
The HOP Development Kit

Manuel Serrano
Inria Sophia Antipolis

2004 route des Lucioles - BP 93 F-06902 Sophia Antipolis, Cedex, France
http://www.inria.fr/mimosa/Manuel.Serrano

ABSTRACT
Hop, is a language dedicated to programming reactive and dynamic
applications on the web. It is meant for programming applications
such as web agendas, web galleries, web mail clients, etc. While
a previous paper (Hop, a Language for Programming the Web
2.0, available at http://hop.inria.fr) focused on the linguistic
novelties brought by Hop, the present one focuses on its execution
environment. That is, it presents Hop’s user libraries, its extensions
to the HTML-based standards, and its execution platform, the Hop
web broker.

DOWNLOAD
Hop is available at: http://hop.inria.fr.

The web site contains the distribution of the source code, the
online documentation, and various demonstrations.

1. Introduction
Along with games, multimedia applications, and email, the web
has popularized computers in everybody’s life. The revolution is
engaged and we may be at the dawn of a new era of computing
where the web is a central element.

Many of the computer programs we write, for professional
purposes or for our own needs, are likely to extensively use the
web. The web is a database. The web is an API. The web is a novel
architecture. Therefore, it needs novel programming languages and
novel programming environments. Hop is a step in this direction.

A previous paper [1] presented the Hop programming language.
This present paper presents the Hop execution environment. The
rest of this section presents the kind of end-user applications Hop
focuses on (Section 1.1) and the technical solutions it promotes
(Section 1.2). The rest of this paper assumes a familiarity with strict
functional languages and with infix parenthetical syntaxes such as
the ones found in Lisp and Scheme.

Because it is normal for a web application to access databases,
manipulate multimedia documents (images, movies, and music),
and parse files according to public formats, programming the web
demands a lot of libraries. Even though it is still young, Hop
provides many of them. In an attempt to avoid a desperately boring
presentation this paper does not present them all! Only the library

[Copyright c© 2006, Manuel Serrano]

Proceedings of the 2006 Scheme and Functional Programming Workshop
University of Chicago Technical Report TR-2006-06

for building HTML graphical user interfaces is presented here. It
is presented in Section 2, along with a presentation of the Hop
solution for bringing abstraction to Cascade Style Sheets.

The section 3 focuses on programming the Hop web broker.
Its presents basic handling of client requests and it presents the
facilities for connecting two brokers and for gathering information
scattered on the internet. The Section 4 presents the main functions
of the broker programming library.

1.1 The web 2.0
In the newsgroup comp.lang.functional, a Usenet news group
for computer scientists (if not researchers in computer science)
someone reacted rather badly to the official announce of the avail-
ability of the first version Hop:

“I really don’t understand why people are [so] hyped-up over
Web 2.0. It’s just Java reborn with a slower engine that doesn’t
even have sandboxing capabilities built into it. I guess this hype
will taper off just like the Java hype, leaving us with yet another
large technology and a few niches where it’s useful.”

This message implicitly compares two programming languages,
namely Java and JavaScript and reduces Hop to yet another
general-purpose programming language. This is a misunderstand-
ing. The point of Hop is to help writing new applications that are
nearly impossible (or at least, discouragingly tedious) to write us-
ing traditional programming languages such as Java and the like. As
such, its goal is definitively not to compete with these languages.

As a challenge, imagine implementing a program that represents
the user with a map of the United States of America that : lets the
user zoom in and out on the map, and also helps with trip planning.
In particular the user may click on two cities, and the application
responds with the shortest route between the cities, the estimated
trip time, the price of the gas for the trip (using local pump prices)
the weather forecasts along the route (for the appropriate tires), and
where to find the best pizza and gelatos in each town along the way.
Although it is possible to write such a program using Java or C and
existing resources available online, the web 2.0 is the infrastructure
that makes it feasible to write such programs. Because the web
2.0 provides the potential to easily combine fancy graphics and
information from disparate sources online into new, information-
aware applications. Unfortunately, the programming model for the
web 2.0 is missing. Hop is one attempt to provide the right model,
and the rest of this paper explains how.

1.2 The HOP architecture
Hop enforces a programming model where the graphical user inter-
face and the logic of an application are executed on two different
engines. In theory, the execution happens as if the two engines are
located on different computers even if they are actually frequently
hosted by a single computer. In practice, executing a Hop applica-
tion requires:

7

• A web browser that plays the role of the engine in charge of the
graphical user interface. It is the terminal of the application. It
establishes communications with the Hop broker.

• A Hop broker which is the execution engine of the application.
All computations that involve resources of the local computer
(CPU resource, storage devices, various multi-media devices,
...) are executed on the broker. The broker it also in charge of
communicating with other Hop brokers or regular web servers
in order to gather the information needed by the application.

The Hop programming language provides primitives for managing
the distributed computing involved in a whole application. In par-
ticular, at the heart of this language, we find the with-hop form.
Its syntax is:

(with-hop (service a0 ..) callback)

Informally, its evaluation consists in invoking a remote service ,
i.e., a function hosted by a remote Hop broker, and, on completion,
locally invoking the callback . The form with-hop can be used
by engines executing graphical user interfaces in order to spawn
computations on the engine in charge of the logic of the appli-
cation. It can also be used from that engine in order to spawn
computations on other remote computation engines.

2. Graphical User Interfaces
This section presents the support of Hop for graphical user inter-
faces. It presents the library of widgets supported by Hop and its
proposal for bringing more abstraction to Cascade Style Sheets
(CSS).

2.1 HOP Widgets
Graphical user interfaces are made of elementary graphical objects
(generally named widgets). Each of these objects has its own graph-
ical aspect and graphical behavior and it reacts to user interactions
by intercepting mouse events and keyboard events. Hence, toolkits
for implementing graphical user interfaces are characterized by:

1. the mechanisms for catching user interactions, and

2. the composition of graphical elements, and

3. the richness of them widgets.

HTML (either W3C’s HTML-4 or XHTML-1) do a good job at
handling events. Each HTML elements is reactive and JavaScript,
the language used for programming events handlers, is adequate.
CSS2, the HTML composition model based on boxes, is close to
be sufficient. The few lacking facilities are up to be added to the
third revision. On the other hand, the set of HTML widgets is poor.
It mainly consists of boxes, texts, and buttons. This is insufficient
if the web is considered for implementing modern graphical user
interfaces. Indeed, these frequently use sliders for selecting integer
values, trees for representing recursive data structures, notepads for
compact representations of unrelated documents, and many others.
HTML does not support these widgets and, even worse, since it is
not a programming language, it does not allow user to implement
their own complementary sets of widgets. Hop bridges this gap.

Hop proposes a set of widgets for easing the programming of
graphical user interfaces. In particular, it proposes a slider widget
for representing numerical values or enumerated sets. It proposes a
WYSIWYG editor. It extends HTML tables for allowing automatic
sorting of columns. It supports various container widgets such as a
pan for splitting the screen in two horizontal or vertical re-sizable
areas, a notepad widget for implementing tab elements, a hop-
iwindow that implements a window system in the browser, etc.

In this paper, we focus on one widget that is representative of the
container family, the tree widget.

2.1.1 The tree widget
A tree is a traditional widget that is frequently used for representing
its eponymous data structure. For instance, it is extensively used
for implementing file selectors. The syntax of Hop trees is given
below. The meta elements required by the syntax are expressed
using lower case letters and prefixed with the character %. The
concrete markups only use upper case letters. The meta element
%markup refers to the whole set of Hop markups.

%markup −→ ... | %tree

%tree −→ (<TREE> %tree-head %tree-body)
%tree-head −→ (<TRHEAD> %markup)
%tree-body −→ (<TRBODY> %leaf-or-tree *)
%leaf-or-tree −→ %leaf | %tree
%leaf −→ (<TRLEAF> %markup)

As an example, here is a simple tree.

(define (dir->tree dir)
(<TREE>

(<TRHEAD> dir)
(<TRBODY>

(map (lambda (f)
(let ((p (make-file-name dir f)))

(if (directory? p)
(dir->tree p)
(<TRLEAF> :value qf f))))

(directory->list dir)))))

When an expression such as (dir->tree "/") is evaluated on the
broker, a tree widget representing the hierarchy of the broker files
is built. It has to be sent to a client for rendering.

Hop containers (i.e., widgets that contain other widgets) are
static, as in the example above, or dynamic. A static container
builds its content only once. A dynamic container rebuilds its con-
tent each time it has to be displayed. A static tree has a fixed set of
subtrees and leaves. A dynamic tree recomputes them each time un-
folded. A dynamic tree is characterized by the use of the <DELAY>
markup in its body. The syntax of this new markup is:

(<DELAY> thunk)

The argument thunk is a procedure of no argument. Evaluating
a <DELAY> form on the Hop broker installs an anonymous service
whose body is the application of this thunk. When the client, i.e.,
a web browser, unfolds a dynamic tree, its invokes the service
associated with the thunk on the broker. This produces a new tree
that is sent back to the client and inserted in the initial tree.

(define (dir->dyntree dir)
(<TREE>

(<TRHEAD> dir)
(<TRBODY>

(<DELAY>
(lambda ()

(map (lambda (f)
(let ((p (make-file-name dir f)))

(if (directory? p)
(dir->dyntree p)
(<TRLEAF> :value qf f))))

(directory->list dir)))))))

Even if the function dir->dyntree only differs from dir->tree
by the use of the <DELAY> markup, its execution is dramatically dif-
ferent. When the expression (dir->dyntree "/") is evaluated,
the broker no longer traverses its entire hierarchy of files. It only

8 Scheme and Functional Programming, 2006

inspects the files located in the directory "/". When the client, i.e.,
a web browser, unfolds a node representing a directory, the bro-
ker traverses only that directory for scanning the files. Contrary to
dir->tree, the directories associated with nodes that are never
unfolded are never scanned by dir->dyntree.

2.1.2 Extending existing HTML markups
Because Hop is not HTML it is very tempting to add some HTML
facilities to Hop, for instance by adding new attributes to markups.
In order to keep the learning curve as low as possible, we resist this
temptation. Hop offers the HTML markups as is, with on exception:
the markup. In HTML, this markup has a src attribute that
specifies the actual implementation of the image. It can be an URL
or an in-line encoding of the image. In that case, the image is
represented by a string whose first part is the declaration of a mime
type and the second part a row sequence of characters representing
the encoding (e.g., a base64 encoding of the bytes of the image).
While this representation is close to impractical for a hand-written
HTML documents, it is easy to produce for automatically generated
documents, such as the ones produced by Hop. Hop adds a new
attribute inline to HTML images. When this attribute is set to #t
(the representation of the value true in the concrete Hop syntax),
the image is encoded on the fly.

This tiny modification to HTML illustrates why a programming
language can dramatically help releasing documents to the web.
Thanks to this inline attribute, it is now easy to produce stand
alone HTML files. This eliminates the burden of packaging HTML
documents with external tools such as tar or zip.

2.2 HOP Cascade Style Sheets
Cascading Style Sheets (CSS) enable graphical customizations of
HTML documents. A CSS specifies rendering information for vi-
sualizing HTML documents on computer screens, printing them
on paper, or even pronouncing them on aural devices. A CSS uses
selectors to designate the elements onto which a customization ap-
plies. Attributes, which are associated with selectors, specify the
rendering information. The set of possible rendering attributes is
rich. CSS exposes layout principles based on horizontal and ver-
tical boxes in the spirit of traditional text processing applications.
CSS version 2 suffers limitations (for instance, it only supports one
column layout) that are to be overcome by CSS version 3. CSS is
so expressive that we think that when CSS v3 is fully supported by
web browsers, HTML will compete with text processors like Latex
for printing high quality documents.

CSS selectors are expressed in a little language. The elements
to which a rendering attribute applies are designed either by their
identities, their classes, their local or global positions in the HTML
tree, and their attributes. The language of selectors is expressive
but complex, even if not Turing-complete. On the one hand, the
identity and class designations are suggestive of object-oriented
programming. On the other hand, they do not support inheritance.
Implementing re-usable, compact, and easy-to-understand CSS is
a challenging task. Frequently the HTML documents have to be
modified in order to best fit the CSS model. For instance, dummy
<DIV> or HTML elements have to be introduced in order to
ease the CSS selection specification. We think that this complexity
is a drawback of CSS, and Hop offers an improvement.

Like the Hop programming language, Hop-CSS (HSS in short)
uses a stratified language approach. HSS extends CSS in one di-
rection: it enables embedding, inside standard CSS specifications,
Hop expressions. The CSS syntax is extended with a new construc-
tion. Inside a HSS specification, the $ character escapes from CSS
and switches to Hop. This simple stratification enables arbitrary
Hop expressions to be embedded in CSS specifications. We have
found this extension to be useful to avoiding repeating constants.

For instance, instead of duplicating a color specification in many
attributes, it is convenient to declare a variable holding the color
value and use that variable in the CSS. That is, the traditional CSS:

button {
border: 2px inset #555;

}
span.button {

border: 2px inset #555;
}

in Hop can be re-written as:

$(define border-button-spec "2px inset #555")

button {
border: $border-button-spec;

}
span.button {

border: $border-button-spec;
}

In other situations, the computation power of Hop significantly
helps the CSS specifications. As an example, imagine a graphical
specification for 3-dimensional borders. Given a base color, a 3-
dimensional inset border is implemented by lightening the top and
left borders and darkening the bottom and right borders. Using the
two Hop library functions color-ligher and color-darker this
can be implemented as:

$(define base-color "#555")

button {
border-top: 1px solid $(color-lighter base-color);
border-left: 1px solid $(color-lighter base-color);
border-bottom: 1px solid $(color-darker base-color);
border-right: 1px solid $(color-darker base-color);

}

The specification of the buttons border is actually a compound
property made of four attributes. It might be convenient to bind
these four attributes to a unique Hop variable. Since the HSS $
escape character enables to inject compound expressions, this can
be wriiten as:

$(define base-color "#555")
$(define button-border

(let ((c1 (color-lighter base-color))
(c2 (color-darker base-color)))

{ border-top: 1px solid $c1;
border-left: 1px solid $c2;
border-bottom: 1px solid $c2;
border-right: 1px solid $c1 }))

button {
$button-border;

}

3. Programming the HOP web broker
The Hop web broker implements the execution engine of an ap-
plication. While the client executes in a sandbox, the broker has
privileged accesses to the resources of the computer it execution
on. As a consequence, the client has to delegate to the broker the
operations it is not allowed to execute by itself. These operations
might be reading a file, executing a CPU-intensive operation, or
collecting information from another remote Hop broker or from a
remote web server. In that respect, a Hop broker is more than a web
server because it may act has a client itself for handling external
requests. Still, a Hop broker resembles a web server. In particular,
it conforms to the HTTP protocol for handling clients connections

Scheme and Functional Programming, 2006 9

and requests. When a client request is parsed, the broker elaborates
a response. This process is described in the next sections.

3.1 Requests to Responses
Clients send HTTP messages to Hop brokers that parse the mes-
sages and build objects representing these requests. For each such
objects, a broker elaborates a response. Programming a broker
means adding new rules for constructing responses. These rules are
implemented as functions accepting requests. On return, they either
produce a new request or a response. The algorithm for construct-
ing the responses associated with requests is defined as follows.

(define (request->response req rules)
(if (null? rules)

(default-response-rule req)
(let ((n ((car rules) req)))

(cond
((is-response? n)
n)

((is-request? n)
(request->response n (cdr rules)))

(else
(request->response req (cdr rules)))))))

The else branch of the conditional is used when no rule applies.
It allows rules to be built using when and unless, without having
to be a series of nested ifs.

A rule may produce a response. In that case, the algorithm
returns that value. A rule may also annotate a request or build a new
request from the original one. In that case, the algorithm applies the
remaining rules to that new request.

The default response rule, which is used when no other rule
matches, is specified in the configuration files of the broker.

3.2 Producing responses
The broker has to serve various kind of responses. Some responses
involve local operations (such as serving a file located on the disk
of the computer where the broker executes). Some other responses
involve fetching information from the internet. Hop proposes sev-
eral type of responses that correspond to the various ways it may
fulfill client requests.

From a programmer’s point of view, responses are represented
by subclasses of the abstract class %http-response. Hop pro-
poses an extensive set of pre-declared response classes. The most
important ones are presented in the rest of this section. Of course,
user programs may also provide new response classes.

3.2.1 No response!
Responses instance of the class http-response-abort are ac-
tually no response. These objects are used to prevent the broker
for answering unauthorized accesses. For instance, on may wish
to prevent the broker for serving requests originated from a re-
mote host. For that, he should had a rule that returns an instance
of http-response-abort for such requests.

Hop provides predicates that return true if and only if a request
comes from the local host. Hence, implementing remote host access
restriction can be programmed as follows.

(hop-add-rule!
(lambda (req)

(if (is-request-local? req)
req
(instantiate::http-response-abort))))

3.2.2 Serving files
The class http-response-file is used for responding files. It
is used for serving requests that involve static documents (static

HTML documents, cascade style sheets, etc.). It declares the field
path which is used to denote the file to be served. In general these
responses are produced by rules equivalent to the following one.

(hop-add-rule!
(lambda (req)

(if (and (is-request-local? req)
(file-exists? (request-path req)))

(instantiate::http-response-file
(path (request-path req))))))

In order to serve http-response-file responses, the broker
reads the characters from the disk and transmit them to the client via
a socket. Some operating systems (such as Linux 2.4 and higher)
propose system calls for implementing this operation efficiently.
This liberates the application from explicitly reading and writing
the characters of the file. With exactly one system call, the whole
file is read and written to a socket. For this, Hop uses subclasses of
http-response-file.

The class http-response-shoutcast is one of them. It is
used for serving music files according to the shoutcast protocol1.
This protocol adds meta-information such as the name of the music,
the author, etc., to the music broadcasting. When a client is ready
for receiving shoutcast information, it must add an icy-metadata
attribute to the header of its requests. Hence, in order to activate
shoutcasting on the broker one may use a rule similar to the follow-
ing one.

(hop-add-rule!
(lambda (req)

(if (and (is-request-local? req)
(file-exists? (request-path req)))

(if (is-request-header? req ’icy-metadata)
(instantiate::http-response-shoutcast

(path (request-path req)))
(instantiate::http-response-file

(path (request-path req)))))))

Note that since the rules scanned in the inverse order of the
their declaration, the shoutcast rule must be added after the rule
for regular files.

3.2.3 Serving dynamic content
Hop provides several classes for serving dynamic content. The first
one, http-response-procedure, is used for sending content that
varies for each request. The instances of that class carry a procedure
that is invoked each time the response is served. In the example
above, we add a rule that create a virtual URL /count that returns
the value of an incremented counter each time visited.

(let ((count 0)
(resp (instantiate::http-response-procedure

(proc (lambda (op)
(set! count (+ 1 count))
(printf op

"<HTML>~a</HTML>"
count))))))

(hop-add-rule!
(lambda (req)

(when (and (is-request-local? req)
(string=? (request-path req) "/count"))

resp))))

3.2.4 Serving data
Hop programs construct HTML documents on the server. On de-
mand they are served to clients. These responses are implemented

1 http://www.shoutcast.com/.

10 Scheme and Functional Programming, 2006

by the http-response-hop class. When served, the XML tree in-
side a response of this type is traversed and sent to the client. As
an example, consider a rule that adds the URL /fact to the broker.
That rule computes a HTML table filled with factorial numbers.

(hop-add-rule!
(lambda (req)

(when (and (is-request-local? req)
(string=? (request-path req) "/fact"))

(instantiate::http-response-hop
(xml (<TABLE>

(map (lambda (n)
(<TR>

(<TH> n)
(<TD> (fact n))))

(iota 10 1))))))))

Instead of always computing factorial value from 1 to 10, it is easy
to modify the rule for adding a range.

(hop-add-rule!
(lambda (req)

(when (and (is-request-local? req)
(substring? (request-path req) "/fact/"))

(let ((m (string->integer
(basename (request-path req)))))

(instantiate::http-response-hop
(xml (<TABLE>

(map (lambda (n)
(<TR>

(<TH> n)
(<TD> (fact n))))

(iota m 1)))))))))

Next, we now show how to modify the rule above so that
the computation of the HTML representation of the factorial
table is moved from the broker to the client. As presented in
Section 1.2, the Hop programming language supports the form
with-hop. This invokes a service on the broker and applies, on
the client, a callback with the value produced by the service. This
value might be an HTML fragment or another Hop value. On the
server, HTML fragments are represented by responses of the class
http-response-hop. The other values are represented by the
class http-response-js. When such a response is served to the
client, the value is serialized on the broker according to the JSON
format2 and unserialized on the client. We can re-write the previous
factorial example in order to move the computation of the HTML
table from the broker to the client. For that, we create a rule that
returns the factorial values in a list.

(hop-add-rule!
(lambda (req)

(when (and (is-request-local? req)
(substring? (request-path req) "/fact/"))

(let ((m (string->integer
(basename (request-path req)))))

(instantiate::http-response-js
(value (map (lambda (n)

(cons n (fact n)))
(iota m 1))))))))

The /fact URL can be used in client code as follows.

2 http://www.json.org/.

(with-hop "/hop/fact/10"
(lambda (l)

(<TABLE>
(map (lambda (p)

(<TR>
(<TH> (car p))
(<TD> (cdr p))))

l))))

The point of this last example is not to argue in favor of moving
this particular computation from the broker to the client. It is just
to show how these moves can be programmed with Hop.

3.2.5 Serving remote documents
Hop can also act as a web proxy. In that case, it intercepts requests
for remote hosts with which it establishes connections. It reads the
data from those hosts and sends them back to its clients. The class
http-response-remote represents such a request.

In order to let Hop act as a proxy, one simply adds a rule similar
to the one below.

(hop-add-rule!
(lambda (req)

(unless (is-request-local? req)
(instantiate::http-response-remote

(host (request-host req))
(port (request-port req))
(path (request-path req))))))

This rule is a good candidate for acting as the default rule presented
in Section 3.1. The actual Hop distribution uses a default rule
almost similar to this one. It only differs from this code by returning
an instance of the http-response-string class for denoting a
404 error when the requests refer to local files.

3.2.6 Serving strings of characters
Some requests call for simple responses. For instance when a re-
quest refers to an non existing resource, a simple error code must
be served to the client. The class http-response-string plays
this role. It is used to send a return code and, optionally, a message,
back to the client.

The example below uses a http-response-string to re-
direct a client. From time to time, Google uses bouncing which is
a technique that allows them to log requests. That is, when Google
serves a request, instead of returning a list of found URLs, it returns
a list of URLs pointing to Google, each of these URL containing a
forward pointer to the actual URL. Hence Google links look like:

http://www.google.com/url?q=www.inria.fr

When Hop is configured for acting as a proxy it can be used to
avoid this bouncing. A simple rule may redirect the client to the
actual URL.

(hop-add-rule!
(lambda (req)

(when (and (string=? (request-host req)
"www.google.com")

(substring? (request-path req) "/url" 0))
(let ((q (cgi-fetch-arg "q" path)))

(instantiate::http-response-string
(start-line "HTTP/1.0 301 Moved Permanently")
(header (list (cons ’location: q))))))))

A similar technique can be used for implementing blacklisting.
When configured as web proxy, Hop can be used to ban ads con-
tained in HTML pages. For this, let us assume a black list of do-
main names held in a hash table loaded on the broker. The rule

Scheme and Functional Programming, 2006 11

above prevents pages from these domains to be served. It lets the
client believe that ads pages do not exist.

(hop-add-rule!
(lambda (req)

(when (hashtable-get *blacklist* (request-host req))
(instantiate::http-response-string

(start-line "HTTP/1.0 404 Not Found")))))

3.3 Broker hooks
When a response is generated by the algorithm presented in Section
3.1 and using the rules of Section 3.2 the broker is ready to fulfill
a client request. Prior to sending the characters composing the an-
swer, the broker still offers an opportunity to apply programmable
actions to the generated request. That is, before sending the re-
sponse, the broker applies hooks. A hook is a function that might
be used for applying security checks, for authenticating requests or
for logging transactions.

A hook is a procedure of two arguments: a request and a re-
sponse. It may modify the response (for instance, for adding extra
header fields) or it may return a new response. In the following
example, a hook is used to restrict the access of the files of the
directory /tmp.

(hop-hook-add!
(lambda (req resp)
(if (substring? (request-path req) "/tmp/")
(let ((auth (get-request-header req ’authorization)))
(if (file-access-denied? auth "/tmp")
(instantiate::http-response-authentication

(header ’("WWW-Authenticate: Basic realm=Hop"))
(body (format "Authentication required.")))

resp))
resp)))

When a request refers to a file located in the directory /tmp,
the hook presented above forces Hop to check if that request is au-
thenticated (a request is authenticated when it contains a header
field authorization with correct values). When the authentica-
tion succeeds, the file is served. Otherwise, a request for authenti-
cation is sent back to the client.

4. The HOP library
The Hop standard library provides APIs for graphical user inter-
faces, for enabling communication between the clients and the bro-
ker, for decoding standards documents formats (e.g., EXIF for jpeg
pictures, ID3 for mp3 music, XML, HTML, RSS, ...). It also of-
fers APIs for enabling communications between two brokers and
between brokers and regular web servers. Since the communica-
tion between two brokers is similar to the communication between
clients and brokers (see the form with-hop presented Section 1.2),
it is not presented here. In this section we focus on the communi-
cations between brokers and regular web servers.

The Hop library provides facilities for dealing with low-level
network communications by the means of sockets. While this is
powerful and enables all kind of communications it is generally
tedious to use. In order to remove this burden from programmers,
Hop provides two high-level constructions: the <INLINE> markup
and the with-url form.

4.1 The <INLINE> markup
The <INLINE> markup lets a document embed subparts of another
remote document. When the broker sends a HTML tree to a client,
it resolves its <INLINE> nodes. That is, it opens communication
with the remote hosts denoted to by the <INLINE> nodes, it parses

the received documents and it includes these subtrees to the re-
sponse sent to its client.

The <INLINE> node accepts two options. The first one, :src,
is mandatory. It specifies the URL of the remote host. The example
below builds a HTML tree reporting information about the current
version of the Linux kernel. This information is fetched directly
from the kernel home page. It is contained in an element whose
identifier is versions.

(<HTML>
(<BODY>

"The current Linux kernel versions are:"
(let ((d (<INLINE> :src "http://www.kernel.org")))

(dom-get-element-by-id d "versions"))))

This program fetches the entire kernel home page. From that
document it extracts the node named versions. The second op-
tion of the <INLINE> node allows a simplification of the code by
automatically isolating one node of the remote document. The :id
option restricts the inclusion, inside the client response, to one el-
ement whose identifier is :id. Using this second option, our pro-
gram can be simplified as shown below.

(<HTML>
(<BODY>

"The current Linux kernel versions are:"
(<INLINE> :src "http://www.kernel.org"

:id "versions")))

In addition to be more compact, this version is also more ef-
ficient because it does not require the entire remote document to
be loaded on the broker. As it receives characters from the net-
work connection, the broker parses the document. As soon as it has
parsed a node whose identifier is versions it closes the connec-
tion.

4.2 The with-url form
The syntax of the form with-url is as follows:

(with-url url callback)

Informally, its evaluation consists in fetching a remote document
from the web and on completion, invoking the callback with
the read characters as argument. Unlike to the <INLINE> node,
the characters do not need to conform any particular syntax. More
precisely, the fetched document does not necessarily need to be
a valid XML document. In the example below, we show how the
with-url form can be used to implement a simple RSS reader.

The function rss-parse provided by the standard Hop library
parses a string of characters according to the RSS grammar. It ac-
cepts four arguments, the string to be parsed and three construc-
tors. The first and seconds build a data structure representing RSS
sections. The last one builds data structures for representing RSS
entries.

(define (make-rss channel items)
(<TREE>

channel
(<TRBODY> items)))

(define (make-channel channel)
(<TRHEAD> channel))

12 Scheme and Functional Programming, 2006

(define (make-item link title date subject descr)
(<TRLEAF>

(<DIV>
:class "entry"
(<A> :href link title)
(if date (list "(" date ")"))
(if subject (<I> subject))
descr)))

Once provided with the tree constructors, parsing RSS documents
is straightforward.

(define (rss->html url)
(with-url url

(lambda (h)
(rss-parse h make-rss make-channel make-item))))

Producing a RSS report is then as simple as:

(rss->html "kernel.org/kdist/rss.xml")

5. Conclusion
Hop is a programming language dedicated to programming interac-
tive web applications. It differs from general purpose programming
languages by providing support for dealing with programs whose
execution is split across two computers. One computer is in charge
of executing the logic of the application. The other one is in charge
of dealing with the interaction with users.

This article focuses on the Hop development kit. It presents
some extensions to HTML that enable fancy graphical user inter-
faces programming and it presents the Hop web broker program-
ming. In the presentation various examples are presented. In partic-
ular, the paper shows how to implement simple a RSS reader with
Hop in no more than 20 lines of code!

The Hop library is still missing important features for web pro-
gramming. In particular, it does not provide SOAP interface, it can-
not handle secure HTTPS connections, and it does not implement
graphical visual effects. We continue to work on Hop, however, and
would love your feedback.

6. References
[1] Serrano, et al. – Hop, a Language for Pogramming the Web 2.0 –

2006.

Acknowledgments
I would like to thanks Robby Findler for his invitation to the
Scheme workshop and for his extremely helpful comments on the
paper.

Scheme and Functional Programming, 2006 13

