinations of abstract

garbage collection and pushdown systems sacrifices context irrelevance; the primary purpose of

this work is to combine the two while preserving it.

7 CONCLUSION
In this paper, we exploited the precise call—return matching of stack-precise CFA to treat the

store compositionally in evaluation rather than threading it through each step. We recovered the

ability to propagate effects through evaluation (e.g. mutation) by associating an effect log with

each computation. Because the effect log behaves compositionally, we end up with an association

between configurations and the values they yield that is completely independent of the control

context of those configurations, thereby restoring the context irrelevance enjoyed by non-GC

stack-precise CFA without sacrificing GC itself.

We observed that this compositional treatment can be generalized somewhat: when we treat the

binding context (used in the allocation of abstract resources) compositionally rather than threading

it through evaluation, the analysis exhibits them-CFA context abstraction instead of that of k-CFA.
The complement to abstract garbage collection is abstract counting [Might and Shivers 2006]

which keeps track of the number of concrete resources that correspond to an abstract resource and

enables certain abstract transitions, such as a strong store update. It would be interesting to apply

abstract counting to compositional stores to perform strong updates or effect logs to record when a

strong update of a binding is possible. This application might connect to the stack environments of
CFA2 [Vardoulakis and Shivers 2011].
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