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PLoT Scheme
Alexander Friedman and Jamie Raymond

College of Computer Science
Northeastern University

Boston, MA 02115
USA

{cozmic,raymond}@ccs.neu.edu

ABSTRACT

We present PLTplot, a plotting package for PLT Scheme.
PLTplot provides a basic interface for producing common
types of plots such as line and vector field plots from Scheme
functions and data, an advanced interface for producing cus-
tomized plot types, and support for standard curve fitting. It
incorporates renderer constructors, transformers from data
to its graphical representation, as values. Plots are also val-
ues. PLTplot is built as an extension on top of the third-
party PLplot C library using PLT Scheme’s C foreign func-
tion interface. This paper presents the core PLTplot API,
examples of its use in creating basic and customized plots
and fitting curves, and a discussion of its implementation.

1 INTRODUCTION

This paper describes PLTplot a plotting extension for PLT
Scheme [6] based on the PLplot [5] C library. PLTplot is pro-
vided as a set of modules that provide language constructs
and data types for producing plots of functions and data.
The basic interface provides constructors for rendering data
and functions in common forms such as points and lines. For
advanced users, PLTplot provides an interface for building
custom renderer constructors on top of basic drawing prim-
itives to obtain almost any kind of desired plot.

Our motivation for producing PLTplot was to be able to
do plotting from within our favorite programming language,
Scheme, instead of our usual method of only using Scheme
to work with the data and then calling an external program,
such as Gnuplot [10], to actually produce the plots. This
mechanism was tedious, especially when we only wanted a
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quick and dirty plot of a Scheme function or data contained
in a Scheme list or vector.

To develop the package as quickly as possible, instead of
creating a plot library on top of PLT Scheme’s graphical
toolkit, MrEd, which would have meant a lot of engineering
work, we decided to reuse the heavy lifting already done
by the visualization experts. We looked at existing plotting
packages and libraries written in C with appropriate free
source licensing on which we could build an extension for
PLT Scheme using its C foreign function interface (FFI).

Initially we considered using Gnuplot, but it builds only
as a monolithic executable and not as a library. Modifying it
was too daunting as it has an extremely baroque codebase.
We looked elsewhere and found an LGPLed plotting library
called PLplot [5] that has been used as an extension by sev-
eral other programming languages. PLplot is currently being
developed as a Sourceforge project; it provides many low-
level primitives for creating 2D and 3D graphs of all sorts.
With PLplot’s primitives wrapped as Scheme functions as
a foundation, we created a high-level API for plotting and
included some additional utilities such as curve fitting.

2 PLTPLOT IN ACTION

PLTplot supports plotting data and functions in many com-
mon forms such as points, lines, or vector fields. It also
supports the creation of custom renderers that can be used
to visualize the data in new ways. Data can be fitted to
curves and the resulting functions plotted along with the
original data. We illustrate these ideas with an example
from physics.

2.1 Simple Plots

Figure 1 shows a plot of data [9] similar to that collected by
Henry Cavendish in 1799 during his famous experiment to
weigh the earth. The X axis represents time, while the Y
axis represents the angle of rotation of Cavendish’s torsional
pendulum. The data is defined as a list of Scheme vectors,
each one containing a value for time, angle of rotation, and
error.
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(define CAVENDISH-DATA

(list (vector 0.0 -14.7 3.6)

(vector 1.0 8.6 3.6)

... ;; omitted points

(vector 37.7 -19.8 3.5)))

Before the data can be plotted, the plot module must be
loaded into the environment using the following code:

(require (lib "plot.ss" "plot"))

As illustrated in Figure 1, the plot is generated from code
entered at the REPL of DrScheme, PLT Scheme’s program-
ming environment. points and error-bars are construc-
tors for values called Plot-items that represent how the data
should be rendered. The call to mix takes the two Plot-
items and composes them into a single Plot-item that plot

can display. The code ends with a sequence of associations
that instruct plot about the range of the X and Y axes and
the dimensions of the overall plot.

Figure 1Points and Error Bars

2.2 Curve Fitting

From the plot of angles versus time, Cavendish could sketch
a curve and model it mathematically to get some parameters
that he could use to compute the weight of the earth. We
use PLTplot’s built-in curve fitter to do this for us.

To generate a mathematically precise fitted curve, one
needs to have an idea about the general form of the function
represented by the data and should provide this to the curve
fitter. In Cavendish’s experiment, the function comes from
the representation of the behavior of a torsional pendulum.
The oscillation of the pendulum is modeled as an exponen-
tially decaying sinusoidal curve given by the following equa-

tion: f(s) = θ0 + ae
−s
τ sin( T

2πs
+ φ). The goal is to come up

with values for the constant parameters in the function so
that the phenomena can be precisely modeled. In this case,
the fit can give a value for T , which is used to determine the
spring constant of the torsional fiber. This constant can be

used to compute the universal gravitational constant – the
piece Cavendish needed to compute the weight of the earth.

PLTplot fits curves to data using a public-domain imple-
mentation of the the standard Non-Linear Least Squares Fit
algorithm. The user provides the fitter with the function to
fit the data to, hints and names for the constant values, and
the data itself. It will then produce a fit-result structure
which contains, among other things, values for the contants
and the fitted function with the computed parameters.

Figure 2 shows the code for generating the fit and produc-
ing a new plot that includes the fitted curve. To get the value
of the parameter T , we select the values of the final parame-
ters from result with a call to fit-result-final-params,
shown in the code, and then inspect its output for the value.

Figure 2Mixed Plot with Fitted Curve

(require (lib "plot.ss" "plot"))

(define theta

(lambda (s a tau phi T theta0)

(+ theta0

(* a

(exp (/ s tau -1))

(sin (+ phi (/ (* 2 pi s) T)))))))

(define result

(fit

theta

((a 40) (tau 15) (phi -.5) (T 15) (theta0 10))

CAVENDISH-DATA))

(fit-result-final-parms result)

(plot (mix

(points CAVENDISH-DATA)

(error-bars CAVENDISH-DATA)

(line (fit-result-function result)))

(x-min -5) (x-max 40)

(y-min -40) (y-max 50))
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2.3 Complex Plots

Besides operations to produce simple point and line plots,
PLTplot also supports more complex plot operations. In
this next example we have an equation which represents the
gravitational potential of two bodies having unequal masses
located near each other. We plot this equation as both a
set of contours and as a vector field with several non-default
options to better visualize the results. For the contour part
of the plot, we manually set the contour levels and the num-
ber of times the function is sampled. For the vector part, we
numerically compute the gradient of the function and reduce
the number of vectors displayed to 22 and change the style
of the vectors to normalized. The code and resulting plot
are shown in Figure 3.

Figure 3Contour and Vector Field

(require (lib "plot.ss" "plot"))

(define gravitational-potential

(lambda (x y)

(-

(/ -1

(sqrt (+ (sqr (add1 x)) (sqr y))))

(/ 1/10

(sqrt (+ (sqr (sub1 x)) (sqr y)))))))

(plot

(mix (contour

gravitational-potential

(levels ’(-0.7 -0.8 -0.85 -0.9 -1))

(samples 100))

(field

(gradient

(lambda (x y)

(* -1 (gravitational-potential x y))))

(samples 22) (style ’normalized)))

(x-min -2) (x-max 2)

(y-min -2) (y-max 2))

3 CORE PLTPLOT

PLTplot is meant to be easy to use and extensible. The func-
tionality is naturally split into two levels: a basic level, which
provides a set of useful constructors that allow creation of
common types of plots, and an advanced level, which allows
the creation of custom renderer constructors. The API for
core PLTplot is shown in Figure 4.

PLTplot, in addition to being a library for PLT Scheme, is
a little language for plotting. The idea is to keep the process
of plotting a function or data set as simple as possible with
as little decoration as necessary. This is a cognitive simpli-
fication for the casual PLTplot user, if not also a syntactic
one. The special form plot, for instance, takes a Plot-item
(constructed to display the data or function in a particular
way, such as a line or only as points) followed by a possi-
bly empty sequence of attribute-value associations. If plot
were a function, these associations would have to be specially
constructed as Scheme values, for examples as lists, which
would necessitate decoration that is irrelevant to specifying
the specific features of the generated plot. Other forms are
provided for similar reasons.

3.1 Basic Plotting

The fundamental datatype in PLTplot is the Plot-item. A
Plot-item is a transformer that acts on a view to produce a
visual representation of the data and options that the Plot-
item was constructed with. An interesting and useful feature
of the constructed values that Plot-items produce is that
they are functionally composable. This is practically used
to produce multiple renderings of the same data or different
data on the resulting view of the plot. Plot-items are dis-
played using the plot special form. plot takes a Plot-item
and some optional parameters for how the data should be
viewed and produces an object of the 2d-view% class which
DrScheme displays.

Plot-items are constructed according to the definitions
shown in Figure 4. Consider the line constructor. It con-
sumes a function of one argument and some options and
produces a transformer that knows how to draw the line
that the function represents. Its options are a sequence
of keyword-value associations. Some possible line-options
include (samples number) and (width number), specifying
the number of times the function is sampled and the width
of the line, respectively. Each of the other constructors have
similar sets of options, although the options are not neces-
sarily shared between them. For example, the samples op-
tion for a line has no meaning for constructors that handle
discrete data.

The other Plot-item constructors grouped with line in
the definition of Plot-item are used for other types of
plots. points is a constructor for data representing points.
error-bars is a constructor for data representing points as-
sociated with error values. shade is a constructor for a 3D
function in which the height at a particular point would be
displayed with a particular color. contour is likewise a con-
structor for a 3D function that produces contour lines at the
default or user-specified levels. And field is a constructor
for a function that represents a vector field.

The mix constructor generates a new Plot-item from two
or more existing Plot-items. It is used to combine multiple
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Figure 4Core PLTplot API

Data Definitions

A Plot-item is one of

(line 2dfunction line-option*)

(points (list-of (vector number number))

point-option*)

(error-bars

(list-of (vector number number number))

error-bar-option*)

(shade 3dfunction shade-option*)

(contour 3dfunction countour-option*)

(field R2->R2function field-option*)

(mix Plot-item Plot-item+)

(custom (2d-view% -> void))

*-option is: (symbol TST)

where TST is any Scheme type

A 2dfunction is (number -> number)

A 3dfunction is (number number -> number)

A R2->R2function is one of

((vector number number) ->

(vector number number))

(gradient 3d-function)

fit-result is a structure:

(make-fit-result ... (list-of number) ...

(number* -> number))

2d-view% is the class of the displayed plot.

Forms

(plot Plot-item (symbol number)*)

(fit (number* -> number)

((symbol number)*)

(list-of

(vector number [number] number number)))

(define-plot-type name data-name view-name

((option value)*)

body)

Procedures

(fit-result-final-params fit-result) ->

(list-of number)

(fit-result-function fit-result) ->

(number* -> number)

... additional fit-result selectors elided ...

items into a single one for plotting. For example in Figure 2
mix was used to combine a plot of points, error bars, and the
best-fit curve for the same set of data.

The final Plot-item constructor, custom, gives the user the
ability to draw plots on the view that are not possible with
the other provided constructors. Programming at this level
gives the user direct control over the graphics drawn on the
plot object, constructed with the 2d-view% class.

3.2 Custom Plotting

The 2d-view% class provides access to drawing primitives.
It includes many methods for doing things such as drawing
lines of particular colors, filling polygons with particular pat-
terns, and more complex operations such as rendering data
as contours.

Suppose that we wanted to plot some data as a bar chart.
There is no bar chart constructor, but since we can draw
directly on the plot via the custom constructor we can create
a bar with minimal effort.

First we develop a procedure that draws a single bar on a
2d-view% object.

; draw an individual bar

(define (draw-bar x-position width height view)

(let ((x1 (- x-position (/ width 2)))

(x2 (+ x-position (/ width 2))))

(send view fill

‘(,x1 ,x1 ,x2 ,x2)

‘(0 ,height ,height 0))))

Then we develop another procedure that when applied to an
object of type 2d-view% would draw all of the data, repre-
sented as a list of two-element lists, using draw-bar on the
view.

; size of each bar

(define BAR-WIDTH .75)

; draw a bar chart on the view

(define (my-bar-chart 2dview)

(send 2dview set-line-color ’red)

(for-each

(lambda (bar)

(draw-bar (car bar) BAR-WIDTH

(cadr bar) 2dview))

’((1 5) (2 3) (3 5) (4 9) (5 8)))) ; the data

We then create the plot using the plot form, wrapping
my-bar-chart with the custom constructor.

(plot (custom my-bar-chart)

(x-min 0) (y-min 0) (x-max 6) (y-max 10))

The results are shown in Figure 5. The output is plain
but useful. We could enhance the appearance of this chart
using other provided primitives. For example, the bars could
be drawn with borders, the axes given labels, etc.

While we now get the desired bar chart, we have to change
the data within the my-bar-chart procedure each time we
want a new chart. We would like to abstract over the code
for my-bar-chart to create a generic constructor similar to
the built-in ones. To manage this we use a provided special
form, define-plot-type, which is provided in the module
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Figure 5Custom Bar Chart

plot-extend.ss. It takes a name for the new plot type, a
name for the data, a name for the view, an optional list of
fields to extract from the view, and a set of options with
default values. It produces a Plot-item constructor. We can
now generalize the above function as follows:

(require (lib "plot-extend.ss" "plot"))

(define-plot-type bar-chart

data 2dview [(color ’red) (bar-width .75)]

(begin

(send 2dview set-line-color color)

(for-each

(lambda (bar) (draw-bar (car bar) bar-width

(cadr bar) 2dview))

data)))

Our original data definition for Plot-item can now be aug-
mented with the following:

(bar-chart (list-of (list number number))

[(color symbol) (bar-width number)])

Plotting the above data with blue bars would look like:

(plot

(bar-chart

’((1 5) (2 3) (3 5) (4 9) (5 8))

(color ’blue))

(x-min 0) (y-min 0) (x-max 6) (y-max 10))

3.3 Curve Fitting API

Any scientific plotting package would be lacking if it did not
include a curve fitter. PLTplot provides one through the
use of the fit form. fit must be applied to a function (a
representation of the model), the names and guesses for the
parameters of the model, and the data itself. The guesses
for the parameters are hints to the curve fitting algorithm
to help it to converge. For many simple model functions the
guesses can all be set to 1.

The data is a list of vectors. Each vector represents a data
point. The first one or, optionally, two elements of a data

vector are the values for the independent variable(s). The
last two elements are the value for the dependent variable
and the weight of its error. If the errors are all the same,
they can be left as the default value 1.

The result of fitting a function is a fit-result structure.
The structure contains the final values for the parameters
and the fitted function. These are accessed with the selec-
tors fit-result-final-params and fit-result-function,
respectively. The structure contains other useful values as
well that elided here for space reasons but are fully described
in the PLTplot documentation.

4 IMPLEMENTATION

PLTplot is built on top of a PLT Scheme extension that uses
the PLplot C library for its plotting and math primitives.
To create the interface to PLplot, we used PLT Scheme’s C
FFI to build a module of Scheme procedures that map to
low-level C functions. In general, the mapping was straight
forward – most types map directly, and Scheme lists are
easily turned into C arrays.

Displayed plots are objects created from the 2d-view%

class. This class is derived from PLT Scheme’s image-snip%
class which gives us, essentially for free, plots as first-class
values. In addition 2d-view% acts as a wrapper around the
low level module. It provides some error checking and en-
forces some implied invariants in the C library.

It was important that PLTplot work on the major plat-
forms that PLT Scheme supports: Windows, Unix, and Mac
OS X. To achieve this we used a customized build process for
the underlying PLplot library that was simplified by using
mzc – the PLT Scheme C compiler – which generated shared
libraries for each platform.

5 RELATED WORK

There is a tradition in the Scheme community of embedding
languages in Scheme for drawing and graphics. Brian Beck-
man makes the case that Scheme is a good choice as a core
language and presents an embedding for doing interactive
graphics [2]. Jean-François Rotgé embedded a language for
doing 3D algebraic geometry modeling [8]. We know of no
other published work describing embedding a plotting lan-
guage in Scheme.

One of the most widely used packages for generating plots
for scientific publication is Gnuplot, which takes primitives
for plotting and merges them with an ad-hoc programming
language. As typically happens in these cases the lan-
guage grows from something simple, say for only manip-
ulating columns of data, to being a full fledged program-
ming language. Gnuplot is certainly an instance of Green-
pun’s Tenth Rule of Programming: “Any sufficiently compli-
cated C or Fortran program contains an ad-hoc, informally-
specified bug-ridden slow implementation of half of Common
Lisp.” [3]. What you would rather have is the marriage of a
well-documented, non-buggy implementation of an expres-
sive programming language with full-fledged plotting capa-
bilities.

Some popular language implementations, like Guile and
Python, provide extensions for Gnuplot. This is a step for-
ward because now one can use his or her favorite program-
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ming language for manipulating data and setting some plot
options before shipping it all over to Gnuplot to be plotted.
However, the interface for these systems relies on values in
their programming languages being translated into Gnuplot-
ready input and shipped as strings to an out-of-process Gnu-
plot instance. For numerical data this works reasonably well,
but if functions are to be plotted, they must be written di-
rectly in Gnuplot syntax as strings, requiring the user to
learn another language, or be parsed and transformed into
Gnuplot syntax, requiring considerable development effort.

The idea behind our integration was to join the well-
specified and well-documented PLT Scheme with a relatively
low-level library for drawing scientific plots, PLplot. We
then could handle both data and options in the implemen-
tation in a rich way rather than as plain strings. We then
provided a higher-level API on top of that. Other platforms
that have integrated PLplot only provide the low-level inter-
face. These include C, C++, Fortran-77, Tcl/TK, and Java
among others.

Ocaml has a plotting package called Ocamlplot [1], which
was built as an extension to libplot, part of GNU plotu-
tils [4]. libplot renders 2-D vector graphics in a variety of
formats and can be used to create scientific plots but only
with much effort by the developer. Ocamlplot does not pro-
vide a higher-level API like PLTplot does. For example,
there is no abstraction for line plots or vector plots. Instead
the user is required to build them from scratch and provide
his own abstractions using the lowest-level primitives. There
is also no notion of first class plots as plots are output to files
in specific graphic formats.

6 CONCLUSION

This paper presented core PLTplot, which is a subset of what
PLTplot provides. In addition to the core 2D API illustrated
in this paper, PLTplot also provides an analogous API for
generating 3D plots, an example of which is seen in Figure 6.

Figure 6
sin(

√
x2+y2)√

x2+y2

PLTplot is still new and many additions are planned for

the future. With the publication of this paper, the first
release of PLTplot will be made available through the PLT
Scheme Libraries and Extensions website [7]. Currently plots
are only output as 2dview% objects. One addition we hope
to make soon is the ability to save plots in different formats
including Postscript. We also plan on developing a separate
plotting environment which will have its own interface for
easily generating, saving, and printing plots.
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PICBIT: A Scheme System for the PIC
Microcontroller

Marc Feeley / Université de Montréal
Danny Dubé / Université Laval

ABSTRACT

This paper explains the design of the PICBIT R4RS Scheme
system which specifically targets the PIC microcontroller
family. The PIC is a popular inexpensive single-chip mi-
crocontroller for very compact embedded systems that has
a ROM on the chip and a very small RAM. The main chal-
lenge is fitting the Scheme heap in only 2 kilobytes of RAM
while still allowing useful applications to be run. PICBIT
uses a novel compact (24 bit) object representation suited for
such an environment and an optimizing compiler and byte-
code interpreter that uses RAM frugally. Some experimental
measurements are provided to assess the performance of the
system.

1 INTRODUCTION

The Scheme programming language is a small yet powerful
high-level programming language. This makes it appealing
for applications that require sophisticated processing in a
small package, for example mobile robot navigation software
and remote sensors.

There are several implementations of Scheme that require
a small memory footprint relative to the total memory of
their target execution environment. A full-featured Scheme
system with an extended library on a workstation may re-
quire from one to ten megabytes of memory to run a simple
program (for instance MzScheme v205 on Linux has a 2.3
megabyte footprint). At the other extreme, the BIT system
[1] which was designed for microcontroller applications re-
quires 22 kilobytes of memory on the 68HC11 microcontrol-
ler for a simple program with the complete R4RS library (mi-
nus file I/O). This paper describes a new system, PICBIT,

Permission to make digital or hard copies, to republish,
to post on servers or to redistribute to lists all or part of
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sachusetts, USA. Copyright 2003 Marc Feeley and Danny
Dubé.

which is inspired from our BIT system and specifically de-
signed for the PIC microcontroller family which has even
tighter memory constraints.

2 THE PIC MICROCONTROLLER

The PIC is one of the most popular single-chip microcontrol-
ler families for low-power very-compact embedded systems
[6]. There is a wide range of models available offering RISC-
like instruction sets of 3 different complexities (12, 14, or
16 bit wide instructions), chip sizes, number of I/O pins,
execution speed, on-chip memory and price. Table 1 lists
the characteristics of a few models from the smallest to the
largest currently available.

BIT was originally designed for embedded platforms with
10 to 30 kilobytes of total memory. We did not distinguish
read-only (ROM) and read-write (RAM) memory, so it was
equally important to have a compact object representation,
a compact program encoding and a compact runtime. More-
over the design of the byte-code interpreter and libraries fa-
vors compactness of code over execution speed, which is a
problem for some control applications requiring more com-
putational power. The limited range of integers (-16384 to
16383) is also awkward. Finally, the incremental garbage
collector used in BIT causes a further slowdown in order to
meet real-time execution constraints [2].

Due to the extremely small RAM of the PIC, it is neces-
sary to distinguish what needs to go in RAM and what can
go in ROM. Table 1 shows that for the PIC there is an order
of magnitude more ROM than RAM. This means that the
compactness of the object representation must be the pri-
mary objective. The compactness of the program encoding
and runtime is much less of an issue, and can be traded-
off for a more compact object representation and speedier
byte-code interpreter. Finally, we think it is probably ac-
ceptable to use a nonincremental garbage collector, even for
soft real-time applications, because the heap is so small.

We call our Scheme system PICBIT to stress that the
characteristics of the PIC were taken into account in its de-
sign. However the system is implemented in C and it should
be easy to port to other microcontrollers with similar mem-
ory constraints. We chose to target the “larger” PIC models
with 2 kilobytes of RAM or more (such as the PIC18F6520)
because we believed that this was the smallest RAM for do-
ing useful work. Our aim was to create a practical system
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Model Pins MIPS ROM RAM Price
PIC12C508 8 1 512 × 12 bits 25 × 8 bits $0.90
PIC16F628 18 5 2048 × 14 bits 224 × 8 bits $2.00
PIC18F6520 64 10 16384 × 16 bits 2048 × 8 bits $6.50
PIC18F6720 64 6.25 65536 × 16 bits 3840 × 8 bits $10.82

Table 1: Sample PIC microcontroller models.

that strikes a reasonable compromise between the conflict-
ing goals of fast execution, compact programs and compact
object representation.

3 OBJECT REPRESENTATION

3.1 Word Encoding

In many implementations of dynamically-typed languages all
object references are encoded using words of W bits, where
W is often the size of the machine’s words or addresses [3].
With this approach at most 2W references can be encoded
and consequently at most 2W objects can live at any time.
Each object has its unique encoding. Since many types of
objects contain object references, W also affects the size of
objects and consequently the number of objects that can fit
in the available memory. In principle, if the memory size
and mix of live objects are known in advance, there is an
optimal value for W that maximizes the number of objects
that can coexist.

The 2W object encodings can be partitioned, either stati-
cally (e.g. tag bits, encoding ranges, type tables) or dynam-
ically (e.g. BIBOP [4]) or a combination, to map them to a
particular type and representation. A representation is di-
rectif the W bit word contains all the information associated
with the object, e.g. a fixnum or Boolean (the meaning of
“all the information” is left vague). In an indirectrepresen-
tation the W bit word contains the address in memory (or
an index in a table) where auxiliary information associated
with the object is stored, e.g. the fields of a pair or string.
The direct representation can’t be used for mutable objects
because mutation must only change the state of the object,
not its identity. When an indirect representation is used for
immutable objects the auxiliary information can be stored in
ROM because it is never modified, e.g. strings and numbers
appearing as literals in the program.

Like many microcontrollers, the PIC does not use the
same instructions for dereferencing a pointer to a RAM lo-
cation and to a ROM location. This means that when the
byte-code interpreter accesses an object it must distinguish
with run time tests objects allocated in RAM and in ROM.
Consequently there is no real speed penalty caused by using
a different representation for RAM and ROM, and there are
possibly some gains in space and time for immutable objects.

Because the PIC’s ROM is relatively large and we expect
the total number of immutable objects to be limited, using
the indirect representation for immutable objects requires
relatively little ROM space. Doing so has the advantage that
we can avoid using some bits in references as tags. It means
that we do not have to reserve in advance many of the 2W

object encodings for objects, such as fixnums and characters,
that may never be needed by the program. The handling of

integers is also simplified because there is no small vs. large
distinction between integers. It is possible however that pro-
grams which manipulate many integers and/or characters
will use more RAM space if these objects are not preallo-
cated in ROM. Any integer and character resulting from a
computation that was not preallocated in ROM will have to
be allocated in RAM and multiple copies might coexist. In-
terning these objects is not an interesting approach because
the required tables would consume precious RAM space or
an expensive sweep of the heap would be needed. To lessen
the problem, a small range of integers can be preallocated
in ROM (for example all the encodings that are “unused”
after the compiler has assigned encodings to all the program
literals and the maximum number of RAM objects).

3.2 Choice of Word and Object Size

For PICBIT we decided that to get simple and time-efficient
byte-code interpreter and garbage collector all objects in
RAM had to be the same size and that this size had to be
a multiple of 8 bits (the PIC cannot easily access bit fields).
Variable size objects would either cause fragmentation of the
RAM, which is to be avoided due to its small size, or require
a compacting garbage collector, which are either space- or
time-inefficient when compared to the mark-sweep algorithm
that can be used with same size objects. We considered us-
ing 24 bits and 32 bits per object in RAM, which means no
more than 682 and 512 objects respectively can fit in a 2
kilobyte RAM (the actual number is less because the RAM
must also store the global variables, C stack, and possibly
other internal tables needed by the runtime). Since some en-
codings are needed for objects in ROM, W must be at least
10, to fully use the RAM, and no more than 12 or 16, to fit
two object references in an object (to represent pairs).

With W = 10, a 32 bit object could contain three object
references. This is an appealing proposition for compactly
representing linked data structures such as binary search
tree nodes, special association lists and continuations that
the interpreter might use profitably. Unfortunately many
bits would go unused for pairs, which are a fairly common
data type. Moreover, W = 10 leaves only a few hundred
encodings for objects in ROM. This would preclude running
programs that

1. contain too many constant data-structures (the system
would run out of encodings);

2. maintain tables of integers (integers would fill the
RAM).

But these are the kind of programs that seem likely for mi-
crocontroller applications (think for example of byte buffers,
state transition tables, and navigation data). We decided
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ba

c d e

5 6

1 2 3 4 5 6

Figure 1: Object representation of the vector #(a b c d e) and the string "123456". To improve readability some of the
details have been omitted, for example the “a” is really the object encoding of the symbol a. The gray area corresponds to
the two tag bits. Note that string leaves use all of the 24 bits to store 3 characters.

that 24 bit objects and W = 11 was a more forgiving com-
promise, leaving at least 1366 (2W −682) encodings for ROM
objects.

It would be interesting to perform an experiment for every
combination of design choice. However, creating a working
implementation for one combination requires considerable ef-
fort. Moreover, it is far from obvious how we could automate
the creation of working implementations for various spaces
of design choice. There are complex interactions between
the representation of objects, the code that implements the
operations on the objects, the GC, and the parts of the com-
piler that are dependent on these design choices.

3.3 Representation Details

For simplicity and because we think ROM usage is not an
important concern for the PIC, we did not choose to repre-
sent RAM and ROM objects differently.

All objects are represented indirectly. That is, they all are
allocated in the heap (RAM or ROM) and they are accessed
through pointers. Objects are divided in three fields: a two
bit tag, which is used to encode type information, and two
11 bit fields. No type information is put on the references
to objects. The purpose of each of the two 11 bit fields (X
and Y ) depends on the type:

00 ⇒ Pair.X and Y are object references for the car and
cdr.

01 ⇒ Symbol. X and Y are object references for the name
of the symbol (a string) and the next symbol in the
symbol table. Note that the name is not necessary in
a program that does not convert between strings and
symbols. PICBIT does not currently perform this op-
timization.

10 ⇒ Procedure. X is used to distinguish the three types
of procedures based on the constant C (number of lamb-
das in the program) which is determined by the com-
piler, and the constant P (number of Scheme primitive
procedures provided by the runtime, such as cons and
null?, but not append and map which are defined in the
library, a Scheme source file):

0 ≤ X < C ⇒ Closure.X is the entry point of the
procedure (raw integer) and Y is an object refer-
ence to the environment (the set of nonglobal free
variables, represented with an improper list).

C ≤ X < C + P ⇒ Primitive.X is the entry point
of the procedure (raw integer) and Y is irrelevant.

X = C + P ⇒ R eified continuation.X is an object
reference to a continuation object and Y is irrele-
vant. A continuation object is a special improper
list of the form (r p . e), where r is the return
address (raw integer), p is the parent continua-
tion object and e is an improper list environment
containing the continuation’s live free variables.

The runtime and P are never modified even when some
primitive procedures are not needed by the compiled
program.

11 ⇒ One of vector, string, integer, character, Boo-
leanor empty list. X is a raw integer that determines
the specific type. For integer, character, Boolean and
empty list, X is less than 36 and Y is also a raw integer.
For the integer type, 5 bits from X and 11 from Y
combine to form a 16 bit signed integer value. For the
vector type, 36 ≤ X < 1024 and X − 36 is the vector’s
length. For the string type, 1024 ≤ X < 2048. To allow
a logarithmic time access to the elements of vectors and
strings, Y is an object reference to a balanced tree of
the elements. A special case for small vectors (length
0 and 1) and small strings (length 0, 1, and 2) stores
the elements directly in Y (and possibly 5 bits of X
for strings of length 2). Figure 1 gives an example of
how vectors and strings are represented. Note that the
leaves of strings pack 3 characters.

4 GARBAGE COLLECTION

The mark-sweep collector we implemented uses the Deutsch-
Schorr-Waite marking algorithm [7]. This algorithm can
traverse a linked data structure without using an auxiliary
stack, by reversing the links as it traverses the data structure
(we call such reversed links “back pointers”). Conceptually
two bits of state are attached to each node. The mark bit
indicates that the node has been visited. The stagebit indi-
cates which of the two links has been reversed.1 When the

1In fact, a tritshould be attached to each node instead
of two bits since the stage bit is meaningless when the mark
bit is not set.
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marking algorithm returns to a node as part of its backtrack-
ing process using the current back pointer (i.e. the “top of
the stack”), it uses the stage bit to know which of the two
fields contains the next back pointer. The content of this
field must be restored to its original value, and if it is the
first field then the second field must be processed in turn.

These bits of information cannot be stored explicitly in
the nodes because all 24 bits are used. The mark bit is
instead stored in a bit vector elsewhere in the RAM (this
means the maximal number of objects in a 2 kilobyte RAM
is really 655, leaving 1393 encodings for ROM objects).

We use the following trick for implementing the stage bit.
The address in the back pointer has been shifted left by
one position and the least significant bit is used to indicate
which field in the “parent” object is currently reversed. This
approach works for the following reason. Note that stage
bits are only needed for nodes that are part of the chain of
reversed links. Since there are more ROM encodings than
RAM encodings and a back pointer can only point to RAM,
we can use a bit of the back pointer to store the stage bit. A
back pointer contains the stage bit of the node that it points
to.

One complication is the traversal of the nodes that don’t
follow the uniform layout (with two tag bits), such as the
leaves of strings that contain raw integers. Note that ref-
erences to these nodes only occur in a specific type of “en-
closing” object. This is an invariant that is preserved by the
runtime system. It is thus possible to track this information
during the marking phase because the only way to reach an
object is by going through that specific type of enclosing ob-
ject. For example, the GC knows that it has reached the leaf
of a string because the node that refers to it is an internal
string tree node just above the leaves (this information is
contained in the type bits of that node).

After the marking phase, the whole heap is scanned to link
the unmarked nodes into the free list. Allocation removes
one node at a time from the free list, and the GC process is
repeated when the free list is exhausted.

5 BYTE-CODE INTERPRETER

The BIT system’s byte-code interpreter is relatively slow
compared to other Scheme interpreters on the same plat-
form. One important contributor to this poor performance
is the management of intermediate results. The evaluation
“stack” where intermediate results are saved is actually im-
plemented with a list and every evaluation, including that
of constants and variables, requires the allocation of a pair
to link it to the stack. This puts a lot of pressure on the
garbage collector, which is not particularly efficient because
it is incremental. Moreover, continuations are not safe-for-
space.

To avoid these problems and introduce more opportuni-
ties for optimization by the compiler, we designed a register-
based virtual machine for PICBIT. Registers can be used to
store intermediate results and to pass arguments to proce-
dures. It is only when these registers are insufficient that
values must be saved on an evaluation stack. We still use
a linked representation for the stack, because reserving a
contiguous section of RAM for this purpose would either
be wasteful (stack section too large) or risk stack overflows

(stack section too small). Note that we don’t have the option
of growing the stack and heap toward each other, because
our garbage collector does not compact the heap. Substan-
tial changes to the object representation would be needed to
permit compaction.

The virtual machine has six registers containing object
references: Acc, Arg1, Arg2, Arg3, Env, and Cont. Acc is
a general purpose accumulator, and it contains the result
when returning to a continuation. Arg1, Arg2, and Arg3

are general purpose and also used for passing arguments to
procedures. If there are more than three arguments, Arg3
contains a list of the third argument and above. Env contains
the current environment (represented as an improper list).
Cont contains a reference to a continuation object (which
as explained above contains a return address, a reference to
the parent continuation object and an environment contain-
ing the continuation’s live free variables). There are also the
registers PC (program counter) and NbArgs (number of argu-
ments) that hold raw integers. When calling an inlined prim-
itive procedure (such as cons and null?, but not apply), all
registers except Acc and PC are unchanged by the call. For
other calls, all registers are caller-save except for Cont which
is callee-save.

Most virtual machine instructions have register operands
(source and/or destination). Below is a brief list of the in-
structions to give an idea of the virtual machine’s size and
capabilities. We do not explain all the instruction variants
in detail.

CST addr, r ⇒ Load a constant into register r.

MOV[S] r1, r2 ⇒ Store r1 into r2.

REF(G|[T][B]) i, r ⇒ Read the global or lexical variable at
position i and store it into r.

SET(G|[T][B]) r, i ⇒ Store r into the global or lexical variable
at position i.

PUSH r1, r2 ⇒ Construct the pair (cons r1 r2) and store it
into r2.

POP r1[, r2] ⇒ Store (car r1) into r2 and store (cdr r1)

into r1.

RECV[T] n ⇒ Construct the environment of a procedure with
n parameters and store it into Env. This is normally the
first instruction of a procedure.

MEM[T][B] r ⇒ Construct the pair (cons r1 Env) and store
it into Env.

DROP n ⇒ Remove the n first pairs of the environment in
Env.

CLOS n ⇒ Construct a closure from n (entry point) and Acc

and store it into Acc.

CALL n ⇒ Set NbArgs to n and invoke the procedure in Acc.
Register Cont is not modified (the instruction does not
construct a new continuation).

PRIM i ⇒ Inline call to primitive procedure i.

RET ⇒ Return to the continuation in Cont.
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JUMPF r, addr ⇒ If r is false, branch to address addr.

JUMP addr ⇒ Branch to address addr.

SAVE n ⇒ Construct a continuation from n (return point),
Cont, and Env and store it into Cont.

END ⇒ Terminate the execution of the virtual machine.

6 COMPILER

PICBIT’s general compilation approach is similar to the one
used in the BIT compiler. A whole-program analysis of the
program combined with the Scheme library is performed and
then the compiler generates a pair of C files (“.c” and “.h”).
These files must be compiled along with PICBIT’s runtime
system (written in C) in a single C compilation so that some
of the data-representation constants defined in the “.h” file
can specialize the runtime for this program (i.e. the encoding
range for RAM objects, constant closures, etc). The “.h”
file also defines initialized tables containing the program’s
byte-code, constants, etc.

PICBIT’s analyses, transformations and code generation
are different from BIT’s. In particular:

• The compiler eliminates useless variables. Both lexical
and global variables are subject to elimination. Nor-
mally, useless variables are rare in programs. How-
ever, the compiler performs some transformations that
turn many variables into useless ones. Namely, constant
propagation and copy propagation, which replace refer-
ences to variables that happen to be bound to constants
and to the value of immutable variables, respectively.
Variables that are not read and that are not set un-
safely (e.g. mutating a yet undefined global variable)
are deemed useless.

• Programs typically contain literal constant values. The
compiler also handles closures with no nonglobal free
variables as constants (this is possible because there is
a single instance of the global environment). Note that
all library procedures and typically most or all top-level
user procedures can be treated like constants. This way
globally defined procedures can be propagated by the
compiler’s transformations, often eliminating the need
for the global variable they are bound to.

• The compiler eliminates dead code. This is impor-
tant, because the R4RS runtime library is appended to
the program and the compiler must try to discard all
the library procedures that are unnecessary. This also
eliminates constants that are unnecessary, which avoids
wasting object encodings. The dead code elimination
is based on a rather simplistic test: the value of a vari-
able that is read for a reason other than being copied
into a global variable is considered to be required. In
practice, the test has proved to be precise enough.

• The compiler determines which variables are live at
return points, so that only those variables are saved
in the continuations created. Similarly, the environ-
ments stored into closures only include variables that
are needed by the body of the closures. This makes

(define (make-list n x)

(if (<= n 0)

’()

(cons x (make-list (- n 1) x))))

(define (f lst)

(let* ((len (length lst))

(g (lambda () len)))

(make-list 100 g)))

(define (many-f n lst)

(if (<= n 0)

lst

(many-f (- n 1) (f lst))))

(many-f 20000 (make-list 100 #f))

Figure 2: Program that requires the safe-for-space property.

continuations and closures safe-for-space. It is particu-
larly important for an embedded system to be safe-for-
space. For example, an innocent-looking program such
as the one in Figure 2 retains a considerable amount
of data if the closures it generates include unnecessary
variables. PICBIT has no problem executing it.

7 EXPERIMENTAL RESULTS

To evaluate performance we use a set of six Scheme programs
that were used in our previous work on BIT.

empty Empty program.

thread Small multi-threaded program that manages 3 con-
current threads with call/cc.

photovore Mobile robot control program that guides the
robot towards a source of light.

all Program which references each Scheme library proce-
dure once. The implementation of the Scheme library
is 737 lines of Scheme code.

earley Earley’s parser, parsing using an ambiguous gram-
mar.

interp An interpreter for a Scheme subset running code to
sort a list of six strings.

The photovore program is a realistic robotics program
with soft real-time requirements that was developed for the
LEGO MINDSTORMS version of BIT. The source code is
given in Figure 3. The other programs are useful to deter-
mine the minimal space requirements (empty), the space re-
quirements for the complete Scheme library (all), the space
requirements for a large program (earley and interp), and
to check if multi-threading implemented with call/cc is fea-
sible (thread).

We consider earley and interp to be complex applica-
tions that are atypical for microcontrollers. Frequently, mi-
crocontroller applications are simple and control-oriented,
such as photovore. Many implement finite state machines,
which are table-driven and require little RAM. Applica-
tions that may require more RAM are those based on
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; This program was originally developed for controlling a LEGO

; MINDSTORMS robot so that it will find a source of light on the floor

; (flashlight, candle, white paper, etc).

(define narrow-sweep 20) ; width of a narrow "sweep"

(define full-sweep 70) ; width of a full "sweep"

(define light-sensor 1) ; light sensor is at position 2

(define motor1 0) ; motor 1 is at position A

(define motor2 2) ; motor 2 is at position C

(define (start-sweep sweeps limit heading turn)

(if (> turn 0) ; start to turn right or left

(begin (motor-stop motor1) (motor-fwd motor2))

(begin (motor-stop motor2) (motor-fwd motor1)))

(sweep sweeps limit heading turn (get-reading) heading))

(define (sweep sweeps limit heading turn best-r best-h)

(write-to-lcd heading) ; show where we are going

(if (= heading 0) (beep)) ; mark the nominal heading

(if (= heading limit)

(let ((new-turn (- turn))

(new-heading (- heading best-h) ))

(if (< sweeps 20)

(start-sweep (+ sweeps 1)

(* new-turn narrow-sweep)

new-heading

new-turn)

; the following call is replaced by #f in the modified version

(start-sweep 0

(* new-turn full-sweep)

new-heading

new-turn)))

(let ((reading (get-reading)))

(if (> reading best-r) ; high value means lots of light

(sweep sweeps limit (+ heading turn) turn reading heading)

(sweep sweeps limit (+ heading turn) turn best-r best-h)))))

(define (get-reading)

(- (read-active-sensor light-sensor))) ; read light sensor

(start-sweep 0 full-sweep 0 1)

Figure 3: The source code of the photovore program.

multi-threading and those involved in data processing such
as acquisition, retransmission, and, particularly, encoding
(e.g. compressing data before transmission).

7.1 Platforms

Two platforms were used for experiments. We used a Linux
workstation with a a 733 MHz Pentium III processor and
gcc version 2.95.4 for compiling the C program generated
by PICBIT. This allowed quick turnaround for determin-
ing the minimal RAM required by each program and direct
comparison with BIT.

We also built a test system out of a PIC18F6720 micro-
controller clocked with a 10 MHz crystal. We chose the
PIC18F6720 rather than the PIC18F6520 because the larger
RAM and ROM allowed experimentation with RAM sizes
above 2 kilobytes and with programs requiring more than 32
kilobytes of ROM. Note that because of its smaller size the
PIC18F6520 can run 4 times faster than this (i.e. at 10 MIPS

with a 40 MHz clock). In the table of results we have extrap-
olated the time measurements to the PIC18F6520 with a 40
MHz clock (i.e. the actual time measured on our test system
is 4 times larger). The ROM of these microcontrollers is of
the FLASH type that can be reprogrammed several times,
making experimentation easy.

C compilation for the PIC was done using the Hi-Tech
PICC-18 C compiler version 8.30 [5]. This is one of the best
C compilers for the PIC18 family in terms of code genera-
tion quality. Examination of the assembler code generated
revealed however some important weaknesses in the context
of PICBIT. Multiplying by 3, for computing the byte ad-
dress of a 24 bit cell, is done by a generic out-of-line 16 bit
by 16 bit multiplication routine instead of a simple sequence
of additions. Moreover, big switch statements (such as the
byte-code dispatch) are implemented with a long code se-
quence which requires over 100 clock cycles. Finally, the C
compiler reserves 234 bytes of RAM for internal use (e.g. in-
termediate results, parameters, local variables) when com-
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PICBIT BIT
Min Byte- ROM Min Byte-

Program LOC RAM code req. RAM code

empty 0 238 963 21819 2196 1296
photovore 38 294 2150 23050 3272 1552
thread 44 415 5443 23538 2840 1744
all 173 240 11248 32372 2404 5479
earley 653 2253 19293 35329 7244 6253
interp 800 1123 17502 35525 4254 7794

Table 2: Space usage in bytes for each system and program.

piling the test programs. Note that we have taken care not
to use recursive functions in PICBIT’s runtime, so the C
compiler may avoid using a general stack. We believe that a
hand-coding of the system in assembler would considerably
improve performance (time and RAM/ROM space) but this
would be a major undertaking due to the complexity of the
virtual machine and portability would clearly suffer.

7.2 Memory Usage

Each of the programs was compiled with BIT and with
PICBIT on the Linux workstation. To evaluate the com-
pactness of the code generated, we measured the size of the
byte-code (this includes the table of constants and the ROM
space they occupy). We also determined what was the small-
est heap that could be used to execute the program without
causing a heap overflow. Although program execution speed
can be increased by using a larger heap it is interesting to
determine what is the absolute minimum amount of RAM
required. The minimum RAM is the sum of the space taken
by the heap, by the GC mark bits, by the Scheme global
variables, and the space that the PICC-18 C compiler re-
serves for internal use (i.e. 234 bytes). The space usage is
given in Table 2. For each system, one column indicates the
smallest amount of RAM needed and another gives the size
of the byte-code. For PICBIT, the ROM space required on
the PIC when compiled with the PICC-18 C compiler is also
indicated.

The RAM requirements of PICBIT are quite small. It is
possible to run the smaller programs with less than 512 bytes
of RAM, notably photovore which is a realistic application.
RAM requirements for PICBIT are generally much smaller
than for BIT. On earley, which has the largest RAM re-
quirement on both systems, PICBIT requires less than 1/3
of the RAM required by BIT. BIT requires more RAM than
is available on the PIC18F6520 even for the empty program.

The size of the byte-code and constants is up to 3 times
larger for PICBIT than for BIT. The largest programs
(earley and interp) take a little more than 32 KB of
ROM, so a microcontroller with more memory than the
PIC18F6520 is needed. The other programs, including all

which includes the complete Scheme library, fit in the 32 KB
of ROM available on the PIC18F6520.

Under the tight constraints on RAM that we consider
here, even saving space by eliminating Scheme global vari-
ables is crucial. Indeed, large programs or programs that
require the inclusion of a fair part of the standard library
use many global variables. Fortunately, the optimizations
performed by our byte-compiler are able to remove almost

Program In sources After UFE After UGE
empty 195 0 0
photovore 210 43 0
thread 205 92 3
all 195 195 1
earley 231 142 0
interp 302 238 2

Table 3: Global variables left after each program transfor-
mation.

RAM Total Avg. GC Avg. GC
size run time interval pause time
512 84 0.010 0.002

1024 76 0.029 0.005
1536 74 0.047 0.007
2048 74 0.066 0.009
2560 74 0.085 0.011
3072 74 0.104 0.013

Table 4: Time in seconds for various operations as a function
of RAM size on the photovore program.

all of them. Table 3 indicates the contribution of each pro-
gram transformation at eliminating global variables. The
first column indicates the total number of global variables
found in the user program and the library. The second one
indicates how many remain after useless function elimination
(UFE). The third one indicates how many remain after use-
less global variables have been eliminated (UGE). Clearly,
considerable space would be wasted if they were kept in the
executable.

7.3 Speed of Execution

Due to the virtual machine’s use of dynamic memory al-
location, the size of the RAM affects the overall speed of
execution even for programs that don’t perform explicit al-
location operations. This is an important issue on a RAM
constrained microcontroller such as the PIC. Garbage collec-
tions will be frequent. Moreover, PICBIT’s blocking collec-
tor processes the whole heap at each collection and thereby
introduces pauses in the program’s execution that deterio-
rate the program’s ability to respond to events in real-time.

We used photovore, a program with soft real-time require-
ments, to measure the speed of execution. The program was
modified so that it terminates after 20 sweep iterations. A
total of 2791008 byte-codes are executed. The program was
run on the PIC18F6720 and an oscilloscope was used to mea-
sure the total run time, the average time between collections
and the average collection pause. The measures, extrapo-
lated to a 40 MHz PIC18F6520, are reported in Table 4.

This program has few live objects throughout its execu-
tion and all collections are evenly spaced and approximately
the same duration. The total run time decreases with RAM
size but the collection pauses increase in duration (because
the sweep phase is proportional to the heap size). The du-
ration of collection pauses is compatible with the soft real-
time constraints of photovore even when the largest possible
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RAM size is used. Moreover the collector consumes a rea-
sonably small portion (12% to 20%) of the total run time,
so the program has ample time to do useful work. With the
larger RAM sizes the system executes over 37000 byte-codes
per second.

The earley program was also tested to estimate the du-
ration of collection pauses when the heap is large and nearly
full of live objects. This program needs at least 2253 bytes of
RAM to run. We ran the program with slightly more RAM
(2560 bytes) and found that the longest collection pause is
0.063 second and the average time between collections is
0.085 second. This is acceptable for such an extreme situ-
ation. We believe this to be a strong argument that there
is little need for an incremental collector in such a RAM
constrained system.

To compare the execution speed with other systems we
used PICBIT, BIT, and the Gambit interpreter version 3.0
on the Linux workstation to run the modified photovore

program. PICBIT and BIT were compiled with “-O3” and
a 3072 byte RAM was used for PICBIT, and a 128 kilo-
byte heap was used for BIT (note that BIT needs more than
3072 bytes to run photovore and PICBIT can’t use more
RAM than that). The Gambit interpreter used the default
512 kilobyte heap. The run time for PICBIT is 0.33 sec-
ond. BIT and Gambit are respectively 3 times and 5 times
faster than PICBIT. Because of its more advanced virtual
machine, we expected PICBIT to be faster than BIT. After
some investigation we determined that the cause was that
BIT is performing an inlining of primitives that PICBIT is
not doing (i.e. replacing calls to the generic “+” procedure
in the two argument case with the byte-code for the binary
addition primitive). This transformation was implemented
in an ad hocway in BIT (it relied on a special structure
of the Scheme library). We envision a more robust trans-
formation for PICBIT based on a whole-program analysis.
Unfortunately it is not yet implemented. To estimate the
performance gain that such an optimization would yield, and
evaluate the raw speed of the virtual machines, photovore’s
source code was modified to directly call the primitives. The
run time for PICBIT dropped to 0.058 second, making it
slightly faster than Gambit’s interpreter (at 0.064 second)
and roughly twice the speed of BIT (at 0.111 second). The
speed of PICBIT’s virtual machine is quite good, especially
when the small heap is taken into account.

8 CONCLUSION

We have described PICBIT, a system intended to run
Scheme programs on microcontrollers of the PIC family. De-
spite the PIC’s severely constrained RAM, nontrivial Scheme
programs can still be run on the larger PIC models. The
RAM space usage and execution speed is surely not as good
as can be obtained by programming the PIC in assembly lan-
guage or C, but it is compact enough and fast enough to be
a plausible alternative for some programs, especially when
quick experimentation with various algorithms is needed.
We think it is an interesting environment for compact soft
real-time applications with low computational requirements,
such as hobby robotics, and for teaching programming.

The main weaknesses of PICBIT are its low speed and
high ROM usage. The use of a byte-code interpreter, the

Figure 4: Heap occupancy during execution of interp.

very compact style of the library, and the intricate object
representation are all contributors to the low speed. This is
a result of the design choices that strongly favor compact-
ness. The use of a byte-code interpreter allows the micro-
controller to run large programs that could not be handled
if they were compiled to native code. The library makes ex-
tensive use of higher-order functions and code factorization
in order to have a small footprint. Specialized first-order
functions would be faster at the expense of compactness.
The relatively high ROM space requirements are a bit of
a disappointment. We believe that the runtime could be
translated into more compact native code. Barring changes
to the virtual machine, improvements to the C compiler or
translation by hand to assembler appear to be the only ways
to overcome this problem.

PICBIT’s RAM usage is the most satisfactory aspect of
this work but many improvements can still be made, espe-
cially to the byte-compiler. The analyses and optimizations
that it performs are relatively basic. Control-flow, type, and
escape analyses could provide the necessary information for
more ambitious optimizations, such as inlining of primitives,
unboxing, more aggressive elimination of variables, conver-
sion of heap allocations into static or stack allocations, strip-
ping of useless services in the runtime, etc. The list is end-
less.

As an instance of future (and simple) improvement, we
consider implementing a compact representation for strings
and vectors intended to flatten the trees used in their repre-
sentation. The representation is analogous to CDR-coding:
when many consecutive cells are available, a sequence of
leaves can be allocated one after the other, avoiding the need
for linkage using interior nodes. The position of the objects
of a sequence is obtained by pointer arithmetics relatively
to a head object that is intended to indicate the presence of
CDR-coding. Avoiding interior nodes both increases access
speed and saves space. Figure 4 illustrates the occupancy of
the heap during the execution of interp. The observations
are taken after each garbage collection. In the graph, time
grows from top to bottom. Addresses grow from left to right.
A black pixel indicates the presence of a live object. There
are 633 addresses in the RAM heap. The garbage collector
has been triggered 122 times. One can see that the distri-
bution of objects in the heap is very regular and does not
seem to deteriorate. Clearly, there are many long sequences
of free cells. This suggests that an alternative strategy for
the allocation of long objects has good chances of being suc-
cessful.
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1. INTRODUCTION 
Scarcity of library code is an often cited obstacle to the wider 
adoption of Scheme. Despite the number of existing Scheme 
implementations, or perhaps because of it, the amount of reusable 
code directly available to Scheme programmers is a small fraction 
of what is available in other languages. For this reason many 
Scheme implementations provide Foreign Function Interfaces 
(FFIs) allowing Scheme programs to use library binaries originally 
developed in other languages.  

On Windows platforms the C Dynamic Link Library (DLL) 
format has traditionally been one of the most alluring targets for 
FFI integration, mainly because Windows’s OS services are 
exported that way. However making a Windows C DLL available 
from Scheme is not easy. Windows C DLLs are not self-
describing. Meta-data, such as function names, argument lists and 
calling conventions is not available directly from the DLL binary. 
This complicates the automatic generation of wrapper definitions 
because it forces the FFI implementer to either a write C parser to 
extract definitions from companion C Header files, or,  
alternatively, to rely on the Scheme programmer to provide the 
missing information.  

 

These issues, along with other problems including the mismatch 
between C’s manual memory management and Scheme’s garbage 
collection, make the use and implementation of C FFIs difficult 
tasks.  

Recently the advent of the .NET platform [10] has provided a 
more attractive target for Windows FFI integration. The .NET 
platform includes a runtime, the Common Language Runtime or 
CLR, consisting of a large set of APIs covering most of the OS 
functionality, a virtual machine language (IL) and a just-in-time 
compiler capable of translating IL into native code.  The CLR 
offers Garbage Collection services and an API for accessing the 
rich meta-data packaged in CLR binaries. The availability of this 
meta-data coupled with the CLR’s reflection capabilities vastly 
simplifies the implementation and use of Scheme FFIs.  

The remainder of this paper will illustrate this fact by examining 
the design and implementation of dot-scheme, a PLT Scheme [7] 
FFI to the CLR. Although dot-scheme currently targets only PLT 
Scheme, its design should be portable to any Scheme 
implementation that can be extended using C.   

 

2. Presenting dot-scheme 
The dot-scheme library allows the use of arbitrary CLR libraries, 
also called assemblies, from Scheme. Consider the following C# 
class: 

using System; 

public class Parrot 

{ 

   public void SayHello(string name) 

   { 

      Console.WriteLine ("Hello {1}.", name); 

   } 

} 

Assuming this code is compiled into an assembly, parrot-
assembly.dll, then the Parrot class is available from the 
following Scheme code: 

 

 

 

 

 
 
Permission to make digital or hard copies, to republish, to post on     
servers or to redistribute to lists all or part of this work is granted     
without fee provided that  copies are not made or distributed for 
profit or     commercial advantage and that copies bear this notice 
and the full     citation on the first page. To otherwise copy or  
redistribute requires    prior specific permission.  
 
Fourth Workshop on Scheme and Functional Programming.  
November 7, 2003, Boston, Massachusetts, USA.  
Copyright 2003 Pedro Pinto. 
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(require (lib "dot-scheme.ss" "dot-scheme")) 

 

(import-assembly "parrot-assembly")  

(:say-hello (new ::parrot) “John”) 

 

> Hello John. 

 

The meaning of the Scheme code should be easy to infer. After 
importing the dot-scheme library bindings the program uses the 
import-assembly macro to load the parrot-assembly 
binary: 

 

(import-assembly "parrot-assembly")  

 
When loading is completed, import-assembly iterates through 
all the types contained in parrot-assembly generating 
appropriate wrapper bindings. The identifier ::parrot is bound 
to a Scheme proxy of an instance of the CLR Type class. This 
instance contains meta-data associated with the Parrot type and 
can be used as an argument to the new function: 

 

(new ::parrot) 

 

The new function constructs an instance of the Parrot class and 
returns a proxy . This proxy is then used as the first argument 
(corresponding to the “this” pointer in C#) of the :say-hello 
function: 

 

(:say-hello (new ::parrot) “John”) 

 

The second argument is a Scheme string. Internally :say-hello 
will extract the actual Parrot reference from the first argument, 
convert the Scheme string to a CLR string and then invoke the 
SayHello method on the Parrot object. The result of this call 
is a CLR string which is automatically converted to a Scheme 
string and returned to the top level.   

In general, using a CLR assembly is fairly straightforward. The 
user needs only to specify which assembly to import and dot-
scheme will load it and generate the appropriate wrapper code. 
This is true not only in this toy example but also when importing 
definitions from large, complex libraries such as the CLR system 
assemblies.  For example using any one of the three-hundred plus 
types that comprise the CLR GUI framework is just as simple: 

 

(require (lib "dot-scheme.ss" "dot-scheme")) 

(import-assembly "system.windows.forms") 

(::message-box:show "Hello!") 

 

In general using CLR types through dot-scheme is no harder than 
using regular PLT Scheme modules [5].  In fact it is possible to 

muddle the distinction between PLT modules and CLR 
assemblies: 

 

(module forms mzscheme 

(require (lib "dot-scheme.ss"  

              "dot-scheme")) 

(import-assembly "system.windows.forms") 

(provide (all-defined))) 

 

This code above defines a PLT Scheme module named forms. 
When the module is loaded or compiled the expansion of the 
import-assembly macro creates a set of bindings within the 
module’s scope. These bindings are exported by the declaration 
(provide (all-defined)). Assuming the module is saved 
in a file forms.ss and placed in the PLT collections path then 
access to the CLR GUI from Scheme simply entails: 

 

(require (lib "forms.ss")) 

(::message-box:show "Hello again!") 

 

There is not much more to be said about using dot-scheme.  
Scheme’s macro facilities coupled with the richness of the meta-
data contained in CLR assemblies make it possible to generate 
Scheme wrappers from the binaries themselves.  The power of 
this combination is apparent in the simplicity with which CLR 
types can be used. Perhaps even more striking though is how 
straightforward it is to achieve this level of integration.  This 
should become apparent in the next section. 

 

2.1 High-level architecture  
The dot-scheme architecture can be thought of as defining two 
layers:  

• A core layer, responsible for managing storage of CLR 
objects as well as CLR method dispatch. This layer is 
implemented in 1200 lines of Microsoft Managed C++ 
(MC++). 

• A code generation layer, responsible for generating 
wrapper bindings for CLR types. These wrappers are 
implemented in terms of the primitives supplied by the 
core layer. The code generation layer is implemented in 
700 lines of Scheme. 

 
2.2 The Core Layer 
Dot-scheme memory management and method dispatch are 
implemented in a PLT extension. A PLT extension is a DLL 
written in C/C++ and implementing Scheme callable functions [6].  
These functions can use and create Scheme objects represented in 
C/C++ by the type Scheme_Object. At runtime Scheme 
programs can dynamically load extensions and use extension 
functions as if those functions had been defined in Scheme. 
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Using Microsoft’s Managed C++ (MC++), a dialect of C++ 
which can target the CLR, it is possible to create a PLT extension 
that targets the CLR. Such an extension is able to use any of the 
CLR types as well as any of the library calls provided by the PLT 
runtime. From the point of view of the Scheme process that loads 
the extension the usage of the CLR is invisible. The extension 
functions initially consist of a small stub that transfers control to 
the CLR runtime. When the function is invoked for the first time 
the CLR retrieves the associated IL, translates it to machine code 
and replaces the method stub with a jump to the generated code.  

The core layer is implemented in MC++ and so can bridge the 
PLT Scheme and CLR runtimes.  

2.2.1 Object Representation 
The first challenge faced when attempting to use .NET from 
Scheme is how to represent CLR data in Scheme. There are two 
categories of CLR data to consider. Primitive types such as 
integers, doubles, Booleans and strings have more or less direct 
equivalents in the Scheme type system and so can simply be 
copied to and from their Scheme counterparts. Non primitive CLR 
types  present a more interesting problem. The CLR type system 
consists of a single-rooted class hierarchy where every type is a 
subclass of Object (even primitive types such as integers and 
floats can be boxed, that is their value, along with a small type 
descriptor, can be copied to the heap and Object references used 
to access it). Object life-time in the CLR is controlled by a 
Garbage Collector. To understand the interaction between the 
Scheme Garbage Collector and the CLR it is first necessary to 
examine the CLR’s Garbage Collection strategy. 

The CLR Garbage Collector is activated when the CLR heap 
reaches a certain size threshold. At this point the Garbage 
Collector thread will suspend all other threads and proceed to 
identify all objects that are reachable from a set of so called roots. 
Roots are Object references that are present in the stack, in static 
members or other global variables, and in CPU registers.  Objects 
that are not reachable from this set are considered collectable and 
the space they occupy in the heap is considered empty. The 
Garbage Collector reclaims this space by moving objects to the 
empty space1 and updating all changed references. 

Clearly for this algorithm to work the Garbage Collector must be 
aware of all active Object references within a process. As a 
consequence it is not possible to pass Object references to code 
that is not running under the control of the CLR. This includes the 
Scheme runtime and so, to represent CLR Objects, another level of 
indirection is needed.  Dot-scheme implements this indirection by 
storing references to CLR Objects in a CLR hash table using an 
integer key.  

 

                                                                 
1 This is a very simplified explanation. For details see [8] 

 

 

This key can be packaged in a Scheme_Object, which can then 
be associated with a finalization callback and registered with the 
Scheme garbage collector. As long as the CLR Object remains in 
the hash table it will not be collected by the CLR (since the hash 
table itself is referenced by a static variable, and therefore is 
reachable from a root). When the Scheme runtime determines that 
the reference is no longer needed the finalization callback is 
invoked. At this point the associated integer key is used to locate 
and remove the CLR Object reference from the hash table. Other 
references to the same Object may exist either in the hash table or 
in other CLR objects and so the Object may continue to exist until 
all references go out of scope.   

Notice that it will take at least two independent garbage 
collections for an Object to be collected, one by the Scheme 
runtime and one by the CLR, but otherwise this process is 
undistinguishable from regular Scheme garbage collection.  

In terms of CLR Object representation the above is almost all that 
is necessary.  One subtlety remains though. Consider the 
following classes: 

 

class A 

{ 

   virtual string SayName() 

   {return "A";} 

 

   string SayNameAgain () 

   {return "A";} 

} 

class B : public A 

{ 

   override string SayName() 

   {return "B";} 

 

   string SayNameAgain() 

   {return "B";} 

}    

Keys 

1 

21 

3 

4 

Figure 2. CLR Object management 

CLR Obj. 
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Now assume an instance of B and an instance of A are created and 
references of type A associated to each of them: 

 

A a1 = new B(); 

A a2 = new A(); 

 

What happens when SayName is invoked? It depends: 

      

a1.SayName2() -> returns "B" 

a2.SayName2() -> return "A" 

 

This result should not come as a surprise. Basic dynamic dispatch 
is happening here. At run-time the CLR dispatches on the type of 
the Object pointed by a1 and a2. Using the Object representation 
strategy described above it would be easy to wrap the SayName 
method in Scheme and still support dynamic dispatch. Assuming 
a-ref is a reference to a subtype of A then: 

 

(say-name2 a-ref) 

 

could be implemented in a PLT extension as follows2: 

 

Scheme_Object SayName2(Scheme_Object a) 

{ 

   A a = (A) DecodeCLRObject (a); 

   return EncodeCLRObject(a.SayName2()); 

} 

      

where EncodeCLRObject returns a CLR Object given an integer 
key (packaged in a Scheme_Object) and DecodeCLRObject 
stores a CLR Object and returns its key packaged as a CLR 
Object.  In this particular case this strategy would produce the 
correct result. However there is another scenario. Consider the 
following code: 

    

B bRef = new B(); 

A aRef = bRef; 

 

what should happen when SayNameAgain is invoked? Again, it 
depends: 

 

                                                                 
2 Throughout this paper we will present examples in C# despite 

the fact that the dot-scheme core layer is implemented in 
MC++. MC++’s syntactic noise would likely cause distraction 
without offering any additional insights. 

bRef.SayNameAgain () -> returns "B" 

aRef.SayNameAgain () -> return "A" 

     

Despite the fact that an identically named method was invoked on 
the same Object on both calls the actual method that is executed 
depends on the type of the reference used to access the Object. In 
contrast with Scheme where only values have types, in the CLR 
both an Object and the references used to manipulate it have a 
type. Furthermore both have a role in method dispatch, the first at 
runtime and the second at compile time3. In Scheme variables are 
typeless. Assume SayNameAgain is invoked from Scheme on a 
reference to an instance of B: 

 

(say-name-again b-ref) 

 

In this case problem a problem arises. What should say-name-
again do? Should it invoke A.SayNameAgain or 
B.SayNameAgain? The runtime type of b-ref is insufficient 
to make this decision, so somehow it is necessary to convey the 
missing type information.This can be done in two ways: the 
reference type can be implied in the function call, for example by 
creating two functions, say-name-again-A and say-name-
again-B, or it can be encoded in the reference itself. The latter 
approach is more natural for users familiar with the CLR and leads 
to simpler code and so is the one preferred by dot-scheme.  

In terms of the structures described above only a small change is 
required. Instead of a CLR Object the hash table mentioned must 
store an object reference structure consisting of an Object and 
Type pair: 

 

class ObjRef 

{ 

   ObjRef (Object o, Type t) 

   {obj = o; type = t;} 

 

   Object obj; 

   Type type; 

} 

 

The obj reference plays the same role as before pointing to the 
CLR Object of interest. The type reference is used to record the 
dispatch type associated with obj. 

With typed references comes the need to occasionally circumvent 
the type system. In dot-scheme the Cast function changes the 

                                                                 
3 Note that this issue can be seen as a special case of the general 

problem of resolving overloaded method calls. The CLR resolves 
such calls at compile time based on the static types used in the 
method call.  
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dispatch type associated with a CLR reference. Implementing 
Cast is straightforward: 

 

Scheme_Object Cast (Scheme_Object o, 

                    Scheme_Object typeName) 

{ 

   Type tt =  

      Type.GetType(toCLRString(typeName)); 

 

   ObjRef or = DecodeCLRObject(o); 

 

   If (tt.IsAssignableFrom(or.obj.GetType())) 

      return  

         EncodeCLRObject(new ObjRef(obj,tt)); 

   else 

      throw Exception ("Invalid cast"); 

} 

 

The code above starts by using the CLR Type class to retrieve the 
Type instance associated with the class named by typeName. 
After checking the validity of the cast the code then creates and 
returns a new ObjRef containing the same CLR Object but a 
different dispatch type.  

This addition completes the description of dot-scheme’s memory 
management strategy. To summarize, the problem of representing 
CLR objects in Scheme can be reduced to the implementation of 
the following interface: 

 

Scheme_Object EncodeObjRef (ObjRef); 

ObjRef DecodeObjRef (Scheme_Object ref); 

void RemoveObjRef (Scheme_Object ref); 

Scheme_Object Cast(Scheme_Objectm ref, 

                   Scheme_Object typeName); 

 

The semantics of these operations should be clear:  

 

• EncodeObjRef will add the ObjRef passed as an 
argument to an internal hash table and package the 
associated integer key in a Scheme_Object. This 
object is then registered with the Scheme garbage 
collector by associating it with the RemoveObjRef 
finalization callback. 

• DecodeObjRef will extract an integer key from the 
passed Scheme_Object and return the ObjRef that 
is associated with it. 

• RemoveObjRef will obtain an integer key from its 
argument in the same way as DecodeObjRef but 
instead of returning the associated ObjRef it will 
remove it from the internal hash table. 

• Cast creates a new ObjRef based on the one passed as 
an argument. The new ObjRef will be associated with 
the type named by typeName.   

 

 

2.2.2 Method dispatch 
Dynamic method dispatch is a complex process [2]. Consider the 
steps required to determine what method should be invoked by 
the C# code below: 

 

obj.f(arg2, arg3, ... argn) 

 

First, at compile time, the type of the reference obj is located. 
Within the type’s scope the compiler will search for a method 
named f. Since the CLR supports method overloading several 
candidate methods may exist. The compiler must use the static 
types of the arg2…argn expressions to select between candidate 
methods. This disambiguation process is not entirely 
straightforward. Because of sub-typing it is still possible for 
several identically named methods to have signatures that are 
compatible with the types of the expressions arg2…argn. In this 
case the C# compiler will try to select the "most specialized" 
method, i.e. the method whose formal argument types are closer in 
the inheritance tree to the actual argument types. If a decision is 
possible there is still one more step. If the method found is not 
virtual then the compiler will emit a direct method call. If the 
method is virtual then final resolution is deferred until run time 
and the compiler simply records the index of the virtual method 
found. At runtime this index will be used to retrieve the 
corresponding method from the method table associated with the 
Object referenced.  

In order to stay close to normal CLR semantics dot-scheme 
emulates this lookup process. Since Scheme is dynamically typed 
no reference types are available at compile time and so all the 
steps above have to be performed at run-time.  

Dot-scheme makes use of the CLR reflection API to implement 
most of this process. The reflection API offers methods allowing 
the retrieval of type information and the invocation of methods on 
types which can be unknown at compile time. Every CLR Object 
implements a GetType method which returns an instance of the 
CLR Type class holding type information for the specific CLR 
Object. Using this Type Object it is possible to locate and invoke 
methods on the original instance. Dot-scheme relies on these 
capabilities to implement its dispatch algorithm. A simplified 
version of this algorithm is presented below. For brevity, error 
processing and handling of void return types are omitted. 
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ObjRef Dispatch (String methodName,  

                 ObjRef self,  

                 ObjRef [] args)  

{ 

   Type [] argTypes = new Type [args.Length]; 

   Object []argValues = new Object[args.Length]; 

 

   For (int n = 0; n < args.Length; i++) { 

      argTypes[n] = args[n].type; 

      argValues[n] = args[n].obj; 

   } 

 

   MethodInfo mi =  

      self.type.GetMethod (methodName, 

                           argTypes); 

  

   Object result =  

      mi.Invoke(self.obj,methodName, args); 

 

   return new ObjRef (result, 

                      mi.GetReturnType()); 

 

} 

The first step taken by Dispatch is extracting the types of the 
arguments used in the call. Note that the reference types, not the 
actual argument types are used. Using the extracted types 
Dispatch queries the Type Object associated with the 
reference on which the method call is invoked. 
Type.GetMethod  is a CLR method which implements the 
method lookup algorithm described earlier. The result of 
GetMethod is a MethodInfo instance which contains meta-
data associated with the method found. MethodInfo.Invoke 
is then used to execute the method. The result of this call, along 
with the associated reference type, is packaged in an ObjRef and 
returned.  

Note that despite the relative complexity associated with method 
dispatching, the above code is straightforward. All the heavy 
lifting is done by the CLR. The reflection API is used to locate the 
appropriate method and, once a method is found, to construct the 
appropriate stack frame and transfer control to the target method.  

Dot-scheme actually implements two additional variations on the 
dispatch code above, one for dispatching constructor calls and 
another for dispatching static member calls, but in essence its 
dispatch mechanism is captured in the code above.  

 

2.2.3 The Core API 
As mentioned earlier the core layer is implemented through a PLT 
Scheme extension. This extension implements the object 
management and dispatch mechanisms described above. In order to 
make its services available to the Scheme runtime the core layer 
exports the following Scheme constructs: 

 

• obj-ref. obj-ref is a new Scheme type. Internally 
this type simply packages an integer key that can be 
used to retrieve ObjRef instances. 

• (cast obj-ref type-name) -> obj-ref.  
The cast function takes as argument an obj-ref and 
a string. obj-ref indicates the Object reference that is 
the source of the cast and the string names the target 
type. 

• (dispatch self method-name arg…) -> 

result | void. The dispatch function will 
invoke the instance method named by the method-
name string on the CLR Object associated with the first 
arg passing the remaining parameters as arguments. 
Internally the implementation will examine both the 
self and arg parameters to determine if they 
correspond to ObjRef’s or Scheme primitive types. In 
the first case the associated ObjRef instance is 
retrieved. In the second case a new ObjRef is created 
and the Scheme value is copied to the equivalent CLR 
Type. The resulting list of arguments is then passed to 
the MC++ dispatch call described earlier. The result of 
the method call, if any, is either copied to a Scheme 
value and immediately returned or encoded as an integer 
key and returned. 

• (dispatch-static type-name method-name 

arg …) -> result | void. dispatch-static 
is similar to dispatch-instance but in this case 
there is no self reference. Instead the type named by the 
string type-name is searched for a static method 
named method-name.  

• (dispatch-constructor type-name arg…) 

-> result | void. dispatch-constructor is 
similar to dispatch-static except for the fact that 
a constructor method is implied. 

 

This API is sufficient to provide access to almost all of the CLRs 
functionality.  The rest of dot-scheme’s implementation simply 
provides syntactic sugar over these five definitions. A natural 
syntactic mapping is an important factor in the determining the 
popularity of a FFI and so the next section will examine dot-
scheme’s efforts in this area. 

2.3 The Code Generation Layer 
The Core API is all that is necessary to manipulate the Parrot 
class introduced earlier. The original example could be rewritten in 
terms of the Core API primitives: 
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(require (lib "dot-scheme-core.ss"  

              "dot-scheme")) 

 

(dispatch-instance  

   (dispatch-constructor                                 

       “ParrotAssembly, Parrot”   

       “John”)) 

    “SayHello”  

    “John”) 

 

> Hello John. 

 

However this syntax is irritatingly distant from normal Scheme 
usage. This can easily be remedied with the help of some utilities:  

  

(define-syntax import-method 

    (syntax-rules () 

      ((_ ?scheme-name ?clr-name) 

       (define (?scheme-name self . args) 

         (apply dispatch-instance  

                (cons self  

                      (cons ?clr-name  

                            args))))))) 

 

(define-syntax import-type 

  (syntax-rules () 

    ((_ ?scheme-name ?clr-name) 

     (define ?scheme-name 

       (dispatch-static "System.Type"  

                        "GetType"  

                        ?clr-name))))) 

 

(define (new type-object . args) 

  (apply  

    (dispatch-constructor  

      (dispatch-instance  

        type-object  

        “get_AssemblyQualifiedName”) 

       args))) 

 

Now it is possible to write: 

 

(import-type ::parrot “Parrot, ParrotAssembly”) 

(import-method :say-hello “SayHello”) 

 

(:say-hello (new ::parrot) “John”) 

 

> Hello John. 

 

The new syntax looks like Scheme but requires typing import-
statements. When importing a large number of types this may 
become tedious. Fortunately the CLR allows the contents of an 
assembly to be inspected at run-time. Using the primitives in the 
core layer it is possible to take advantage of the Reflection API to 
obtain a complete list of types in an assembly. It is then a simple 
matter to iterate through each type, generating the appropriate 
import-type/method expressions.  

In fact this is almost exactly how the import-assembly 
syntax-case [3] macro works. There is a complication though. 
Because the CLR and Scheme use different rules for identifier 
naming and scoping it is not possible to map CLR names directly 
to Scheme.  

Dot-scheme addresses these issues by renaming CLR methods and 
types in a way that is compatible with Scheme naming rules and 
hopefully produces bindings that can be easily predicted from the 
original CLR names. The problems addressed by this process 
include: 

 

• Case sensitivity. The CLR is case sensitive while 
standard Scheme is not. Dot-scheme addresses this issue 
by mangling CLR identifiers, introducing a ‘-‘ before 
each upper-case character but the first (if the first 
character is lower-case a -̀' is inserted at the beginning). 
Because ‘-‘ is an illegal character for CLR identifiers this 
mapping is isomorphic.  

• Identifier scoping. In the CLR, method and type names 
have different scopes. It is perfectly legal to have a 
method A defined in a class B and a method B defined in 
a class A. In Scheme there is only one namespace so if 
both methods and types were mapped in the same way 
collisions could occur. Dot-scheme address this issue by 
prefixing type names with ‘::’ and method names with 
‘:’. 

• Namespaces.  Languages that target the CLR provide 
some mechanisms to segregate type definitions into 
namespaces.  A namespace is an optional prefix for a 
type name. The problem faced by dot-scheme is what to 
do when identifiers coming from different namespaces 
collide. Dot-scheme’s solution for this issue is very 
simple. For each CLR type dot-scheme will create two 
bindings. One of the bindings will include the namespace 
prefix associated with the type and the other will not. In 
most of the cases the Scheme programmer will use the 
shorter version. In case of a collision the long name can 
be used. 

• Differences in method name scoping. In the CLR each 
method name is scoped to the class in which it is 
declared.  Since dot-scheme dispatches instance method 
calls by searching for a method declared in the type of 
the first argument, instance method name collisions pose 
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no difficulties. However static methods present a 
different challenge. In this case there is no “this” pointer 
to reduce the scope of the method name search. Dot-
scheme addresses this issue by prefixing each static 
method name with the type name the method is 
associated with. 

 

The code generation layer in dot-scheme consists essentially of a 
set of macros that generate bindings according to the rules 
described above. 

 

3. Future work  
As presented dot-scheme allows the creation and use of CLR 
objects. This is, of course, only half the problem. Callbacks from 
the CLR to Scheme would also be very useful, in particular for 
implementing Graphical User Interfaces. The CLR allows the 
generation of code at run-time so it should be possible for dot-
scheme to generate new CLR classes based on Scheme 
specifications. Future work will investigate this possibility.  
Performance issues are also likely to be visited. Currently dot-
scheme’s implementation favors simplicity over performance 
when a choice is necessary. As the system matures we expect this 
bias to change.  

 

4. Conclusion 
This paper supports two different goals. Ostensibly the goal has 
been to present the design and implementation of a Scheme FFI.  
A more covert but perhaps more important goal was to alert 
Scheme implementers to the ease with which bindings to the CLR 
can be added to existing Scheme implementations.  

The CLR presents an important opportunity for Scheme. It 
provides a vast API covering most of the OS services and is an 
active development platform currently supporting more than two 
dozen different languages. In this role as a universal binary 

standard the CLR is even more enticing. By providing access to 
the CLR, Scheme implementers gain access to libraries written in a 
number of languages including C++, Lisp, Smalltalk and, ironically, 
other Schemes.  

These facts have not gone unnoticed in other language 
communities including Haskell, Ruby and Perl which already 
provide some sort of FFI integration with the CLR [4, 9, 1]. 
Scheme has some potential advantages in this area however. Its 
unique syntax definition capabilities can arguably be used to 
achieve a simpler and more natural result than what is possible in 
other languages.  
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ABSTRACT
This paper describes an experimental embedding of Python
into DrScheme. The core of the system is a compiler, which
translates Python programs into equivalent MzScheme pro-
grams, and a runtime system to model the Python environ-
ment. The generated MzScheme code may be evaluated or
used by DrScheme tools, giving Python programmers ac-
cess to the DrScheme development suite while writing in
their favorite language, and giving DrScheme programmers
access to Python. While the compiler still has limitations
and poor performance, its development gives valuable in-
sights into the kind of problems one faces when embedding
a real-world language like Python in DrScheme.

1. INTRODUCTION
The Python programming language [13] is a descendant of
the ABC programming language, which was a teaching lan-
guage created by Guido van Rossum in the early 1980s. It
includes a sizeable standard library and powerful primitive
data types. It has three major interpreters: CPython [14],
currently the most widely used interpreter, is implemented
in the C language; another Python interpreter, Jython [11],
is written in Java; Python has also been ported to .NET [9].

MzScheme [8] is an interpreter for the PLT Scheme pro-
gramming language [7], which is a dialect of the Scheme lan-
guage [10]. MzScheme compiles syntactically valid programs
into an internal bytecode representation before evaluation.
MrEd [6] is a graphical user interface toolkit that extends
PLT Scheme and works uniformly across several platforms
(Windows, Mac OS X, and the X Window System.) Origi-
nally meant for Scheme, DrScheme [5] is an integrated de-
velopment environment (IDE) based on MzScheme—it is a
MrEd application—with support for embedding third-party
extensions. DrScheme provides developers with useful and
modular development tools, such as syntax or flow analyz-
ers. Because MzScheme’s syntax system includes precise
source information, any reference by a development tool to

Permission to make digital or hard copies, to republish, to post on servers or
to redistribute to lists all or part of this work is granted without fee provided
that copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page. To
otherwise copy or redistribute requires prior specific permission. Fourth
Workshop on Scheme and Functional Programming. November 7, 2003,
Boston, Massachusetts, USA. Copyright 2003 Philippe Meunier and Daniel
Silva.

Figure 1: DrScheme language selection menu

such data can be mapped back to a reference to the original
program text.

DrScheme is thus no longer just a development environment
for Scheme. It can now potentially play the role of a program
development environment for any language, which users can
select from a menu (figure 1). When using any language
from within the IDE, the program developer may use Dr-
Scheme’s development tools, such as Syntax Check, which
checks a program’s syntax and highlights its bindings (fig-
ure 2), or MrFlow, which analyses a program’s possible flow
of values (MrFlow is still under development though). Also,
any new tool added to the DrScheme IDE is supposed to
work automatically with all the languages that DrScheme
supports (figure 2).
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Figure 2: Evaluation and Syntax Check for Scheme and Python

To support a new language, however, DrScheme needs a
translator for programs written in that language. In the case
of adding Python support to DrScheme, this is the task of
the Python-to-Scheme compiler described in this paper. The
compiler is packaged as a DrScheme language tool, thus in-
troducing Python as a language in DrScheme’s list of choices
(figure 1).

The compiler was created as an experiment in porting a lan-
guage like Python to DrScheme. With Python available as
a DrScheme language, Python programmers can use the Dr-
Scheme IDE and its accompanying tools to develop Python
programs. It also gives Scheme programmers access to the
large amount of Python code available on the Internet. The
compiler still suffers from several limitations though, pri-
marily relating to the runtime support. The performance
of the generated code is also currently poor compared to
CPython. While we expect some of the limitations to dis-
appear in the future and the performance to get better as
the generated code is optimized, we already consider the ex-
periment to be successful for the insights we have gained
about the problem of embedding a real-world language into
DrScheme.

Section 2 of this paper presents the overall architecture of
the compiler system, including details about code genera-
tion and the runtime system. Section 3 describes the current
status of the compiler, gives an idea of the current perfor-
mance of the generated MzScheme code, and evaluates the
successfulness of the whole experiment. Section 4 relates
other works to this paper. Section 5 lists some of the major
parts that still need to be worked on, and we conclude in
section 6.

2. ARCHITECTURE
This section describes the architecture of the Python-to-
Scheme compiler. The compiler has a conventional structure
with three major components: the front-end, which uses a
lexical analyzer to read program text and a parser to check
the syntax of the tokens produced by the scanner; the back-
end, which is a code generator using the parser’s output to
create MzScheme code; and the runtime system, which pro-

vides low-level functions that the generated code makes use
of. This section delineates these three components. Sec-
tion 2.1 describes the scanner and parser; section 2.2, the
code generator; and section 2.3, the runtime system.

Note that, even though CPython is based on a virtual ma-
chine, we did not consider compiling CPython byte code
instead of compiling Python source code. While compiling
CPython byte code to Scheme is certainly doable, the se-
mantic mismatch between the stack-based byte code and
Scheme is big enough that DrScheme’s tools would most
likely give poor results on byte code (in addition to the
problem of mapping those results for the byte code back
into results for Python source code, since, unlike DrScheme,
CPython does not preserve in the byte code much informa-
tion about the source code to byte code transformation).

2.1 Lexical and Syntax Analysis
Python program text is read by the lexical analyzer and
transformed into tokens, including special tokens represent-
ing indentation changes in the Python source code. From
this stream of tokens the parser generates abstract syntax
trees (ASTs) in the form of MzScheme objects, with one
class for each Python syntactic category. The indentation
tokens are used by the parser to determine the extent of
code blocks. The list of generated ASTs is then passed on
to the code generator.

2.2 Code Generation
The code generator produces Scheme code from a list of
ASTs by doing a simple tree traversal and emitting equiva-
lent MzScheme code. The following subsections explain the
generation of the MzScheme code for the most important
parts of the Python language. They also describe some of
the problems we encountered.

2.2.1 Function Definitions
Python functions have a few features not present in Scheme
functions. Tuple variables are automatically unpacked, ar-
guments may be specified by keyword instead of position,
and those arguments left over (for which no key matches)

25



are placed in a special dictionary argument. These fea-
tures are implemented using a combination of compile-time
rewriting (e.g. for arguments specified by keywords) and
runtime processing (e.g. conversion of leftover arguments
into a Python tuple). Default arguments are not yet im-
plemented. Python’s return statement is emulated using
MzScheme escape continuations. For example the following
small Python function:

def f(x, y, z, *rest, **dict):

print dict

is transformed into the following Scheme definition:

(namespace-set-variable-value! ’f

(procedure->py-function%

(opt-lambda (dict x y z . rest)

(let ([rest (list->py-tuple% rest)])

(call-with-escape-continuation

(lambda (return10846)

(py-print #f (list dict))

py-none))))

’f (list ’x ’y ’z) null ’rest ’dict))

2.2.2 Function Applications
Functions are applied through py-call. A function object
is passed as the first argument to py-call, followed by a
list of supplied positional arguments (in the order they were
supplied), and a list of supplied keyword arguments (also
in order). So, for example, the function call add_one(2)

becomes:

(py-call add_one

(list (number->py-number% 2))

null)

The py-call function extracts from the add_one function
object a Scheme procedure that simulates the behavior of
the Python function when it is applied to its simulated
Python arguments by py-call.

2.2.3 Class Definitions
In Python classes are also objects. A given class has a unique
object representing it and all instances of that class use a
reference to that unique class object to describe the class
they belong to. The class of class objects (i.e. the type of
an object representing a type) is the type special object /
class. The type of type is type itself (i.e. type is an object
whose class is represented by the object itself). With this in
mind consider this small Python class, which inherits from
two classes A and B that are not shown here:

class C(A, B):

some_static_field = 7

another_static_field = 3

def m(this, x):

return C.some_static_field + x

In this class C, three members are defined: the two static
fields and the method m, which adds the value of the first
static field to its argument. This class is converted by the
code generator into a staticmethod call to the __call__

method of the type class (which is also a callable object).
This call returns a new class object which is then assigned
to the variable C:

(namespace-set-variable-value! ’C

(python-method-call type ’__call__

(list

(symbol->py-string% ’C)

(list->py-tuple% (list A B))

(list

(lambda (this-class)

(list ’some_static_field

(number->py-number% 7)))

(lambda (this-class)

(list

’another_static_field

(let-values

([(some_static_field)

(values (python-get-member

this-class

’some_static_field #f))])

(number->py-number% 3))))

(lambda (this-class)

(list

’m

(procedure->py-function%

(opt-lambda (this x)

(call/ec

(lambda (return)

(return

(python-method-call

(python-get-attribute

C ’some_static_field)

’__add__

(list x)))

py-none)))

’m (list ’this ’x) null #f #f))))))))

All instances of the class C then refer to that new class object
to represent the class they belong to.

At class creation time member fields (but not methods) have
access to the previously created fields and methods. So for
example some_static_field must be bound to its value
when evaluating the expression used to initialize the field
another_static_field in the class C above. To emulate
this the generated Scheme code that initializes a field must
always be a function that receives as value for its this-class
argument the class object currently being created, to allow
for the extraction of already created fields and methods from
that class object if necessary.

Note that a class’s type is different from a class’s parent
classes. The parents of a class (the objects A and B repre-
senting the parent classes of C in the example above) can
be accessed through the __bases__ field of a class. The
__class__ field of an “ordinary” object refers to the object
representing that object’s class while the __class__ field of
an object representing a class refers to the type object (fig-
ure 3). This second case includes the __class__ field of the
top object class, even though type is a subclass of object.
The class of an object can be changed at runtime by simply
assigning a new value to the __class__ field of that object.

The Python object system also allows fields and methods to
be added to an object at runtime. Since classes are them-
selves objects, fields and methods can be added at runtime
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Figure 3: A simple Python class

to a class, which is then reflected in allthe existing instances
of that class.

Since the MzScheme object system segregates classes and
objects, does not allow either to be modified at runtime, and
does not support multiple inheritance, the Python object
system could not be mapped to the MzScheme one. All
Python object are therefore emulated using MzScheme hash
tables (which is also what they are internally in CPython).

2.2.4 Variable Assignments
Identifiers are normally bound either at the top level or in-
side functions. Identifiers from imported modules are bound
differently (see section 2.2.5).

Assignments at the top level are translated into defines for
first assignments or set!s for mutative assignments. In the
following Python listing, the first line defines x, while the
second line mutates x and defines y as the same value 2

(which is only evaluated once).

x = 1

x = y = 2

Identifiers defined inside functions are bound using let. For
example, consider the following function that uses a single
variable, x, defined on the fly.

def f():

x = 1

Its body is translated into this Scheme equivalent (omitting
the escape continuation code used to handle possible return
statements):

(namespace-set-variable-value! ’f

(opt-lambda ()

(let ([x (void)])

(let ([rhs1718 (number->py-number% 1)])

(set! x rhs1718))

py-none)))

As a current shortcoming of the compiler, all variables de-
fined throughout the body of a Python function are defined
at once in a single let at the start of the corresponding
Scheme function. To ensure that using a variable before it
is defined still results in a runtime error the let-bound vari-
ables have to be given the value void. While this works

fine in practice, it does not provide for good error messages
though. This will be fixed in the future (see section 5).

When a global statement names any variable, the named
variable is simply omitted from the Scheme function’s initial
let bindings, thereby allowing assignments to said variable
to mutate an identifier existing in an outer scope (if it exists,
otherwise a runtime error occurs).

2.2.5 Importing Modules
Unlike MzScheme modules, Python modules allow assign-
ments to identifiers defined in other modules. Python also
allows cycles between modules. It was therefore not possi-
ble to map Python modules to MzScheme modules. Rather
Python modules are emulated using MzScheme namespaces.

In order to import a Python module at runtime—and, in
fact, to initialize the environment at startup—the runtime
system creates a new MzScheme namespace and populates it
with the built-in Python library. The runtime system then
compiles the requested module and evaluates it in this new
namespace. Finally, new bindings for the necessary values
are copied from that namespace into the original names-
pace of the module importer. For example, when evaluating
the statement import popen from os, only the binding for
popen is copied into the original namespace from the new
one created to compile the os module. A module is always
only compiled once, even if it is imported multiple times.

Since import m only copies over a reference to module m

and its namespace, references to values in module m, such as
m.x, are shared between modules importing m. However, a
statement of the form from m import x copies the value of
x into the current module namespace. There is no sharing
of x between modules then.

2.3 The Runtime System
The Python runtime system can be divided into two parts:
modules that are written in Python and modules that are
written in C. The code generation described above can be
applied to both user code and the parts of the Python run-
time that are written in Python. This means that Python
programmers can use these runtime modules as they would
normally do. This also means that Scheme programmers
have access to the parts of the Python runtime written in
Python by simply invoking the compiler on them and eval-
uating the resulting MzScheme code (although there is cur-
rently no simple API provided to do that).

The C-level modules of the Python runtime can be dealt
with in several ways. Some of these modules use C macros
to abstract the runtime code over the actual internal repre-
sentation of Python objects. These modules can therefore
in principle be directly reused by modifying the appropriate
C macros to work on MzScheme values instead of Python
objects. The use of C macros is not systematic throughout
the Python runtime code though, so some changes to the
code are required to make it completely abstract and there
does not seem to be any simple automated way to do this.
As an experiment the Python String class code and macros
were modified in this manner and the class is now usable by
the DrScheme Python programmer.
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For the Python modules written in C that are poorly, or not
at all, abstracted over the representation of Python object,
the most elegant solution would be to convince the CPython
developers to rewrite these core modules in a more abstract
way using C macros, thereby allowing the two systems to
share that runtime code. We do not expect this to happen in
the foreseeable future though, so one alternative solution is
to replace these C modules with equivalent MzScheme code.
Calls to Python runtime functions can be transformed by
the code generator into calls to MzScheme functions when
the Python functions have direct MzScheme equivalents (e.g.
printf). Python functions that do not have any direct Mz-
Scheme equivalent must be rewritten from scratch, though
this brings up the problem of maintaining consistency with
the CPython runtime as it changes. We are currently exam-
ining the Python C code to determine how much of it can be
reused and how much of it has to be replaced. Another pos-
sible solution is to use an automated tool like SWIG [3] to
transform the Python C modules into MzScheme extensions.
The code generator can then replace calls to the original C
modules by MzScheme function calls to the SWIG-generated
interface. This approach is also under investigation.

Note that there is currently no way for the Python program-
mer using DrScheme to access the underlying MzScheme
runtime. Giving such access is easy to do through the use of
a Python module naming convention that can be treated as
a special case by the code generator (e.g. import mzscheme

or import ... from mzscheme).

3. STATUS AND EVALUATION
Most of the Python language has been implemented, with
the exception of the yield and exec statements, and of de-
fault function parameters (as explained in section 2.2.1).
The Python eval function has not been implemented yet ei-
ther but since import is implemented and since it evaluates
entire Python files, the necessary machinery to implement
both exec and eval is already available. There is no plan to
support Unicode strings, at least as long as MzScheme itself
does not support them. There is also currently no support
for documentation strings. As described in section 2.3 ac-
cess to the parts of the Python runtime system written in C
is still a problem.

Because Python features like modules or objects have very
dynamic behaviors and therefore must be emulated using
MzScheme namespaces and hash tables (respectively), the
code generated by our system is in general significantly big-
ger than the original Python code. See for example the sim-
ple Python class from section 2.2.3 that expands into about
30 lines of MzScheme code. In general a growth factor of
about three in the number of lines of code can be expected.
The generated code also involves a large number of calls to
internal runtime functions to do anything from continually
converting MzScheme values into Python values and back
(or more precisely into the internal representation of Python
values our system is using and back) to simulating a call to
the __call__ method of the type class object. Finally, each
module variable, class field or method access potentially in-
volves multiple namespace or hashtable lookups done at the
Scheme level. As a result the performance of the result-
ing code is poor compared to the performance of the origi-
nal Python code running on CPython. While no systematic

performance measurement has been made yet, anecdotal ev-
idence on a few test programs shows a slowdown by around
three orders of magnitude.

Using DrScheme tools on Python programs has given mixed
results. Syntax Check, which checks a program’s syntax
and highlights its bindings using arrows, has been success-
fully used on Python programs without requiring any change
to the tool’s code (figure 2). Some features of the Python
language make Syntax Check slightly less useful for Python
programs than for Scheme programs though. For example,
since an object can change class at runtime, it is not possible
to relate a given method call to a specific method definition
using just a simple syntactic analysis of the program. This
is a limitation inherent to the Python language though, not
to Syntax Check.

A tool like MrFlow, which statically analyzes a program to
predict its possible runtime flow of values, could potentially
be able to relate a given method call to a given method
definition. While MrFlow can already be used on Python
programs without any change, it does not currently com-
pute any meaningful information: MrFlow does not know
yet how to analyze several of the MzScheme features used
in the generated code (e.g. namespaces). Even once this
problem is solved, MrFlow will probably still compute poor
results. Since all Python classes and object are emulated
using MzScheme hash tables, and since value flow analyses
are unable to differentiate between runtime hash table keys,
MrFlow will compute extremely conservative results for all
the object oriented aspects of a Python program. In general
there is probably no easy way to statically and efficiently
analyze the generated code. In fact there is probably no
way to do good value-flow analysis of Python programs at
all given Python’s extremely dynamic notion of objects and
modules.

Another DrScheme tool, the Stepper, does not currently
work with Python programs. The Stepper allows a program-
mer to run a program interactively step by step. To work
with Python the Stepper would need to have access to a de-
compiler, a program capable of transforming a generated but
reduced MzScheme program back into an equivalent Python
program. Creating such an decompiler is a non-trivial task
given the complexity of the code generated by the compiler.

Due to the difficulties encountered with the Python run-
time and due to the current poor performance of the code
generated, the compiler should be considered to be still at
an experimental stage. The fact that most of the Python
language has been implemented and that a DrScheme tool
like Syntax Check can be used on Python programs without
any change is encouraging though. The experience that has
been gained in porting a real-world language to DrScheme
is also valuable. We therefore consider the experiment to be
successful, even if a lot of work still remains to be done.

4. RELATED WORK
Over the past years there have been several discussions [1,
2] on Guile related mailing lists about creating a Python
to Guile translator. A web site [4] for such a project even
exists, but does not contain any software. Richard Stallman
indicated [12] that a person has been working on “finish-
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ing up a translator from Python to Scheme” but no other
information on that project could be found.

Jython, built on top of the Java Virtual Machine, is another
implementation of the Python language. The implemen-
tation is mature and gives users access to the huge Java
runtime. All the Python modules implemented in C in
CPython were simply re-implemented in Java. Maintain-
ing the CPython and Jython runtimes synchronous requires
constant work though.

Python for .NET is an exploratory implementation of the
Python language for the .NET framework and has there-
fore severe limitations (e.g. no multiple inheritance). Like
Jython it gives access to the underlying runtime system
and libraries. Only a handful of modules from the Python
runtime have been implemented. Among those, the ones
written in Python became accessible to the user after be-
ing modified to fit within the more limited Python language
implemented by the interpreter. A few modules originally
written in C in CPython were re-implemented using the C#
language.

Compilers for other languages beside Python are being de-
veloped for DrScheme. Matthew Flatt developed an im-
plementation of the Algol60 language as a proof of con-
cept. David Goldberg is currently working on a compiler
for the OCaml language called Dromedary, and Kathy Gray
is working on a DrScheme embedding of Java called Profes-
sorJ.

5. FUTURE WORK
In its present state the biggest limitation of the compiler is
the lack of access to the C-level Python runtime. As such
we are currently focusing most of our development efforts in
that area, investigating several strategies to overcome this
problem (see section 2.3).

While the performance of the generated code is poor, no at-
tempt has yet been made at profiling it. The performance
will be better once the code generator has been modified
to create more optimized code, although it is unclear to
us at this stage how much improvement can be expected
in this regard. The need to simulate some of the main
Python features (e.g. the object and module systems) and
the large number of runtime function calls and lookups in-
volved means than the generated code will probably never
have a performance level on par with the CPython system
although an acceptable level should be within reach.

As described in section 3, a few parts of the Python lan-
guage remain to be implemented. We do not anticipate any
problem with these. There is also a general need for better
error messages and a more complete test suite.

6. CONCLUSION
A new implementation of the Python language is now avail-
able, based on the MzScheme interpreter and the DrScheme
IDE. While most of the core language has been implemented
a lot of work remains to be done on the implementation of
the Python runtime and on improving the performance. De-
spite this Python developers can already benefit from some
of DrScheme’s development tools to write Python code, and

Scheme programmers start now to have access to the large
number of existing Python libraries.
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Abstract

It is possible to integrate Scheme-style first-class continuations and
threads in a systematic way. We expose the design choices, discuss
their consequences, and present semantical frameworks that spec-
ify the behavior of Scheme programs in the presence of threads.
While the issues concerning the addition of threads to Scheme-
like languages are not new, many questions have remained open.
Among the pertinent issues are the exact relationship between con-
tinuations and the call-with-current-continuation primi-
tive, the interaction between threads, first-class continuations, and
dynamic-wind, the semantics of dynamic binding in the presence
of threads, and the semantics of thread-local store. Clarifying these
issues is important because the design decisions related to them
have profound effects on the programmer’s ability to write modular
abstractions.

1 What’s in a Continuation?

Scheme [21] was one the first languages to endorse
call-with-current-continuation as a primitive. Call-
with-current-continuation (or call/cc, for short) is an
essential ingredient in the implementation of a wide range of
useful abstractions, among them non-local control flow, exception
systems, coroutines, non-deterministic computation, and Web
programming session management. So much is often repeated,
non-controversial and clear.

Nowadays, even the name call-with-current-continuation
is confusing. It suggests erroneously that call/cc applies its ar-
gument to a reified version of the current continuation—the meta-
level object the underlying machine uses to remember what should
happen with the value of the expression currently being evaluated.
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The denotational semantics presented in R5RS [21] supports this
impression. Here is a slightly simplified version:

cwcc : E* → K→ C [call-with-current-continuation]
cwcc = onearg(λεκ .applicateε ((λε*κ′ .κε*) in E)κ)

The reified value passed to the argument of cwcc is the function
λε*κ′ . κε*—essentially an eta-expanded version of κ, the current
continuation as handled by the semantics. Calling this function
merely re-installs or reflects κ as the current continuation. With
this definition, the distinction between the escape procedure—the
procedure passed to call/cc’s argument and the actual meta-level
continuation is largely academic.

Unfortunately, the semantics for call/cc given in R5RS is not cor-
rect, as noted in a “Clarifications and corrections” appendix to the
published version: an R5RS-compliant call/cc must also execute
thunks along the branches of the control tree as introduced by the
dynamic-wind primitive [18] added to Scheme in R5RS. Even in
pre-R5RS Scheme, the escape procedure would typically re-install
previously captured values for the current input and output ports.
Thus, the escape procedure created by call/cc performs actions
in addition to installing a captured continuation. Hence, the name
call-with-current-continuation is misleading.

Dynamic-wind allows enhancing and constraining first-class con-
tinuations: (dynamic-wind before thunk after) calls thunk (a
procedure of no parameters), ensuring that before (also a thunk)
is always called before the program enters the application of thunk,
and that after is called after the program has left it. Therefore, es-
cape procedures created by call/cc must also call the after and
before thunks along the paths leading from the current node in the
control tree to the target tree. This creates a significant distinction
between an escape procedure and its underlying continuation.

This distinction has created considerable confusion: Specifically,
continuations are suitable abstractions for building thread sys-
tems [37], and this suggests that escape procedures are, too. How-
ever, a thread system based on R5RS call/cc will run before
and after thunks introduced by dynamic-wind upon every context
switch, which leads to semantic and pragmatic problems in addi-
tion to the common conceptual misunderstandings noted by Shiv-
ers [32]. Moreover, other common abstractions, such as dynamic
binding and thread-local storage, interact in sometimes surprising
ways with threads and first-class continuations, depending on their
exact semantics in a given system.
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Thus, the integration of first-class continuations with dynamic-
wind, concurrency and parallelism, along with associated function-
ality such as dynamic binding and thread-local storage form a puz-
zle: Most of the pieces have long been on the table, but there is
little published documentation on how all of them fit together in a
systematic way, which often causes confusion for users and imple-
mentors alike. With this paper, we try to make the pieces fit, and
close some of the remaining gaps.

Here are the contributions of our work:

• We discuss some of the pertinent semantic properties of
dynamic-wind, specifically as they relate to the implemen-
tation of dynamic binding.

• We discuss design issues for thread systems in Scheme-like
languages, and how different design choices affect program
modularity.

• We present a systematic treatment of two abstractions for
thread-aware programming: thread-wind extends the con-
text switch operation, and thread-local storage implements ex-
tensible processor state.

• We present a denotational semantics of R5RS call/cc and
dynamic-wind.

• We clarify the relationship between threads and
call/cc/dynamic-wind by presenting an transition
semantics based on the CEK machine [6] equivalent to the
denotational semantics, and extending this semantics by
simple models for threads and multiprocessing.

Overview: Section 2 gives an account of call/cc as present in
(sequential) Scheme, and its interaction with dynamic-wind. Sec-
tion 3 lists some specific design issues pertinent to the addition
of threads to Scheme and describes their impact on the ability to
write modular programs. More issues arise during implementation;
Section 4 discusses these. Section 5 describes facilities for thread-
aware programming. Section 6 presents semantic characterizations
of Scheme with dynamic-bind and threads. Related work is dis-
cussed in Section 7; Section 8 concludes.

2 Call/cc As We Know It

In this section, we give an informal overview of the behavior of
the R5RS Scheme version of call/cc. Specifically, we discuss
the interaction between call/cc and the current dynamic environ-
ment implicit in R5RS, and the interaction between call/cc and
dynamic-wind. We also explain how these interactions affect pos-
sible implementations of an extensible dynamic environment.

2.1 The current dynamic environment

R5RS [21] implies the presence of a current dynamic environ-
ment that contains bindings for the current input and output ports.
Scheme’s I/O procedures default to these ports when they are
not supplied explicitly as arguments. Also, the program can re-
trieve the values of the bindings via the current-input-port
and current-output-port procedures. “Dynamic” in this con-
text means that the values for the program behave as if the
current dynamic environment were implicitly passed as an ar-
gument with each procedure application. In this interpretation,
with-input-from-file and with-output-to-file each call
its argument with a newly created dynamic environment contain-
ing a new binding, and current-{input,output}-port retrieve

(define *dynamic-env* (lambda (v) (cdr v)))

(define (make-fluid default) (cons ’fluid default))

(define (fluid-ref fluid) (*dynamic-env* fluid))

(define (shadow env var val)
(lambda (v)

(if (eq? v var)
val
(env var))))

(define (bind-fluid fluid val thunk)
(let ((old-env *dynamic-env*)

(new-env (shadow *dynamic-env* fluid val)))
(set! *dynamic-env* new-env)
(let ((val (thunk)))

(set! *dynamic-env* old-env)
val)))

Figure 1. Dynamic binding via dynamic assignment

the values introduced by the most recent, still active application of
these procedures. The interpretation of the current dynamic envi-
ronment as an implicit argument means that dynamic environments
are effectively associated with continuations. Specifically, reflect-
ing a previously reified continuation also means returning to the
dynamic environment which was current at the time of the reifica-
tion.1

It is often useful to be able to introduce new dynamic bind-
ings [24, 16] in addition to current-{input,output}-port, for
example to implement exception handling. However, as the dy-
namic environment is implicit (and not reifiable), a program cannot
extend it. Fortunately, it is possible to simulate extending the dy-
namic environment with first-class procedures by keeping the cur-
rent dynamic environment in a global variable, and simply save and
restore it for new bindings—a technique known as dynamic assign-
ment [11].

Figure 1 shows naive code for dynamic assignment. Make-fluid
creates a fluid represented as a pair consisting of the symbol fluid
as its car and the default value as its cdr. *Dynamic-env* holds
the current dynamic environment, represented as a procedure map-
ping a fluid to its value. The initial function in *dynamic-env*
extracts the default value of a fluid. Shadow makes a new dynamic
environment from an old one, shadowing one binding with a new
one. Bind-fluid remembers the old value of *dynamic-env*,
sets it to a new one created by shadow, calls thunk, and restores
the old value. (The code ignores the issue of multiple return values
for simplicity.) The fluid-ref procedure looks up a fluid binding
in the dynamic environment, returning its value.

Unfortunately, bind-fluid does not implement the implicit-
argument semantics in the presence of call/cc: it is possible for
the thunk argument to bind-fluid to reflect a previously reified
continuation which will then inherit the current dynamic environ-
ment, rather than the dynamic environment current at the time of
reification. For implementing the implicit-argument semantics, it
is necessary to capture the current value of *dynamic-env* at the
time of reification, and re-set it to that value upon reflection.

1Note that this behavior is not mandated by R5RS. However,
existing Scheme code often assumes it [23].
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Figure 2. Control tree and dynamic-wind

2.2 Dynamic-wind

While the naive implementation of dynamic assignment does not
have the desirable semantics, it is possible to implement a ver-
sion that does, via the Scheme primitive dynamic-wind. (Very)
roughly, (dynamic-wind before thunk after) ensures that before
is called before every control transfer into the application of thunk,
and after is called after every control transfer out of it. Here is a
new version of bind-fluids that utilizes dynamic-wind to get
the correct semantics:

(define (bind-fluid fluid val thunk)
(let ((old-env *dynamic-env*)

(new-env (shadow *dynamic-env* fluid val)))
(dynamic-wind

(lambda () (set! *dynamic-env* new-env))
thunk
(lambda () (set! *dynamic-env* old-env)))))

The behavior of dynamic-wind is based on the intuition that the
continuations active in a program which uses call/cc form a tree
data structure called the control tree [18]: each continuation corre-
sponds to a singly-linked list of frames, and the continuations rei-
fied by a program may share frames with each other and/or with the
current continuation. Reflecting a previously reified continuation
means making a different node of the tree the current continuation.
A Scheme program handles the current control tree node in much
the same way as the dynamic environment. Together, they consti-
tute the dynamic context.

Conceptually, (dynamic-wind before thunk after) annotates the
continuation of the call to thunk with before and after. Calling an
escape procedure means travelling from the current node in the con-
trol tree to the node associated with to the previously reified contin-
uation. This means ascending from the current node to the nearest
common ancestor of the two nodes, calling the after thunks along
the way, and then descending down to the target node, calling the
before thunks. Figure 2 shows such a path in the control tree.

Using dynamic-wind for implementing dynamic binding assures
that part of the global state—the value of *dynamic-env*, in this
case—is set up to allow the continuation to run correctly. This
works well for dynamic binding, as changes to *dynamic-env*
are always easily reversible. However, in some situations a contin-
uation might not be able to execute correctly because global state
has changed in an irreversible way. Figure 3 shows a typical code
fragment which employs dynamic-wind to ensure that the program
will close an input port immediately after a set of port operations

(let ((port (open-input-file file-name)))
(dynamic-wind
(lambda ()

(if (not port)
(error "internal error")))

(lambda () 〈read from port〉)
(lambda ()

(close-input-port port)
(set! port #f))))

Figure 3. Restricting the use of escape procedures

has completed (in the after thunk) as well as preventing the program
from inadvertently entering the code that performs file I/O after the
close has happened. Moreover, the before thunk prevents the port
access code from being re-entered because the port operations are
likely to have caused irreversible state changes.2 Thus, three main
uses for dynamic-wind emerge [18]:

1. extending the dynamic context associated with continuations
(as in bind-fluid)

2. releasing resources used by a region of code after that code
has completed (as in Figure 3)

3. preventing the reification of a continuation because its dy-
namic context cannot be recreated (as in Figure 3)

Item #2 is akin to the default or finally clauses of exception
handling systems or to the unwind-protect facilities in some
languages. The unlimited extent of escape procedures created by
call/cc makes the more general dynamic-wind necessary.

The presence of dynamic-wind requires a more careful handling
of terminology when it comes to continuations: We call the pro-
cess of turning the meta-level continuation into an object-level
value reification, and the reverse—re-installing a previously reified
continuation—reflection. The process of creating an escape proce-
dure (by call/cc) is a capture; this includes reifying the current
continuation. Conversely, invoking the escape procedure travels to
the target point in control space, installs the dynamic environment,
and then reflects the continuation.

3 Design Requirements for Thread Systems

In this section, we consider some of the design issues that arise
when adding threads to a higher-order language. We assume that
the thread system features a spawn operation. Spawn starts a new
thread and calls thunk (a thunk) in that new thread. The thread
terminates once thunk returns:

(spawn thunk) procedure

The presence of spawn in a language with call/cc, dynamic-
wind, and dynamic binding exposes a number of language design
choices, as these features interact in potentially subtle ways. Specif-
ically, the ability to migrate continuations between threads, and the
interaction between dynamic binding and threads fundamentally af-
fect the ability to write modular programs.

3.1 Migrating continuations

A Scheme program can invoke an escape procedure in a thread dif-
ferent from the one where it was captured. Notably, this scenario

2Even though it might be possible to redo changes on a file port,
this is usually impossible with, say, a network connection.
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occurs in multithreaded web servers which use call/cc to capture
the rest of a partially completed interaction between the server and
a client: typically, the server will create a new thread for each new
request and therefore must be able to invoke the escape procedure
that was captured in the thread which handled the connection be-
longing to the previous step in the interaction [28].

In MrEd, the Scheme platform on which PLT’s web server is based,
continuations are “local to a thread”—only the thread that created
an escape procedure can invoke it, forcing the web server to asso-
ciate a fixed thread with a session [14].3 While this may seem like
a technical restriction with a purely technical solution, this scenario
exposes serious general modularity issues: Modules may commu-
nicate escape procedures, and tying an escape procedure to a thread
restricts the implementation choices for a client which needs to in-
voke an escape procedure created by another module. If the escape
procedure is thread-local, the client cannot even tell if invoking it
might make the program fail; all it knows is that the invocation will
definitely fail if performed in a freshly created thread.

Once continuations are allowed to migrate between threads, addi-
tional questions arise. In particular, the use of certain abstractions
might make the continuation sensitive to migration, which is usu-
ally not what the programmer intended.

3.2 Dynamic binding and the thread system

Consider the following program fragment:

(define f (make-fluid ’foo))

(bind-fluid f ’bar
(spawn
(lambda ()

(display (fluid-ref f)))))

Should the program print foo or should it print bar? This is a
well-known design issue with thread systems [13]. The general
question is this: Should a newly spawned thread inherit the dynamic
environment from the original thread—or, more precisely, from the
continuation of the call to spawn—or should it start with an empty
dynamic environment, assuming the default values for all fluids?4

For at least two dynamic entities, inheritance does not make sense:
the current control tree node and, if present, the current exception
handler, as they both conceptually reach back into the part of the
control tree belonging to the original thread. Thus, it is unclear what
should happen if the new thread ever tries to travel back to that part
of the tree. (For dynamic-wind, we discuss another closely related
issue in Section 4.1.) Instead, a newly spawned thread must start
with a fresh current exception handler and an empty control tree.

For all other dynamic bindings, it is unclear whether a single in-
heritance strategy will satisfy the needs of all programs. For many
entities typically held in fluids, it makes sense for a new thread to
inherit dynamic bindings from the thread which spawned it:

• Scsh [31], tries to maintain an analogy between threads and
Unix processes, and keeps Unix process resources in flu-
ids [13]. In Scsh, a special fork-thread operation acts like

3This restriction will be lifted in a future version of MrEd.
4The issue becomes more subtle with SRFI-18-like thread sys-

tems [5] with separate make-thread and thread-start! opera-
tions. Whose dynamic environment should the new thread inherit?

(define (current-dynamic-context)
(let ((pair (call-with-current-continuation

(lambda (c) (cons #f c)))))
(if (car pair)

(call-with-values (car pair) (cdr pair))
(cdr pair))))

(define (with-dynamic-context context thunk)
(call-with-current-continuation
(lambda (done)

(context (cons thunk done)))))

(define (spoon thunk)
(let ((context (current-dynamic-context)))

(spawn
(lambda ()

(with-dynamic-context context thunk)))))

Figure 4. Reifying and reflecting the dynamic context

spawn, but has the new thread inherit the values of the process
resources from the original thread.

• MzScheme [9] provides abstractions for running a Scheme
program in a protected environment, thus providing
operating-system-like capabilities [10]. Some of the entities
controlling the encapsulation of such programs are held in flu-
ids (called parameters in MzScheme), such as the current cus-
todian that controls resource allocation and destruction. Chil-
dren of an encapsulated thread inherit the custodian of the par-
ent so that shutting down the custodian will kill the encapsu-
lated thread along with all of its children.

• Generally, programmers might expect (spawn f) to behave
as similarly as possible to (f). This is especially likely if the
programmer uses threads to exploit parallelism, in a similar
way to using futures [15], and thus merely wants to offload
parts of the computation to a different processor.

3.3 Dynamic binding and modularity

The issue of fluid inheritance is most pertinent when a program
module keeps mutable data in fluids. Specifically, consider the fol-
lowing scenario: Program module A creates and uses fluids holding
mutable state. The fluids might be exported directly, or module A
might provide with-f abstractions roughly like the following:

(define f (make-fluid default))

(define (with-f value thunk)
(bind-fluid f (... value ...) thunk))

A client of module A might want to create multiple threads, and use
the abstractions of module A from several of them. Generally, the
client might need to control the sharing of state held in f for each
new thread it creates in the following ways:

1. getting A’s default dynamic bindings,

2. creating a new binding for A by using with-f in the new
thread, or

3. inheriting the current thread’s dynamic environment.

If each thread starts up with a fresh dynamic environment, this de-
gree of control is available:

1. Starting a new thread with a fresh dynamic environment
means that it will get default bindings for all fluids.
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2. Explicitly creating new bindings is possible via with-f .

3. It is still possible to implement a variant of spawn that does
cause the new thread to inherit the dynamic environment from
the thread which created it.

Figure 4 shows how to achieve the last of these: As call/cc
captures the dynamic context, it is possible to reify and reflect it,
along with the dynamic environment, through escape procedures.
Current-dynamic-context uses call/cc to create an escape
procedure associated with the current dynamic context, and pack-
ages it up as the cdr of a pair. The car of that pair is used to
distinguish between a normal return from call/cc and one from
with-dynamic-context which runs a thunk with the original
continuation—and, hence, the original dynamic context—in place
and restores its own continuation after the thunk has finished. With
the help of these two abstractions, spoon (for a “fluid-preserving
fork operation for threads,” a term coined by Alan Bawden) starts a
new thread which inherits the current dynamic environment.5

Note that spoon causes the new thread to inherit the entire dynamic
context, including the current control tree node, and the current ex-
ception handler (if the Scheme system supports exception handling
in the style of ML.) This can lead to further complications [1]. Also,
inheritance is not the only possible solution to the security require-
ments of MrEd: Thread systems based on nested engines [2] such
as that of Scheme 48 allow defining custom schedulers. Here, a
scheduler has full control over the initial dynamic environment of
all threads spawned with it.

4 Implementing Concurrency

The previous section has already stated some of the design re-
quirements and choices for an implementation of threads in a lan-
guage with first-class continuations. Additional issues emerge
when actually implementing threads in the presence of call/cc
and dynamic-wind. In particular, many presentations of thread
systems build threads on top of the language, using call/cc to im-
plement the context switch operation. However, this choice incurs
undesirable complications (especially in the presence of multipro-
cessing) when compared to the alternative—implementing threads
primitively and building the sequential language on top.

4.1 Dynamic-wind vs. the context switch

The presence of dynamic-wind makes call/cc less suitable for
implementing context-switch-like abstractions like coroutines or
thread systems: Uses of dynamic-wind may impose restrictions on
the use of the escape procedures incompatible with context switch-
ing.6 Consider the code from Figure 3. This code should continue
to work correctly if run under a Scheme system with threads—say,
in thread X. However, if the context switch operation of thread sys-
tem is implemented using ordinary call/cc, each context switch
out of thread X means ascending up the control tree to the scheduler

5The same trick is applicable to promises which exhibit the
same issues, and which also do not capture the dynamic context:
the fluid-preserving versions of delay and force would be called
freeze and thaw.

6Note that this is an inherent issue with the generality of
call/cc: Call/cc allows capturing contexts which simply are
not restorable because they require access to non-restorable re-
sources. Providing a version of call/cc which does not capture
the dynamic context would violate the invariants guaranteed by
dynamic-wind and break most code which uses it.

(whose continuation frames constitute the shared part of tree)—
executing all after thunks of all dynamic-wind operations ac-
tive within the current thread. The next context switch back into
thread X will then run the before thunks, which in this case will
make the program fail. Naturally, this is unacceptable.

Moreover, if every context switch would run dynamic-wind before
and after thunks, the program would expose the difference between
a virtualized thread system running on a uniprocessor and a multi-
processor where multiple threads can be active without any context
switch: If each thread ran on a different processor, no continuations
would ever be captured or invoked for a context switch, so a context
switch would never cause dynamic-wind thunks to run.

Thus, building a thread system on top of R5RS call/cc leads
to complications and invalidates common uses of dynamic-wind.
(Similar complications occur in the presence of ML-style excep-
tion handling [1].) Hence, a more reasonable approach for imple-
mentations is to build threads natively into the system, and build
call/cc and dynamic-wind on top of it. In this scenario, each
newly spawned thread starts with an empty dynamic context.

4.2 Dynamic binding vs. threads

In the presence of threads, the implementation of dynamic bind-
ing that keeps the current dynamic environment in a global variable
no longer works: all threads share the global variable, and, conse-
quently, any application of bind-fluid is visible in other threads,
violating the intended semantics. Therefore, it is necessary to as-
sociate each thread with its own dynamic environment. Here are
some possible implementation strategies:

1. pass the dynamic environment around on procedure calls as
an implicit argument

2. keep looking for dynamic bindings in the *dynamic-env*
global variable, and change the value of this variable upon
every context switch, always setting it to the dynamic envi-
ronment associated with the current thread

3. like #2, but keep the dynamic environment in the thread data
structure, and always access that instead of a global variable

#1 incurs overhead for every single procedure call; considering that
access and binding of fluid variables is relatively rare, this is an
excessive cost rarely taken by actual implementations. #2 is incom-
patible with multiprocessing, as multiple threads can access fluid
variables without intervening context switches. #3 is viable.

All of these strategies require what is known as “deep binding”
in the Lisp community—fluid-ref always looks up the current
value of a fluid variable in a table, and only reverts to the top-
level value stored in the fluid itself when the table does not contain
a binding. Many Lisp implementations have traditionally favored
“shallow binding” that manages dynamic bindings by mutating the
fluid objects themselves. With shallow binding, access to a fluid
variable is simply dereferencing the fluid object; no table searching
is necessary. However, this technique is also fundamentally incom-
patible with multiprocessing because it mutates global state.

4.3 Virtual vs. physical processors

The previous two sections have shown that a multiprocessor thread
system can potentially expose differences in implementation strate-
gies for dynamic binding, as well as different ways of dealing with
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dynamic-wind. These differences all concern the notion of “what
a thread is”—specifically, if a thread encompasses the dynamic con-
text, or if it is an exterior, global entity.

A useful analogy is viewing a thread as a virtual processor [32]
running on a physical processor. In this view, the dynamic context
and the dynamic environment are akin to processor registers. In a
multiprocessor implementation of threads, each physical processor
indeed must keep those values in locations separate from that of
the other processors. Each of these processors can then run multi-
ple threads, swapping the values of these registers on each context
switch. (This corresponds to Shivers’s notion of “continuation =
abstraction of processor state” as the entity being swapped upon a
context switch [32].) In this model, a thread accessing these regis-
ters cannot distinguish whether it is running in a uniprocessor or a
multiprocessor system.

5 Thread-Aware Programming

The previous two sections have focused on protecting sequential
programs from the adverse effects resulting from the presence of
threads, and on decoupling previously present sequential abstrac-
tions such as dynamic-wind and dynamic binding from the thread
system as far as possible. However, the implementations of low-
level abstractions occasionally benefit from access to the guts of the
thread system. Two abstractions provide this access in a systematic
way: the thread-wind operation allows running code local to a
thread upon context-switch operations, and thread-local cells are
an abstraction for managing thread-local storage. However, the use
of these facilities requires great care to avoid unexpected pitfalls.

5.1 Extending the context switch operation

Accessing state like the dynamic-wind context or the dynamic en-
vironment through processor registers is convenient and fast. How-
ever, as the scheduler needs to swap the values of these registers on
each context switch, they are not easily extensible: each new regis-
ter requires an addition to the context-switch operation. Also, it is
occasionally desirable that a thread is able to specify code to be run
whenever control enters or exits that thread, thus making the con-
text switch operation extensible. (Originally, dynamic-wind had
precisely that purpose, but, as pointed out in Section 4.1, this is not
reasonable in light of current usage of dynamic-wind.) Therefore,
we propose a new primitive:

(thread-wind before thunk after) procedure

In a program with only a single thread, thread-wind acts exactly
like dynamic-wind: before, thunk, and after are thunks; they run in
sequence, and the thread-wind application returns whatever thunk
returns. Moreover, before gets run upon each control transfer into
the application thunk, and after gets run after each transfer out of it.
Unlike with dynamic-wind, however, during the dynamic extent
of the call to thunk, every context switch out of the thread runs the
after thunk, and every context switch back in runs the before thunk.

Thread-wind is a low-level primitive; its primary intended purpose
is to control parts of the processor state not managed by the under-
lying, primitive thread system. For example, in a uniprocessor set-
ting, it is possible to continue treating the variable *dynamic-env*
as a sort of register, and implement bind-fluid correctly by using
thread-wind instead of dynamic-wind:

(define (bind-fluid fluid val thunk)

(let ((old-env *dynamic-env*)
(new-env (shadow *dynamic-env* fluid val)))

(thread-wind
(lambda () (set! *dynamic-env* new-env))
thunk
(lambda () (set! *dynamic-env* old-env)))))

The semantics of thread-wind extends smoothly to the escape
procedure migration scenario: in this case, before the program in-
stalls the new continuation, it runs the active thread-wind after
thunks of the current thread, and the active before thunks of the
continuation being reflected.

Ideally, the before and after thunks are transparent to the run-
ning thread in the sense that running after invalidates whatever
state changes before has performed. Still, it is possible to use
thread-wind to set up more intrusive code to be run on context
switches, such as profiling, debugging, or benchmarking.

5.2 Thread-local storage

The version of bind-fluid using thread-wind still is not correct
in the presence of multiprocessing, as all processors share the value
of *dynamic-env*. For correctly implementing dynamic bind-
ing, another conceptual abstraction is needed: thread-local stor-
age. Thread-local storage is available through thread-local cells or
thread cells for short. Here is the interface to thread-local cells:

(make-thread-cell default) procedure
(thread-cell-ref thread-cell) procedure
(thread-cell-set! thread-cell value) procedure

Make-thread-cell creates a reference to a thread cell with de-
fault value default, thread-cell-ref fetches its current value,
and thread-cell-set! sets it. Any mutations of a thread cell
are only visible in the thread which performs them. A thread cell
acts like a table associating each thread with a value which defaults
to default; thread-cell-ref accesses the table entry belonging
to the current thread, and thread-cell-set! modifies it.

With thread cells, it is possible to implement dynamic binding cor-
rectly in the presence of multiprocessing: *dynamic-env*, instead
of being bound directly to the environment, is now a thread cell:

(define *dynamic-env*
(make-thread-cell (lambda (v) (cdr v))))

(define (make-fluid default) (cons ’fluid default))

(define (fluid-ref fluid)
((thread-cell-ref *dynamic-env*) fluid))

(define (bind-fluid fluid val thunk)
(let ((old-env (thread-cell-ref *dynamic-env*))

(new-env (shadow
(thread-cell-ref *dynamic-env*)
fluid val)))

(dynamic-wind
(lambda ()

(thread-cell-set! *dynamic-env* new-env))
thunk
(lambda ()

(thread-cell-set! *dynamic-env* old-env)))))
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5.3 Modularity issues

While thread-local storage is a useful low-level abstraction, its use
in programs imposes restrictions which may have an adverse effect
on modularity. Consider the scenario from Section 3.3 with “dy-
namic binding/environment” replaced by “thread-local storage”:
module A creates and uses thread-local cells. This makes it much
harder and potentially confusing for the client to use threads and
control the sharing of among them. Here are the three choices for
dynamic binding, revisited for thread-local storage:

1. New threads get a fresh thread-local store with default val-
ues for the thread-local variables—in this respect, they behave
similarly to dynamic bindings.

2. Since thread-local storage is specifically not about binding, a
with-f -like abstraction may not be feasible.

3. Inheritance of the thread-local storage is not easily possible
for a new thread, as escape procedures do not capture the
thread-local store.

Thus, if module A uses the thread-local store, the client has essen-
tially no control over how A behaves with respect to the threads.
This is unfortunate as the client might use threads for any number
of reasons that in turn require different sharing semantics.

Especially the migration of escape procedures between threads
raises troublesome questions with no obvious answer: As the es-
cape procedure does not install the thread-local store from the
thread which reified it, a solution to option #3—unsharing mod-
ule A’s state between the old and the new thread—becomes impos-
sible. On the other hand, if the escape procedure were closed over
the thread-local store, it would need to capture a copy of the store—
otherwise, the name “thread-local storage” would be inappropriate,
and the ensuing sharing semantics would carry more potential for
confusion and error. Capturing the copy raises the next question:
At what time should the program create the copy? At the time of
capture, at the time of creating the new thread, or at the time of
invocation of the escape procedure? The only feasible solution to
the dilemma would be to make the thread-local store itself reifiable.
However, it is unclear whether this abstraction would have benefits
that outweigh the potential for confusion, and the inflexibility of
abstractions which use thread-local storage in restricting ways.

Note that none of these problems manifest themselves in the im-
plementation of dynamic binding presented in the previous section:
the dynamic-wind thunks ensure that the *dynamic-env* thread-
local-cell always holds the dynamic environment associated with
the current continuation. Consequently, it seems that thread-local
storage is a natural means for building other (still fairly low-level)
abstractions such as dynamic binding, but rarely appropriate for use
in higher-level abstractions or in applications.

6 Semantics

This section provides semantic specifications for a subset of
Scheme with dynamic-wind and threads. We start with a ver-
sion of the R5RS denotational semantics which describes the be-
havior of dynamic-wind. We then formulate a transition seman-
tics equivalent to the denotational semantics, which in turn forms
the basis for a semantics for a concurrent version of the Scheme
subset. This concurrent semantics specifies the interaction between
dynamic-wind and threads. (We have also formulated a semantics
which accounts for multiprocessing and for thread-wind which
we have relegated to Appendix A. The appendix also contains an

augmented version of the entire R5RS semantics.) Moreover, we
present a version of the denotational semantics with an explicit dy-
namic environment, and show that implementing the dynamic en-
vironment indirectly with dynamic assignment and dynamic-wind
is indeed equivalent to propagating it directly in the semantics, thus
demonstrating the utility of the semantics.

For the definition of our subset of Scheme, Mini-Scheme, we em-
ploy the same terminology, and, where possible, the same nota-
tion as R5RS. (See Appendix D for details.) As compared to the
language covered by the R5RS semantics, a procedure has a fixed
number of parameters and returns a single value, a procedure body
consists of a single expression, procedures do not have an identify-
ing location, evaluation is always left-to-right, and if forms always
specify both branches. Mini-Scheme does, however, feature assign-
ment, call-with-current-continuation and dynamic-wind.
Here is the expression syntax of Mini-Scheme:

Exp −→ K | I | (E0 E*) | (lambda (I*) E0)
| (if E0 E1 E2) | (set! I E)

6.1 Denotational semantics

The semantic domains are analogous to those in R5RS with changes
according to the restrictions of Mini-Scheme—expression continu-
ations always take one argument. The definition of E* now needs
special multi-argument argument continuations.

φ ∈ F = (E* → P→ K→ C) procedure values
κ ∈ K = E→ C expression continuations
κ′ ∈ K’ = E* → C argument continuations
ω ∈ P = (F×F×P)+{root} dynamic points

In addition, P is the domain for dynamic points which are nodes in
the control tree: root is the root node, and all other nodes consist
of two thunks and a parent node. Figure 5 shows the semantics for
Mini-Scheme expressions. It is completely analogous to the R5RS
version of the E function; the only addition is the propagation of
the current dynamic point. The auxiliary functions are analogous to
their R5RS counterparts, apart from a change in applicate to take
dynamic points into account:

applicate : E→ E* → P→ K→ C
applicate = λεε*ωκ . ε∈F→ (ε |F)ε*ωκ,wrong “bad procedure”

Here is a version of the cwcc primitive implementing call-with-
current-continuation which respects dynamic-wind:

cwcc : E* → P→ K→ C [call-with-current-continuation]
cwcc =

onearg(λεωκ . ε∈F→
(applicateε

〈(λε*ω′κ′ .
travelω′ω(κ(ε* ↓ 1))) in E〉

ωκ),
wrong “bad procedure argument”)

The escape procedure captures the dynamic point, and, when called,
“travels” from the current dynamic point to it, running the after and
before thunks in the process, before actually installing the continu-
ation. Here is the definition of travel:

travel : P→ P→ C→ C
travel = λω1ω2 . travelpath (pathω1ω2)

The travelpath function performs the actual travelling along a se-
quence of thunks and dynamic points, running each thunk with the
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E : Exp → U→ P→ K→ C
E* : Exp* → U→ P→ K′ → C

E [[K]] = λρωκ . send(K [[K]])κ
E [[I]] = λρωκ .hold (lookupρ I)

(λε . ε = undefined →
wrong “undefined variable”,

send εκ)
E [[(if E0 E1 E2)]] =

λρωκ .E [[E0]]ρω (λε . truishε→ E [[E1]]ρωκ,
E [[E2]]ρωκ)

E [[(set! I E)]] =
λρωκ .E [[E]]ρω (λε .assign(lookupρ I)

ε
(send unspecifiedκ))

E [[(E0 E*)]] =
λρωκ .E*(〈E0〉§ E*)ρω (λε* .applicate (ε* ↓ 1) (ε*† 1)ωκ)

E [[(lambda (I*) E)]] =
λρωκ . send ((λε*ω′κ′ .#ε* = #I* →

tievals(λα* . (λρ′ .E [[E]]ρ′ω′κ′)
(extendsρ I*α*))

ε*,
wrong “wrong number of arguments”)

in E)
κ

E*[[ ]] = λρωκ′ .κ′〈 〉
E*[[E0 E*]] = λρωκ′ .E [[E0]]ρω (λε0 .E*[[E*]]ρω (λε* .κ′ (〈ε0〉§ ε*)))

Figure 5. Semantics of Mini-Scheme expressions

corresponding dynamic point in place:

travelpath : (P×F)* → C→ C
travelpath = λπ*θ .#π* = 0 → θ,

((π* ↓ 1) ↓ 2)〈〉((π* ↓ 1) ↓ 1)
(λε* . travelpath (π*† 1)θ)

The path function accepts two dynamic points and prefixes the jour-
ney between the two to its continuation argument:

path : P→ P→ (P×F)*
path = λω1ω2 . (pathupω1(commonancestω1ω2))§

(pathdown (commonancestω1ω2)ω2)

The commonancest function finds the lowest common ancestor of
two dynamic points in the control tree. Leaving aside its definition
for a moment, pathup ascends in the control tree, picking up after
thunks, and pathdown descends, picking up before thunks:

pathup : P→ P→ (P×F)*
pathup =
λω1ω2 .ω1 = ω2 → 〈〉,

〈(ω1,ω1 | (F×F×P) ↓ 2)〉§
(pathup (ω1 | (F×F×P) ↓ 3)ω2)

pathdown : P→ P→ (P×F)*
pathdown =
λω1ω2 .ω1 = ω2 → 〈〉,

(pathdownω1(ω2 | (F×F×P) ↓ 3))§
〈(ω2,ω2 | (F×F×P) ↓ 1)〉

The commonancest function finds the lowest common ancestor of
two dynamic points:

commonancest : P→ P→ P
commonancest =
λω1ω2 . the only element of

{ω′ |ω′ ∈ (ancestorsω1) ∩ (ancestorsω2),
pointdepthω′ ≥ pointdepthω′′
∀ω′′ ∈ (ancestorsω1) ∩ (ancestorsω2)}

pointdepth : P→ N
pointdepth =
λω .ω = root → 0,1+(pointdepth(ω | (F×F×P) ↓ 3))

The ancestors function computes the set of ancestors of a node (in-
cluding the node itself):

ancestors : P→ PP
ancestors =

λω .ω = root →{ω},{ω} ∪ (ancestors (ω | (F×F×P) ↓ 3))

The dynamic-wind primitive calls its first argument, then calls its
second argument with a new node attached to the control tree, and
then calls its third argument:

dynamicwind : E* → P→ K→ C
dynamicwind =

threearg (λε1ε2ε3ωκ . (ε1 ∈F∧ ε2 ∈F∧ ε3 ∈F) →
applicateε1〈〉ω(λζ* .

applicateε2〈〉((ε1 |F,ε3 |F,ω) in P)
(λε* .applicateε3〈〉ω(λζ* .κε*))),

wrong “bad procedure argument”)

6.2 Transition Semantics

The denotational semantics is an awkward basis for incorporating
concurrency. We therefore formulate a transition semantics [27]
based on the CEK machine [6] based on the denotational semantics
which is amenable to the addition of concurrency. Figure 6 shows
the semantics. We deliberately use the functional environment and
store mutatis mutandis and the same letters from the denotational
semantics to simplify the presentation.

The 
−→ relation describes transitions between states. Two kinds of
state exist: either the underlying machine is about to start evaluating
an expression, or it must return a value to the current continuation.
The former kind is represented by a tuple 〈σ, 〈E,ρ,ω,κ〉〉 where σ
is the current store, E is the expression to be evaluated, ρ is the
current environment, ω is the current dynamic point, and κ is the
continuation of E. The latter kind of state is a tuple 〈σ, 〈κ,ω,ε〉〉;
σ, κ, and ω are as before, and ε is the value being passed to κ.
The notable addition to the CEK machine is the path continuation
which tracks the dynamic-wind after and before thunks that still
need to run before returning to the “real” continuation.

6.3 Adding concurrency to the semantics

Figure 7 extends the sequential transition semantics by concurrency
with preemptive scheduling in a way similar to the semantic specifi-
cation of Concurrent ML [29]. The relation =⇒ operates on tuples,
each of which consists of the global store and a process set contain-
ing the running threads. Each process is represented by a unique
identifier ι and a state γ which is the state of the sequential seman-
tics, sans the store. The newid function allocates an unused process
identifier. The first rule adds concurrency. The second rule (added
to the sequential semantics) describes the behavior of spawn: the
program must first evaluate spawn’s argument and pass the result

37



σ ∈ Sd = L→ (Ed ×T)
Stated = Sd ×PStated
PStated = (Ed ×U×P×Kd) | (Kd ×Pd ×Ed)

ω ∈ Pd = (Fd ×Fd ×Pd)+{root}
φ ∈ Fd = 〈cl ρ, I*,E〉
ε ∈ Ed = . . . | M | Fd

κ ∈ Kd = stop | 〈cnd E1,E2,ρ,κ〉 | 〈app 〈. . . ,ε,•,E, . . .〉 ,ρ,ω,κ〉 | 〈set! α,κ〉 | 〈cwcc κ〉
| 〈dw •,E1,E2,ρ,ω,κ〉 | 〈dw ε0,•,E2,ρ,ω,κ〉 | 〈dw ε0,ε1,•,ρ,ω,κ〉
| 〈dwe ε1,ε2,ε3,ρ,ω,κ〉 | 〈dwe ε,ρ,ω,κ〉 | 〈return ε,κ〉 | 〈path (ω,φ)*,ε,κ〉

〈σ, 〈I,ρ,ω,κ〉〉 
−→ 〈σ, 〈κ,ω,σ(lookupρ I) ↓ 1〉〉
〈σ, 〈K,ρ,ω,κ〉〉 
−→ 〈σ, 〈κ,ω,K [[K]]〉〉

〈σ, 〈(lambda (I*) E0),ρ,ω,κ〉〉 
−→ 〈σ, 〈κ,ω, 〈cl ρ, I*,E0〉〉〉
〈σ, 〈(if E0 E1 E2),ρ,ω,κ〉〉 
−→ 〈σ, 〈E0,ρ,ω, 〈cnd E1,E2,ρ,ω,κ〉〉〉

〈σ, 〈(E0 E*),ρ,ω,κ〉〉 
−→ 〈σ, 〈E0,ρ,ω, 〈app 〈•,E*〉 ,ρ,ω,κ〉〉〉
〈σ, 〈(set! I E),ρ,ω,κ〉〉 
−→ 〈σ, 〈E,ρ,ω, 〈set! (lookupρ I),κ〉〉〉
〈σ, 〈(call/cc E),ω,κ〉〉 
−→ 〈σ, 〈E,ρ,ω, 〈cwcc κ〉〉〉

〈σ, 〈(dynamic-wind E0 E1 E2),ρ,ω,κ〉〉 
−→ 〈σ, 〈E0,ρ,ω, 〈dw •,E1,E2,ρ,ω,κ〉〉〉
〈σ, 〈〈cnd E1,E2,ρ,ω,κ〉 ,ω′, false〉〉 
−→ 〈σ, 〈E2,ρ,ω,κ〉〉

〈σ, 〈〈cnd E1,E2,ρ,ω,κ〉 ,ω′,ε〉〉 
−→ 〈σ, 〈E1,ρ,ω,κ〉〉 if ε �= false
〈σ, 〈〈app 〈. . . ,εi,•,Ei+2, . . .〉 ,ρ,ω,κ〉 ,ω′,εi+1〉〉 
−→ 〈σ, 〈Ei+2,ρ,ω, 〈app 〈. . . ,εi,εi+1,•, . . .〉 ,ρ,ω,κ〉〉〉

〈σ, 〈〈app 〈ε0, . . . ,εn−1,•〉 ,ρ,ω,κ〉 ,ω′,εn〉〉 
−→ 〈σ[ε1/α1] . . . [εn/αn], 〈E0,ρ0[α1/I1] . . .[αn/In],ω,κ〉〉
if ε0 = 〈cl ρ0, 〈I1, . . . , In〉 ,E0〉 ,α1 = newσ |L,α2 = newσ[ε1/α1] |L, . . .

〈σ, 〈〈app 〈ε0,•〉 ,ρ,ω,κ〉 ,ω′,ε1〉〉 
−→ 〈σ, 〈〈path (pathωω′),ε1,κ′〉 ,ω,unspecified〉〉 if ε0 = 〈cont ω′,κ′〉
〈σ, 〈〈set! α,κ〉 ,ω′,ε〉〉 
−→ 〈σ[〈ε, true〉/α], 〈κ,ω,unspecified〉〉

〈σ, 〈〈cwcc κ〉 ,ω,ε〉〉 
−→ 〈σ[〈cont ω,κ〉/newσ], 〈E0,ρ0[newσ/I],ω,κ〉〉 if ε = 〈cl ρ0, 〈I〉 ,E0〉
〈σ, 〈〈dw •,E1,E2,ρ,ω,κ〉 ,ω′,ε0〉〉 
−→ 〈σ, 〈E1,ρ,ω, 〈dw ε0,•,E2,ρ,ω,κ〉〉〉
〈σ, 〈〈dw ε0,•,E2,ρ,ω,κ〉 ,ω′,ε1〉〉 
−→ 〈σ, 〈E2,ρ,ω, 〈dw ε1,ε2,•,ρ,ω,κ〉〉〉
〈σ, 〈〈dw ε0,ε1,•,ρ,ω,κ〉,ω′,ε2〉〉 
−→ 〈σ, 〈E0,ρ0,ω, 〈dwe ε0,ε1,ε2,ρ,ω,κ〉〉〉 if ε0 = 〈cl ρ0, 〈〉 ,E0〉〈

σ,
〈〈dwe ε0,ε1,ε2,ρ,ω,κ〉 ,ω′,ε′0

〉〉 
−→ 〈σ, 〈E1,ρ1, (ε0,ε2,ω), 〈dwe ε2,ρ,ω,κ〉〉〉 if ε1 = 〈cl ρ1, 〈〉 ,E1〉〈
σ,

〈〈dwe ε2,ρ,ω,κ〉 ,ω′,ε′1
〉〉 
−→ 〈

σ,
〈
E2,ρ2,ω,

〈
return ε′1,κ

〉〉〉
if ε2 = 〈cl ρ2, 〈〉 ,E2〉

〈σ, 〈〈return ε,κ〉 ,ω′,ε′〉〉 
−→ 〈σ, 〈κ,ω,ε〉〉
〈σ, 〈〈path 〈〉 ,ε,κ〉 ,ω′,ε′〉〉 
−→ 〈σ, 〈κ,ω,ε〉〉

〈σ, 〈〈path 〈(ω0,ε0), (ω1,ε1), . . .〉 ,ε,κ〉 ,ω′,ε′〉〉 
−→ 〈σ, 〈E0,ρ0,ω0, 〈path 〈(ω1,ε1), . . .〉 ,ε,κ〉〉〉 if ε0 = 〈cl ρ0, 〈〉 ,E0〉

Figure 6. Transition semantics for Mini-Scheme

to the spwn continuation. Once that happens, the third rule de-
scribes the creation of a new thread with an empty control tree and
an empty continuation. The last rule removes a thread from the
system once it has reached the empty continuation.

6.4 Relating the semantics

To relate the operational and the denotational semantics, we first
define an evaluation function for the transition semantics:

eval(E,ρ,ω,κ,σ) = ε if 〈σ, 〈E,ρ,ω,κ〉〉 
−→∗ 〈σ′, 〈stop,ω′,ε〉〉

To actually prove the evaluation functions equivalent, their argu-
ments and the result need to be equivalent in some sense. We con-
jecture that defining relations between the semantic domains in the
spirit of [30, Section 12.6] provides us with the right notion of
equivalence. Using Rcont to relate continuations, Rdp for dynamic
points, Rstore for stores, and R∗ for values including errors and ⊥,
the equation we would like to hold is:

PROPOSITION 1. For any Mini-Scheme expression E and environ-
ment ρ, if 〈κ̂,κ〉 ∈ Rcont , 〈ω̂,ω〉 ∈ Rdp, and 〈σ̂,σ〉 ∈ Rstore, then

〈eval(E,ρ, ω̂, κ̂, σ̂),E [[E]]ρωκσ〉 ∈ R∗

We commit the actual definition of the relations and the proof of the
proposition to future work.

6.5 Semantics for dynamic binding

This section extends the denotational semantics for Mini-Scheme
with a dynamic environment. We use the denotational semantics for
dynamic-wind to prove the indirect implementation of dynamic
binding from Section 2.2 correct. The new semantics requires a
dynamic environment domain and extends the semantic domain for
procedures and dynamic points by a dynamic environment:

φ ∈ F = (E* → P→ D→ K→ C) procedure values
ψ ∈ D = E→ E dynamic environments
ω ∈ P = (F×F×P×D)+{root} dynamic points

The initial dynamic environment is ψinit = λε . (ε | Ep ↓ 2). The
dynamic environment is threaded through the evaluation exactly
like the dynamic point. (Revised evaluation functions are in Ap-
pendix B.) All previous definitions can be adapted mutatis mutandis
except for dynamicwind which needs to insert the dynamic environ-
ment into this created point and travelpath which calls the thunks
with the environment from the point:

dynamicwind : E* → P→ D→ K→ C
dynamicwind = threearg

(λε1ε2ε3ωψκ . (ε1 ∈F∧ ε2 ∈F∧ ε3 ∈F) →
applicateε1〈〉ωψ

(λζ* .applicateε2〈〉((ε1 |F,ε3 |F,ω,ψ) in P)ψ
(λε* .applicateε3〈〉ωψ(λζ* .κε*))),

wrong “bad procedure argument”)

travelpath : (P×F)* → C→ C
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ι ∈ I process IDs
τ = 〈ι,γ〉 ∈ Z = I×PStated processes

Ψ ∈ P finI process sets

〈σ,γ〉 
−→ 〈
σ′,γ′

〉

〈σ,Ψ∪{〈ι,γ〉}〉=⇒ 〈
σ′,Ψ∪{〈ι,γ′〉}〉

〈σ, 〈(spawn E),ρ,ω,κ〉〉 
−→ 〈σ, 〈E,ρ,ω, 〈spwn κ〉〉〉
〈σ,Ψ〉 =⇒ 〈

σ,Ψ′ ∪ {〈ι, 〈κ,unspecified〉〉 , 〈newidΨ, 〈E,ρ, root,stop〉〉}〉 if Ψ = Ψ′ ∪ {〈ι, 〈spwn κ,ε〉〉}, ε = 〈cl ρ, 〈〉 ,E〉
〈σ,Ψ∪{〈ι, 〈stop,ε〉〉}〉 =⇒ 〈σ,Ψ〉

Figure 7. Concurrent evaluation

travelpath = λπ*θ .#π* = 0 → θ,
((π* ↓ 1) ↓ 2)〈〉((π* ↓ 1) ↓ 1)(((π* ↓ 1) ↓ 1) ↓ 4)

(λε* . travelpath (π*† 1)θ)

The only additions are the definitions for creating, referencing, and
binding dynamic variables:

Ed [[(make-fluid E)]] = Ed [[(cons ’fluid E)]]

fluidref : E* → P→ D→ K→ C
fluidref = onearg(λεωψκ . send (ψε)κ)

bindfluid : E* → P→ D→ K→ C
bindfluid =

threearg (λε1ε2ε3ωψκ . ε3 ∈F→ (ε3 |F) 〈〉σψ[ε1/ε2]κ,
wrong “bad procedure argument”)

Again, we relate the semantics—there is only space for an infor-
mal outline of the actual proof; to abbreviate the presentation, we
use value identifiers (lower-case or greek) in place of expressions
evaluating to the corresponding values.

� relates a pair of a dynamic point ω and a dynamic environment ψ
in the direct implementation with a dynamic points in the indirect
implementation ω̂, where αψ = ρ*dynamic-env*. 〈ω,ψ〉 � ω̂ iff
ψ = ψinit and ω = ω̂ or all of:

ω = 〈ε1,1,ε2,1, 〈. . . ,〈ε1,i,ε2,i,ω′,ψ〉, . . .〉,ψ〉
ω̂ = 〈ε1,1,ε2,1, 〈. . . ,〈ε1,i,ε2,i, 〈ε1,ε2, ω̂′〉〉〉〉
〈ω′, (ω′ ↓ 4)〉 � ω̂′
ε1 = λε*ωκ .λσ . sendunspecifiedκσ[〈ψ, true〉/αψ]
ε2 = λε*ωκ .λσ . sendunspecifiedκσ[〈(ω′ ↓ 4), true〉/αψ]

PROPOSITION 2. If either αψ holds the value of (lambda (v)
(cdr v)) and ψ = ψinit , or ψ = ψinit [ f /ε] . . . and αψ holds
the value of (shadow ...(extend *dynamic-env* f ε)...),
then ∀E : E [[(fluid-ref E)]]ρω = Ed [[(fluid-ref E)]]ρω′ψ

THEOREM 1. E [[E]]ρω̂κ̂σ̂ = Ed [[E]]ρωκσψ holds if

〈ω,ψ〉 � ω̂
σ̂αψ = ψ
σ̂ε = σε for ε �= αψ
κ̂ = λvσ .κ vσ[ψ/αψ]

The proof is by structural induction on E. The relevant cases are:

Case E=(bind-fluid f ε εt): Let E0 be the body of εt . By
Proposition 2, the definitions of bind-fluid and dynamic-wind,

the denotation of E [[E]]ρκ̂ω̂σ̂ is E [[E0]]ρκ̂′ω̂′σ̂′ with

σ̂′αψ = ψ[ε/ f ]
ω̂′ = 〈ε′1,ε′2, ω̂〉
ε′1 = λε*ωκ .λσ . sendunspecifiedκσ[〈ψ[ε/ f ], true〉/αψ]
ε′2 = λε*ωκ .λσ . sendunspecifiedκσ[〈ψ, true〉/αψ]
κ̂′ = λvω . κ̂vσ[〈ψ, true〉/αψ]

In the direct case the denotation of Ed [[E]]ρκωσψ is
Ed [[E0]]ρκωσψ[ε/ f ]. The denotations of E0 are equal by the
induction hypothesis because 〈ω,ψ[ f /v]〉� ω̂′.

Case E=(call/cc E0): For the direct implementation, the escape
procedure is λεω′ψ′κ′ . travelω′ ω(κε); the continuation is closed
over the dynamic environment ψ. For the indirect implementation,
the denotation is λεω̂′κ′ . travelω′ ω̂(κε). We show that the deno-
tations of the escape procedures are equal if 〈ω′,ψ′〉 � ω̂′ by case
analysis of the application’s dynamic point:

1. ω̂′ = ω̂ or ω̂′ = 〈. . . , ω̂〉 and none of the intermediate dynamic
points was generated by a bind-fluid. This corresponds to
an application of the escape procedure within the body of the
call/cc without an intermediate bind-fluid. This means
that αψ is not modified and remains equal to ψ. In both cases
travelpath evaluates all thunks with dynamic environment ψ.

2. ω̂ is an ancestor of ω̂′, w.l.o.g. ω̂′ = 〈. . . ,〈ε′1,ε′2, ω̂〉〉
where 〈ε′1,ε′2, ω̂〉 was introduced by a bind-fluid.
Then commonancest ω̂′ ω̂ = ω̂. This means
pathdown (commonancest ω̂′ω̂)ω̂ = 〈〉 and travelpath is
applied to pathup ω̂′ω̂ = 〈. . . ,〈ω̂′,ε′2〉〉. ε′2 sets σαψ to
ψ because 〈ω,ψ〉 � ω̂. The definition of � ensures that
the intermediate thunks are applied in equal dynamic
environments.

3. Otherwise, the common ancestor is some other dynamic
point ωa i.e. ω̂ = 〈. . . ,〈ε1,ε2,ωa〉〉. Then, travelω′ ω̂ =
travelpath((pathup ω′ωa) § (pathdown ωaω̂)). The second
part of the argument sequence, pathdownωaω̂, is equal to
〈. . . ,〈ω̂,ε1〉〉. That is, travelpath will call ε1 as last function
of the sequence, which sets αψ to ψ. Again the intermedi-
ate thunks are applied with identical dynamic environments
because of �.

7 Related Work

R5RS [21] contains information on the history of call/cc in
Scheme, which was part of the language (initially under a dif-
ferent name) from the beginning. Dynamic-wind was originally
suggested by Richard Stallman, and reported by Friedman and
Haynes [18]. Friedman and Haynes make the terminological dis-
tinction between the “plain” continuations that are just reified meta-
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level continuations, and “cobs” (“continuation objects”), the actual
escape procedures, which may perform work in addition to replac-
ing the current meta-level continuation by another.

Dynamic-wind first appeared in the Scheme language definition
in R5RS. Sitaram, in the context of the run and fcontrol con-
trol operators, associates “prelude” and “postlude” procedures with
each continuation delimiter. This mechanism is comparable to
dynamic-wind [34]. Dybvig et al. also describe a similar but more
general mechanism called process filters for subcontinuations [19].
Filinski uses call/cc to transparently implement layered mon-
ads [8]. He shows how to integrate multiple computational effects
effects by defining the relevant operators in terms of call/cc and
state, and then re-defining call/cc to be compatible with the new
operators. Filinski notes that that this is similar in spirit to the redef-
inition of call/cc to accomodate dynamic-wind, and the goals of
Filinski’s work and of dynamic-wind are fundamentally similar.

The implementation of thread systems using call/cc goes back
to Wand [37]. Haynes, Friedman, and others further develop this
approach to implementing concurrency [17, 2]. It is also the ba-
sis for the implementation of Concurrent ML [29]. Shivers rec-
tifies many of the misunderstandings concerning the relationship
between (meta-level) continuations and threads [32]. Many imple-
mentors have since noted that call/cc is an appropriate explica-
tive aid for understanding threads, but that it is not the right tool for
implementing them, especially in the presence of dynamic-wind.

Dynamic binding goes back to early versions of Lisp [35]. Even
though the replacement of dynamic binding by lexical binding was
a prominent contribution of early Scheme, dynamic binding has
found its way back into most implementations of Scheme and Lisp.

The inheritance issue for the dynamic environment also appears in
the implementation of parallelism via futures, as noted in Feeley’s
Ph.D. thesis [3] and Moreau’s work on the semantics of dynamic
binding[26]. In the context of parallelism, inheritance is important
because the future construct [15] is ideally a transparent annota-
tion. This notion causes considerable complications for call/cc;
Moreau investigates the semantical issues [25]. Inheritance is also
a natural choice for concurrency in purely functional languages: in
the Glasgow implementation of Concurrent Haskell, a new thread
inherits the implicit parameters [24] from its parent. Most imple-
mentations of Common Lisp which support threads seem to have
threads inherit the values of special (dynamically scoped) variables
and share their values with all other threads.

The situation is different in concurrent implementations of Scheme:
Scheme is not a purely functional language, and threads are typi-
cally not a transparent annotation for achieving parallelism. There-
fore, Scheme implementations supporting threads and dynamic
binding have made different choices: In MzScheme [9], fluid vari-
ables (called parameters) are inherited; mutations to parameters are
only visible in the thread that performs them. The upcoming ver-
sion of Gambit-C has inheritance, but parameters refer to shared
cells [4]. Fluids in Scheme 48 [22] are not inherited, and do not sup-
port mutation. Scsh [33] supports a special kind of thread fluid [13]
where inheritance can be specified upon creation. Discussion on
the inheritance and sharing issues has often been controversial [4].

There is a considerable body of work on the interaction of par-
allelism and continuations (even though the term concurrency is
often used): Parallel Scheme implementations have traditionally
offered annotation-style abstractions for running computations on

other processors, such as parallel procedure calls or futures [15].
These annotations are normally transparent in purely functional
programs without call/cc. Implementors have tried to make them
transparent even in the presence of call/cc [20], which makes it
necessary (and sensible) to have reified continuations span multi-
ple threads. However, none of the implementations behaves intu-
itively in all cases, and none maintains transparency when the pro-
gram executes side effects. Hieb et al. [19] alleviate this problem by
proposing the use of delimited continuations—so-called subcontin-
uations—to express intuitive behavior. All of this work is largely
orthogonal to ours which is largely concerned with concurrency as
a programming paradigm. However, in our view, this confirms our
conclusion that comingling threads and continuations leads to un-
desirable complications.

8 Conclusion

Combining first-class continuations, dynamic-wind, dynamic
binding, and concurrency in a single functional language is akin
to walking a minefield. The design space exhibits many peculiar-
ities, and its size is considerable; existing systems occupy differ-
ent places within it. Some design choices lead to semantic or im-
plementation difficulties, others impact the programmer’s ability to
write modular multithreaded programs. In general, the discussion
about the correct way to combine these facilities has been plagued
by controversy and confusion. In this paper, we have examined the
interactions between them in a systematic way. The most important
insights are:

• It is better to build first-class continuations and dynamic-
wind on top of a native thread system rather than building
the thread system on top of continuations.

• Decoupling threads from the sequential part of the program-
ming language leads to clean semantic specifications and
easier-to-understand program behavior.

• Abstractions for thread-aware programming are useful, but
their use can have a negative impact on modularity and thus
requires great care.

• The semantic interaction between threads and dynamic bind-
ing in Scheme is easiest to explain when newly created threads
start with a fresh dynamic context. Even though this design
option is not current practice in many systems, it also of-
fers the greatest flexibility when writing modular abstractions
which use threads and dynamic binding.

Our work opens a number of avenues for further research. In
particular, an equational specification for dynamic-wind in the
style of Felleisen and Hieb’s framework [7] would be very use-
ful. This could also be the basis for characterizing “benevolent”
uses of dynamic-wind and thread-wind that do not interfere with
call/cc in undesirable ways.
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A Multiprocessing and Thread-wind

Figure 8 shows how to extend the sequential transition semantics
from Section 6.3 to account for multiprocessing and thread-wind:
The 
−→ relation operates on machine states 〈σ,Ψ,Π,β〉. As be-
fore, σ is the global store, Ψ is still a process set, but contains only
the threads currently running on a processor. Π is a processor map
mapping a processor to a processor state, which is either idle or
running ι for a processor running the thread with ID ι. β is the
set of of idle threads waiting to be scheduled on a processor. Each
member of this set consists of the thread ID, the dynamic point to
return to, and the state of that thread.

The rules for running threads and spawning new ones are much as
before, only extended to account for the new machine state com-
ponents. (The newid function now takes both the active and idle
process sets as arguments.) The last three rules control the swap-
ping in and swapping out of threads: The first of these prepares a
thread for swap-out, prefixing the current continuation with a wind-
ing path and a suspend marker. (For simplicity, we allow swapping
out only when returning a value to a continuation.) The winding
path is obtained by travelling up the control tree, only collecting
after thunks introduced by thread-wind. (The new P domain dis-
tinguishes between nodes introduced by dynamic-wind and those
introduced by thread-wind by a new boolean flag.) The subse-
quent rule actually performs the swapping out once the thread has
reached the suspend marker. The last rule swaps a thread back in,
prefixing the path back down to the target control node.

The tpath continuation works exactly the same as the path con-
tinuation, with the only exception that a processor running a thread
in the midst of tpath continuation cannot swap that thread out.

B Semantics for Mini-Scheme with dynamic
binding

Figure 9 describes evaluation functions E and E* for Mini-Scheme
with dynamic binding as described in Section 6.5.

C Defining dynamic-wind using the continua-
tion monad

The published version of R5RS says:

The definition of call-with-current-
continuation in Section 8.2 is incorrect be-
cause it is incompatible with dynamic-wind. As
shown in Section 4 of [1], however, this incorrect
semantics is adequate to define the shift and
reset operators, which can then be used to define
the correct semantics of both dynamic-wind and
call-with-current-continuation.

The origin of this comment is unclear, and there is no
published (or, to our knowledge, any) implementation of

call-with-current-continuation and dynamic-wind to sup-
port this claim. We work out the details here. Our implementation
represents a dynamic point as a pair of a pair of a before and an
after thunk, and the parent point. The root point is represented as
the empty list.

(define root-point ’())

(define root-point? null?)

(define (make-point before after parent)
(cons (cons before after) parent))

(define point-parent cdr)

(define (point-depth p)
(if (root-point? p)

0
(+ 1 (point-depth (point-parent p)))))

(define point-before caar)

(define point-after cdar)

Filinski’s framework for representing monads provides two func-
tions reify and reflect which mediate between computations
and values (the macro reify* simply wraps its argument into a
thunk to shorten the rest of the examples):

(define (reflect meaning)
(shift k (extend k meaning)))

(define (reify thunk)
(reset (eta (thunk))))

(define-syntax reify*
(syntax-rules ()

((reify* body ...)
(reify (lambda () body ...)))))

See [12] for a Scheme version of Filinski’s definition of shift
and reset in terms of call/cc. The procedures eta and extend
correspond to the usual monadic unit and extension functions. In
Haskell, eta is known as return and extend as bind or the infix
operator >>=.

Defining the continuation monad requires defining eta and
extend. The datatype of the plain continuation monad contains
a procedure which accepts a continuation as its argument and deliv-
ers its result by applying a continuation. The unit operation delivers
a value by applying the continuation. The extension operation puts
the function into the continuation:

(define (eta a)
(lambda (c) (c a)))

(define (extend k m)
(lambda (c)

(m (lambda (v) ((k v) c)))))

For actually running programs, an evaluation function which sup-
plies the identity function to its argument comes in handy:

(define (eval m)
((reify m) (lambda (v) v)))
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ω ∈ P = (F×F×T×P)+{root} dynamic points and thread points
ϕ ∈ W processor
ς ∈ J = idle | running I processor state
Π ∈ W→ J processor map
π* ∈ G = (P×F)* thread-wind paths
β ∈ B = P fin(I×P×Y) idle threads

〈σ,γ〉 
−→ 〈
σ′,γ′

〉

〈σ,Ψ∪{〈ι,γ〉},Π,β〉 �=⇒ 〈
σ′,Ψ∪{〈ι,γ′〉},Π,β

〉

〈σ,Ψ∪{〈ι, 〈stop,ω,ε〉〉},Π,β〉 �=⇒ 〈σ,Ψ,Π[idle/ϕ],β〉 if Πϕ = running ι

〈σ, 〈(spawn E),ρ,ω,κ〉 ,Π,β〉 �=⇒ 〈σ, 〈E,ρ,ω, 〈spwn κ〉〉 ,Π,β〉
〈σ,Ψ,Π,β〉 �=⇒ 〈

σ,Ψ′ ∪ {〈ι, 〈κ,unspecified〉〉} ,β∪{〈newidΨβ, root, 〈E,ρ, root,stop〉〉}〉

if Ψ = Ψ′ ∪ {〈ι, 〈spwn κ,ε〉〉}, ε = 〈cl ρ, 〈〉 ,E〉
〈σ,Ψ∪{〈ι, 〈κ,ω,ε〉〉} ,Π,β〉 �=⇒ 〈σ,Ψ∪{〈ι, 〈〈tpath (pathupm ω),ε, 〈suspend κ〉〉 ,ω,unspecified〉〉} ,Π,β〉

if κ does not contain tpath

〈σ,Ψ∪{〈ι, 〈〈suspend κ〉 ,ω,ε〉〉} ,Π,β〉 �=⇒ 〈σ,Ψ,Π[idle/ϕ],β∪{〈ι,ω, 〈κ,ω,ε〉〉}〉 if Πϕ = running ι

〈σ,Ψ,β∪{〈ι,ω, 〈κ,ω,ε〉〉}〉 �=⇒ 〈σ,Ψ∪{〈ι, 〈〈tpath (pathdownm ω),ε,κ〉 ,ω,unspecified〉〉} ,Π[running ι/ϕ],β〉 if Πϕ = idle

〈σ, 〈〈tpath 〈〉 ,ε,κ〉 ,ω′,ε′〉〉 
−→ 〈σ, 〈κ,ω,ε〉〉
〈σ, 〈〈tpath 〈(ω0,ε0), (ω1,ε1), . . .〉 ,ε,κ〉 ,ω′,ε′〉〉 
−→ 〈σ, 〈E0,ρ0,ω0, 〈tpath 〈(ω1,ε1), . . .〉 ,ε,κ〉〉〉 if ε0 = 〈cl ρ0, 〈〉 ,E0〉

〈σ, 〈(thread-wind E0 E1 E2),ρ,ω,κ〉〉 
−→ 〈σ, 〈E0,ρ,ω, 〈tw •,E1,E2,ρ,ω,κ〉〉〉
〈σ, 〈〈tw •,E1,E2,ρ,ω,κ〉 ,ω′,ε0〉〉 
−→ 〈σ, 〈E1,ρ1,ω, 〈tw ε0,•,E2,ρ,ω,κ〉〉〉
〈σ, 〈〈tw ε0,•,E2,ρ,ω,κ〉 ,ω′,ε1〉〉 
−→ 〈σ, 〈E2,ρ2,ω, 〈tw ε1,ε2,•,ρ,ω,κ〉〉〉
〈σ, 〈〈tw ε0,ε1,•,ρ,ω,κ〉,ω′,ε2〉〉 
−→ 〈σ, 〈E0,ρ0,ω, 〈twe ε0,ε1,ε2,ρ,ω,κ〉〉〉 if ε0 = 〈cl ρ0, 〈〉 ,E0〉〈

σ,
〈〈dwe ε0,ε1,ε2,ρ,ω,κ〉 ,ω′,ε′0

〉〉 
−→ 〈σ, 〈E1,ρ0, (ε0,ε2, false,ω), 〈dwe ε2,ρ,ω,κ〉〉〉 if ε1 = 〈cl ρ1, 〈〉 ,E1〉〈
σ,

〈〈twe ε0,ε1,ε2,ρ,ω,κ〉 ,ω′,ε′0
〉〉 
−→ 〈σ, 〈E1,ρ0, (ε0,ε2, true,ω), 〈dwe ε2,ρ,ω,κ〉〉〉 if ε1 = 〈cl ρ1, 〈〉 ,E1〉

pathupm : P→ G
pathupm =
λω .ω = root → 〈〉 ,

(ω | (F×F×T×P) ↓ 3) = true → 〈(ω,ω | (F×F×T×P) ↓ 2)〉§ (pathupm (ω | (F×F×T×P) ↓ 4)),
(pathupm (ω | (F×F×T×P) ↓ 4))

pathdownm : P→ G
pathdownm =
λω .ω = root → 〈〉 ,

(ω | (F×F×T×P) ↓ 3) = true → (pathdownm (ω | (F×F×T×P) ↓ 4))§ 〈(ω,ω | (F×F×T×P) ↓ 2)〉,
(pathdownm (ω | (F×F×T×P) ↓ 4))

Figure 8. Multiprocessor evaluation

The definition of call/cc is straightforward:

(define (call/cc h)
(reflect
(lambda (c)

(let ((k (lambda (v)
(reflect (lambda (c-prime) (c v))))))

((reify* (h k)) c)))))

To incorporate dynamic-wind we pair the continuation function
with a dynamic point. Eta still applies the continuation to its argu-
ment, while extend supplies the same dynamic point to both of its
arguments.

(define (eta a)
(lambda (cdp) ((car cdp) a)))

(define (extend k m)
(lambda (cdp)

(m (cons (lambda (v) ((k v) cdp)) (cdr cdp)))))

The evaluation procedure takes a thunk representing the computa-
tion as argument, reifies it and applies it to the identity continuation
and the root point:

(define (eval m)
((reify m) (cons (lambda (v) v) root-point)))

Dynamic-wind evaluates first evaluates the before thunk. It then
evaluates the body thunk with a new dynamic point, before it eval-
uates the after thunk with a continuation which applies the contin-
uation of the dynamic-wind to the result of the body.
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Ed : Exp → U→ P→ D→ K→ C
Ed* : Exp* → U→ P→ D→ K→ C

Ed [[K]] = λρωψκ . send(K [[K]])κ
Ed [[I]] = λρωψκ .hold(lookupρ I)

(λε . ε = undefined →
wrong “undefined variable”,

send εκ)
Ed [[(if E0 E1 E2)]] =
λρωψκ .Ed [[E0]]ρωψ (λε . truishε→ Ed [[E1]]ρωψκ,

Ed [[E2]]ρωψκ)
Ed [[(set! I E)]] =
λρωψκ .Ed [[E]]ρωψ (λε .assign(lookupρ I)

ε
(send unspecifiedκ))

Ed [[(E0 E*)]] =
λρωψκ .Ed*(〈E0〉§ E*)

ρωψ (λε* .applicate (ε* ↓ 1) (ε*† 1)ωψκ)
Ed [[(lambda (I*) E)]] =
λρωψκ .

send ((λε*ω′ψ′κ′ .#ε* = #I* →
tievals(λα* . (λρ′ .Ed [[E]]ρ′ω′ψ′κ′)

(extendsρ I*α*))
ε*,

wrong “wrong number of arguments”)
in E)

κ
Ed*[[ ]] = λρωψκ .κ〈 〉
Ed*[[E0 E*]] =
λρωψκ .Ed [[E0]]ρωψ (single(λε0 .Ed*[[E*]]ρωψ (λε* .κ (〈ε0〉§ ε*))))

Figure 9. Semantics of Mini-Scheme with dynamic environment

(define (dynamic-wind before thunk after)
(reflect
(lambda (cdp)

((reify* (before))
(cons (lambda (v1)

((reify* (thunk))
(cons (lambda (v2)

((reify* (after))
(cons (lambda (v3)

((car cdp) v2))
(cdr cdp))))

(make-point before after
(cdr cdp)))))

(cdr cdp))))))

Call/cc is responsible for generating an escape procedure which
calls the appropriate set of before and after thunks. The following
code defers this to the procedure travel-to-point!:

(define (call/cc h)
(reflect
(lambda (cdp)

(let ((k (lambda (v)
(reflect
(lambda (cdp-prime)

((reify* (travel-to-point!
(cdr cdp-prime)
(cdr cdp)))

(cons (lambda (ignore)
((car cdp) v))

(cdr cdp))))))))
((reify* (h k)) cdp)))))

Travel-to-point! implements an ingenious algorithm invented
by Pavel Curtis for Scheme Xerox and used in Scheme 48:

(define (travel-to-point! here target)
(cond ((eq? here target) ’done)

((or (root-point? here)
(and (not (root-point? target))

(< (point-depth here)
(point-depth target))))

(travel-to-point! here
(point-parent target))

(with-point target
(lambda () ((point-before target)))))

(else
(with-point here

(lambda () ((point-after here))))
(travel-to-point! (point-parent here)

target))))

The algorithm seeks the common ancestor by first walking up from
lower of the two points until it is at the same level as the other. Then
it alternately walks up one step at each of the points until it arrives
at the same point, which is the common ancestor. The algorithms
runs the after thunks walking up the source branch and winds up
running the before thunks walking up the target branch. The helper
procedure with-point takes a dynamic point and a thunk as its
arguments and evaluates the thunk with the current continuation
and the supplied point:

(define (with-point point thunk)
(reflect
(lambda (cdp)

((reify* (thunk))
(cons (lambda (v) ((car cdp) v)) point)))))

D Denotational Semantics

[This is a version of the denotational semantics in R5RS with
dynamic-wind. We have copied the text verbatim, only making
the necessary changes to account for the management of dynamic
points.]

This section provides a formal denotational semantics for the prim-
itive expressions of Scheme and selected built-in procedures. The
concepts and notation used here are described in [36]; the notation
is summarized below:

〈 . . .〉 sequence formation
s ↓ k kth member of the sequence s (1-based)
#s length of sequence s
s § t concatenation of sequences s and t
s † k drop the first k members of sequence s
t → a,b McCarthy conditional “if t then a else b”
ρ[x/i] substitution “ρ with x for i”
x in D injection of x into domain D
x |D projection of x to domain D

The reason that expression continuations take sequences of values
instead of single values is to simplify the formal treatment of pro-
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cedure calls and multiple return values.

The boolean flag associated with pairs, vectors, and strings will be
true for mutable objects and false for immutable objects.

The order of evaluation within a call is unspecified. We mimic that
here by applying arbitrary permutations permute and unpermute,
which must be inverses, to the arguments in a call before and after
they are evaluated. This is not quite right since it suggests, incor-
rectly, that the order of evaluation is constant throughout a program
(for any given number of arguments), but it is a closer approxima-
tion to the intended semantics than a left-to-right evaluation would
be.

The storage allocator new is implementation-dependent, but it must
obey the following axiom: if newσ∈L, then σ(newσ |L) ↓ 2 = false.

The definition of K is omitted because an accurate definition of K
would complicate the semantics without being very interesting.

If P is a program in which all variables are defined before being
referenced or assigned, then the meaning of P is

E [[((lambda (I*) P’) 〈undefined〉 . . .)]]

where I* is the sequence of variables defined in P, P′ is the sequence
of expressions obtained by replacing every definition in P by an as-
signment, 〈undefined〉 is an expression that evaluates to undefined,
and E is the semantic function that assigns meaning to expressions.

D.1 Abstract syntax

K ∈ Con constants, including quotations
I ∈ Ide identifiers (variables)

E ∈ Exp expressions
Γ ∈ Com = Exp commands

Exp −→ K | I | (E0 E*)
| (lambda (I*) Γ* E0)
| (lambda (I* . I) Γ* E0)
| (lambda I Γ* E0)
| (if E0 E1 E2) | (if E0 E1)
| (set! I E)

D.2 Domain equations

α ∈ L locations
ν ∈ N natural numbers

T = {false, true} booleans
Q symbols
H characters
R numbers
Ep = L×L×T pairs
Ev = L*×T vectors
Es = L*×T strings
M = {false, true, null, undefined, unspecified}

miscellaneous
φ ∈ F = L× (E* → P→ K→ C) procedure values
ε ∈ E = Q+H+R+Ep +Ev +Es +M+F

expressed values
σ ∈ S = L→ (E×T) stores

ρ ∈ U = Ide → L environments
θ ∈ C = S→ A command continuations
κ ∈ K = E* → C expression continuations

A answers
X errors

ω ∈ P = (F×F×P)+{root} dynamic points

D.3 Semantic functions

K : Con → E
E : Exp → U→ P→ K→ C

E* : Exp* → U→ P→ K→ C
C : Com* → U→ P→ C→ C

Definition of K deliberately omitted.

E [[K]] = λρωκ . send(K [[K]])κ

E [[I]] = λρωκ .hold (lookupρ I)
(single(λε . ε = undefined →

wrong “undefined variable”,
send εκ))

E [[(E0 E*)]] =
λρωκ .E*(permute(〈E0〉§ E*))

ρ
ω
(λε* . ((λε* .applicate (ε* ↓ 1) (ε*† 1)ωκ)

(unpermuteε*)))

E [[(lambda (I*) Γ* E0)]] =
λρωκ .λσ .

newσ∈L→
send (〈newσ |L,

λε*ω′κ′ .#ε* = #I* →
tievals(λα* . (λρ′ .C [[Γ*]]ρ′ω′(E [[E0]]ρ′ω′κ′))

(extendsρ I*α*))
ε*,

wrong “wrong number of arguments”〉
in E)

κ
(update (newσ |L)unspecifiedσ),

wrong “out of memory”σ

E [[(lambda (I* . I) Γ* E0)]] =
λρωκ .λσ .

newσ∈L→
send (〈newσ |L,

λε*ω′κ′ .#ε* ≥ #I* →
tievalsrest

(λα* . (λρ′ .C [[Γ*]]ρ′ω′(E [[E0]]ρ′ω′κ′))
(extendsρ (I*§ 〈I〉)α*))

ε*
(#I*),

wrong “too few arguments”〉 in E)
κ
(update (newσ |L)unspecifiedσ),

wrong “out of memory”σ

E [[(lambda I Γ* E0)]] = E [[(lambda (. I) Γ* E0)]]

E [[(if E0 E1 E2)]] =
λρωκ .E [[E0]]ρω (single (λε . truishε→ E [[E1]]ρωκ,

E [[E2]]ρωκ))
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E [[(if E0 E1)]] =
λρωκ .E [[E0]]ρω (single (λε . truishε→ E [[E1]]ρωκ,

sendunspecifiedκ))

Here and elsewhere, any expressed value other than undefined may
be used in place of unspecified.

E [[(set! I E)]] =
λρωκ .E [[E]]ρω (single(λε .assign (lookupρ I)

ε
(sendunspecifiedκ)))

E*[[ ]] = λρωκ .κ〈 〉

E*[[E0 E*]] =
λρωκ .E [[E0]]ρω (single(λε0 .E*[[E*]]ρω (λε* .κ (〈ε0〉§ ε*))))

C [[ ]] = λρωθ .θ

C [[Γ0 Γ*]] = λρωθ .E [[Γ0]]ρω (λε* .C [[Γ*]]ρωθ)

D.4 Auxiliary functions

lookup : U→ Ide → L
lookup = λρI .ρI

extends : U→ Ide* → L* → U
extends =
λρI*α* .#I* = 0 → ρ,

extends (ρ[(α* ↓ 1)/(I* ↓ 1)]) (I* † 1) (α*† 1)

wrong : X→ C [implementation-dependent]

send : E→ K→ C
send = λεκ .κ〈ε〉

single : (E→ C) → K
single =
λψε* .#ε* = 1 → ψ(ε* ↓ 1),

wrong “wrong number of return values”

new : S→ (L+{error}) [implementation-dependent]

hold : L→ K→ C
hold = λακσ . send(σα ↓ 1)κσ

assign : L→ E→ C→ C
assign = λαεθσ .θ(updateαεσ)

update : L→ E→ S→ S
update = λαεσ .σ[〈ε, true〉/α]

tievals : (L* → C) → E* → C
tievals =
λψε*σ .#ε* = 0 → ψ〈 〉σ,

newσ∈L→ tievals(λα* .ψ(〈newσ |L〉§α*))
(ε* † 1)
(update(newσ |L)(ε* ↓ 1)σ),

wrong “out of memory”σ

tievalsrest : (L* → C) → E* → N→ C
tievalsrest =
λψε*ν . list (dropfirstε*ν)

(single(λε . tievalsψ ((takefirstε*ν)§ 〈ε〉)))

dropfirst = λln .n = 0 → l,dropfirst(l † 1)(n−1)

takefirst = λln .n = 0 → 〈〉, 〈l ↓ 1〉§ (takefirst(l † 1)(n−1))

truish : E→ T
truish = λε . ε = false → false, true

permute : Exp* → Exp* [implementation-dependent]

unpermute : E* → E* [inverse of permute]

applicate : E→ E* → P→ K→ C
applicate =
λεε*ωκ . ε∈F→ (ε |F ↓ 2)ε*ωκ,wrong “bad procedure”

onearg : (E→ P→ K→ C) → (E* → P→ K→ C)
onearg =
λζε*ωκ .#ε* = 1 → ζ(ε* ↓ 1)ωκ,

wrong “wrong number of arguments”

twoarg : (E→ E→ P→ K→ C) → (E* → P→ K→ C)
twoarg =
λζε*ωκ .#ε* = 2 → ζ(ε* ↓ 1)(ε* ↓ 2)ωκ,

wrong “wrong number of arguments”

threearg : (E→ E→ E→ P→ K→ C) → (E* → P→ K→ C)
threearg =
λζε*ωκ .#ε* = 3 → ζ(ε* ↓ 1)(ε* ↓ 2)(ε* ↓ 3)ωκ,

wrong “wrong number of arguments”

list : E* → P→ K→ C
list =
λε*ωκ .#ε* = 0 → send nullκ,

list(ε*† 1)(single(λε . cons〈ε* ↓ 1,ε〉κ))

cons : E* → P→ K→ C
cons =

twoarg(λε1ε2κωσ .newσ∈L→
(λσ′ .newσ′ ∈L→

send(〈newσ |L,newσ′ |L, true〉
in E)

κ
(update(newσ′ |L)ε2σ′),

wrong “out of memory”σ′)
(update(newσ |L)ε1σ),
wrong “out of memory”σ)

less : E* → P→ K→ C
less =

twoarg(λε1ε2ωκ . (ε1 ∈R∧ ε2 ∈R) →
send(ε1 |R < ε2 |R→ true, false)κ,
wrong “non-numeric argument to <”)

add : E* → P→ K→ C
add =

twoarg(λε1ε2ωκ . (ε1 ∈R∧ ε2 ∈R) →
send((ε1 |R+ ε2 |R) in E)κ,
wrong “non-numeric argument to +”)

car : E* → P→ K→ C
car =

onearg(λεωκ . ε∈Ep → car-internalεκ,
wrong “non-pair argument to car”)

car-internal : E→ K→ C
car-internal = λεωκ .hold(ε |Ep ↓ 1)κ
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cdr : E* → P→ K→ C [similar to car]

cdr-internal : E→ K→ C [similar to car-internal]

setcar : E* → P→ K→ C
setcar =

twoarg(λε1ε2ωκ . ε1 ∈Ep →
(ε1 |Ep ↓ 3) → assign(ε1 |Ep ↓ 1)

ε2
(sendunspecifiedκ),

wrong “immutable argument to set-car!”,
wrong “non-pair argument to set-car!”)

eqv : E* → P→ K→ C
eqv =

twoarg(λε1ε2ωκ . (ε1 ∈M∧ ε2 ∈M) →
send(ε1 |M = ε2 |M→ true, false)κ,

(ε1 ∈Q∧ ε2 ∈Q) →
send(ε1 |Q = ε2 |Q→ true, false)κ,

(ε1 ∈H∧ ε2 ∈H) →
send(ε1 |H = ε2 |H→ true, false)κ,

(ε1 ∈R∧ ε2 ∈R) →
send(ε1 |R = ε2 |R→ true, false)κ,

(ε1 ∈Ep ∧ ε2 ∈Ep) →
send((λp1 p2 . ((p1 ↓ 1) = (p2 ↓ 1)∧

(p1 ↓ 2) = (p2 ↓ 2)) → true,
false)

(ε1 |Ep)
(ε2 |Ep))
κ,

(ε1 ∈Ev ∧ ε2 ∈Ev) → . . . ,
(ε1 ∈Es ∧ ε2 ∈Es) → . . . ,
(ε1 ∈F∧ ε2 ∈F) →

send((ε1 |F ↓ 1) = (ε2 |F ↓ 1) → true, false)
κ,

send falseκ)

apply : E* → P→ K→ C
apply =

twoarg(λε1ε2ωκ . ε1 ∈F→ valueslistε2(λε* .applicateε1ε*ωκ),
wrong “bad procedure argument to apply”)

valueslist : E→ K→ C
valueslist =
λεκ . ε∈Ep →

cdr-internalε
(λε* . valueslist

ε*
(λε* . car-internal

ε
(single(λε .κ(〈ε〉§ ε*))))),

ε = null → κ〈 〉,
wrong “non-list argument to values-list”

cwcc : E* → P→ K→ C [call-with-current-continuation]
cwcc =

onearg(λεωκ . ε∈F→
(λσ .newσ∈L→

applicateε
〈〈newσ |L,
λε*ω′κ′ . travelω′ω(κε*)〉

in E〉
ω
κ
(update(newσ |L)

unspecified
σ),

wrong “out of memory”σ),
wrong “bad procedure argument”)

travel : P→ P→ C→ C
travel =
λω1ω2 . travelpath ((pathupω1(commonancestω1ω2))§

(pathdown (commonancestω1ω2)ω2))

pointdepth : P→ N
pointdepth =
λω .ω = root → 0,1+(pointdepth(ω | (F×F×P) ↓ 3))

ancestors : P→ PP
ancestors =
λω .ω = root →{ω},{ω} ∪ (ancestors (ω | (F×F×P) ↓ 3))

commonancest : P→ P→ P
commonancest =
λω1ω2 . the only element of

{ω′ |ω′ ∈ (ancestorsω1) ∩ (ancestorsω2),
pointdepthω′ ≥ pointdepthω′′
∀ω′′ ∈ (ancestorsω1) ∩ (ancestorsω2)}

pathup : P→ P→ (P×F)*
pathup =
λω1ω2 .ω1 = ω2 → 〈〉,

〈(ω1,ω1 | (F×F×P) ↓ 2)〉§
(pathup (ω1 | (F×F×P) ↓ 3)ω2)

pathdown : P→ P→ (P×F)*
pathdown =
λω1ω2 .ω1 = ω2 → 〈〉,

(pathdownω1(ω2 | (F×F×P) ↓ 3))§
〈(ω2,ω2 | (F×F×P) ↓ 1)〉

travelpath : (P×F)* → C→ C
travelpath =
λπ*θ .#π* = 0 → θ,

((π* ↓ 1) ↓ 2)〈〉((π* ↓ 1) ↓ 1)
(λε* . travelpath (π*† 1)θ)

dynamicwind : E* → P→ K→ C
dynamicwind =

threearg (λε1ε2ε3ωκ . (ε1 ∈F∧ ε2 ∈F∧ ε3 ∈F) →
applicateε1〈〉ω(λζ* .

applicateε2〈〉((ε1 |F,ε3 |F,ω) in P)
(λε* .applicateε3〈〉ω(λζ* .κε*))),

wrong “bad procedure argument”)

values : E* → P→ K→ C
values = λε*ωκ .κε*

cwv : E* → P→ K→ C [call-with-values]
cwv =

twoarg(λε1ε2ωκ .applicateε1〈 〉ω(λε* .applicateε2 ε*ω))
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Unwind-protect in portable Scheme
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Abstract

Programming languages that allow non-local control jumps also
need to provide an unwind-protect facility. Unwind-protect asso-
ciates a postlude with a given block B of code, and guarantees that
the postlude will always be executed regardless of whether B con-
cludes normally or is exited by a jump. This facility is routinely
provided in all languages with first-order control operators. Unfor-
tunately, in languages such as Scheme and ML with higher-order
control, unwind-protect does not have a clear meaning, although
the need for some form of protection continues to exist. We will ex-
plore the problem of specifying and implementing unwind-protect
in the higher-order control scenario of Scheme.

1 Introduction

Unwind-protect has a straightforward semantics for programming
languages where non-local control jumps are purely first-order, i.e.,
computations can abort to a dynamically enclosing context, but
can never re-enter an already exited context. Such languages in-
clude Common Lisp, Java, C++, and even text-editor languages like
Emacs and Vim; all of them provide unwind-protect. An unwind-
protected block of code B has a postlude P that is guaranteed to run
whenever and however B exits, whether normally or via a non-local
exit to some enclosing dynamic context. This is a useful guarantee
to have, as we can have P encode clean-up actions that we can rely
upon to happen. The canonical use for unwind-protect is to ensure
that file ports opened in B get closed when B is exited.

(let ([o #f])
(unwind-protect

;protected code
(begin

(set! o (open-output-file "file"))
. . . <possible non-local exit> . . .
)

;the postlude
(close-output-port o)))

Permission to make digital or hard copies, to republish, to post on servers or to redis-
tribute to lists all or part of this work is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To otherwise copy or redistribute requires
prior specific permission. Fourth Workshop on Scheme and Functional Programming.
November 7, 2003, Boston, Massachusetts, USA. Copyright 2003 Dorai Sitaram.

When we move to higher-order control scenarios such as
Scheme [8] and ML [1], it is no longer clear what unwind-protect
should mean. Here, control can re-enter a previously exited dy-
namic context, opening up new questions such as:

1. Should a prelude be considered in addition to the postlude?

2. Can the postlude be evaluated more than once?

3. Should the postlude be enabled only for some exits but not for
others, and if so which?

The language Scheme provides a related operator called dynamic-
wind that attaches a prelude and a postlude to a code block, and
ensures that the postlude (prelude) is always evaluated whenever
control exits (enters) the block. While this may seem like a natural
extension of the first-order unwind-protect to a higher-order control
scenario, it does not tackle the pragmatic need that unwind-protect
addresses, namely, the need to ensure that a kind of “clean-up” hap-
pens only for those jumps that significantly exit the block, and not
for those that are minor excursions. The crux is identifying which
of these two categories a jump falls into, and perhaps allowing the
user a way to explicitly fix the category. It usually makes no sense
to re-enter a block after the clean-up has been performed (as in the
port-closing example above): Thus there is no need for a specific
prelude syntax beyond sequencing, and postludes need happen only
once. Thus we can answer questions 1 and 2 above with No, but
there is no single objectively correct answer to question 3.

2 Call/cc and how to constrain it

Scheme’s control operator, call-with-current-continuation (abbre-
viated call/cc), allows control to transfer to arbitrary points in the
program, not just to dynamically enclosing contexts. It does so by
providing the user with a continuation, i.e., a procedural represen-
tation of the current control context, or more simply, “the rest of the
program”. Invoking this continuation at any point in the program
causes that point’s current context to be replaced by the context that
the continuation represents. The user sees call/cc as a procedure
that takes a single unary procedure f as argument. f is called with
the current continuation (hence the operator’s name). This contin-
uation is a procedure that takes a single argument, which it inserts
into the old program context.1

This ability to substitute the current program context by a previ-
ously captured snapshot of a program context is simple and power-
ful [6, 7, 10], but too low-level to be used straightaway for user-level

1I will ignore the presence of Scheme’s multiple values, as they
add no particular illumination to the problem we are addressing.
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abstractions. In addition to the difficulty of encoding user abstrac-
tions in terms of call/cc, one must also ensure that the abstractions
so defined can function without interference from other uses of
call/cc. To solve this problem, Friedman and Haynes [5] illustrate
a technique for constraining raw call/cc. They define new call/cc
operators that call the original call/cc, but instead of directly calling
the call/cc-argument on the continuation, they call it on a continu-
ation object or cob, which is a procedure that performs whatever
additional constraining tasks are required before calling the actual
continuation.

Let us illustrate the cob technique to solve an easily described prob-
lem, that of fluid variables. The form let-fluid temporarily extends
the fluid environment, *fluid-env*, for the duration of its dynamic
extent.

(define ∗fluid-env∗ ’())

(define-syntax let-fluid
(syntax-rules ()

[(let-fluid ((x e) . . . ) b . . . )
(let ([old-fluid-env ∗fluid-env∗])

(set! ∗fluid-env∗
(append! (list (cons ’x e) . . . ) ∗fluid-env∗))

(let ([result (begin b . . . )])
(set! ∗fluid-env∗ old-fluid-env)
result))]))

Fluid variables are accessed using the form fluid, defined globally
using define-fluid, and side-effected using set-fluid!:

(define-syntax fluid
(syntax-rules ()

[(fluid x)
(cond [(assq ’x ∗fluid-env∗) => cdr]

[else (error ’undefined-fluid ’x)])]))

(define-syntax define-fluid
(syntax-rules ()

[(define-fluid x e)
(set! ∗fluid-env∗

(cons (cons ’x e) ∗fluid-env∗))]))

(define-syntax set-fluid!
(syntax-rules ()

[(set-fluid! x e)
(cond [(assq ’x ∗fluid-env∗)

=> (lambda (c)
(set-cdr! c e))]

[else (error ’undefined-fluid ’x)])]))

This definition fails in the presence of call/cc, because a call to a
continuation does not restore the fluid environment to the value it
had at the capture of the continuation. A simple cob-based rewrite
of call/cc takes care of this:

(define call/cc-f
(let ([call/cc-orig call/cc])

(lambda (proc)
(call/cc-orig

(lambda (k)
(let∗ ([my-fluid-env ∗fluid-env∗]

[cob (lambda (v)
(set! ∗fluid-env∗ my-fluid-env)
(k v))])

(proc cob)))))))

Note that once we’ve defined the new fluids-aware call/cc variant,
it’s a good idea to reuse the call/cc name to refer to the variant. In
essence, we retire the original call/cc from further use, as it would
interfere with the correct functioning of the new operator. In stan-
dard Scheme, one could do this by simply re-set!ing the call/cc
name, but this has problems as programs scale. In a Scheme with a
module system [4], a more robust method is to define a new module
that provides the new control operator under the call/cc name.

3 Unwind-protect and cobs

Friedman and Haynes already use cobs to tackle the problem of
defining an unwind-protect (and the corresponding call/cc vari-
ant) for Scheme, and observe that there is a choice of meaningful
unwind-protect semantics — the choice as they see it lying in the
method of identifying which postludes to perform based purely on
their position relative to the continuation nodes in the control tree.

However, automatic detection of the relevant postludes does not
necessarily match user expectations. Sometimes it may be more
suitable to allow the user explicitly specify which continuations,
or continuation calls, ought to trigger unwind-protect postludes, as
Kent Pitman [9] proposes. He suggests that call/cc as provided
in the Scheme standard may be fundamentally misdesigned as it
thwarts the creation of a pragmatic unwind-protect facility, and that
it be replaced by one of two call/cc-like operators that he describes
as more unwind-protect-friendly, while still providing full continu-
ations.

Fortunately, the cob technique can implement both the Pitman vari-
ants, as we shall show in sections 4 and 5. Thus, at least as far as
unwind-protect is concerned, Scheme’s design does not pose a dis-
advantage. Indeed, given the variety of unwind-protect styles that
are possible for Scheme (it’s unlikely that the Friedman–Haynes
and Pitman styles exhaust this list), learning the cob technique as
a reliable and flexible way to implement the styles may be a bet-
ter approach than enshrining one of the styles permanently in the
standard.

3.1 call/cc-e

Pitman’s first call/cc variant, which we will call call/cc-e, takes an
additional argument whose boolean value decides if the captured
continuation should be an escaping or a full continuation. Escaping
continuations cannot be used to re-enter an already exited dynamic
context, whereas full continuations have no such limitation. Thus,
in the expressions:

(call/cc-e #t M)
(call/cc-e #f N)

M is called with an escaping continuation, whereas N is called with
a full continuation.

In a Scheme with call/cc-e, for the expression (unwind-protect B
P), the postlude P is run only if (1) B exits normally, or (2) B calls
an escaping continuation that was captured outside the unwind-
protect expression’s dynamic extent.

3.2 call/cc-l

Pitman’s second call/cc variant, which we will call call/cc-l, pro-
duces continuations which take an additional argument that decides
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if that continuation call is to be the last use of that continuation.
Thus, when evaluating the following expressions:

(define r ’to-be-set-below)

(call/cc-l
(lambda (k)

(set! r k)))

(r #f ’first-use-works)
(r #f ’second-use-works)
(r #t ’third-use-works-and-is-last-use)
(r #f ’fourth-attempted-use-will-not-work)

the fourth attempted use of the continuation r will error.

In a Scheme with call/cc-l, for the expression (unwind-protect B
P), the postlude P is run only if (1) B exits normally, or (2) B calls a
continuation for the (user-specified) last time, and that continuation
does not represent a context that is dynamically enclosed by the
unwind-protect expression.

In short, for call/cc-e, postludes are triggered only by continuations
specified by the user to be escaping; and for call/cc-l, they are trig-
gered only by continuation calls specified by the user to be their last
use.

We will now use the cob technique to define each of these call/cc
variants, and its corresponding unwind-protect, from call/cc-f
(which we defined in section 2 from the primitive call/cc, also using
a cob).

4 Unwind-protect that recognizes only
escaping continuations

call/cc-e (unlike the standard call/cc) takes two arguments: The
second argument is the procedure that is applied to the current con-
tinuation. Whether this continuation is an escaping or a full contin-
uation depends on whether the first argument is true or false.

We implement call/cc-e by applying its second argument (the pro-
cedure) to a cob created using call/cc-f . The cobs created for
call/cc-e #t (escaping continuations) and call/cc-e #f (full contin-
uations) are different.

unwind-protect interacts with call/cc-e as follows: If the body is
exited by a escaping continuation provided by a dynamically en-
closing call/cc-e #t, then the postlude is performed. The postlude
is not performed by full continuations or by escaping continuations
created by a call/cc-e #t within the unwind-protect. To accomplish
this, the cob generated by call/cc-e #t keeps a list (my-postludes) of
all the postludes within its dynamic extent. Since a call to call/cc-e
#t cannot know of the unwind-protects that will be called in its
dynamic extent, it is the job of each unwind-protect to update the
my-postludes of its enclosing call/cc-e #ts. To allow the unwind-
protect to access its enclosing call/cc-e #t, the latter records its cob
in a fluid variable *curr-call/cc-cob*.

The following is the entire code for call/cc-e and its unwind-protect-
proc, a procedural form of unwind-protect:

(define call/cc-e #f)
(define unwind-protect-proc #f)

(define-fluid ∗curr-call/cc-cob∗
(lambda (v) (lambda (x) #f)))

(define-fluid ∗curr-u-p-alive?∗ (lambda () #t))

(let ([update (list ’update)]
[delete (list ’delete)])

(set! call/cc-e
(lambda (once? proc)

(if once?
(call/cc-f

(lambda (k)
(let∗

([cob (fluid ∗curr-call/cc-cob∗)]
[my-postludes ’()]
[already-used? #f]
[cob

(lambda (v)
(cond

[(eq? v update)
(lambda (pl)

(set! my-postludes
(cons pl my-postludes))

((cob update) pl))]
[(eq? v delete)
(lambda (pl)

(set! my-postludes
(delq! pl my-postludes))

((cob delete) pl))]
[already-used?

(error ’dead-continuation)]
[else

(set! already-used? #t)
(for-each

(lambda (pl) (pl))
my-postludes)

(k v)]))])
(let-fluid ([∗curr-call/cc-cob∗ cob])

(cob (proc cob))))))
(call/cc-f

(lambda (k)
(let∗

([my-u-p-alive? (fluid ∗curr-u-p-alive?∗)]
[cob

(lambda (v)
(if (my-u-p-alive?)

(k v)
(error ’dead-unwind-protect)))])

(cob (proc cob))))))))

(set! unwind-protect-proc
(lambda (body postlude)

(let ([curr-call/cc-cob (fluid ∗curr-call/cc-cob∗)]
[alive? #t])

(let-fluid ([∗curr-u-p-alive?∗ (lambda () alive?)])
(letrec ([pl (lambda ()

(set! alive? #f)
(postlude)
((curr-call/cc-cob delete) pl))])

((curr-call/cc-cob update) pl)
(let ([res (body)])

(pl)
res))))))

)
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As we can see, the cob employed by call/cc-e #t (i.e., the part of
the call/cc-e body that is active when its once? argument is true) is
fairly involved. This is because, in addition to performing the jump,
it has to respond to update and delete messages pertaining to its my-
postludes. We have defined lexical variables delete and update so
they are guaranteed to be different from any user values given to
the cob. The cob also remembers its nearest enclosing cob (prev-
cob), so that the update and delete messages can be propagated out-
ward. (This is because any of the escaping continuations enclosing
an unwind-protect can trigger the latter’s postlude.) When the cob
is called with a non-message, it performs all of its my-postludes,
before calling its embedded continuation. It also remembers to set
a local flag already-used?, because it is an error to call an escaping
continuation more than once.2

The call/cc-e #f part, the one that produces full continuations, is
fairly simple. Its cob simply remembers if its enclosing unwind-
protect is alive, via the fluid variable *curr-u-p-alive?*. This is to
prevent entry into an unwind-protect body that is known to have
exited.

The corresponding unwind-protect-proc notes its nearest enclosing
call/cc-e #t’s cob, to let it know of its postlude. It also adds wrapper
code to the postlude so that the latter can delete itself when it is
done, and flag the unwind-protect as no longer alive. The body and
the wrapped postlude are performed in sequence, with the body’s
result being returned.

The macro unwind-protect is defined as follows:

(define-syntax unwind-protect
(syntax-rules ()

[(unwind-protect body postlude)
(unwind-protect-proc

(lambda () body) (lambda () postlude))]))

The helper procedure delq! is used to delete a postlude from a list:

(define delq!
(lambda (x s)

(let loop ([s s])
(cond [(null? s) s]

[(eq? (car s) x) (loop (cdr s))]
[else (set-cdr! s (loop (cdr s)))

s]))))

5 Unwind-protect that recognizes only last-
use continuations

call/cc-l takes a single procedure argument (just like the standard
call/cc), but the continuation it captures takes two arguments: The
first argument, if true, marks that call as the last use of the con-
tinuation. The second argument is the usual transfer value of the
continuation.

2Pitman’s text calls the escaping continuations single-use,
counting as a use the implicit use of the continuation (i.e., when
the call/cc-e expression exits normally without explicitly calling its
continuation). There are some design choices on what effect the
use of such a continuation has on the use count of other continua-
tions captured within its dynamic extent, whether they be single- or
multi-use. For now, I assume there is no effect. If there were, such
could be programmed by having the cob propagate kill messages to
its nearest enclosed (not enclosing!) cob using fluid variables.

The corresponding unwind-protect’s postlude is triggered by a con-
tinuation only on its last use.

call/cc-l, like call/cc-e, is implemented with a cob. (Unlike
call/cc-e, call/cc-l does not create two types of continuations, so
it doesn’t need two types of cobs.) The call/cc-l cob looks very
much like the union of the cobs for call/cc-e, except of course that
whereas the call/cc-e triggers postludes for escaping continuations,
the call/cc-l cob triggers them for continuations on their last use.
Another difference is that the call/cc-l cob takes two arguments, like
the user continuation it stands for. We use the cob’s first argument
for the message, which can be update and delete for manipulating
the postludes, #f for marking non-last use, and any other value for
last use.

As in the call/cc-e case, the cob is available as the fluid variable
*curr-call/cc-cob* to an enclosed unwind-protect; and unwind-
protect has a fluid variable *curr-u-p-alive?* so continuations can
check it to avoid re-entering an exited unwind-protect. But we
also associate another fluid variable with unwind-protect, viz.,
*curr-u-p-local-conts* — this is to keep track of continuations that
were captured within the unwind-protect, for we view the call of
a continuation whose capture and invocation are both local to the
unwind-protect as non-exiting, and thus not worthy of triggering
the postlude, even if it happens to be last-use. Each call/cc-l updates
its enclosing *curr-u-p-local-conts*, and its cob’s last call checks
its current *curr-u-p-local-conts* before triggering postludes.

(define call/cc-l #f)

(define-fluid ∗curr-call/cc-cob∗ (lambda (b v) #f))
(define-fluid ∗curr-u-p-local-conts∗ ’())

The following replaces (set! call/cc-e . . . ) in the code in section 4:

(set! call/cc-l
(lambda (proc)

(call/cc-f
(lambda (k)

(set-fluid! ∗curr-u-p-local-conts∗
(cons k (fluid ∗curr-u-p-local-conts∗)))

(let∗
([prev-cob (fluid ∗curr-call/cc-cob∗)]
[my-u-p-alive? (fluid ∗curr-u-p-alive?∗)]
[my-postludes ’()]
[already-used? #f]
[cob

(lambda (msg v)
(cond

[(eq? msg update)
(set! my-postludes (cons v my-postludes))
(prev-cob update v)]

[(eq? msg delete)
(set! my-postludes (delq! v my-postludes))
(prev-cob delete v)]

[already-used?
(error ’dead-continuation)]

[(not (my-u-p-alive?))
(error ’dead-unwind-protect)]

[msg
(set! already-used? #t)
(if (not

(memq
k
(fluid ∗curr-u-p-local-conts∗)))
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(for-each (lambda (pl) (pl))
my-postludes))

(k v)]
[else (k v)]))])

(let-fluid ([∗curr-call/cc-cob∗ cob])
(cob #f (proc cob))))))))

The following replaces (set! unwind-protect-proc . . . ) in the code
in section 4:

(set! unwind-protect-proc
(lambda (body postlude)

(let ([curr-call/cc-cob (fluid ∗curr-call/cc-cob∗)]
[alive? #t])

(let-fluid ([∗curr-u-p-alive?∗ (lambda () alive?)]
[∗curr-u-p-local-conts∗ ’()])

(letrec ([pl (lambda ()
(set! alive? #f)
(postlude)
(curr-call/cc-cob delete pl))])

(curr-call/cc-cob update pl)
(let ([res (body)])

(pl)
res))))))

The only significant difference between this unwind-protect-proc
and the one in section 4 is that it initializes the fluid variable *curr-
u-p-local-conts*, which dynamically enclosed calls to call/cc-l can
update.

6 Conclusion

We see that the Friedman-Haynes cob technique for deriving con-
strained forms of call/cc is a reliable way to implement various
forms of unwind-protect — both the Pitman-style ones that rely
on explicit user annotation, and the Friedman-Haynes ones that de-
pend on the relative positions of unwind-protects and continuations
on the control tree.

The cob technique is not the only way to derive unwind-protect
— for an ingenious way to derive call/cc-e using Scheme’s built-in
dynamic-wind, see Clinger [2]. However, the cob approach remains
a predictable workhorse for systematically experimenting with new
styles and modifying existing styles. This kind of flexibility is es-
pecially valuable for unwind-protect since the latter cannot have a
canonical, once-and-for-all specification in Scheme, making it im-
portant to allow for multiple library solutions.
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ABSTRACT
Web application programmers who use PLT Scheme’s web server
enjoy enormous benefits from the send/suspend primitive, which
allows them to code in a direct style instead of in continuation-
passing style as required by traditional CGI programming. Never-
theless, send/suspend has limitations that hinder complex web ap-
plications with the rich interfaces expected by users. This Scheme
Pearl introduces a technique for “embedding” Scheme code in URLs
and shows how this facilitates developing complex web-based user
interfaces.

1. USER INTERFACES IN HTML
As web applications become more popular and powerful, the de-
mands on their interfaces increase. Users expect complex interface
elements that emulate those found in desktop applications: tabs for
switching among screens of data, tables that can sort with clicks on
their column headers, confirmation “dialogs,” etc.

The screenshot in Figure 1 shows a web application with two such
UI elements: a row of tabs across the top and a table with click-
able column headers. The page is from CONTINUE [4], a Scheme
web application for accepting paper submissions and managing the
conference review process. I re-wrote CONTINUE using the tech-
nique in this paper, so I will use it as a recurring example of a web
application with a rich user interface.

HTML provides several user interface elements (radio buttons, check
boxes, text fields, etc.) and web browsers give them an OS-appropriate
appearance and behavior. Interface elements not provided by HTML—
tabs, for example—must get their appearance from HTML mark-up
and their behavior from the web application code. The web ap-
plication programmer must devote a non-trivial amount of code to
emulating complex elements by reducing them to HTML’s universal
interface element: the hyperlink.

In the screen shot, each tab is a link, each column header is a link,
and each paper title is a link. When the user clicks on any of these
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the browser will send a request to the servlet and the servlet must
respond with a new web page that has the appropriate change in
interface. This means that the links must be constructed—and the
servlet must be coded to recognize the construction—in a way that
can convey their meaning. Is it a click on a tab? Or should the
columns be re-sorted? Or should an entirely different page (a CON-
TINUE example is a page showing reviews for a paper) be returned?

The page from CONTINUE shows three very different classes of
links: tabs, column headers, and paper titles. This diversity of hy-
perlinks makes implementing this page with the PLT web server’s
core primitive, send/suspend, difficult. This paper describes an ex-
tension to send/suspend, called send/suspend/dispatch, that vastly
simplifies the code necessary for complex pages.

2. THE PLT WEB SERVER
Because of the nature of CGI—the web application process halts
after returning a page to the browser—“traditional” web program-
ming must be written in a continuation-passing style [5, 2]: a web
page sent to the browser must contain enough data (commonly in
hidden form fields) so that the server can pick up where it left off
when it had to terminate.

The PLT web server [3] uses Scheme’s first-class continuations to
avert a CPS transformation and the problems (unclear program flow,
serialization of data into strings, exposure of some application in-
ternals) associated with it.

send/suspend is the PLT Scheme web server’s primitive for captur-
ing a servlet’s continuation. It consumes a page-generating func-
tion of one argument: a URL that will resume the continuation,
which by convention is named k-url. The result of evaluating the
page-generating function with a k-url is sent to the user’s web browser.
When a link to k-url is clicked the browser makes a request to the
servlet and send/suspend resumes the continuation by passing it
the request.

send/suspend will only capture one continuation per page: the “ac-
tual” continuation waiting for the browser’s request. But, most web
application pages have multiple “logical” continuations pending.
The CONTINUE page in Figure 1 has three: one waiting for a tab to
switch to, one waiting to sort the list, and one waiting for a paper
to show in detail. With send/suspend, the programmer must shoe-
horn a page’s logical continuations into the one actual continuation
that will be resumed. The code to do this dispatching is both fragile
and generalizes poorly.
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Figure 1: Screenshot from the CONTINUE server

3. DISPATCHING WITH SEND/SUSPEND
In general, send/suspend requires the programmer to encode enough
data into a page’s hyperlinks that the actual continuation can dis-
patch to the correct logical continuation. HTTP has at least two
methods of adding data to a URL, the most flexible of which is to
append a query string of the form ?key1=value1&key2=.... The
code to do this for the page titles in the CONTINUE example might
look like:

1 = (send/suspend
(lambda (k-url)

(̀html · · ·
(a ([href ,(format "˜a?paper=157" k-url)])

"Elevated Hacks in E-Lisp")
(a ([href ,(format "˜a?paper=162" k-url)])

"Shuffling Rock Bands in MLML")
(a ([href ,(format "˜a?paper=167" k-url)])

"Fearful Abbreviating in Ruby"))))

Or, more realistically, with a map over a list:

2 = (send/suspend
(lambda (k-url)

(̀html · · ·
,@(map

(lambda (paper-num)
(̀a ([href ,(format "˜a?paper=˜a"

k-url paper-num)])
,(paper-title paper-num)))

(get-all-papers)))))

This encoding solution was proven workable by the first few ver-
sions of CONTINUE. All it needs is code to interpret the request
from the browser, pick out which paper the user clicked on, and
dispatch accordingly:

(define (show-list/review)
(let∗ ([request 2 ]

[bindings (request-bindings request)]
[paper-num

(string→number
(car (extract-bindings ’paper bindings)))])

(show-paper paper-num)))

The servlet environment handily converts the URL’s query string
into a list of (key . value) pairs, and it also provides the extract-
binding function to return all values matching a given key. A call
to the show-paper function sends the requested paper’s page to the
user’s browser.

send/suspend is perfectly adequate in this situation because there
is only one logical continuation to resume: the one waiting for a
paper to display. Adding just one additional logical continuation—
for example, one that is waiting to switch to a particular tab—will
make the above dispatching code much more complicated.

First, here is the HTML-generating code for the page with tabs.
URLs are now postfixed by either a ?paper=n or a ?tab=n. The
class attribute is used to signal that the Review tab is current and
should be displayed differently.
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3 = (send/suspend
(lambda (k-url)

(̀html · · ·
(ul ([id "tabs"])

(li (a ([href ,(format "˜a?tab=1" k-url)])
"All Papers"))

(li (a ([href ,(format "˜a?tab=2" k-url)]
[class "selected"])
"Review"))

(li (a ([href ,(format "˜a?tab=3" k-url)])
"Assign"))

(li (a ([href ,(format "˜a?tab=4" k-url)])
"Decide")))

· · ·
,@(map

(lambda (paper-num)
(̀a ([href ,(format "˜a?paper=˜a"

k-url paper-num)])
,(paper-title paper-num)))

(get-all-papers)))))

The dispatching code must now check which logical continuation
is being resumed: tab or paper.

(define (show-list/review)
(let∗ ([request 3 ]

[bindings (request-bindings request)])

(cond [(pair? (extract-bindings ’paper bindings))
(let ([paper-num

(string→number
(car (extract-bindings ’paper bindings)))])

(show-paper paper-num))]

[(pair? (extract-bindings ’tab bindings))
(let ([tab-num

(string→number
(car (extract-bindings ’tab bindings)))])

(case tab-num
[(1) (show-list/all)]
[(2) (show-list/review)]
[(3) (show-list/assign)]
[(4) (show-list/decide)]))])))

This dispatching code is more involved than the code for the previ-
ous case, though extending it for additional logical continuations is
straightforward: the programmer adds more HTML to encode more
data in a URL, then he adds another clause to the cond to handle
the new logical continuation. But, though workable, there are two
major problems with this pattern of web programming.

The first is that the code to generate the HTML and encode data into
the URLs is separate from the code to decode the URLs and perform
the dispatching. These pieces of code are tightly dependent, so
changes to one must be matched by changes to the other. Their
separation imposes a higher maintenance burden to ensure that they
are kept in synch.

The second problem is that the programmer cannot easily general-
ize complex interface elements into their own functions. Though
not very not evident from a single example, this is a major limita-
tion for medium-to-large–scale web applications because it breaks
down abstractions and forces code duplication.

For example, CONTINUE uses tabs on nearly every page, so a func-
tion to create them and handle Their behavior would be useful from
a development and a maintenance standpoint. But, send/suspend
makes such a function impractical. The closest solution is one func-
tion that generalizes the HTML and another the behavior, with the
understanding that these two must be kept closely in synch:

(define generate-tabs (k-url tab-list selected)
(̀ul ([id "tabs"])

,@(map
(lambda (tab-pair)

(̀li (a ([href ,(format "˜a?tab=˜a"
k-url (car tab-pair))]

[class ,(if (equal? (car tab-pair) selected)
"selected"
"")])

,(car tab-pair))))
tab-list)))

(define dispatch-tabs (request tab-list)
(let∗ ([bindings (request-bindings request)]

[tab-bindings (extract-bindings ’tab bindings)])
(and (pair? tab-bindings)

((cdr (assoc (car tab-bindings) tab-list))))))

(define (show-list/review)
(let∗ ([tab-list (̀["All" . ,show-list/all]

["Review" . ,show-list/review]
["Assign" . ,show-list/assign]
["Decide" . ,show-list/decide])]

[request 4 ]
[bindings (request-bindings request)])

(cond [(pair? (extract-bindings ’paper bindings))
· · · ]

[(dispatch-tabs request tab-list)])))

4 = (send/suspend
(lambda (k-url)

(̀html · · ·
,(generate-tabs k-url tab-list "Review")
· · ·
,@(map

(lambda (paper-num)
(̀a ([href ,(format "˜a?paper=˜a"

k-url paper-num)])
,(paper-title paper-num)))

(get-all-papers)))))

Even with this generalized version, the page function is still re-
sponsible for dispatching each logical continuation. An interface
element cannot be added to a page without both a clause in the dis-
patch code to handle it and all the necessary dispatching data (in
this case, tab-list) in scope. With send/suspend there is no clear
way to have a single, opaque function that adds a set of tabs to a
page.

4. SOLUTION: SEND/SUSPEND/DISPATCH
send/suspend/dispatch solves the above two problems by allow-
ing the programmer to specify a continuation, in the form of a clo-
sure, for every URL on a web page. This generalizes the encoding,
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decoding, and dispatch necessary with send/suspend’s single con-
tinuation model. By “embedding” closures into the page the pro-
grammer can easily write complex UI elements because presenta-
tion and behavior are local in the file and generalization of elements
into functions is possible.

send/suspend/dispatch presents an interface very similar to
send/suspend’s: pages are still generated by a function of one argu-
ment. But instead of the static k-url, page-generating functions re-
ceive a function—conventionally called embed/url—that consumes
a function of one argument and returns a unique URL. The page-
generating function uses embed/url to embed continuations into
URLs. When a URL is requested by the browser the continuation
embedded in that URL will be resumed, receiving the browser’s re-
quest as its argument.

The following is the first example from above, converted to use
send/suspend/dispatch. A separate dispatching step is no longer
necessary; send/suspend/dispatch manages resuming the continu-
ation when a URL is accessed.

(define (show-list/review)
(send/suspend/dispatch

(lambda (embed/url)
(̀html · · ·

,@(map
(lambda (paper-num)

(̀a ([href ,(embed/url
(lambda

(show-paper paper-num)))])
,(paper-title paper-num)))

(get-all-papers))))))

Tabs are added easily to the above code, again with no explicit
dispatching:

(define (show-list/review)
(send/suspend/dispatch

(lambda (embed/url)
(̀html · · ·

(ul ([id "tabs"])
(li (a ([href ,(embed/url

(lambda (show-list/all)))])
"All Papers"))

(li (a ([href ,(embed/url
(lambda (show-list/review)))]

[class "selected"])
"Review"))

· · · )
· · ·
,@(map

(lambda (paper-num)
(̀a ([href ,(embed/url

(lambda
(show-paper paper-num)))])

,(paper-title paper-num)))
(get-all-papers))))))

The above code examples demonstrate how presentation code and
behavior code are local to each other in the file with
send/suspend/dispatch. The flow of control in these examples is
clear because of that locality.

Now we can construct a more useful generalization of tabs. Un-
like the previous pair of functions, this function is self-contained:
because all dispatching is handled by send/suspend/dispatch, the
result of generate-tabs can simply be dropped into a page and its
behavior will be handled properly.

(define generate-tabs (embed/url tab-list selected)
(̀ul ([id "tabs"])

,@(map
(lambda (tab-pair)

(̀li (a ([href ,(embed/url
(lambda ((cdr tab-pair))))]

[class ,(if (equal? (car tab-pair) selected)
"selected"
"")])

,(car tab-pair))))
tab-list)))

The ability to write self-contained functions like generate-tabs is
essential for adding complex UI elements to web applications. For
example, CONTINUE has a general function, make-paper-list, to
create lists of papers like the one in Figure 1. It can be added to the
previous example:

(define (show-list/review view-info)
(send/suspend/dispatch

(lambda (embed/url)
(̀html · · ·

,(generate-tabs embed/url (̀· · · ) "Review")
,(make-paper-list

(get-all-papers) embed/url show-paper
show-list/review view-info)))))

make-paper-list takes a list of papers to show, the embed/url func-
tion, a function to invoke when a paper is clicked on, a callback to
re-display the current page, and data defining how to show the list.
To show-list/review, view-info is an opaque vehicle for passing data
back into make-paper-list when the callback is used.

Clickable column headers are implemented entirely within make-
paper-list: they call the callback (show-list/review in this case) with
view-info changed to include the new sort. This will re-display the
same page the user was looking at, but the sorting of the papers will
be different.

make-paper-list can be extended with logical continuations for ad-
ditional behaviors (filtering by rating, for example) without any
changes to show-list/review, show-list/assign, or any other function
that calls make-paper-list. This is possible because the show-list/∗
functions do not have to handle any dispatching themselves.

4.1 Is s/s/d A Step Backwards?
One of the most useful features of send/suspend is that it prevents a
global CPS transformation of web application code. At first glance,
send/suspend/dispatch looks regressive because it forces the pro-
grammer to be explicit with his continuations.

Though code using send/suspend/dispatch resembles CPS code,
this is acceptable for several reasons. First, the CPS transforma-
tion is local, not global. Code is still written in a mostly direct
style, and send/suspend/dispatch’s embedded continuations are
arguably clearer than the separate dispatch cond from send/suspend
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code. Second, in practice the embedded continuations tend to sim-
ply call named functions like in the tab example above. This also
keeps the flow of control clear. Finally, a multiple-continuation
model fits a web page more accurately than a single-continuation
model. As the CONTINUE example shows, web pages often have
several logical continuations active at one time, and
send/suspend/dispatch correctly captures that pattern.

4.2 send/suspend/dispatch With Forms
In all previous examples the embedded continuations used the
argument convention to ignore the value they were resumed with,
which is the request data sent from the browser. When the continu-
ation is embedded in a hyperlink the request data is rarely relevant,
but it is necessary when the continuation is embedded into the ac-
tion URL for a form:

(̀form ([action ,(embed/url
(lambda (request)

(handle-form-bindings
(request-bindings request))))])

· · ·
(input ([type "submit"] [name "button"]

[value "Save"]))
(input ([type "submit"] [name "button"]

[value "Save and Continue"])))

The bindings for a request contain the data from the form. A con-
tinuation embedded in a form will access these and process them
as necessary.

An intrinsic shortcoming of HTML forms—not addressed by either
send/suspend or send/suspend/dispatch—is that each form has a
single action URL that form data is always sent to. This makes it
impossible to distinguish between different submit buttons using
URLs.

Some forms in the CONTINUE server faced this problem. For ex-
ample, when assigning PC members to review a paper the PC chair
has one button to save his decisions and remain looking at the same
paper, and another button to save his decisions and automatically
show another paper. These two buttons are in the same form tag
because they need to share the same form elements (checkboxes,
etc.). Because they share a form, they share an action URL and,
therefore, a single re-entry point in the servlet. The code embed-
ded in the form’s action URL must handle the dispatch on which
button was clicked:

(define (handle-form-bindings bindings)
(let ([button (extract-binding/single ’button bindings)])

(save-assignment-data request)
(cond [(equal? button "Save")

;; show same paper
]

[(equal? button "Save and Continue")
;; show new paper
])))

The handle-form-bindings function will receive all the data from
the form. But it must fall back on send/suspend-like dispatching
to determine if the user clicked “Save” or “Save and Continue.”

If the programmer could specify unique URLs for each button he
could use send/suspend/dispatch to embed separate functions for
each button. With the current state of HTML the only solution to the
two-button problem is to use a single URL and examine the request
bindings to determine which button was clicked.

5. IMPLEMENTATION
send/suspend/dispatch is defined in terms of send/suspend, aug-
menting it by transparently handling the encoding of k-url and the
subsequent dispatching. The code for send/suspend/dispatch is in
Figure 2. Figure 3 contains the necessary helper functions.

First, send/suspend/dispatch creates a hash table (embed-hash) to
store embedded functions. The keys for this hash table are random
numbers and are generated by the unique-hash-key funcion.

1 : send/suspend/dispatch calls send/suspend to send the page to
the browser and get the response (what the user clicked on). page-
func is the user’s page-generating function, which takes embed/url
as its argument.

When called with no arguments, embed/url just returns k-url. When
called with a function to embed as its argument it uses 2 to gener-
ate a unique, random key and store the function (embed/func) in the
hash table with that key. embed/url then calls url-append/path on
k-url and the key to create a URL that will resume send/suspend’s
actual continuation but carry with it an identifier for the logical
continuation to resume.

A send/suspend URL (disregarding the http:// and server) looks
like this:

/servlets/cont.ss;id313*k2-1167813005

The text following the ; identifies the continuation that send/suspend
will resume. A send/suspend/dispatch URL includes the hash key
in the path portion of the URL:

/servlets/cont.ss/34412;id313*k2-1167813005

Once the browser responds with a request, send/suspend/dispatch
extracts the key from the URL by calling post-servlet-path to get the
part of the path following the servlet’s extension. The first piece of
this path is the key.

3 : Finally, send/suspend/dispatch looks up the key in the hash
table (returning a simple error page if it is not found) to get the
continuation embedded in the link the user clicked. It calls this
function with the browser’s request as an argument.

6. CONCLUSION
send/suspend/dispatch, an extension to the PLT web server’s
send/suspend, vastly simplifies servlet coding by enabling a very
natural abstraction: that each URL on a web page is tied to a sepa-
rate, pending continuation. send/suspend’s one-continuation model
led to inappropriately divided code, prevented generalizations, and
forced the programmer to handle low-level issues of URLs and query
strings.

Web pages that had several logical continuations, such as those
emulating complex user interface elements, become natural and
straightforward to implement with send/suspend/dispatch.
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(define/contract send/suspend/dispatch
(page-func/ssd-contract . → . any)
(lambda (page-func)

(let∗ ([embed-hash (make-hash-table)]
[request 1 ]
[path

(post-servlet-path
(url→string (request-uri request)))])

(if (null? path)
request
3 ))))

1 = (send/suspend
(lambda (k-url)

(page-func
(case-lambda

[() k-url]
[(embed-func) 2 ]))))

2 = (let ([key (unique-hash-key embed-hash)])
(hash-table-put! embed-hash key embed-func)
(url-append/path k-url key))

3 = ((hash-table-get
embed-hash
(string→number (car path))
(lambda ()

(lambda
(send/back

’("text/plain"
"ERROR: Key was not found in "
"send/suspend/dispatch hash table")))))

request)

Figure 2: send/suspend/dispatch Implementation
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;; hashtable → number
;; given a hash table, finds a number not already used as a key
(define unique-hash-key

(lambda (ht)
(let ([key (random 200000)])

(let/ec exit
(hash-table-get ht key (lambda () (exit key)))
(unique-hash-key ht)))))

;; string → listof string
;; takes a string that is the path portion of a URL
;; finds the path that follows the .ss extension, splits it
;; at / characters, and returns the list
(define post-servlet-path

(lambda (s-url)
(let ([result (regexp-match "\\.ss(/[ˆ;#\\?]∗)" s-url)])

(if result
(filter

(lambda (s) (> (string-length s) 0))
(regexp-split "/" (cadr result)))

null))))

;; string any → string
;; adds a datum to the end of the path of a URL represented
;; as a string. The added datum comes before any query or
;; parameter parts of the URL.
(define url-append/path

(lambda (s-url rel-path)
(let ([url (string→url s-url)])

(url→string
(make-url

(url-scheme url)
(url-host url)
(url-port url)
(format "˜a/˜a" (url-path url) rel-path)
(url-params url)
(url-query url)
(url-fragment url))))))

;; contracts for embed/url and page-generating functions,
;; for use with PLT Scheme’s contracts [1]
(define embed/url-contract

((→ string?) . case→ .
((request? . → . any) . → . string?)
(string? (request? . → . any) . → . string?)))

(define page-func/ssd-contract
(embed/url-contract . → . any))

Figure 3: Helper functions for send/suspend/dispatch
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Abstract
Scheme includes an easy-to-use and powerful macro mech-
anism for extending the programming language with new
expression and definition forms. Using macros, a Scheme
programmer can define a new notation for a specific prob-
lem domain and can then state algorithms in this language.
Thus, Scheme programmers can formulate layers of abstrac-
tion whose expressive power greatly surpasses that of ordi-
nary modules.

Unfortunately, Scheme’s macros are also too powerful. The
problem is that macro definitions extend the parser, a com-
ponent of a language’s environment that is always supposed
to terminate and produce predictable results, and that they
can thus turn the parser into a chaotic and unpredictable
tool.

In this paper, we report on an experiment to tame the power
of macros. Specifically, we introduce a system for specifying
and restricting the class of shapes that a macro can trans-
form. We dub the revised macro system well-shaped macros.

1. MACROS ARE USEFUL
Over the past 20 years, the Scheme community has devel-
oped an expressive and useful standard macro system [8].
The macro system allows programmers to define a large va-
riety of new expression and definition forms in a safe man-
ner. It thus empowers them to follow the old Lisp maxim
on problem-solving via language definition, which says that
programmers should formulate an embedded programming
language for the problem domain and that they should ex-
press their solution for the domain in this new language.

Standard Scheme macros are easy and relatively safe to use.
To introduce a macro, a programmer simply writes down
a rewriting rule between two syntactic patterns [10], also
called patternand template. Collectively the rules spec-
ify how the macro expander, which is a component of the
parser, must translate surface syntax into core Scheme, that
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that copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page. To
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Boston, Massachusetts, USA. Copyright 2003 Ryan Culpepper, Matthias
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is, Scheme without any extensions. Specifically, the (left-
hand side) pattern specifies those S-expressions that the ex-
pander should eliminate in favor of the (right-hand side)
template. Furthermore, the expander is “hygienic” [9] and
“referentially transparent” [3], which means that macro ex-
pansion automatically respects the lexical scope of the pro-
gram.

It is a key characteristic of Scheme macros that their uses
are indistinguishable from built-in forms. As for built-in and
defined functions, a programmer should not, and without
context cannot, recognize whether a form is introduced via
a macro or exists in core Scheme. Due to this uniformity,
(teams of) programmers can build many-tiered towers of
abstraction, each using conventional procedural libraries as
well as new linguistic mechanisms.1

Although the Scheme authors have clearly tamed Lisp’s pro-
grammed macros and C’s string rewriting macros, they have
still left the macro sublanguage with as much power as the
untyped lambda calculus. In particular, macro expansion
can create ill-formed core syntax, and it can diverge. We
illustrate this point with some examples in the next section.

The situation suggests that we study ways of taming Scheme
macros with a type system.2 In this paper, we report on the
results of one such an experiment. In section 2 we explain
how Scheme macros can still perform undesirable computa-
tions. In sections 3 and 4, we introduce a modified macro
system that allows a Scheme implementation to determine
whether macro definitions and programs are syntactically
well-formed. In section 5, we compare our work to related
work and propose some future research.

2. MACROS ARE TOO POWERFUL
Standard Scheme macros suffer from two problems. On one
hand, they can turn the macro expander into an infinite
loop. Since the expander is a part of the parser, a program-
mer can turn the most reliable part of an ordinary program-
ming environment into a useless tool. On the other hand, a
macro can misapply Scheme’s syntactic constructors, creat-

1We readily acknowledge that building such towers poses
additional, serious problems for language designers [6, 11],
but this topic is beyond the scope of our paper.
2If we were to eliminate ellipses and introduce an induction
schema, our result would literally reconstruct for macro sys-
tems what the type discipline of Church did for the original
lambda calculus.
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ing S-expressions that even Scheme cannot interpret.

Consider the following simple macro definition:

(define-syntax diverge

(syntax-rules () ((_) (diverge))))

It introduces a macro that replaces occurrences of (diverge)
with itself, thus causing the extended parser to diverge. This
example of bad behavior is trivial, however, compared to the
full power of macros. It is a simple exercise to write a set
of macros that simulate a pushdown automaton with two
stacks.

While the introduction of unbridled computational power is
a problem, we are truly concerned with macros that create
ungrammatical Scheme expressions and definitions. Macro
definitions can go wrong in two ways. First, the user of a
macro may use it on proto-syntactic forms that the creator of
the macro didn’t anticipate. Consider an increment macro:

(define-syntax ++

(syntax-rules ()

((_ x) (begin (set! x (+ x 1)) x))))

Furthermore consider the following (ab)use of the macro:

... (++ (vector-ref a 0)) ...

Clearly, the creator of the macro didn’t expect anyone to use
the macro with anything but an identifier, yet the user—
perhaps someone used to a different syntax—applied it to a
vector-dereferencing expression.

Second, the macro creator may make a mistake and abuse a
syntactic construction:

(define-syntax where

(syntax-rules (is)

((_ bdy lhs is rhs) (let ([rhs lhs]) bdy))))

Here the intention is to define a where macro, which could
be used like this:

(where (+ x 1) y is 5)

Unfortunately, the right-hand side of the rewriting rule for
where abuses the rhs pattern variable as a let-bound iden-
tifier and thus creates an ill-formed expression.

At first glance, the situation is seemingly analogous to that
of applying a programmer-defined Scheme function outside
of its intended domain or applying an erroneous function.
In either case, the programmer receives an error message
and needs to find the bug. The difference is, however, that
many Scheme systems report the location of a safety viola-
tion for a run-time error and often allow the programmer

to inspect the stack, which provides even more insight. In
Chez Scheme [4], for example, the (ab)user of ++ receives
the report that the syntax

(set! (++ (vector-ref v 0)) (+ (++ (...)) 1))

is invalid; the user of where finds out that

(let ((5 x)) (+ x 1))

is invalid syntax, without any clue of which portion of the
program introduced this bug. Even in DrScheme [5], a
sophisticated IDE that employs source code tracing and
high-lighting to provide visual clues, a programmer receives
difficult-to-decipher error messages. The (ab)use of ++ macro
highlights the vector dereference and reports that some
set! expression is ill-formed, which at least suggests that
the error is in the use of ++. In contrast, for the use of where,
DrScheme highlights the 5 and suggests that let expected
an identifier instead. This leaves the programmer with at
most a hint that the macro definition contains an error. In
this paper, we outline the design and implementation of a
tool for catching these kinds of mistakes.

3. CONSTRAINING MACROS BY SHAPES
One way to tame the power of Scheme macros is to provide a
type system that discovers errors before an implementation
expands macros. In this section, we present such a type
system, dubbed a shapesystem. The primary purpose of
the type system is to assist macro programmers with the
disovery of errors inside of macro definitions, but we also
imagine that the users of macro libraries can employ the
system to inspect their macro uses.

In the first subsection, we present the language of our model.
In the second and third section, we gradually introduce the
system of shapes. In the fourth section, we explain why a
conventional type checking approach doesn’t work. In the
last subsection, we sketch the principles of our approach; the
actual implementation is described in the next section.

3.1 The language
Figure 1 specifies the programming language of our model:
the surface syntax and the core syntax. The surface syntax
consists of a core syntax plus macro applications. The core
syntax consists of definitions and expressions. The under-
lined portions of the figure indicate the parts of the language
that belong to the surface syntax but not core syntax.

A program is a sequence of macro definitions followed by
a sequence of forms in the surface syntax. Macro defini-
tions use syntax-laws, a variant of Scheme’s syntax-rules.
More specifically, syntax-lawsis a version of syntax-rules
that accommodates shape annotations.

One restrictions of our model is that the set of primitive
keywords, macro keywords, identifiers, and pattern variables
are assumed to be disjoint subsets of Scheme’s set of tags.
This eliminates the possibility of lambda -bound variables
shadowing global macros.
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program ::= macro-def∗ top-level∗

top-level::= def | expr
def ::= (define id expr) | (macro . s-expr)
expr ::= id | number | (expr expr∗)

| (lambda (id∗)expr)
| (lambda (id∗ . id) expr)
| (quote s-expr) | (macro s-expr)

macro-def::= (define-syntaxmacro
(syntax-lawsetype

(( . pattern) guards s-expr)∗))
pattern ::= pvar | () | (pattern. pattern)

| (pattern. . . .())
guards ::= ((pvar stype)∗)
tag ::= unspecified countable set
keyword ::= lambda | define | quote

| define-syntax | syntax-laws | ...
id ::= subset of tagdisjoint from macro
pvar ::= subset of tagdisjoint from macro, id
s-expr ::= keyword | macro | id | pvar

| number | () | (s-expr. s-expr)

(x1.(x2. . . . .())) ≡ (x1 . . . xn)

Figure 1: Syntax

3.2 Base types and shape types
A close look at the grammar in figure 1 suggests that a
macro programmer should know about four base types:

1. expression, which denotes the set of all core Scheme
expressions;

2. definition, which denotes the set of all core Scheme
definitions;

3. identifier, which denotes the set of all lexical identifiers;
and

4. any, which denotes the set of all S-expressions.

The first three correspond to the basic syntactic categories
of an ordinary Scheme program. The separation of identi-
fiers from expressions is important so that we can deal with
syntactic constructors such as lambda and set!, which re-
quire identifiers in specific positions rather than arbitrary
expressions. Scheme’s quoting sublanguage also requires the
introduction of a distinguished type any so that we can de-
scribe the set of all arguments for quote.

The four base types are obviously related. Once we classify
a tag as identifier, we can also use it as an expression and in
a quote context. Similarly, a definition can also occur in a
quoted context, but it cannot occur in lieu of an expression.
Figure 2 summarizes the relationship between the four base
types.

At first glance, the collection of base type may suffice to
describe the type of a macro. As we know from the Scheme

any

expression definition

identifier

Figure 2: Base types

report, a macro’s output is always an expression or a defi-
nition. This explains the specification of etype, which is the
collection of range types for macro definitions. Concerning
a macro’s inputs, however, the Scheme report makes no re-
strictions. Following the precedence of type theory (for func-
tional programming), we start with the idea that a macro
programmer should specify types of the formal parameters,
which are the pattern variables in each clause.

Take a look at this example:

(define-syntax simple-let

(syntax-laws expression

((_ (var expr) body)

((var identifier)

(expr expression)

(body expression))

((lambda (var) body) expr))))

The macro definition introduce a simple form of letthat
binds one identifier to the value of one expression in some
second expression. The (left-hand side) pattern therefore
includes three pattern variables whose types are specified
in the guard of our syntax-lawsform. Still, it would be
misleading to say that simple-let has a type like

identifier expression expression → expression

because that would completely ignore that the macro use
must group the var and the expr components so that they
are visually distinct from body.

Put more generally, a macro programmer specifies the gen-
eral shape of a macro’s input with two components: the
types of the pattern variables and the pattern of group-
ing parentheses. Since checking the use of macros is about
checking the well-formedness of its subexpressions, the types
for macros must take these parentheses into account. Based
on these observations, we introduce shape types, or shapes
for short, to describe the structure of the terms that macros
consume. Shape types include the base types and construct
compound types using pair types, the null type, case types,
and arrow types. The latter two are only useful to describe
an entire macro; we do not deal with macros as arguments
in this paper.

Using shape types, we can specify the type of simple-let
as

((identifier . (expression . ())) . (expression . ())) → expression
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etype::= expression | definition
btype::= etype| identifier | any
stype::= btype| () | (stype. stype)

| stype→ stype| (casestype∗ )
| (stype. . . .stype)

Figure 3: Types

The choice of pairing as the basic constructor in the model
represents our assumption that a macro application is a pair
of the macro keyword and some S-expression.

3.3 Sequences
The type language described so far is not rich enough to
describe macros like and and letand primitive syntax like
lambda . These macros employ ellipses, because the core of
Scheme allows programmers to write down arbitrarily long
sequences of expressions without intervening visual mark-
ers. Since ellipses are an integral part of the pattern and
template language of macro definitions, we extend our type
language with the sequence shape type constructor.

Ellipses occur in two radically different ways in macros. In
patterns, an ellipsis must always end a list. That is, (a ...)

is a valid pattern, but (a ... b) is not. In templates, an
ellipsis may be followed by any template. Thus, (a ... b)

and (a ... . b) are both valid templates. To cover both
cases, our shape type constructor for sequences handles the
general case for templates. Ellipses in patterns are described
by sequences whose final part is always (). Figure 3 shows
the complete grammar of base types and shape types.

Using the full power of shape types, we can write down the
types of macros such as and :

(expression. . . .()) → expression

as well as that of core constructs such as lambda . The
formal parameter list of lambda has the shape type

(identifier. . . .(case() identifier)) .

3.4 Structural type checking fails
A traditional type checker recursively traverses an abstract
syntax tree and synthesizes the type of the tree from its
leaves, using algebraic rules. That is, a type checker de-
scends the tree until it reaches a leaf, for which some ex-
ternal agent (e.g., a type environment or a primitive type
judgment) specify the type. For each internal node, it then
synthesizes the type from the type of the subtrees.

This context-free traversal approach does not work for shape
checking macros and macro uses. Consider the following
excerpt from a Scheme program:

(add1 x)

Since add1 and x are identifiers, one could easily mistake
this S-expression for an expression. Suppose, however, that
the S-expression appears as the formals part of a lambda :

(lambda (add1 x) y)

Based on this context, we really need to understand the
original S-expression as a list of identifiers.

One idea for fixing this problem is traverse the tree and to
identify each macro application. Then, it seems possible to
check each macro application independently. Put differently,
such a type checker would treat each macro application as
atomic within the surrounding context and would use tra-
ditional type checking locally. Unfortunately, this approach
doesn’t work either, because macros may dissect their argu-
ments in unforeseen ways. Take a look at the expression

(amacro (bmacro x))

Assume that amacro and bmacro are the markers for defined
macros of one subexpression each. That is, the S-expression
seems to consist of two macro applications. Hence the re-
vised type checker would analyze (bmacro x) as a macro ap-
plication, determining that its type is, say, expression. But
take a look at the definition of amacro:

(define-syntax amacro

(syntax-laws expression

[(_ (anything a))

((anything any) (a identifier))

(lambda (a) (quote anything))]))

The amacro “destroys” the bmacro application and instead
uses the parts in unexpected ways. More generally, the
type checker has thrown away too much information. To
determine what to do with the syntax inside of the amacro-
application, we must use information about amacro. Type
checking must proceed in a context-sensitive manner.

For a final problem with the conventional type-checking ap-
proach, let us examine the syntax-lawsdefinition of let,
with unspecified types for the construct’s body:

(define-syntax let

(syntax-laws expression

[(_ ((lhs rhs) ...) body0 body ...)

((lhs identifier)

(rhs expression)

(body0 ???)

(body ???))

((lambda (lhs ...) body0 body ...) rhs ...)]))

Standard Scheme requires that let’s body consists of an ar-
bitrarily long sequence of definitions and expressions, but
at least one expression. Using the conventional pattern
for let, we cannot express this constraint. The pattern
body0 body ... says only that the sequence has to have
at least a first element. We can overcome this problem in
our model by using the full power of shape types:

(define-syntax let
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Identifier

Γ � id: identifier

Datum

Γ � number: expression

Any

Γ � s-expr: any

Null

Γ � () : ()

Pair

Γ � x1 : s1 Γ � x2 : s2

Γ � (x1 . x2) : (s1 . s2)

Special form

Γ(macro) = s

Γ � macro: s

Sequence

Γ � x1 : s1 Γ � x2 : s2

Γ � (x1. . . .x2) : (s1. . . .s2)

Pattern variable

Γ(pvar) = s

Γ � pvar: s

Γ0 � define : (identifier . (expression . ())) → definition

Γ0 � quote : (any . ()) → expression

Γ0 � lambda : ((identifier. . . .(caseidentifier ())) . (expression . ())) → expression

Figure 4: Shape types and programs, initial type environment

(syntax-laws ()

[(_ ((lhs rhs) ...) . body)

((lhs identifier)

(rhs expression)

(body (definition ...

expression ...

expression)))

((lambda (lhs ...) body0 body ...) rhs ...)]))

This shows that type checking not only must proceed in an
unusual context-sensitive manner but that it must also take
into account general shapes.

3.5 Relating syntax and shape types
Type checking macros is a matter of verifying that the ar-
gument S-expression is below the shape type that describes
the domain of the macro. To this end we must specify how
patterns, templates, and ordinary top-level expressions give
rise to shape types and how types relate to each other.

A macro’s domain type is determined by the shape type of
the patterns and the shape types of the pattern variables.
Specifically, the type of a pattern is the shape type that
results from replacing the pattern variables in the pattern
with their (guard) types. The type of the entire macro is
constructed from the set of patterns’ shape types and the
result type annotation. Figure 5 formalizes this relationship.

To type-check a top-level expression, our type checker con-
structs a shape type that describes the structure of the frag-
ment. A pair in the fragment is represented by a pair type,
a null by the null type, identifiers by identifier, bound macro
keywords by their corresponding arrow types, numbers by
expression, and everything else as any. Primitive special
forms are treated exactly the same as macros. An initial
type environment holds maps every special form to an ar-
row type.

To type-check a template, the type checker proceeds as for
regular top-level expressions, except that it needs to deal
with two complications. First, it needs to include pattern
variables, which have the types specified in the guards for
that clause. Second, it must cope with ellipses, which may

appear in various forms and with fewer restrictions than in
the pattern.

Figure 4 gives the rules for constructing types for regular
program fragments and templates.

4. SHAPE CHECKING
Translating the ideas of the previous section into a working
algorithm requires three steps. In this section, we describe
these steps, that is, how to check a complete program, what
to consider for the subtyping check, and how to implement
the check.

4.1 Checking programs
A program shape-checks if its macro definition templates
and program body respect the types of its macro applica-
tions. The checking of the entire program proceeds in three
stages.

First, the type checker builds a type environment from the
macro definitions. The type environment maps macro key-
words to arrow types. The shape type of a macro is deter-
mined by its return type, its patterns, and its guards. The
resulting type environment extends the initial type environ-
ment with the bindings created via �M.

Second, the type checker verifies that each macro template
produces the promised kind of result, assuming it is applied
to the specified shapes. For the verification of a template,
the global type environment is augmented with the guards
in the containing clause.

Third, the type checker verifies that each top-level form in
the program is well-shaped. Since a top-level form can be
either an expression or a definition, the top-level form is
checked against the shape type (caseexpression definition).

The first step has been described earlier. The third is a
simple version of the second due to the macro’s guards and
the template’s ellipses. Hence, the type checker turns the
template or top-level form into its corresponding shape type
and then determines whether the derived shape is a subtype
of the expected shape.
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Γ(pvar) = s

Γ �P pvar: s Γ �P () : ()

Γ �P x1 : s1 Γ �P x2 : s2

Γ �P (x1 . x2) : (s1 . s2)

Γ �P x : s

Γ �P (x. . . .()) : (s. . . .())

Gi �P Pi : si i ≤ n

�M (define-syntaxm (syntax-lawst (( . P0) G0 T0) · · · ( . Pn) Gn Tn)) � (cases0 · · · sn) → t

Figure 5: Shape types and macro definitions

Regular application

(expression . (expression. . . .())) ≤ expression

Special form application

s′ ≤ s

(s → t . s′) ≤ t

Figure 6: Shape type simplification

The subtype relation for shape types is the natural gener-
alization of the subtype relation on base types to the shape
types plus two additional subtyping rules (see figure 6).

4.2 Subtyping
Our algorithm generalizes Amadio and Cardelli’s recursive
subtyping algorithm using cyclicity tests [1]. It is not a plain
structural recursion on the two types. Two issues complicate
the algorithm. One arises from the way pair shapes and case
shapes interact, and the other from sequence shapes.

It is useful to think of the right hand side of the comparison
not as a single type, but as a set of possible choices. The
set increases as different possibilities are introduced by case
and sequence types. It is not sufficient to check whether the
type on the left matches any one type in the set. It may
be that the type on the left may be covered only by the
combination of multiple types on the right.

The following two inequalities illustrate how case and pair

types interact (a, b, and c are incomparable types):

(a . (caseb c)) ≤ (case(a . b) (a . c))

((casea b) . c) ≤ (case(a . c) (b . c))

In the first case, we need to check both the car and the cdr

of the pair on the left. The question is to which type on
the right we need to compare them. Clearly, this inequality
test should succeed, but if we divide the set and consider
the cdr of each pair separately, the algorithm fails to verify
the inequality, because (caseb c) �≤ b and (caseb c) �≤ c.
The second case is the dual of the first and shows that we
cannot split the set when we test the car of a pair.

One solution seems to be to check the car of the left with
the cars of all the pairs on the right, and to check the cdr

of the left with the cdrs of all the pairs on the right. Unfor-
tunately, that solution is unsound. It accepts the following
bad inequality

(a . a) ≤ (case(a . b) (b . a)) ,

because the car of the first option would match and the cdr

of the second.

The correct solution is to match not a set of types on the
right, but a set of states, where a state is either • (the initial
matching context) or a type with a state as context. The
state’s context describes the state that is made available to
the set of cdrs to match if the state’s type is matched. The
context is only extended when checking pairs. The example
above becomes:

(a . a) ≤ (case(a . b)• (b . a)•)

Checking the car of the pair becomes

a ≤ (caseab,• ba,•)

The first state in the set matches and the second fails. So
the cdr is matched:

a ≤ b•

which fails as required.

The second complication arises because of sequences. When
a sequence (sr. . . .su) is encountered on either the left or
the right, it is unfolded into (case su (sr . (sr. . . . su))).
The algorithm relies on a trace accumulator to detect cycles
in checking. The trace keeps track of what inequality checks
are currently under consideration. For example, the call to
check (a. . . . b) ≤ (a. . . . b) would unfold both sequences,
check their base cases, check their cars, and then return
to checking the same inequality. Since that combination of
type and set of states is in the trace accumulator, a cycle
has occurred and it is correct to succeed [1].

4.3 Shape checking at work
Recall the macro ++ from Section 2. The following is the
macro written in our language:

(define-syntax ++

(syntax-laws expression

[(_ x)

([x identifier])

(begin (set! x (add1 x)) x)]))

This gives ++ the following shape type: 3

(identifier . ()) → expression

In this context, the macro application

(++ (vector-ref v 0))

3We abbreviate (cases) as s.
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is invalid, because the shape checking algorithm cannot show
that the shapes of ++’s input are below its input shape.

The most specific shape of the input is

((identifier . (identifier . (expression . ()))) . ())

This shape is not bbelow (identifier . ()), the input shape of
the macro. Thus the macro application of ++ is flagged as
erroneous instead of the set! special form application that
it expands into.

Checking is also performed on the templates of a macro
definition. In the following definition of where, lhs and rhs

are mistakenly swapped in the template:

(define-syntax where

(syntax-laws expression

[(_ body lhs is rhs)

([body expression]

[lhs identifier]

[rhs expression])

(let ([rhs lhs]) body)]))

In order to match the shape of the template with expression,
the shape checker needs to prove expression ≤ identifier, to
satisfy the input shape of let. Since this inequality is not
true, shape checking fails for the template. The macro def-
inition is therefore rejected, even without any uses of the
where macro.

4.4 Implementation
This section presents the algorithm that determines whether
one shape type is a subtype of another. We start with the
data definitions and follow with the interface procedures.
The last part covers those procedures that perform the re-
cursive traversals.

Figure 7 shows the data definitions. We represent shape
types as structures and base types as symbols wrapped in a
base-type structure.

The main function is the procedure subshape?, which con-
structs a state from the type on the right hand side of the
inequality to be tested and calls check to conduct the actual
comparison.

The subshape checking algorithm maintains the invariant
that the set of states representing the right hand side never
contains a type whose outermost type constructor is se-
quence or case. Sequences are unfolded to their final type
and a pair of their repeated type and the sequence type. The
variants of a case type are absorbed into the set of states.
The procedure normalize is responsible for maintaining this
invariant.

The check procedure consumes a trace, a type, and a list
of states. It produces a list of states to be used to check
the cdr of a pair, as described above. If check produces
a list containing the done state, checking has succeeded.
Otherwise, it returns the empty list to indicate failure.

The check procedure always first consults the trace to detect

;; A TypeSymbol is one of

;; ’identifier, ’expression, ’definition, ’any

;; A Type is

;; - (make-base-type TypeSymbol)

;; - (make-null-type)

;; - (make-pair-type Type Type)

;; - (make-sequence-type Type Type)

;; - (make-arrow-type Type Type)

;; - (make-case-type [Type])

(define-struct base-type (symbol))

(define-struct null-type ())

(define-struct pair-type (car cdr))

(define-struct sequence-type (rep final))

(define-struct arrow-type (domain range))

(define-struct case-type (cases))

;; A State is

;; - (make-done-state)

;; - (make-state Type State)

(define-struct done-state ())

(define-struct state (type context))

Figure 7: Data definitions

and escape from cycles. If no cycle is found, check calls to
check/shape with all the shape types and check/base with
only the base types. The union of the results is returned.

The unionmatch macro checks the value of an expression
against the pattern of each clause. For each pattern which
succeeds, it evaluates the body and returns the union of the
results.

The procedure check/shape performs a straightforward case
analysis on the composite shape types. A null type matches
exactly null types. A pair type matches the car against the
cars of all pairs in the state set. The function abstract-car

takes the car of all pairs in the set and extends the match-
ing context for each with that pair’s cdr. A sequence type
matches if both cases of its unfolded representation match.
A case type matches if all of its variants match. Since we
must return a set of states, we use union and intersection
rather than simple or and and .

The procedure check/base verifies subtyping for basic types.
Any type is under any. Two base types are compared using
the simple subtype relation for base types. An expression
can be formed by a pair of an expression and a sequence of
expressions, and either expression or definition can be the
result of the appropriate special form application.

The procedure check/macro checks a macro application, us-
ing the shape types of the macro keyword; normalize main-
tains the invariant stated above; and abstract-car takes
the car of all pair types and extends the context of the re-
sulting states.
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;; subshape? : Type Type -> boolean

(define (subshape? lhs rhs)

(ormap done-state?

(check empty-trace lhs

(normalize (make-state rhs (make-done-state))))))

;; check : Trace Type [State] -> [State]

(define (check trace lhs states)

(or (trace-lookup trace lhs states)

(let [(trace (extend-trace trace lhs states))

(base-states (filter state/base-type? states))]

(union*

(cons

(check/shape trace lhs states)

(map (lambda (bstate) (check/base trace lhs bstate))

bstates))))))

Figure 8: Driving procedures

;; check/shape : Trace Type [State] -> [State]

(define (check/shape trace lhs states)

(unionmatch lhs

[($ null-type)

(union* (map (lambda (s) (if (null-type? (state-type s)) (succeed s) (fail))) states))]

[($ pair-type lhs-car lhs-cdr)

(let [(cdrstates (check trace lhs-car (abstract-car states)))]

(check trace lhs-cdr cdrstates))]

[($ sequence-type lhs-rep lhs-final)

(intersect (check trace lhs-final states)

(check trace (pair lhs-rep lhs) states))]

[($ case-type lhs-cases)

(intersect (map (lambda (lhs-case) (check trace lhs-case states)) lhs-cases))]))

;; check/base : Trace Type State -> [State]

(define (check/shape trace lhs base-state)

(unionmatch (state-type base-state)

[($ base-type ’any) (succeed base-state)]

[($ base-type b)

(if (and (base-type? lhs) (subtype? lhs (base-type b)))

(succeed base-state)

(fail))]

[($ base-type ’expression)

(check trace lhs

(list (make-state

(pair-type expression (sequence-type expression (null-type)))

(state-context base-state))))]

[($ base-type (or ’expression ’definition))

(if (and (pair-type? lhs) (arrow-type? (pair-type-car lhs)))

(check/macro trace lhs base-state)

(fail))]))

Figure 9: check/shape and check/base
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;; check/macro : Trace Type State -> [State]

(define (check/macro trace lhs base-state)

(let [(macro (pair-type-car lhs))

(argument (pair-type-cdr lhs))]

(if (base-type-equal? (arrow-type-range macro) (state-type base-state))

(check trace argument

(make-state (arrow-type-domain macro) (state-context base-state)))

(fail))))

;; abstract-car : [State] -> [State]

(define (abstract-car states)

(union (map abstract-car/1 states)))

;; abstract-car/1 : State -> [State]

(define (abstract-car/1 state)

(let [(type (state-type))]

(if (pair-type? type)

(normalize

(make-state (pair-type-car type)

(make-state (pair-type-cdr type) (state-context state))))

’())))

;; normalize : State -> [State]

(define (normalize state)

(map (lambda (type) (make-state type (state-context state)))

(normalize-type (state-type state))))

;; normalize-type : Type -> [Type]

(define (normalize-type type)

(cond [(sequence-type? type)

(cons (pair-type (sequence-type-rep type) type)

(normalize-type (sequence-type-final type)))]

[(case-type? type)

(union (map normalize-type (case-type-cases type)))]

[else (list type)]))

Figure 10: check/macro and auxiliary procedures
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4.5 Some first experiences
We used an implementation of the algorithm described to
check implementations of the special forms described as de-
rived syntax in R5RS [8]. The algorithm was extended to
handle literals in patterns.

Defining these forms in syntax-lawsposes two problems.
First, we need to reformulate the definitions to be compati-
ble with our system. Second, we need to write down shape
types for each pattern variable.

The macro definitions for the derived syntax given in R5RS
were not compatible with our system. For example, the
common shape

(definition. . . .(expression. . . .(expression . ())))

cannot be expressed with the idiomatic pattern

(body0 body ...)

used in R5RS; there are no suitable annotations. To solve
this problem, we rewrite let using a “dotted” pattern:

(define-syntax let

(syntax-laws expression

[(let ((name val) ...) . body)

([name identifier] [val expression]

[body (definition ...

expression ... expression)])

((lambda (name ...) . body) val ...)]))

Shape annotations for simple macros are as easy as type
annotations in most languages. Complicated macros such
as cond, however, have extremely verbose annotations due
to the complexity of the syntax of cond clauses. We are
exploring a method of naming or abbreviating shapes.

5. RELATED WORK, LIMITATIONS, AND
FUTURE WORK

Cardelli, Matthes, and Abadi [2] study macros as extensible
parsing. They superimpose enough discipline so that parser
extensions don’t violate the lexical structure of the program.
They do not consider the question of whether macro applica-
tions are well-shaped but instead ensure that the grammar
extension produces a well-defined grammar.

Ganz, Sabry, and Taha [7] present MacroML, a version of
ML with an extremely simple form of macros. Their macros
require the macro user to specify run-time values, syntax,
and binding relationships at the place of macro use. In re-
turn, they can type check their macros with a tower of type
systems. The type checker verifies that MacroML macros ex-
pand properly and that the code they produce type checks in
ML. Unfortunately, none of their type-checking techniques
for macros carry over to Scheme’s macro system because of
the simplicity of their assumptions.

We have extended our own work so that it applies to a large
portion of Scheme’s standard macro system. That is, we
can rewrite and type check the macros from the Scheme
report in the syntax-law notation. The expanded version
also covers all core forms with two exceptions: begin and

quasiquote. Still, our system imposes several restrictions on
the macro writer, including the need for type declarations
and the elimination of macro-arguments.

In the near future, we intend to investigate a soundness
theorem for macro expansion similar to type soundness for
functional languages. Specifically, macro expansion (in our
model) should always produce well-formed syntax modulo
context-sensitive constraints (e.g., (lambda (x x) (+ x 1)))
and ellipsis mismatch. The latter is, of course, is analogous
to type checking array lookups; the former is probably be-
yond the scope of a type discipline.
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Porting Scheme Programs
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Abstract
The Scheme standard and the Scheme reports define not one
but an entire family of programming languages. Program-
mers can still create useful programs in small dialect-specific
extensions of the standardized Scheme language but porting
such programs from one dialect to another requires tedious
work. This paper presents scmxlate, a lightweight software
tool that automates a large portion of this work.

1. ON THE PORTABILITY OF SCHEME
The existence of the IEEE Scheme Standard [6] appears to
suggest that Scheme programmers can write a program once
and run it everywhere. Unfortunately, appearances are de-
ceiving. The Scheme standard and the Scheme reports [16,
15, 1, 2, 8] do not define a useful programming language for
all platforms. Instead they—like the Algol 60 [9] report—
define a family of programming languages that individual
implementors can instantiate to a concrete programming
language for a specific platform. As a result, Olin Shivers
can publicly state that “Scheme is the least portable lan-
guage I know” without expecting any contradictions from
the authors of the standard or report documents.

Even though the Scheme standard and reports define a min-
imal language, it is still possible to write useful programs in
small extensions of the standard language.1 To understand
the expressive power of standard Scheme plus a small li-
brary, take a look at SLaTEX [10], a package for rendering
Scheme code in an Algol-like presentation style via TEX (ap-
proximately 2,600 lines of code), and TEX2page [11], a pack-
age for rendering TeX documents as HTML (approximately
9,200 lines of code).

To create a stand-alone application from a Scheme program
in some different dialect of Scheme, programmers must of-
ten conduct a systematic three-stage transformation. First,

1We use “Standard Scheme” for both the IEEE language
and the language defined in the reports.

Permission to make digital or hard copies, to republish, to post on servers or
to redistribute to lists all or part of this work is granted without fee provided
that copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page. To
otherwise copy or redistribute requires prior specific permission. Fourth
Workshop on Scheme and Functional Programming. November 7, 2003,
Boston, Massachusetts, USA. Copyright 2003 Dorai Sitaram.

they need installation-specific configuration code. Second,
they add code for functions that the targeted dialect doesn’t
support. Finally, they must perform a number of tedious
and labor-intensive surgery on the code itself.

This short paper presents scmxlate,2 a program that as-
sists programmers with the task of porting programs from
one Scheme dialect to another. Specifically, the program
assembles new packages from existing packages, libraries
and directives. The program has been applied to a num-
ber of packages, including the above-mentioned SLaTEX and
TEX2page.

The next section presents the general model of porting code.
The third section describes the “surgery” directives that
have proven useful for porting a number of large packages
among several Scheme dialects. The last two sections discuss
related and suggestions for future work.

2. PORTING PROGRAMS
scmxlate provides two services. First, it assists program-
mers with the tedium of porting Scheme programs from one
dialect to another. Second, it provides the ability to config-
ure a program into an installation-specific application.

In the first subsection, we present scmxlate’s underlying
assumptions about programs and the conversion process. In
the second subsection, we illustrate an end-user’s experi-
ence with scmxlate-based packages. In the third subsec-
tion, we describe how scmxlate translates a program from
one Scheme dialect to another and how it assists with the
creation of a full-fledged application.

2.1 Assumptions
Standard Scheme does not provide a module mechanism for
partitioning a program into several components with well-
specified dependencies. Instead, the Scheme standard im-
plies that programmers treat files as components and com-
bine them using Scheme’s load instruction.

Since Scheme does not specify a method for describing di-
rectory paths in a platform-independent manner, scmxlate

assumes that the programmer has placed all files into a sin-
gle directory. Figure 1 displays an example. The sample
program consists of three files, which are displayed in italic

2We suggest reading the name as scm × late and pro-
nouncing it as “skim latte”.
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pgdir/
apple
banana.ss
orange.scm
dialects/

files-to-be-ported.scm

dialects-supported.scm

guile-apple

guile-banana.ss

guile-orange.scm

scmxlate-apple

scmxlate-banana.ss

scmxlate-orange.scm

my-apple
my-banana.ss
my-orange.scm

the package directory
a source file

· · ·

· · ·

the port directory
specifies the files in the parent directory that must be converted
specifies the target dialects
specifies dialect-specific instructions for a to-be-converted source file

· · ·

· · ·

specifies installation-specific adjustments for a to-be-converted source file
· · ·

· · ·

a generated target file
· · ·

· · ·

Figure 1: A sample directory organization

font. [Note to readers: please ignore the rest of the figure
for now.]

A program is not an application. To create an application
from a program, the installer must often specify some val-
ues that depend on the context in which the program runs.
For example, a spelling program may need to know about
some idiosyncratic words for a specific user. While an in-
teractive approach works well for a spelling program, it is a
terrible idea for a Unix-style filter, which transforms a text
file in one format into another one. For such programs, it is
best if users conduct a configuration process that creates the
installation-specific defaults. scmxlate assumes that this
configuration step should be a part of the installation and
port process and therefore supports it in a minimal manner,
too.

2.2 Installing a Package with scmxlate

Assume that a programmer has prepared some package for
use on several Scheme dialects and possibly different plat-
forms. Also imagine an installer who wishes to install the
package for a Scheme dialect that is different from the source
language and for a new platform. This installer must take
two steps.

First, the user must install scmxlate on the target plat-
form. Second, the user must configure the actual package.
To do so, the user launches the target Scheme implementa-
tion in the package directory and types

(load "/usr/local/lib/scmxlate/scmxlate.scm")

where the load argument uses the full pathname for the di-
rectory that contains scmxlate. As it is loaded, scmxlate

poses a few questions with a choice of possible answers,
including a question that determines the target dialect,3

though a knowledgeable user can provide different answers.

3The Scheme standard and reports do not provide a generic
mechanism for Scheme programs to determine in which di-
alect they run.

When all the questions are answered, scmxlate creates
the platform-specific and dialect-specific package. Naturally,
the programmer can also prepare versions of a package for
various dialects directly.

2.3 Preparing a Package for scmxlate

A programmer who wishes to distribute a package for use
with different Scheme dialects creates a sub-directory with
several files in the package directory. The files specify the
pieces of the package that require translation, the dialects
that are supported, and optional dialect-specific preambles
for each file that is to be translated.

If the package also requires installation-specific configura-
tion instructions, the programmer supplies files in the pack-
age directory. Specifically, the programmer creates one file
per source file that requires special configurations. These ad-
ditional files are independent of the target dialect but may
contain scmxlate rewriting directives that process the cor-
responding source file (see the next section).

Let us refine our example from figure 1. Assume the source
language is MzScheme and the file apple uses the library
function

file-or-directory-modify-seconds

Also assume that the target language is Guile. Then the
dialect-specific transformation file for apple—guile-apple

in the figure—should contain the following Guile definition:

(define file-or-directory-modify-seconds

(lambda (f)

(vector-ref (stat f) 9)))

If the dialect-configuration file supplies a definition for a
name that is also defined in the input file, then the output
file contains the definition from the dialect-configuration file,
not the input file. For example, suppose apple contains the
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MzScheme definition

(define file-newer?

(lambda (f1 f2)

;checks if f1 is newer than f2

(> (file-or-directory-modify-seconds f1)

(file-or-directory-modify-seconds f2))))

In Guile, this definition is expressed as

(define file-newer?

(lambda (f1 f2)

;checks if f1 is newer than f2

(> (vector-ref (stat f1) 9)

(vector-ref (stat f2) 9))))

and this definition is therefore placed into guile-apple.
Then scmxlate’s translation of apple directly incorporates
the Guile definition into the output file. That is, scmxlate

doesn’t even attempt to translate the MzScheme definition
of the same name in the input file.

Let us revisit figure 1. In addition to the source files, the
figure displays the complete directory structure for a specific
example. scmxlate inspects the file and directory names
in type-writer font for instructions on how to translate the
source files in pgdir . In particular,

files-to-be-ported.scm contains strings that specify the
names for those files that scmxlate must translate;

dialects-supported.scm contains symbols, which specify
the names of the dialects for which the programmer has
prepared translations; currently, scmxlate supports

bigloo,

chez,

cl,

gambit,

gauche,

guile,

kawa,

mitscheme,

mzscheme,

petite,

pscheme,

scheme48,

scm,

sxm,

scsh,

stk,

stklos, and

umbscheme.

To provide file-specific adaptation code per dialect, the pro-
grammer creates a file name with a dialect-indicating prefix;
in figure 1 these files are displayed in small-caps font. Fi-
nally, installation-specific configuration code is in files whose
names are prefixed with scmxlate-. All small-cap files are
optional.

When scmxlate is run in the pgdir directory, it creates
one file per source file. In figure 1, these files appear in
underlined italic font. Figure 2 shows the structure of these
generated files. The installation-specific code appears at
the very top of the file; it is followed by the dialect-specific
code. The bottom part of the file consists of the translated
source code. The translation process is specified via direc-
tives that comes with the installation-specific and dialect-
specific pieces.

installation-specific

code

dialect-specific

code

translated

source code

Figure 2: The file structure

3. THE DIRECTIVES
In addition to Scheme code intended to either augment or
override code in the input file, the dialect-configuration and
installation-configuration files can use a small set of direc-
tives to finely control the text that goes into the output file,
and even specify actions that go beyond the mere creation
of the output file. These directives are now described.

3.1 scmxlate-insert

As we saw, Scheme code in the dialect-configuration and
installation-configuration files is transferred verbatim to the
output file. Sometimes, we need to put into the output
file arbitrary text that is not Scheme code. For instance,
we may want the output file to start with a “shell magic”
line, so that it can be used as a shell script. Such text
can be written using the scmxlate-insert directive, which
evaluates its subforms in Scheme and displays them on the
output file.

Thus, if the following directive occurs at the top of guile-

apple

(scmxlate-insert

"#!/bin/sh

exec guile -s $0 \"$@\"

!#

")

the output file my-apple for the Guile-specific version of the
package starts with the line

#!/bin/sh

exec guile -s $0 "$@"

!#

Note that the order of the code and scmxlate-insert text
in the configuration file is preserved in the output file.
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3.2 scmxlate-postamble

Typically, the original Scheme code (augmented with the
code of scmxlate-inserts) occurs in the output file before
the translated counterpart of input file’s contents, and thus
may be considered as preamble text. Sometimes we need to
add postamble text, ie, things that go after the code from
the input file. In order to do this, place the directive

(scmxlate-postamble)

after any preamble text in the dialect-configuration file. Ev-
erything following that line, whether ordinary Scheme code
or scmxlate-inserts, shows up in the output file after the
translated contents of the input file.

3.3 scmxlate-postprocess

One can also specify actions that need to performed after
the output file has been written. Say we want the Guile
output file for apple to be named pear rather than my-apple .
We can enclose Scheme code for achieving this inside the
scmxlate directive scmxlate-postprocess:

(scmxlate-postprocess

(rename-file "my-apple" "pear"))

3.4 scmxlate-ignore-define

Sometimes the input file has a definition that the target di-
alect does not need, either because the target dialect already
has it as a primitive, or because we wish to completely re-
write input code that uses that definition. That is, if the tar-
get dialect is MzScheme, which already contains reverse!,
any definition of reverse! in the input file can be ignored.

(scmxlate-ignore-define reverse!)

The scmxlate-ignore-define form consumes any number
of names, and all corresponding definitions are ignored.

3.5 scmxlate-rename

Sometimes we want to rename certain identifiers from the
input file. One possible motivation is that these identi-
fiers name nonstandard primitives that are provided under
a different name in the target dialect. For instance, the
MzScheme functions

current-directory ; -> String

file-or-directory-modify-seconds ; String -> Number

are equivalent to the Bigloo functions

chdir ; -> String

file-modification-time ; String -> Number

respectively. So if the MzScheme input file uses these func-
tions, the Bigloo dialect-configuration file should contain

(scmxlate-rename

(current-directory

chdir)

(file-or-directory-modify-seconds

file-modification-time))

Note the syntax: scmxlate-rename has any number of two-
somes as arguments. The left item is the name in the input
file, and the right item is its proposed replacement.

3.6 scmxlate-rename-define

Sometimes the input file includes a definition for an operator
that the target dialect already has as a primitive, but with a
different name. That is, consider an input file that contains
a definition for nreverse. MzScheme has the same operator
but with name reverse!, which means that the MzScheme
dialect-configuration file should contain the following direc-
tive:

(scmxlate-rename-define

(nreverse reverse!))

Note that this is shorthand for

(scmxlate-ignore-define nreverse)

(scmxlate-rename

(nreverse reverse!))

3.7 scmxlate-prefix

Another motivation for scmxlate-rename is to avoid pollut-
ing namespace. We may wish to have short names in the
input file, but when we configure it, we want longer, “qual-
ified” names. It is possible to use scmxlate-rename for this
action, but the scmxlate-prefix is convenient when the
newer names are all uniformly formed by adding a prefix.

Thus,

(scmxlate-prefix

"regexp::"

match

substitute

substitute-all)

renames

match to regexp::match,

substitute to regexp::substitute,

and

substitute-all to regexp::substitute-all, respectively.

The first argument of scmxlate-prefix is the string form of
the prefix; the remaining arguments are the identifiers that
should be renamed.

3.8 scmxlate-cond

Sometimes we want parts of the dialect-configuration file to
be processed only when some condition holds. For instance,
we can use the following cond-like conditional in a dialect-
configuration file for MzScheme to write out a shell-magic
line appropriate to the operating system:

(scmxlate-cond

((eqv? (system-type) ’unix)

(scmxlate-insert *unix-shell-magic-line*))

((eqv? (system-type) ’windows)

(scmxlate-insert *windows-shell-magic-line*)))
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In this expression, the identifiers *unix-shell-magic-line*
and *windows-shell-magic-line* must denote appropriate
strings.

Note that while scmxlate-cond allows the else keyword
for its final clause, it does not support the => keyword of
standard Scheme’s cond.

3.9 scmxlate-eval

The test argument of scmxlate-cond and all the arguments
of scmxlate-insert are evaluated in the Scheme global en-
vironment when scmxlate is running. This environment
can be enhanced via scmxlate-eval. Thus, if we had

(scmxlate-eval

(define *unix-shell-magic-line* <...>)

(define *windows-shell-magic-line* <...>))

where the <...> stand for code that constructs appropriate
strings, then we could use the two variables as arguments to
scmxlate-insert in the above example for scmxlate-cond.

A scmxlate-eval expression can have any number of subex-
pressions. It evaluates all of them in the given order.

3.10 scmxlate-compile

scmxlate-compile can be used to tell if the output file is to
be compiled. Typical usage is

(scmxlate-compile #t) ;or

(scmxlate-compile #f)

The first forces compilation but only if the dialect supports
it, and the second disables compilation even if the dialect
supports it. The argument of scmxlate-compile can be
any expression, which is evaluated only for its boolean sig-
nificance.

Without a scmxlate-compile setting, scmxlate asks the
user explicitly for advice, but only if the dialect supports
compilation.

3.11 scmxlate-include

It is often convenient to keep some of the text that should go
into a dialect-configuration file in a separate file. Some def-
initions may naturally be already written down somewhere
else, or we may want the text to be shared across several
dialect-configuration files (for different dialects). The call

(scmxlate-include "filename")

inserts the content of "filename" into the file.

3.12 scmxlate-uncall

It is sometimes necessary to skip a top-level call when trans-
lating an input file. For instance, the input file may be used
as a script file whose scriptural action consists in calling a
procedure called main. The target dialect may not allow the
output file to be a script, so the user may prefer to load the
output file into Scheme as a library and make other arrange-
ments to invoke its functionality. To disable the call to main

in the output file, add

(scmxlate-uncall main)

to the configuration file.

The scmxlate-uncall form consumes any number of symbol
arguments. All top-level calls to these functions are disabled
in the output.

4. RELATED WORK
scmxlate wouldn’t be necessary if standard Scheme were
a practical language. One way to achieve practicality is
to equip a language with powerful, expressive libraries and
extensions. Jaffer’s SLIB [7] effort and the SRFI process [13]
aim to supplement Scheme in just such a way. If they are
successful, the various Scheme dialects will resemble each
other as far as the source language itself is concerned, thus
rendering a good part of SCMXLATE obsolete.

From a reasonably abstract perspective, scmxlate provides
those services to Scheme that autoconf [5] provides to C.
Both use preprocessing to conduct tests on the code, to as-
sist the target compiler, and to create proper contexts for the
ported program. Naturally, autoconf is a more expressive
and more encompassing tool than scmxlate; it has been
around for twice as long.

5. SUMMARY
The paper explains how scmxlate assists programmers with
the translation of Scheme programs from one dialect to an-
other. The software tool evolved due to the demand to trans-
late various packages into a number of different dialects. It is
now easy to use and robust. Indeed, scmxlate can now also
translate Scheme programs into Common Lisp programs [14]
though the resulting code is somewhat unnatural.

Although scmxlate has become an accessible product of its
own, it still lacks good environmental support. A program-
mer preparing a package for scmxlate could make good use
of sophisticated syntax coloring tools such as those provided
in DrScheme [3] and refactoring tools such as Dr. Jones [4],
especially if they are integrated with the programming en-
vironment.

scmxlate is available on the Web. For more information,
the interested reader should consult the on-line manual [12].
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