
Scheme for Client-Side Scripting in Mobile Web Browsing
or AJAX-Like Behavior Without Javascript

Ray Rischpater
Rocket Mobile, Inc.

ray@rocketmobile.com

Abstract
I present an implementation of Scheme embedded within a Web
browser for wireless terminals. Based on a port of TinyScheme in-
tegrated with RocketBrowser, an XHTML-MP browser running on
Qualcomm BREW-enabled handsets. In addition to a comparison
of the resulting script capabilities, I present the changes required to
bring TinyScheme to Qualcomm BREW, including adding support
for BREW components as TinyScheme data types. The resulting
application supports the same kinds of dynamic client-side scripted
behavior as a traditional Javascript-enabled Web browser in envi-
ronments too memory constrained for a Javascript implementation.

Keywords Scheme, Web, JavaScript, AJAX, mobile computing,
Qualcomm BREW

1. Introduction
In the last twenty-four months, many commercial sites have de-
ployed highly interactive Web applications leveraging the flexibil-
ity of XHTML[1], JavaScript[2], and XML[3]-based Web services.
Popular sites including Google Maps[4] have both inspired Web
developers and heightened consumer expectations of Web sites.
This approach has significantly decreased the apparent latency of
many Web applications, enhancing the user experience for all. At
the same time, wide-area wireless carriers have deployed third-
generation wireless networks with performance roughly equiva-
lent to commercial broadband to the home solutions, resulting in a
marked increase by consumers in the use of wireless terminals for
Web access. Moreover, in an attempt to recoup network costs and
increase the average revenue per subscriber (ARPU), many wire-
less carriers have deployed network-based programming environ-
ments such as Qualcomm BREW[5] that enables third-party devel-
opers to create and market applications that run on subscriber termi-
nals. These applications run the gamut from entertainment (news,
sports, and games) to personalization applications that permit con-
sumers to customize the look and feel of their terminal as they
purchase screen backgrounds, ring tones, and even whole handset
themes that re-skin the handset’s user interface.

While custom applications for these handsets can be built en-
tirely using the native platform in C or C++, many developers have
opted for hybrid native/Web-based solutions, in which interactive

Proceedings of the 2006 Scheme and Functional Programming Workshop
University of Chicago Technical Report TR-2006-06

content is presented in a variety of ways using both native user in-
terface controls and XHTML rendered using either the device’s na-
tive Web browser or a custom part of the application capable of dis-
playing XHTML. Rocket Mobile’s RocketBrowser, an XHTML-
MP[6] capable Web browser written in C for mobile handsets run-
ning Qualcomm BREW, is an example of this approach. This appli-
cation provides a framework for building Web-enabled applications
that run on wireless terminals, permitting application developers to
introduce new tags and Web protocols that trigger native operations
(compiled into the application as C functions) as well as mix the
viewing of Web pages with native interfaces built using Qualcomm
BREW interfaces in C. Complex applications with client-server in-
teractions can be built quickly using RocketBrowser as a starting
point, mixing traditional browser activities (say, permitting you to
browse a catalog of personalization assets such as ring tones or
screen backgrounds for your terminal) with activities that require
support from the platform APIs (such as purchasing and installing
desired media).

While flexible—developers can freely mix the browser and tra-
ditional application metaphors—this approach has some serious
limitations. Notably, software behaviors must be implemented in
C or C++ and compiled into the application; there is no facility
for downloading additional application components. The impact of
this limitation is amplified by the typical deployment scenario, in
which a developer signs the application package, a third party cer-
tifies the application for quality and network interoperability, adds
their signature cryptographically, and only then can the application
be released to wireless operators for distribution. Once released, the
application cannot be changed without passing through this entire
cycle again, making offering new program features to consumers
is a costly and time-consuming process. This approach also suffers
the usual limitations of solutions written in C or other low-level
languages, including the need to compile code for execution, the
need for explicit memory management, and the lack of support for
higher-order functions.

One way to ameliorate these problems is to introduce a client-
side scripting solution such as JavaScript or its kin ECMAScript[7].
A scripting language such as JavaScript has the obvious advantages
of rapid-high level development on the client, permitting develop-
ers to focus on the problems at hand in the content environment
rather than the mechanics of extending the Web browser’s imple-
mentation. Scripting also permits downloading patches or addi-
tional application components; portions of the application written
as scripts interpreted on the client side can be updated in a net-
worked application. Oddly, although this presents obvious weak-
nesses in the certification requirements set by most wireless opera-
tors, most carriers today permit scripted behavior in certified appli-
cations, provided that the documentation accompanying the appli-
cation provided at the time of certification provides ample explana-
tion of what behavior may be changed through script execution dur-

147

ing application operation.1 As a result, the addition of a client-side
script engine can help reduce the time-to-market for new features
such as user interface enhancements.

However, while JavaScript is the de facto standard for client-
side scripting in Web applications on the desktop it’s not with-
out drawbacks in mobile computing. Notably, the footprint of a
JavaScript implementation is actually quite large; as I discuss on
page 152 in section 5, the SpiderMonkey JavaScript runtime from
the Mozilla foundation is nearly twice the size of the solution I de-
scribe here on the debugging target and significantly more complex
to port and maintain. While writing a simpler JavaScript implemen-
tation is possible, doing so was not desirable in the scope of our
work; the time and scope of the project preferred porting an exist-
ing code base to re-implementing in whole or part an existing solu-
tion. This was true even at the expense of compatibility, because the
resulting application is used by only a handful of resources internal
to our firm to create end-user prototypes and applications, not the
general public.

Because of these considerations—code complexity, static mem-
ory use, and time alloted for the project—when faced the need
for client-side scripting in RocketBrowser to support asynchronous
transactions made popular by sites using JavaScript, I decided that
embedding an implementation of Scheme[8] within the application
would be an appropriate choice.

This paper describes the application of Scheme to client-side
scripting within a a mobile Web browser application and shows
current and future applications of the technology in commercial ap-
plications. In the following section, “Preliminaries”, I first present
some previous work in this area that strongly influenced my ap-
proach. I describe the work required to integrate Scheme in our ap-
plication, RocketBrowser, in the subsequent section “Implementa-
tion”. Because there’s more to shipping an application than just pro-
viding a platform, the section “Examples” shows two ways we’re
currently using Scheme within the resulting application at Rocket
Mobile. I summarize the memory footprint of the resulting appli-
cation in the section “Results”, and then close the paper by de-
scribing what we’ve learned in the process of using Scheme for our
client-side scripts in the section titled “Future Work”. Finally, an
appendix provides some additional detail regarding the work in-
volved in bringing a Scheme interpreter to the Qualcomm BREW
platform.

2. Preliminaries
Both client-side scripting in Web applications and Scheme appli-
cations to Web programming have a distinguished history for so
young an application of computing as the Web. Understanding this
history provides a crucial understanding of my motivation in select-
ing Scheme as a client-side language for our browser products.

2.1 Client-Side Scripts in Web Browsing
Client-side scripting in Web browser applications is not new; the
initial JavaScript implementation by Brendan Eich was provided as
part of Netscape 2.0 in 1995. Scripts in Web content are introduced
using the <script> tag, which treats its content as XML CDATA,
permitting scripts to consist of un-escaped character data, like so:

<html>
<body>

<script language="javascript">
document.write(’<p>Hello world.</p>’)

1 Most operator’s guidelines are vague in this regard. The position of the
operator is that under no circumstances may an application interfere with
a wireless terminal’s use as a telephone; consequently, assurances that
scripted behavior cannot interfere with telephony operations often appears
ample for certification.

</script>
</body>

</html>

Using a a client-side scripting language such as JavaScript or
ECMAScript, content developers can write scripts that:

• Access the content of the document. JavaScript provide access
to a document’s contents via the model constructed by the Web
browser of the document, called the Document Object Model
(DOM)[9]. The DOM provides mechanisms for accessing doc-
ument objects by an optional name or unique ID as well as by
an object’s position within the document (e.g., ”the third para-
graph”).

• Define functions. Scripts can define functions that can be in-
voked by other scripts on the same page either as parts of com-
putation or in response to user action.

• Interact with the user interface. XHTML provides attributes
to many tags, including the <body> tag, that permit content
developers to specify a script the browser should execute when
a particular user action occurs. For example, developers can use
the onmouseover attribute to trigger a script when you move
the mouse cursor over the contents of a specific tag.

• Obtain content over the network. On most newer browsers,
scripts can use the browser’s network stack via an object
such as XMLHTTPRequest[11] or the Microsoft ActiveX object
XMLHTTP[12]. Using one of these interfaces a script can create
a Web query, make the request over the network, and have the
browser invoke a callback when the query is completed.2

As these points show, the flexibility of today’s Web browser appli-
cations is not simply the outcome of JavaScript the language, but
rather the relationship between the scripting run-time, the ability
of scripts to access the DOM and user events, and the ability of
scripts to obtain data from servers on the network. The union of
these characteristics enables the development of asynchronous net-
worked applications residing entirely within a set of pages being
viewed by a Web browser, a strategy popularly known as Asyn-
chronous JavaScript and XML[10] (AJAX).

2.2 Scheme and the Web
Scheme plays an important part of many Web applications, from
providing scripting for servers[14] such as Apache[14] to providing
servers written in Scheme providing entire Web applications, such
as the PLT Web server[15] within PLT Scheme. Much has been
made in both the Lisp and Scheme communities about the relation-
ship between XML and S-expressions; recent work on SXML[16]
demonstrates the advantages of working with XML within a func-
tional paradigm. At the level of this work, those resources did not
significantly affect how I went about integrating a Scheme inter-
preter with the RocketBrowser, but rather helped build Scheme’s
credibility as the choice for this problem. As I suggest later on
page 153 in section 6, SXML holds great promise in using a
Scheme-enabled Web browser as the starting point for building ap-
plications that use either XML Remote Procedure Call[17] (XML-
RPC) or Simple Object Access Protocol[18] (SOAP) to interact
with Web services.

3. Implementation
I selected the TinyScheme[19] for its size, portability, and unen-
cumbered license agreement. This choice turned out to be a good

2 These objects do far more than broker HTTP[13] requests for scripts.
As their name suggests, they also provide XML handling capabilities,
including parsing XML in the resulting response.

148 Scheme and Functional Programming, 2006

one; initial porting took only a few days of part-time work, and
packaging both the interpreter and foreign function interfaces to
the interpreter for access to handset and browser capabilities was
straightforward.

TinyScheme is a mostly R5RS[8] compliant interpreter that has
support for basic types (integers, reals, strings, symbols, pairs, and
so on) as well as vectors and property lists. It also provides a simple
yet elegant foreign function interface (FFI) that lets C code create
and access objects within the C runtime as well as interface with
native C code. Consisting of a little over 4500 lines of C using only
a handful of standard library functions, TinyScheme was an ideal
choice.

Once TinyScheme was running on the wireless terminal, I in-
tegrated the TinyScheme implementation with our RocketBrowser
application. This work involved adding support for the <script>
tag as well as attributes to several other tags (such as <body> and
<input>) to permit connecting user events with Scheme functions.
This involved changes to the browser’s event handler and rendering
engine, as well as the implementation of several foreign functions
that permit scripts in Scheme to access the contents of the docu-
ment and request content from the browser’s network and cache
layers.

3.1 Bringing Scheme to the Wireless Terminal
From a programmer’s standpoint, today’s wireless terminals run-
ning platforms such as Qualcomm BREW are quite similar to tra-
ditional desktop and server operating systems, despite the con-
strained memory and processing power. There were, however, some
changes to make to TinyScheme before it could run on the wireless
terminal:

• Elimination of all mutable global variables to enable the appli-
cation to execute without a read-write segment when built using
the ARM ADS compiler for Qualcomm BREW.

• Implementation of all references to standard C library func-
tions, typically re-implemented as wrappers around existing
Qualcomm BREW functions that play the role of standard C
library functions.

• Initialization of the Scheme opcode table of function pointers
at run time, rather than compile time to support the relocatable
code model required by Qualcomm BREW.

• Introduction of a BREW-compatible floating point library to
replace the standard C floating point library provided by ARM
Ltd.

• Modification of the TinyScheme FFI mechanism to pass an ar-
bitrary pointer to an address in the C heap to permit implemen-
tation of foreign functions that required context data without
further changes to the TinyScheme interpreter itself.

• Addition of the TinyScheme type foreign_data to permit
passing references to pointers on the C heap from the FFI layer
into Scheme and back again.

• Encapsulation as a Qualcomm BREW extension. TinyScheme
and its foreign function interface are packaged as Qualcomm
BREW extensions, stand-alone components that are referenced
by other applications through the wireless terminal’s module
loader and application manager.

• Capping the amount of time the interpreter spends running a
script to avoid a rogue script from locking up the handset.

Readers interested in understanding these changes in more detail
may consult the appendix on page 154.

3.2 Integrating Scheme with the Web Browser
The RocketBrowser application is built as a monolithic C applica-
tion that uses several BREW interfaces—structures similar to Win-
dows Component Object Model[24] (COM) components—as well
as lightweight C structures with fixed function pointers to imple-
ment a specific interface we refer to as glyphs. Each RocketBrowser
glyph carries data about a particular part of the Web document such
as its position on the drawing canvas and what to draw as well as
an interface to common operations including allocation, event han-
dling, drawing, and destruction. This is in sharp contrast to many
desktop browsers, which use a DOM to represent a document’s
structure. These two differences: the use of C-based component in-
terfaces and the lack of a true DOM affected the overall approach
for both porting TinyScheme and integrating the interpreter with
the browser.

To permit Scheme scripts to interface with the browser through
the FFI, I wanted to expose a BREW interface to the browser that
would allow scripts to invoke browser functions. To do this, I chose
to extend TinyScheme’s types to add an additional Scheme type
that could encapsulate a C structure such as a BREW interface
on the C heap. I added a new union type to the structure that
represents a cell on the heap, and provided a means by which
foreign functions could create instances of this type. Instances of
the new foreign_data type contain not just a pointer to an address
in the application’s C heap, but an integer application developers
can use to denote the object’s type and a function pointer to a
finalizer invoked by the TinyScheme runtime when the garbage
collector reclaims the cell containing the reference. This new type
lets developers building foreign functions pass C pointers directly
to and from the Scheme world, making both the Scheme and C
code that interface with the browser clearer than referring to glyphs
via other mechanisms such as unique identifiers. One such object
that can be passed is a BREW interface; its corresponding BREW
class id (assigned by Qualcomm) provides its type identifier, and an
optional destructor handles reclaiming the object when the Scheme
runtime collects the cell containing the instance. Moreover the
combination of a user-definable type marker and finalizer function
makes the mechanism suitable for sharing a wide variety of objects
with a modicum of type safety for foreign function implementers.3

One challenge (which I was aware of from the beginning of the
project) was the lack of a true DOM within the browser; this was
in fact one of the reasons why JavaScript was a less-suitable candi-
date for a client-side scripting engine, as it requires a fully-featured
DOM for best results. As the notion of a glyph encapsulates visible
content such as a string or image, there is only a vague one-to-one
correspondence between glyphs and tags, let alone glyphs and ob-
jects in the DOM. As such, the glyph list maintained by the browser
is a flat representation of the document suited for low memory con-
sumption and fast drawing sorted by relative position on a docu-
ment canvas, and does not provide the hierarchical view of the doc-
ument content required by a true DOM. Rather than implement the
entire DOM atop the browser’s list of glyphs, the resulting inter-
face supports only access to named glyphs that correspond to spe-
cific XHTML tags such as <input>, , and <div>. To obtain
a reference to a named glyph in the current document, I introduce
the foreign function document-at, which scans the list of glyphs
and returns the first glyph found with the indicated name.

In addition to being able to access a specific piece of the DOM,
developers must also be able to get and mutate key properties of
any named glyph: the text contents of text glyphs such as those
corresponding to the <div> tag, and the src attribute of glyphs

3 Unfortunately, as seen in the Appendix, the resulting type checking system
relies on developers writing and using functions that provide type-safe casts,
a mechanism scarcely better than no type checking at all in some settings.

Scheme and Functional Programming, 2006 149

such as image glyphs corresponding to the tag. (As I discuss
in section 6 on page 153, later extension of this work should provide
access to other glyph properties as well.) I defined foreign functions
to obtain and set each of these values:

• The glyph-src function takes a glyph and returns the URL
specified in the indicated glyph’s src attribute.

• The glyph-value function takes a glyph and returns the value
of the glyph, either its contents for glyphs such as those corre-
sponding to <div> or the user-entered value for glyphs corre-
sponding to <input> or <textarea>.

• The set!glyph-src function takes a glyph and new URL and
replaces the src attribute with the provided URL. After the
interpreter finishes executing the current script, the browser will
obtain the content at the new URL and re-render the page.

• The set!glyph-value function takes a glyph and string, and
replaces the text of the indicated glyph with the new string.
After the interpreter finishes executing the current script, the
browser will re-render the page with the glyph’s new contents.

These functions, along with document-at, play the role provided
by the JavaScript DOM interface within our Scheme environment.

Finally, I defined the foreign function browser-get to support
asynchronous access to Web resources from scripts on a browser
page. This function takes two arguments: a string containing a
URL and a function. browser-get asynchronously obtains the re-
source at the given URL and invokes the given function with the
obtained resource. This provides the same functionality as Java-
Script’s XMLHTTPRequest object to perform HTTP transactions.

4. Scheme in Client Content
Implementing a client-side scripting language for RocketBrowser
was more than an exercise; I intended it to provide greater flexibil-
ity for application and content developers leveraging the platform
when building commercial applications. As the examples in this
section demonstrates, the results are not only practical but often
more concise expressions of client behavior as well.

4.1 Responding to User Events
An immediate use we had for client-side scripting was to create a
page where an image would change depending on which link on
the page had focus. In JavaScript, this script changes the image
displayed when the mouse is over a specific link:

<html>
<head>
<script language="javascript">

function change(img_name,img_src) {
document[img_name].src=img_src;

}
</script>
</head>
<body>

<center>
<img id="watcher" src="0.jpg"
height="60" width="80"/>

</center>

<table>

<tr>
<td>

onmouseover="change(’watcher’,’1.jpg’)"
onmouseout="change(’watcher’,’0.jpg’)">

1

</td>
<td>

onmouseover="change(’watcher’,’2.jpg’)"
onmouseout="change(’watcher’,’0.jpg’)">

2

</td>
<td>

onmouseover="change(’watcher’,’3.jpg’)"
onmouseout="change(’watcher’,’0.jpg’)">

3

</td>
<td>

onmouseover="change(’watcher’,’4.jpg’)"
onmouseout="change(’watcher’,’0.jpg’)">

4

</td>
</tr>

</table>
</body>
</html>

This code is straightforward. A simple function change, taking
the name of an tag and a new URL simply sets the URL of
the named image to the new URL; this causes the browser to reload
and redisplay the image. Then, for each of the selectable links, the
XHTML invokes this function with the appropriate image when
the mouse is over the link via the onmouseover and onmouseout
attributes.

In the Scheme-enabled browser, I can write:

<html>
<head>
<script language="scheme">

(define resourceid-offsets ’(0 1 2 3 4))
(define focus-urls

(list->vector
(map

(lambda(x)
(string-append (number->string x) ".jpg"))

resourceid-offsets)))

(define on-focus-change
(glyph-set!-src (document-at "watcher")

(vector-ref focus-urls browser-get-focus)))
</script>
</head>
<body onfocuschange="

(on-focus-change browser-get-focusindex)">
<center>

<img id="watcher" src="0.jpg"
height="60" width="80"/>

</center>
<table>
<tr>

<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>

</table>

150 Scheme and Functional Programming, 2006

</body>
</html>

There are substantial differences here, although the implementation
is conceptually the same. The key difference imposing a different
approach is a hardware constraint that drives the browser’s capabil-
ities: most wireless terminals lack pointing devices, substituting in-
stead a four-way navigational pad. Thus, there’s no notion of mouse
events; instead, the browser provides onfocuschange to indicate
when focus has changed from one glyph to the next. A side effect
of not having a pointing device is that for any page with at least one
selectable item, one item will always have focus; the navigation pad
moves focus between selectable items, and a separate key actually
performs the selection action (analogous to the mouse button on a
PC).

The XHTML opens with a brief set of definitions to establish
a vector of URLs, each corresponding to a specific image to be
shown when you navigate to a link on the page. This provides a
way for content developers to quickly change the images shown on
the page by simply updating the list at the start of the script.

The script handling the focus change, on-focus-change,
performs the same action as its JavaScript counterpart change,
replacing the target src attribute with a new URL. In-
stead of being supplied with the new URL, however, this func-
tion takes an index to the nth selectable glyph on the page. In
this case there are four, one for each link (and one correspond-
ing to each URL in the focus-urls vector). The browser invokes
on-focus-change each time the you press a directional arrow
moving the focus from one link to another, as directed by the
<body> tag’s onfocuschange attribute.

This coupling of XHTML and Scheme replaces several kilo-
bytes of full-screen graphic images, a custom menu control invoked
by a client-specific browser tag, and the tag itself that previously
provided menus in which the center region of the screen changes
depending on the focused menu item. Not only is this a clear reduc-
tion in the complexity of the application’s resources, but it reduces
development time as our staff artist need only provide individual
components of an application’s main menu, not a multi-frame im-
age consisting of screen images of each possible selected state of
the application’s main menu,

4.2 Asynchronous Server Interactions
As touched upon in the introduction, a key motivation for this
work is the incorporation of asynchronous client-side server inter-
action with remote Web services. Asynchronous transactions pro-
vide users with a more interactive experience and reduce the num-
ber of key presses required when performing an action.

Consider an application providing reverse directory lookup (in
which you’re seeking a name associated with a known phone num-
ber). The following XHTML provides a user interface for this ap-
plication:

<html>
<head>
<script language="javascript">
var req;

function callback() {
div = document.getElementById("result");
if (req.readyState == 4 &&

req.status == 200) {
div.innerHTML = req.responseText;

}
else
{

div.innerHTML = "network error";

}
}

function lookup() {
var field = document.getElementById("number");
var url = "http://server.com/lookup.php?phone="
+ escape(field.value);

if (field.value.length == 10) {
req=new XMLHttpRequest();
req.open("GET", url, true);
req.onreadystatechange = callback;
req.send(null);

}
}
</script>
</head>
<body>

<form>
Phone
<input type="text"

value="408"
id="number"

onkeyup="lookup();"/>
<div id="result"/>

</body>
</html>

The page has two functions and handles one user event. The func-
tion lookup creates a query URL with the number you’ve en-
tered, and if it looks like you’ve entered a full telephone number,
it creates an XMLHttpRequest object to use in requesting a server-
side lookup of the name for this number. This operation is asyn-
chronous; the XMLHttpRequest object will invoke the function
callback when the request is complete. The callback function
simply replaces the contents of the named <div> tag with either
the results of a successful transaction or an error message in the
event of a network error. This process—testing the value you en-
ter, issuing a request if it might be a valid phone number by testing
its length, and updating the contents a region of the page—is all
triggered any time you change the <input> field on the page.

In the Scheme-enabled browser, the algorithm is exactly the
same but shorter:

<html>
<head>
<script language="scheme">

(define service-url
"http://server.com/lookup.php?phone=")

(define input-glyph (document-at "entry"))
(define result-glyph (document-at "result"))

(define (lookup)
(if (eqv? (string-length

(glyph-value input-glyph)) 10)
(browser-get

(string-append service-url
(glyph-value input-glyph))

(lambda (succeeded result)
(if succeeded
(set!glyph-value result-glyph result)
(set!glyph-value result-glyph "error"))))))

</script>
</head>
<body>

Scheme and Functional Programming, 2006 151

<form>
Phone
<input type="text"

value="408"
id="entry"
onkeyup=

"(lookup)"/>
<div id="result"/>

</body>
</html>

For clarity, this code pre-fetches references to the glyphs corre-
sponding to the two named XHTML tags and saves those ref-
erences in the input-glyph and result-glyph variables. The
function lookup does the same work as its JavaScript counter-
part, although is somewhat simpler because the underlying in-
terface to the browser for HTTP transactions is already created
and only needs an invocation via the browser foreign function
browser-get. Like its JavaScript cousin XMLHTTPRequest, it op-
erates asynchronously, applying the provided function to the result
of the Web request. This browser provides this result as a list with
two elements: whether the request succeeded as a boolean in the
list’s first element, and the text returned by the remote server as the
list’s second element. In the example, I pass an anonymous func-
tion that simply updates the value of the <div> tag on the page with
the results, just as the JavaScript callback function does.

This example not only shows functionality previously impossi-
ble to obtain using the browser without scripting support (a devel-
oper would likely have implemented a pair of custom tags, one pro-
cessing the user input and one displaying the results, and written a
fair amount of code in C for this specific functionality), but demon-
strates the brevity Scheme provides over JavaScript. This brevity is
important not just for developers but to limit the amount of time it
takes a page to download and render, as well as space used within
the browser cache.

5. Results
As the examples show, the resulting port of TinyScheme meets both
the objectives of the project and provides a reasonable alternative
to JavaScript. Not surprisingly, its limitations are not the language
itself but the degree of integration between the script runtime and
the browser.

However, TinyScheme provides two key advantages: the time
elapsed from the beginning of the port, and overall memory con-
sumption within the application. As previously noted, the small size
of TinyScheme made porting a trivial task (less than twenty hours
of effort).

While no JavaScript port to the wireless terminal was available
for comparison, one basis of comparison is the SpiderMonkey[20]
JavaScript implementation within Firefox on Microsoft Windows.
Compared against the TinyScheme DLL on Microsoft Windows
for the Qualcomm BREW simulator, the results are nearly 2 to 1 in
favor of TinyScheme for static footprint.

Implementation Source Files Symbols1 Size2

SpiderMonkey 36 8537 321 KB
TinyScheme 3 605 188 KB

Where:

1. The symbol count was calculated using Source Insight’s (www.
sourceinsight.com) project report; this count includes all C
symbols (functions and variables) in the project.

2. This size indicates the size as compiled as a Windows DLL
for the appropriate application target (Firefox or Qualcomm
BREW Simulator) in a release configuration.

On the wireless terminal, the TinyScheme interpreter and code
required to integrate it with the browser compile to about fifty
kilobytes of ARM Thumb assembly; this results in an increase
of approximately 50% to the browser’s static footprint. This is a
sizable penalty, although in practice most application binaries for
Qualcomm BREW-enabled handsets are significantly larger these
days; at Rocket Mobile engineers are typically concerned more
with the footprint of application resources such as images and
sounds rather than the code footprint.

The static footprint is a key metric for success because the Qual-
comm BREW architecture does not support any memory paging
mechanism. As a result, applications must be loaded from the hand-
set’s flash file system in their entirety prior to application execution.
This means that the static size directly affects the run-time RAM
footprint of the browser application as well. On newer handsets this
is not an issue—most mid-range handsets sold in the last eighteen
months have a half-megabyte or more of RAM for application use,
so a fifty kilobyte increase in memory footprint when loading an
application is incidental.

In addition to the memory consumed by simply loading the
Scheme runtime implementation and related support code into
RAM, memory is consumed by the interpreter itself. In practice,
once loaded, simply starting the interpreter consumes approxi-
mately eight kilobytes of memory; our initial Scheme definitions,
derived from TinyScheme’s init.scm file and containing the usual
definitions for things such as when, unless, and a handful of type
and arithmetic operators, consumes another ten kilobytes. Thus,
the startup overhead from first loading the code into memory and
then initializing the runtime before doing any useful work is about
seventy kilobytes of RAM. While not insignificant on older hand-
sets, this is not a serious impediment on handsets commercially
available today; in production, we can tune this file to use only the
definitions likely to be used by dynamic scripts.

Run-time performance is well within acceptable bounds for user
interface tasks. The user interface example shown in section 4.1 on
page 150 takes on the order of sixty milliseconds of time within
the Scheme interpreter on a high-end handset (the LG-9800, based
on the MSM6550 chipset from Qualcomm) to execute, resulting in
no apparent latency when navigating from one link to the next. The
asynchronous request example shown in section 4.2 on page 151
is somewhat slower, although the time spent executing the Scheme
code is dwarfed by the latency of the cellular network in completing
the request.

A final measurement of success, albeit subjective, is developer
satisfaction. The general consensus of those developing content for
browser-based applications at Rocket Mobile is that at the outset
developing applications using scripts in Scheme is no more diffi-
cult than doing the same work in JavaScript would be. Because our
Web applications are built by engineers proficient in both wireless
terminal and server-side work, their strong background in object-
oriented and procedural methodologies tend to slow initial adoption
of Scheme, and many scripts begin looking rather procedural in na-
ture. Over time, however, contributors have been quick to move to a
more functional approach to the problems they face. A key advan-
tage helping this transition is in providing a command-line REPL
built with TinyScheme and a small file of stubs that emulate the
browser’s foreign function interfaces. This lets new developers pro-
totype scripts for pages without the overhead of creating XHTML
files on a server, wireless terminal, or wireless terminal emulator,
and encourages experimentation with the language.

6. Future Work
Commercialization of this work at Rocket Mobile is ongoing but
not yet complete for two reasons. First, to streamline the develop-
ment cycle, products at Rocket Mobile are typically released as a

152 Scheme and Functional Programming, 2006

single binary for all commercially available handsets at the time
of product release; thus the binary must meet the lowest common
denominator in both static and run-set size. With several million
handsets on the market today having RAM capacities under a half-
megabyte, the overhead posed by the interpreter and related code
prohibits a widespread release. However, this is not expected to be a
significant drawback for new products aimed at recently-marketed
mid- and high-tier handsets, which have much greater amounts of
RAM available. In the mean time, we are using the technology in
a variety of prototype and pilot projects for content providers and
carriers with great success.

Second, software quality is of paramount importance to wireless
carriers and subscribers. While the TinyScheme implementation
has had years of use in some configurations, the underlying port
to Qualcomm BREW is far from proven. At present, we are testing
and reviewing the implementation of the interpreter with an eye to
the types of problems that can cause application failures on wireless
terminals, such as ill-use of memory (dereferencing null pointers,
doubly freeing heap regions or the like). This work is ongoing, and
I intend to release any results of this work to the community of
TinyScheme users at large.

Another area of active investigation is to provide better inter-
faces via the FFI to the browser’s list of glyphs and individual glyph
attributes. In its present form, the glyph-src and glyph-value
functions and their set! counterparts are workable, but somewhat
clumsy. Worse, as the browser exports an increasing number of
glyph attributes (such as color, size, and position), the current ap-
proach will suffer from bloating due to the number of foreign func-
tions required to access and mutate individual glyph attributes.

An obvious future direction for this work is for the implementa-
tion to include support for SXML. While the present implementa-
tion of browser-get does nothing with the results returned from
an HTTP transaction but pass that content on as an argument to an
evaluated S-expression, client applications wishing to interact with
Web services via XML-RPC or SOAP would benefit from having
a parsed representation of the request results. SXML provides an
ideal medium for this, because it provides easy mechanisms for
querying the document tree or transforming the tree[21] in various
ways to provide human-readable output which can then be set as the
contents of an XHTML <div> region. Using this approach, a front-
end to a Web service can be built entirely using the browser applica-
tion and client-side scripts in Scheme that collect and process user
input, submit queries to the remote Web service and present results
without the need for an intermediary server to transform requests
and responses from XML to XHTML.

Acknowledgments
I would like to thank Shane Conder and Charles Stearns at Rocket
Mobile for their initial vetting of my approach to introducing a
Scheme runtime to the browser and their support throughout the
project. Notably, Charles performed much of the work on Rocket-
Browser required to integrate the TinyScheme engine.

References
[1] Steven Pemberton, et al. editors. XHTML 1.0: The Extensible Hyper-

Text Markup Language. W3C Recommendation 2002/REC-xhtml1-
20020801. http://www.w3.org/TR/2002/REC-xhtml1-20020801.
1 August 2002.

[2] JavaScript Mozilla Foundation, Mountain View, CA, USA.
http://www.mozilla.org/js/. 2006

[3] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler,
and Franois Yergeau, editors. Extensible Markup Language
(XML) 1.0. W3 Recommendation 2004/REC-xml-20040204.

http://www.w3.org/TR/2004/REC-xml-20040204. 4 Febru-
ary 2004.

[4] Google. Google Maps API. http://www.google.com/apis/maps/.
2006.

[5] Qualcomm, Inc. BREW API Reference.
http://www.qualcomm.com/brew/. 2005.

[6] Open Mobile Alliance. XHTML Mobile Profile.
http://www.openmobilealliance.org/. 2004.

[7] ECMA International. ECMAScript Language Specification.
www.ecma-international.org/publications/standards/-
Ecma-262.htm. 1999.

[8] Richard Kelsey, William Clinger, and Jonathan Rees, editors.
Revised5 report on the algorithmic language Scheme. ACM SIGPLAN
Notices, 33(9):2676, September 1998.

[9] Arnaud Le Hors, et al, editors. Document Object Model (DOM) Level
3 Core Specification. W3 Recommendation 2004/REC-DOM-Level-
3-Core-20040407.
http://www.w3.org/TR/2004/REC-DOM-
Level-3-Core-20040407. 7 April 2004.

[10] Jesse James Garrett. Ajax: A New Approach to Web Applications.
http://adaptivepath.com/publications/
essays/archives/000385.php. 18 February 2005.

[11] Anne van Kesteren and Dean Jackson, editors. The XMLHttpRequest
Object. W3 Working Draft 2006/WD-XMLHttpRequest-20060405/
http://www.w3.org/TR/XMLHttpRequest/. 5 April 2006.

[12] Microsoft, Inc. IXMLHTTPRequest. MSDN Library
http://msdn.microsoft.com/library/default.asp?-
url=-/library/en-us/xmlsdk/html/63409298--
0516-437d-b5af-68368157eae3.asp. 2006.

[13] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. RFC 2616, Hypertext Transfer Protocol—HTTP/1.1
http://www.w3.org/Protocols/rfc2616/rfc2616.html The
Internet Society, 1999.

[14] Todd.Gillespie and Rahul Nair. mod-scheme.
http://blufox.batcave.net/mod_scheme.html. 2005.

[15] P. T. Graunke, S. Krishnamurthi, S. van der Hoeven, and M. Felleisen.
Programming the Web with high-level programming languages.
European Symposium on Programming, pages 122-136, Apr. 2001.

[16] Oleg Kiselyov. SXML Specification. ACM SIGPLAN Notices, v.37(6),
pp. 52-58, June 2002.

[17] Dave Winer. XML-RPC Specification.
http://www.xmlrpc.com/spec. 15 Jul 1999.

[18] Don Box, et al. Simple Object Access Protocol (SOAP) 1.1 W3C Note
2000 NOTE-SOAP-20000508.
http://www.w3.org/TR/2000/NOTE-SOAP-20000508. 8 May
2005.

[19] Dimitrios Souflis and Jonathan S. Shapiro. TinyScheme.
http://tinyscheme.sourceforge.net/. 2005.

[20] Mozilla Foundation. SpiderMonkey (JavaScript-C) Engine.
https://www.mozilla.org/js/spidermonkey/. 2006.

[21] Oleg Kiselyov. XML and Scheme (a micro-talk presentation).
Workshop on Scheme and Functional Programming 2000
http://okmij.org/ftp/Scheme/SXML-short-paper.html.
September 17, 2000

[22] Ward Willats. How to Compile BREW Applets with WinARM 4.1.0.
http://brew.wardco.com/index.html. May 11, 2006

[23] Free Software Foundation, Inc. GCC, the GNU Compiler Collection.
http://gcc.gnu.org/ August 1, 2006.

[24] Microsoft, Inc. COM: Component Object Model Technologies
http://www.microsoft.com/com/default.mspx 2006.

Scheme and Functional Programming, 2006 153

A. Porting TinyScheme to Qualcomm BREW
While software development for wireless terminals is not nearly
the constrained affair it was a scant five years ago, platforms such
as Qualcomm BREW still impose many restrictions on the kinds
of things that can be done in C and C++. While this does not
significantly impair the development of all-new code for a mobile
platform, it can make porting applications from a more traditional
computing environment somewhat challenging.

In the case of the TinyScheme port, the single largest imped-
iment was the lack of a read-write segment on the Qualcomm
BREW platform.4 Without a read-write segment, the target com-
piler (ARM’s ADS 1.2) cannot compile applications or libraries
with global variables. This makes using the standard C library im-
possible. Instead, applications must use a limited set of helper func-
tions provided by Qualcomm to perform operations typically pro-
vided by the C standard and math libraries. Thus, references to C
functions such as strcmp must reconciled with Qualcomm BREW
helpers such as STRCMP. Rather than making numerous changes
to the TinyScheme implementation (which would make merging
changes from later releases difficult), I implemented a small port-
ing layer with functions for each of the required C standard library
functions. In many cases, this work was as simple as writing func-
tions such as:

static __inline int
strcmp(const char *a, const char *b) {

return STRCMP(a, b);
}

where STRCMP is the Qualcomm BREW API providing the C stan-
dard library strcmp facility. In addition, in a few cases such as the
interpreter’s use of the standard C file I/O library I had to imple-
ment the interfaces atop Qualcomm BREW’s native file manage-
ment functions. The resulting porting layer is approximately 300
lines of code (including comments) and can be reused when port-
ing other code requiring the standard library to Qualcomm BREW.

Dealing with floating-point numbers without a traditional math
library involved similar work; in addition to providing porting func-
tions for numeric functions such as trigonometric operations, I also
needed to deal with places where the interpreter used arithmetic
operators on floating-point numbers to keep the tool chain from
attempting to include the default floating-point library. When writ-
ing new code, Qualcomm suggests that developers use their helper
functions for arithmetic; these provide functions for addition, sub-
traction, multiplication, and division. Unwilling to make such dras-
tic changes to the TinyScheme implementation, I chose a second
route. To facilitate porting, Qualcomm has made available a re-
placement floating-point library for basic arithmetic that does not
use a read-write segment; including this library incurs an additional
static use of eight kilobytes of memory. If needed, I can back this
out and rewrite the functions that use floating-point arithmetic to
use the Qualcomm BREW helper functions to reduce the overall
footprint of the interpreter.

Along the same vein, the TinyScheme interpreter had a few
global variables that I had to move to the interpreter’s context
struct scheme; these were for things like the definition of zero
and one as native numbers in the interpreter’s representation of in-
teger and floating-point numbers. Similar work was required for the
array of type tests and a few other global variables. More problem-

4 Tools such as WinARM[22], based on GCC[23], have recently become
available that will generate ”fix-up” code that creates read-write variables
on the heap at runtime, although they generate additional code. In addition,
Qualcomm has announced support for a toolchain for use with ARM’s ADS
1.2 that does not have this limitation, but this tool was not available as I
performed this work.

atic, however, was the table of opcodes, defined at compile time us-
ing a series of preprocessor macros to initialize a large global array
of opcodes. Although this table is constant (and can thus be loaded
into the read-only segment), it results in compilation errors for an-
other reason: Qualcomm BREW requires relocatable code, and the
tool chain doesn’t know what to do with function pointer references
in constant variables. By moving the opcode dispatch table into
the interpreter’s context struct scheme, and adding the following
snippet to the interpreter’s initialization function scheme_init:

#define _OP_DEF(A,B,C,D,E,OP) \
sc->dispatch_table[j].func = A; \
sc->dispatch_table[j].name = B; \
sc->dispatch_table[j].min_arity = C; \
sc->dispatch_table[j].max_arity = D; \
sc->dispatch_table[j].arg_tests_encoding = E; \
j++;

{
int j = 0;
#include "opdefines.h"
#undef _OP_DEF

};

As each Scheme opcode is defined in the opdefines.h header using
the _OP_DEF macro, this yielded an easy solution with a minimum
of changes to the existing implementation.

With this work complete, the interpreter itself was able to com-
pile and execute on Qualcomm BREW-enabled handsets, although
its packaging was less than ideal. The Qualcomm BREW plat-
form is built around a component-oriented model similar in many
ways to the original Microsoft Windows Component Object Model;
packaging the Scheme interpreter as a module wrapped in a BREW
interface would provide greater opportunity for reuse throughout
my employer’s software development efforts. The resulting mod-
ule, called an extension in Qualcomm parlance, actually offers three
interfaces:

• The ISchemeInterpreter interface exports the basic inter-
face to the interpreter permitting developers to create an in-
stance of the interpreter, set an output port and have it evaluate
S-expressions.

• The ISchemeFFI interface exports the foreign function inter-
face provided by TinyScheme in its struct scheme_interface
structure, permitting developers familiar with Qualcomm BREW
an easy way to implement foreign functions for the interpreter
without needing to see or access the implementation of the in-
terpreter itself.

• The ISchemeFFP interface is an abstract interface that devel-
opers implement when creating foreign functions for use with
the interpreter. This interface uses the methods provided by the
ISchemeFFI interface of a running interpreter instance to im-
plement foreign functions. The foreign functions provided by
RocketBrowser are implemented as a BREW extension imple-
menting the ISchemeFFP interface.

To facilitate the ISchemeFFI and ISchemeFFP interfaces, I
extended TinyScheme to support references to C heap objects as
opaque Scheme cell contents through a new TinyScheme type,
foreign_data. A cell containing a reference to a C heap object
looks like this:

typedef struct foreign_data {
void *p;
uint32 clsid;

} foreign_data;

// and inside of the cell structure union:

154 Scheme and Functional Programming, 2006

struct {
foreign_data *data;
foreign_func cleanup;

} _fd;

Thus, the foreign_data structure contains a pointer to the C heap
region it references, and an unsigned double word that can contain
type information, such as the native class identifier of the object
being referenced. Within the cell of a foreign data object is also
a pointer to a foreign function the garbage collector invokes when
freeing the cell. This allows foreign functions to create instances
of C heap objects for use with other foreign functions without
the need for explicit creation and destruction by the application
developer. This new type is supported in the same manner as other
TinyScheme types, with functions available for creating instances
of this type as well as testing a cell to see if it contains an instance of
this type. The display primitive is also extended to display these
objects in a manner similar to the display of foreign functions.

The type data that the foreign_data type carries permits de-
velopers to provide type-safe cast functions when accessing C data
in foreign function interfaces. For example:

// Return the class of the foreign_data
static __inline AEECLSID
ISCHEMEFFITYPE_GetClass(foreign_data *p) {

return p ? p->clsid : 0;
}

// return whether this foreign_data is
// of the desired class
static __inline boolean
ISCHEMEFFITYPE_IsInstanceOf(foreign_data *p,

AEECLSID cls) {
return (boolean)(p && p->clsid == cls);

}

// Return a typeless pointer to the data
// contained by a foreign_data
static __inline void *
ISCHEMEFFITYPE_GetData(foreign_data *p) {

return p ? p->p : NULL;
}

static __inline IShell *
ISCHEMEFFPTYPE_GetShell(foreign_data *p) {

return
ISCHEMEFFITYPE_IsInstanceOf(p, AEECLSID_SHELL) ?
(IShell *)ISCHEMEFFITYPE_GetData(p) : NULL;

}

Using inline functions such as ISCHEMEFFITYPE_GetShell to
ensure type-safe access to foreign_data wrapped data at the C
layer is unfortunately a manual approach. Because developers can
at any time circumvent this type-safety by accessing the contents of
a foreign_data item directly, it must be enforced by convention
and inspection.

The foreign_data type is also used with foreign functions
in this implementation. When defining foreign functions with the
interpreter, the developer can also register a foreign_data ob-
ject and its associated destructor. This lets foreign functions keep
state without needing to directly modify the TinyScheme context
struct scheme.

Wireless terminals typically provide a watchdog timer, so that
a rogue application cannot lock the handset indefinitely and pre-
vent its use as a telephone. If application execution continues until
the watchdog timer fires (typically two seconds), the handset re-
boots, terminating the rogue application. To avoid erroneous script

errors from triggering this timer and resetting the handset, I add a
similar timing mechanism to Eval_Cycle, as well as a function
scheme_set_eval_max to let TinyScheme users set the watchdog
timer’s maximum value. If a script runs for longer than the max-
imum permitted time, execution is aborted and the runtime user
notified with an error indicating that the script could not be com-
pleted and the runtime’s state is indeterminate. The RocketBrowser
application sets the maximum script execution time at 500 ms, giv-
ing ample time for simple UI operations and a more-than-adequate
ceiling for remaining browser operations during page layout and
drawing.

With all of this in place, extensions to the TinyScheme inter-
preter could be written as stand-alone BREW extensions imple-
menting the ISchemeFFP interface, making dynamic loading of
extensions to the TinyScheme runtime possible.

Scheme and Functional Programming, 2006 155

