
Interaction-Safe State for the Web

Jay McCarthy Shriram Krishnamurthi
Brown University

jay@cs.brown.edu sk@cs.brown.edu

Abstract
Recent research has demonstrated that continuations provide a
clean basis to describe interactive Web programs. This account,
however, provides only a limited description of state, which is es-
sential to Web applications. This state is affected by the numerous
control operators (known as navigation buttons) in Web browsers,
which make Web applications behave in unexpected and even erro-
neous ways.

We describe these subtleties as discovered in the context of
working Web applications. Based on this analysis we present lin-
guistic extensions that accurately capture state in the context of the
Web, presenting a novel form of dynamic scope. We support this
investigation with a formal semantics and a discussion of appli-
cations. The results of this paper have already been successfully
applied to working applications.

1. Introduction
The Web has become one of the most effective media for software
deployment. Users no longer need to download large run-time sys-
tems, and developers are free to use their choice of programming
language(s). Web browsers have grown in sophistication, enabling
the construction of interfaces that increasingly rival desktop appli-
cations. The ability to centralize data improves access and reliabil-
ity. Finally, individual users no longer need to install or upgrade
software, since this can be done centrally and seamlessly on the
server, realizing a vision of always up-to-date software.

Set against these benefits, Web application developers must con-
front several problems. One of the most bothersome is the impact of
the stateless Web protocol on the structure of the source program.
The protocol forces developers to employ a form of continuation-
passing style, where the continuation represents the computation
that would otherwise be lost when the server terminates servlet ex-
ecution at each interaction point. Recent research demonstrates that
using continuations in the source reinstates the structure of the pro-
gram [13, 14, 16, 22].

Another source of difficulty is the Web browser itself. Browsers
permit users to perform actions such as cloning windows or click-
ing the Back button. These are effectively (extra-linguistic) con-
trol operators, because they have an effect on the program’s con-
trol flow. The interaction between these and state in the program

Proceedings of the 2006 Scheme and Functional Programming Workshop
University of Chicago Technical Report TR-2006-06

can have sufficiently unexpected consequences that it induces er-
rors even in major commercial Web sites [18]. The use of continu-
ations does not eliminate these problems because continuations do
not close over the values of mutable state.

One solution to this latter problem would be to disallow mu-
tation entirely. Web applications do, however, contain stateful
elements—e.g., the content of a shopping cart—that must persist
over the course of a browsing session. To describe these succinctly
and modularly (i.e., without transforming the entire program into a
particular idiomatic style), it is natural to use mutation. It is there-
fore essential to have mutable server-side state that accounts for
user interactions.

In this paper, we present a notion of state that is appropriate for
interactive Web applications. The described cells are mutable, and
follow a peculiar scoping property: rather than being scoped over
the syntactic tree of expressions, they are scoped over a dynamic
tree of Web interactions. To motivate the need for this notion of
state, we first illustrate the kinds of interactions that stateful code
must support (Sec. 2). We then informally explain why traditional
state mechanisms (that are, faultily, used in some existing Web ap-
plications) fail to demonstrate these requirements (Sec. 3) and then
introduce our notion of state (Sec. 4) with a semantics (Sec. 5). We
also briefly discuss applications (Sec. 6) and performance (Sec. 7)
from deployed applications.

2. Motivation
The PLT Scheme Web server [14], a modern Web server imple-
mented entirely in Scheme, is a test-bed for experimenting with
continuation-based Web programming. The server runs numerous
working Web applications. One of the most prominent is CON-
TINUE [15, 17], which manages the paper submission and review
phases of academic conferences. CONTINUE has been used by sev-
eral conferences including Compiler Construction, the Computer
Security Foundations Workshop, the ACM Symposium on Princi-
ples of Programming Languages, the International Symposium on
Software Testing and Analysis, the ACM Symposium on Software
Visualization, and others.

CONTINUE employs a sortable list display component. This
component is used in multiple places, such as the display of the list
of the papers submitted to the conference. The component has the
following behaviors: the sort strategy may be reversed (i.e., it may
be shown in descending or ascending order); when the user presses
the Back button after changing the sort, the user sees the list sorted
as it was prior to the change; the user may clone the window and
explore the list with different sorts in different browser windows,
without the sort used in one window interfering with the sort used
in another; and, when the user returns to the list after a detour into
some other part of the application, the list remains sorted in the
same way as it was prior to the detour, while its content reflects
changes to the state (e.g., it includes newly-submitted papers).

137



Figure 1. A diagram of an interaction with CONTINUE

Let us consider a sequence of interactions with the list of papers,
and examine how we would expect this component to behave.
Fig. 1 presents the outcome of these interactions. We use these
interactions as our primary example throughout the paper, so it is
important for the reader to study this scenario. Links in the pages
that are produced by user actions are represented as links in the tree
structure of the diagram. Because these actions produce multiple
browser windows, the diagram has three columns, one for each
browser window. Because these actions have a temporal ordering,
the diagram has eight rows, one for each time step.

In this diagram, the user’s browser windows are labeled X, Y,
and Z. The diagram uses icons to represent the content of pages.
A window with horizontal stripes represents a list sorted by author,
while one with vertical stripes represents a list sorted by title. The
color-inverted versions of these windows represent the same sort
but in the reverse order. The ‘A’ icon represents the site adminis-
tration page.

In Fig. 1, each node represents the page associated with a URL
the user visits. A node, i, is the child of another node, j, when the

page of j contains the URL of the page of i in a link or the action
attribute of a form, and the user followed the link or submitted the
form. Each edge is labeled with the action the user performed. The
numbers on the edges indicate the temporal order of the actions.

When reading this diagram, it is important to recall that some
user actions are not seen by the server. For example, action 4 creates
a new window and then follows a link. The server is not notified of
the cloning, so it only sees a request for the administrative section;
presenting the generated content in window Y is the browser’s
responsibility.

This diagram contains some interesting interactions that high-
light the requirements on the list component. First, the user clones
the browser windows, which tests the facility to keep a separate and
independent sort state for each browser window. This is equivalent
to ensuring that the Back and Refresh buttons work correctly [20].
Second, the sort state is not lost when the user goes to a different
part of the site (e.g., the Admin section in action 4) and then returns
(action 6) to the list.

The placement of node H in Fig. 1 needs particular explanation.
The edge leading to this node (7) is labeled with a Refresh action.
Many users expect Refresh to “re-display the current page”, though
they implicitly expect to see updates to the underlying state (e.g.,
refreshing a list of email messages should display new messages
received since the page was last generated). Even some browsers
assume this, effectively refreshing the page when a user requests
to save or print it. Under this understanding, the action 7 would
simply redisplay node D.

In reality, however, the browser (if it has not cached the page)
sends an HTTP request for the currently displayed URL. This re-
quest is indistinguishable from the first request on the URL, modulo
timestamps, causing program execution from the previous interac-
tion point.1 Therefore, when the user performs action 7, the server
does not receive a “redisplay” request; it instead receives a request
for the content pointed to by the ‘Reverse Sort’ link. The server du-
tifully handles this request in the same way it handled the request
corresponding to action 3, in this example displaying a new page
that happens to look the same, modulo new papers.

Now that we have established an understanding of the desired
interaction semantics of our component, we will describe the prob-
lem, introduce the solution context and then describe the solution.

3. Problem Statement and Failed Approaches
We have seen a set of requirements on the list component that
have to do with the proper maintenance of state in the presence of
user interactions (as shown in Fig. 1).These requirements reflect the
intended state of the component, i.e., the current sort state: ordering
(ascending vs. descending) and strategy (by-author vs. by-title).

We observe that values that describe the display of each page
are defined by the sequence of user actions that lead to it from
the root. For example, node G represents a list sorted by author in
reverse ordering, because action 2 initializes the sort state to “sort
by author”, action 3 reverses the sort, and actions 4 and 6 do not
change the sort state. To understand that the same holds true of node
H , recall the true meaning of Refresh discussed earlier.

These observations indicate that there is a form of state whose
modifications should be confined to the subtree rooted at the point
of the modification. For example, action 4’s effect is contained in
the subtree rooted at node E; therefore, action 5 and node F are
unaffected by action 4, because neither is in the subtree rooted at
E. The challenge is to implement such state in an application.

1 This execution can produce a drastically different outcome that would not
be recognized as the “same” page, or at the very least can cause re-execution
of operations that change the state: this is why, on some Web sites, printing
or saving a receipt can cause billing to take place a second time.

138 Scheme and Functional Programming, 2006



Context
To discuss the various types of state that are available for our use,
we present our work in the context of the PLT Scheme Web server.
This server exposes all the underlying state mechanisms of Scheme,
and should thus provide a common foundation for discussing their
merits.

The PLT Scheme Web server [14] enables a direct style of Web
application development that past research has found beneficial.
This past research [13, 14, 16, 22] has observed that Web pro-
grams written atop the Web’s CGI protocol have a form akin to
continuation-passing style (CPS). A system can eliminate this bur-
den for programmers by automatically capturing the continuation
at interaction points, and resuming this captured continuation on
requests.

The PLT Scheme Web server endows servlet authors with a key
primitive, send/suspend. This primitive captures the current con-
tinuation, binds it to a URL, invokes an HTML response generation
function with that URL to generate a page containing the URL, sends
this page to the user, and then effectively suspends the application
waiting for a user interaction via this URL. This interaction is han-
dled by the server extracting and invoking the continuation corre-
sponding to the URL, resuming the computation. Thus, each user
interaction corresponds to the invocation of some URL, and there-
fore the invocation of a continuation.

We will define and implement the desired state mechanism in
this context.

Failed Implementation Approaches
We first show, informally, that using the existing mechanisms of
the language will not work. We then use this to motivate our new
solution.

Studying the sequence of interactions, it is unsurprising that
a purely functional approach fails to properly capture the desired
semantics. Concretely, the state of the component cannot be stored
as an immutable lexical binding; if it is, on return from the detour
into the administrative section, the sort state reverts to the default.
This is shown in Fig. 2, with the error circled in the outcome of
action 7. The only alternative is to use store-passing style (SPS).
Since this transformation is as invasive as CPS, a transformation
that the continuation-based methodology specifically aims to avoid,
we do not consider this an effective option.2 (In Sec. 6.1 we explain
why this is a practical, not ideological, concern.)

The most natural form of state is a mutable reference (called a
box in Scheme), which is tantamount to using an entry in a database
or other persistent store. This type of state fails because there is a
single box for the entire interaction but, because modifications are
not limited to a single subtree, different explorations can interfere
with one another (a problem that is manifest in practice on numer-
ous commercial Web sites [18]). Concretely, as Fig. 3 shows, the
outcome of actions 6 and 7 would be wrong.

Since the two previous forms of state are not sensitive to con-
tinuations, it is tempting to use a form of state that is sensitive to
continuations, namely fluid-let.3 An identifier bound by fluid-let
is bound for the dynamic extent of the evaluation of the body of the
fluid-let. (Recall that this includes the invocation of continuations
captured within this dynamic extent.)

2 It is important to note that the administrative section implementation is
just one example of where SPS would be used; SPS, like CPS, is a global
transformation that would change our entire program.
3 PLT Scheme [9] contains a feature called a parameter. A parameter is like
a fluidly-bound identifier, except that it is also sensitive to threads. However,
this distinction is not germane to our discussion, and in fact, parameters fail
to satisfy us for the same reasons as fluid-let.

Figure 2. The interaction when lexical bindings are used for the
sort state without SPS, where the error is circled

Figure 3. The interaction when a box is used for the sort state,
where errors are circled

Fluidly-bound identifiers might seem to be a natural way of
expressing state in Web applications, because they behave as if
they are “closed” over continuations. Since, however, fluidly-bound
identifiers are bound in a dynamic extent, any changes to their
bindings are lost when the sub-computation wherein they are bound
finishes. For instance, a state change in the administrative section
would be lost when computation returns out of the extent of that
section (here, after action 6). The only alternative is to keep that
dynamic extent alive, which would require the entire computation
to be written in terms of tail-calls: in other words, by conversion
into continuation-passing.

Scheme and Functional Programming, 2006 139



4. Solution
The failed attempts above provide an intuition for why existing
approaches to scope and state are insufficient. They fail because
the scope in which certain state modifications are visible does not
match the scope defined by the semantics of the list component.

4.1 Interaction-Safe State
We define a state mechanism called Web cells to meet the state man-
agement demands of the list component and similar applications.

An abstraction of Fig. 1 is used to define the semantics of cells.
This abstraction is called an interaction tree. This tree represents
the essential structure of Web interactions and the resolved values
of Web cells in the program at each page, and takes into account
the subtleties of Refresh, etc. The nodes of this tree are called
frames. Frames have one incoming edge. This edge represents the
Web interaction that led to the page the frame represents.

Cells are bound in frames. The value of a cell in a frame is
defined as either (a) the value of a binding for the cell in the frame;
or (b) the value in the frame’s parent. This definition allows cell
bindings to shadow earlier bindings.

Evaluation of cell operations is defined relative to an evaluation
context and a frame, called the current frame. The continuations
captured by our Web server are designed to close over the current
frame—which, in turn, closes over its parent frame, and so on up to
the root—in the interaction tree. When a continuation is invoked, it
reinstates its current frame (and hence the sequence of frames) so
that Web cell lookup obtains the correct values.

Fig. 4 shows the interaction tree after the interactions described
by Fig. 1. The actions that modify the sort state create a cell
binding in the current frame. For example, when the user logs in
to CONTINUE in action 2, the application stores the sort state in
frame C with its default value author; and, during action 3, sort
is bound to rev(author) in frame D. In action 6, the value of sort
is rev(author), because this is the binding in frame D, which is
the closest frame to G with a binding for sort.

The semantics of Web cells is explicitly similar to the semantics
of fluid-let, except that we have separated the notion of evaluation
context and the context of binding. Recall that with fluid-let, a
dynamic binding is in effect for the evaluation of a specific sub-
expression. With Web cells, bindings affect evaluations where the
current frame is a child of the binding frame.

4.2 Implementation
To implement the above informal semantics, we must describe how
frames can be associated with Web interactions in a continuation-
based server, so that the relation among frames models the interac-
tion tree accurately. We describe this in the context of our canonical
implementation.

Each frame, i.e., node, in the interaction tree is reached by a
single action. We regard this single action to be the creator of the
frame. When the action creates the frame, the frame’s parent is
the current frame of the action’s evaluation. Each invocation of the
continuation must create a new frame to ensure the proper behav-
ior with regards to Refresh, as discussed in Sec. 2. Furthermore,
each action corresponds to an invocation of a continuation. In our
implementation, we must ensure that we distinguish between con-
tinuation capture and invocation. Therefore, we must change the
operation that captures continuations for URLs, send/suspend, to
create a frame when the continuation is invoked. We will describe
how this is done below after we introduce the Web cell primitives.

We summarize the Web cell primitives:

• (push-frame!)
Constructs an empty frame, with the current frame as its parent,
and sets the new frame as the current frame.

Figure 4. A diagram of an interaction with CONTINUE, labeled
with cells

• (make-cell initial-value)
Constructs and returns an opaque Web cell with some initial
value, storing it in the current frame.

• (cell-ref cell)
Yields the value associated with the cell by locating the nearest
enclosing frame that has a binding for the given cell.

• (cell-shadow cell new-value)
Creates a binding for the cell in the current frame associating
the new value with the cell.

We now re-write send/suspend to perform the frame creation
accurately. The definition is given in Fig. 5.

To show the other primitives in context, we present an example
in Fig. 6. Rather than the list example, which is complicated and
requires considerable domain-specific code, we present a simple
counter. In this code, the boxed identifier is the interaction-safe
Web cell. (The code uses the quasiquote mechanism of Scheme to

140 Scheme and Functional Programming, 2006



(define (send/suspend response-generator)
(begin0
(let/cc k
(define k-url (save-continuation! k))
(define response (response-generator k-url))
(send response)
(suspend))

(push-frame!)))

Figure 5. A send/suspend that utilizes push-frame!

(define the-counter (make-cell 0))

(define (counter)
(define request
(send/suspend
(λ (k-url)
‘(html

(h2 ,(number→string (cell-ref the-counter )))
(form ((action ,k-url))
(input ((type "submit") (name "A") (value "Add1")))
(input ((type "submit") (name "E") (value "Exit"))))))))

(let ((bindings (request-bindings request)))
(cond
((exists-binding? ’A bindings)
(cell-shadow
the-counter
(add1 (cell-ref the-counter )))

(counter))
((exists-binding? ’E bindings)
’exit))))

(define (main-page)
(send/suspend
(λ (k-url)
‘(html (h2 "Main Page")

(a ((href ,k-url))
"View Counter"))))

(counter)
(main-page))

Figure 6. A Web counter that uses Web cells

represent HTML as an S-expression, and a library function, exists-
binding?, to check which button the user chose.)

We present interactions with the counter application imple-
mented by the example code in Fig. 6 through the interaction tree
diagram in Fig. 7. Like Fig. 1, the links are labeled with the action
the user performs. The content of each node represents the value
of the counter displayed on the corresponding page. These interac-
tions are specifically chosen to construct a tree that is structurally
close to Fig. 1. Therefore, this small example shows the essence of
the flow of values in the example from Sec. 2.

The next section formalizes this intuitive presentation of the
Web cell primitives.

5. Semantics
The operational semantics, λFS , is defined by a context-sensitive
rewriting system in the spirit of Felleisen and Hieb [7], and is a
variant of the λ-calculus with call/cc [6] that has been enhanced

Figure 7. An interaction with the counter (Fig. 6), structurally
identical to the CONTINUE interaction

with terms for representing cells and frames. Evaluation contexts
are represented by the nonterminal E and allow evaluations from
left-to-right in applications, including in the arguments to the built-
in cell manipulation terms.

The semantics makes use of the observation that the only opera-
tions on the interaction tree are leaf-to-root lookup and leaf-append.
Therefore the semantics, and eventually the implementation, only
has to model the current path as a stack of frames. Lookup corre-
sponds to walking this stack, while adding a new node corresponds
to pushing a frame onto the stack.

The syntax is given in Fig. 8. The semantics makes use of the
domains defined by Fig. 9 for representing stores, frames, and the
frame stack. The semantics is defined by the evaluation context
grammar and relations in Fig. 10 and the reduction steps in Fig. 11.

The semantics uses short-hand for representing the frame stack
in the store. Each frame, φ, resides in the store, and φ[n 7→ l]
represents modification of the store location. The frame stack is
represented by the parent pointers in each frame. When a new frame

Scheme and Functional Programming, 2006 141



· ; · ; · :: Store × Frame Stack × Expression −→ Store × Frame Stack × Expression

µ ; Φ ; E[((λ (x1 . . . xn) e) v1 . . . vn)] −→ µ ; Φ ; E[e[x1/v1, . . . , xn/vn]]

µ ; Φ ; E[(call/cc e)] −→ µ ; Φ ; E[(e (λ (x) (abort Φ E[x])))]

µ ; Φ ; E[(abort Φ′ e)] −→ µ ; Φ′ ; e

µ ; Φ ; E[(push-frame!)] −→ µ ; (∅, Φ) ; E[(λ (x) x)]

µ ; (φ, Φ) ; E[(make-cell v)] −→ µ[l 7→ v] ; (φ[n 7→ l], Φ) ; E[(cell n)]

where n and l are fresh

µ ; Φ ; E[(cell-ref (cell n))] −→ µ ; Φ ; E[`(µ, Φ, n)]

µ ; (φ, Φ) ; E[(cell-shadow (cell n) v)] −→ µ[l 7→ v] ; (φ[n 7→ l], Φ) ; E[(cell n)]

where l is fresh

Figure 11. The reduction steps of λFS

v ::= (λ (x . . . ) e) (abstractions)

| c
c ::= (cell n) (cells)

where n is an integer

e ::= v (values)

| x (identifiers)

| (e e . . . ) (applications)

| (call/cc e) (continuation captures)

| (abort Φ e) (program abortion)

where Φ is a frame stack (Fig. 9)

| (push-frame!) (frame creation)

| (make-cell e) (cell creation)

| (cell-ref e e) (cell reference)

| (cell-shadow e e) (cell shadowing)

Figure 8. Syntax of λFS

is created, it is placed in the store with its parent as the old frame
stack top.

The semantics is relatively simple. The cell and frame oper-
ations are quite transparent. We have included call/cc/frame (in
Fig. 10) as an abbreviation, rather than a reduction step, to keep the
semantics uncluttered. If we were to encode it as a reduction step,
that step would be:

µ ; Φ ; E[(call/cc/frame e)] −→
µ ; Φ ; E[e (λ (x) (abort Φ E[(seqn (push-frame!) x)]))]

The order of frame creation in call/cc/frame is important. The
implementation must ensure that each invocation of a continuation
has a unique frame, and therefore a Refresh does not share the same
frame as the initial request. The following faulty reduction step fails
to ensure that each invocation has a unique frame:

µ ; Φ ; E[(call/cc/frame e)] −→
µ ; Φ ; E[e (λ (x) (abort (<new-frame>, Φ) E[x]))]

where <new-frame> is a frame constructed at capture time.

Stores
µ :: Store

µ ::= ∅ (empty store)

| µ[l 7→ v] (location binding)

Frames
φ :: Frame

φ ::= ∅ (empty frame)

| φ[x 7→ l] (cell identifier binding)

Frame Stack
Φ :: Frame Stack

Φ ::= ∅ (empty frame stack)

| φ, Φ (frame entry)

Figure 9. The semantic domains of λFS

In this erroneous reduction, the new frame is created when the
continuation is created, rather than each time it is invoked. Observe
that the correct reduction preserves the invariant that each frame has
a unique incoming edge in the interaction tree, which this reduction
violates.

6. Applications
Web cells answer a pressing need of stateful Web components: they
enable (a) defining stateful objects that (b) behave safely in the face
of Web interactions while (c) not demanding a strong invariant of
global program structure. Other techniques fail one or more of these
criteria: most traditional scoping mechanisms fail (b) (as we have
discussed in Sec. 4), while store-passing clearly violates (c).

Before we created Web cells, numerous PLT Scheme Web server
applications—including ones written by the present authors—used
to employ fluid-let; based on the analysis described in this paper,
we have been able to demonstrate genuine errors in these applica-
tions. As a result, PLT Scheme Web server users have adopted Web
cells in numerous applications, e.g., a server for managing faculty
job applications, a homework turn-in application, a BibTeX front-
end, a personal weblog manager, and, of course, CONTINUE itself.
We present three more uses of Web cells below.

142 Scheme and Functional Programming, 2006



Semantics

eval(e) holds iff

∅ ; (∅, ∅) ; e −→∗ µ ; Φ ; v

for some µ, Φ, and v

Evaluation Contexts
E ::= []

| (v . . . E e . . . )

| (make-cell E)

| (cell-ref E)

| (cell-shadow E e)

| (cell-shadow v E)

Cell Lookup
` :: Store × Frame Stack × Location → Value

`(µ, (φ, Φ), x) →v iff x 7→ l ∈ φ

and l 7→ v ∈ µ

`(µ, (φ, Φ), x) → `(µ, Φ, x) iff x 7→ l /∈ φ

Abbreviations
(let (x e1) e2) ≡ ((λ (x) e2) e1)

(seqn e1 e2) ≡ (let (x c2) c1) where x /∈ c2

(call/cc/frame e) ≡ (let (c e) (call/cc
(λ (v) (seqn (push-frame!) (c v)))))

Figure 10. The semantics of λFS

6.1 Components for Web Applications
Informally, a component is an abstraction that can be linked into
any application that satisfies the component’s published interface.
Many of the tasks that Web applications perform—such as data
gathering, processing, and presentation—are repetitive and styl-
ized, and can therefore benefit from a library of reusable code.

To maximize the number of applications in which the compo-
nent can be used, its interface should demand as little as possible
about the enclosing context. In particular, a component that de-
mands that the rest of the application be written in store-passing
or a similar application-wide pattern is placing an onerous inter-
face on the encapsulating application and will therefore see very lit-
tle reuse. Stateful components should, therefore, encapsulate their
state as much as possible.

We have built numerous Web components, including:

• list, whose state is the sort strategy and filter set.
• table, which renders a list component as a table split across

pages, whose state is an instance of the list component, the
number of list entries to display per page, and the currently
displayed page.

• slideshow, whose state includes the current screen, the pre-
ferred image scale, the file format, etc.

Of the applications described above, every single one had some
form of the list component, and a majority also had an instance
of table—all implemented in an ad hoc and buggy manner. Many
of these implementations were written using fluid-let and did not
exhibit the correct behavior. All now use the library component
instead.

6.2 Continuation Management
While Web applications should enable users to employ their
browser’s operations, sometimes an old continuation must expire,
especially after completing a transaction. For example, once a user
has been billed for the items in a shopping cart, they should not
be allowed to use the Back button to change their item selection.
Therefore, applications need the ability to manage their continua-
tions.

The PLT Scheme Web server attempts to resolve this necessity
by offering an operation that expires all old continuation URLs [14].
This strategy is, however, too aggressive. In the shopping cart ex-
ample, for instance, only those continuations that refer to non-
empty shopping carts need to be revoked: the application can be
programmed to create a new shopping cart on adding the first item.
In general, applications need greater control over their continua-
tions to express fine-grained, application-specific resource manage-
ment.

The interaction tree and frame stack associated with each Web
continuation provide a useful mechanism to express fine-grained
policies. The key feature that is missing from the existing contin-
uation management primitives is the ability to distinguish contin-
uations and selectively destroy them. The current frame stack of a
continuation is one useful way to distinguish continuations. Thus,
we extend the continuation management interface to accept a pred-
icate on frame stacks. This predicate is used on the frame stack as-
sociated with each continuation to decide whether the continuation
should be destroyed. For example, in Fig. 4 action 6’s continuation
could be destroyed based on the Web cell bindings of frame E,
such as a hypothetical Web cell storing the identity of the logged-in
user.

An application can create a predicate that identifies frames
whose destruction corresponds to the above policy regarding shop-
ping carts and purchase. First, the application must create a cell
for the shopping cart session. It must then create a new session, A,
when the cart goes from empty to non-empty. Then it must remove
the session A when the cart becomes empty again and cause contin-
uation destruction if the cart became empty because of a purchase.
The predicate will signal destruction for continuations whose frame
stack’s first binding for the shopping cart session was bound to A.
This particular style of continuation management enforces the pol-
icy that once a transaction has been committed, it cannot be modi-
fied via the Back button.

As another example, consider selective removal of continua-
tions corresponding to non-idempotent requests. These requests are
especially problematic in the presence of reload operations, which
implicitly occur in some browsers when the user tries to save or
print. We can create a cell that labels continuations and a pred-
icate that signals the destruction of those that cannot be safely
reloaded. This is a more robust solution to this problem than the
Post-Redirect-Get pattern used in Web applications, as we dis-
cuss in Sec. 8.3, because it prevents the action from ever being
repeated. Thus this infrastructure lets Web application develop-
ers give users maximal browsing flexibility while implementing
application-specific notions of safety.

6.3 Sessions and Sub-Sessions
A session is a common Web application abstraction. It typically
refers to all interactions with an application at a particular computer
over a given amount of time starting at the time of login. In the
Web cells framework, a session can be defined as the subtree
rooted at the frame corresponding to the Logged In page. This
definition naturally extends to any number of application-specific
sub-session concepts. For example, in CONTINUE it is possible for
the administrator to assume the identity of another user. This action

Scheme and Functional Programming, 2006 143



logically creates a sub-session of the session started by the initial
login action.

The essential code that implements this use case is below:

(define-struct session (user))
(define current-session (make-cell #f))
(define (current-user)

(session-user (cell-ref current-session)))
(define (login-as user)

(cell-shadow current-session (make-session user)))
(define (add-review paper review-text)

(associate-review-with-paper
paper
(current-user)
review-text))

We now explain each step:

• When the user first logs in, the current-session cell, whose
initial value is false, is shadowed by the login-as function.

• A new session is created and shadows the old current-session
cell, when the administrator assumes the identity of another
user via the login-as function.

• The current-user procedure is called whenever the current user
is needed, such as by the add-review function. This ensures that
the user is tracked by the current session, rather than any local
variables.

With this strategy, an administrator can open a new window and
assume the identity of a user, while continuing to use their main
window for administrative actions. In doing so, the administrator
need not worry about leakage of privilege through their identity,
since Web cells provide a confinement of that identity in each
subtree.

7. Performance
Frames and Web cells leave no significant time footprint. Their
primary cost is space. The size of a frame is modest: the smallest
frame consumes a mere 266 bytes (on x86 Linux). This number
is dwarfed by the size of continuations, of which the smallest is
twenty-five times larger. The size of the smallest frame is relevant
because it represents the overhead of each frame and the cost to
applications that do not use frames. CONTINUE has been used
with and without frames in conferences of various sizes without
noticeable performance changes in either case.

In practice, however, the space consumed depends entirely on
the user’s behavior and the structure of the Web application. Two
factors are necessary for Web cells to adversely affect memory con-
sumption: (1) users Refreshing URLs numerous times, and (2) the
Refreshed pages not allowing further interaction (i.e., not gener-
ating additional continuations). We find that in most PLT Scheme
Web server applications, most pages enable further interaction, and
thus capture additional continuations. As a result, the space for con-
tinuations almost always thoroughly dominates that for frames.

8. Related Work
8.1 State and Scope
Recent research has discussed thread-local storage in the Java [26]
and Scheme [9, 11] communities. In particular, Queinnec [22]
deals with this form of scope in the context of a multi-threaded
continuation-based Web server. However, in the face of continua-
tions, thread-local store is equivalent to continuation-safe dynamic
binders, i.e., parameters [9, 11]. For our purposes, these are the
same as fluid-let, which we have argued does not solve our prob-
lem. Even so, there is much similarity between the semantics of
these two types of state.

Web cells and fluid-let both install and modify bindings on a
stack that represents a node-to-root path in a tree: Frame stacks rep-
resent paths in the interaction tree, while fluid-let is defined based
on program stacks and the dynamic call tree. Operationally, this
means that the dynamic call tree is automatically constructed for
the programmer (by fluid-let) while frame stacks are constructed
manually (by push-frame!), although the PLT Scheme Web server
does this automatically on behalf of the programmer by burying
a push-frame! inside the implementation of send/suspend. Both
deal with the complication of interweaving of computation: Web
continuations may be invoked any number of times and in any
order, while programs with continuations may be written to have
a complicated control structure with a similar property. However,
to reiterate, fluid-let can only help us intuitively understand Web
cells, as the two trees are inherently different.

Lee and Friedman [19] introduced quasi-static scope, a new
form of scope that has been developed into a system for modular
components, such as PLT Scheme Units [8]. This variant of scope is
not applicable to our problem, as our composition is over instances
of continuation invocation, rather than statically defined (but dy-
namically composed) software components.

First-class environments [12] are a Lisp extension where the
evaluation scope of a program is explicitly controlled by the de-
veloper. This work does not allow programs to refer to their own
environment in a first-class way; instead, it only allows programs
to construct environments and run other programs in them. There-
fore, it is not possible to express the way make-cell introduces a
binding in whatever environment is currently active. Furthermore,
this work does not define a semantics of continuations. These limi-
tations are understandable, as first-class environments were created
in the context of Symmetric Lisp as a safe way to express parallel
computation. However, it may be interesting to attempt to apply our
solution to a framework with environments are first-class and try to
understand what extensions of such an environment are necessary
to accommodate Web cells.

Olin Shivers presents BDR-scope [24] as a variant of dynamic
scope defined over a finite static control-flow graph. BDR-scope
differs in a fundamental way from our solution, because λFS al-
lows a variant of dynamic scope defined over a potentially infinite
dynamic control-flow tree. However, it may be possible to use Shiv-
ers’s scope given an alternative representation of Web applications
and an analysis that constructed the static control-flow graph rep-
resenting the possible dynamic control-flows in a Web application
by recognizing that recursive calls in the program represent cycles
in the control-flow graph. Thus, although not directly applicable,
BDR-scope may inspire future research.

Tolmach’s Debugger for Standard ML [30] supports a time-
travel debugging mechanism that internally uses continuations of
earlier points in program executions. These continuations are cap-
tured along with the store at the earlier point in the execution. When
the debugger “travels back in time”, the store locations are un-
wound to their earlier values. Similarly, when the debugger “travels
back to the future”, the store is modified appropriately. The essen-
tial difference between this functionality and Web cells is that the
debugger unwinds all store locations used by the program without
exception, while in our context the programmer determines which
values to unroll by specifying them as Web cells.

Most modern databases support nested transactions that limit
the scope of effects on the database state until the transactions are
committed. Therefore, code that uses a database operates with a
constrained view of the database state when transactions are em-
ployed. A single Web cell representing the current transaction on
the database and a database with entries for each cell models the
shadowing behavior of those cells. This modeling is accomplished
by creating a new transaction, A, after each new frame is created

144 Scheme and Functional Programming, 2006



and shadowing the current-transaction cell to A. Cell shad-
owing is possible by modifying the database state. This modifica-
tion is considered shadowing, because it is only seen by transaction
descended from the current transaction, i.e., frames that are descen-
dents of the current frame. The transactions created in this model-
ing are never finalized. It may be interesting future work to study
the meaning of and conditions for finalization and what features
this implies for the Web cells model.

8.2 Web Frameworks
Other Web application frameworks provide similar features to the
PLT Scheme Web server, but they often pursue other goals and
therefore do not discuss or resolve the problems discussed in this
paper.

Ruby on Rails [23] is a Web application framework for Ruby
that provides a Model-View-Controller architecture. Rails applica-
tions are inherently defined over an Object-Relational mapping to
some database. The effect of this design is that all state is shared
globally or by some application-specific definition of a ‘session’.
Therefore, Rails cannot support the state management that Web
cells offer, nor can it support many other features provided by con-
tinuations.

Seaside [5] is a Smalltalk-based Web development framework
with continuation support. Seaside contains a very robust system
for employing multiple components on a single page and sup-
ports a variant of Web cells by annotating object fields as being
“backtrack-able.” However, they do not offer a formal, or intuitive,
account of the style of state we offer, and therefore do not offer
comparable principles of Web application construction.

Furthermore, Seaside has other limitations relative to the PLT
Scheme Web server. A single component cannot interrupt the com-
putation to send a page to the user without passing control to an-
other component using the call method, thereby precluding modal
interfaces (such as alerts and prompts). The continuation URLs are
not accessible to the program, inhibiting useful reusable compo-
nents like an email address verifier [17]. Furthermore, Seaside’s
request-processing system requires a component to specify all sub-
components it might render ahead of time, decreasing the conve-
nience of modularity.

Many Web frameworks are similar to Ruby on Rails, for exam-
ple Struts [27], Mason [21] and Zope [28]; or, they pursue different
goals than the PLT Scheme Web server and Seaside. MAWL [1],
<bigwig> [2], and JWIG [4] support validation and program
analysis features, such as sub-page caching and form input val-
idation, but do not support the Back button or browser window
cloning; and WASH/CGI [29] performs HTML validation, offers
Back button support, and has sophisticated form field type check-
ing and inference, but does not discuss the problems of this paper.
WASH/CGI use of monadic style allows the use of store-passing
style for the expression of the programs discussed in this paper.
However, we have specifically tried to avoid the use of SPS, so this
solution is not applicable to our context.

Java servlets [25] are an incremental improvement on CGI
scripts that generally perform better. They provide a session model
of Web applications and do not provide a mechanism for repre-
senting state with environment semantics, which precludes the rep-
resentation of Web cells. Thus they do not offer a solution to the
problem discussed in this paper.

8.3 Continuation Management
In Sec. 6.2, we discussed how Web cells can be used to orga-
nize continuation management as a solution to the problem of se-
lectively disabling old URLs. A sub-problem of this has been ad-
dressed by work targeted at preventing the duplication of non-
idempotent requests.

The Post-Redirect-Get pattern [10] is one strategy that is com-
monly used in many different development environments.4 With
this pattern, URLs that represent non-idempotent requests corre-
spond to actions that generate an HTTP Redirect response, rather
than an HTML page. This response redirects the browser to an idem-
potent URL. This strategy exploits the peculiar behavior of many
browsers whereby URLs that correspond to Redirect responses are
not installed in the History, and are therefore not available via the
Back button. However, nothing prevents these URLs from being ex-
posed via network dumps, network latency, or alternative browsers.
In fact, this does occur in many commercial applications, forcing
developers to employ a combination of HTML and JAVASCRIPT to
avoid errors associated with network latency. Therefore, a continua-
tion management strategy that can actually disable non-idempotent
URLs provides a more robust, linguistic solution.

Another solution [22] to this problem relies on one-shot con-
tinuations [3]. These continuations detect when they are invoked a
second time and produce a suitable error. This is easily expressed
by the following abstraction:

(define send/suspend/once
(λ (response-generator)
(define called? (box #f))
(define result (send/suspend response-generator))
(if (unbox called?)

(error ’send/suspend/once “Multiple invocations.”)
(begin (set-box! called? #t)

result))))

However, this strategy cannot be used to implement the shopping
cart example without severe transformation of the source program
to propagate the called? binding to each code fragment that binds
URLs. In contrast, our solution requires no transformations of the
source, nor does it require any features of Web cells in addition to
those presented.

9. Conclusion
We have demonstrated that the connection between continuations
and Web computation in the presence of state is subtler than previ-
ous research suggests. In particular, a naı̈ve approach inhibits the
creation of applications with desirable interactive behavior. Our
work explains the problem and provides a solution. We have im-
plemented this solution and deployed it in several applications that
are in extensive daily use.

Our result offers several directions for future work. First, we
would like to construct an analysis to avoid the cost of unused
frames in our implementation, similar to tail-call optimization,
which avoids the cost of redundant stack frames. Second, we would
like to extend our existing model checker [20] to be able to handle
the subtleties introduced by this type of state management. Third,
we would like to use the semantics to formally compare the expres-
sive power of Web cells with the other primitives we have discussed
in the paper. It appears that we can provide a typed account of Web
cells by exploiting those for mutable references, but we have not
confirmed this. Finally, we can presumably recast the result in this
paper as a monad of the appropriate form.

Acknowledgments
The authors thank Matthew Flatt for his superlative work on
MzScheme. Numerous people have provided invaluable feedback

4 The name of this pattern refers to the HTTP semantics that POST requests
are non-idempotent, while GET requests are idempotent. Applications such
as proxy servers assume this semantics to safely cache GET requests. How-
ever, few Web applications guarantee that GET requests are, in fact, idem-
potent.

Scheme and Functional Programming, 2006 145



on this work, including Ryan Culpepper, Matthias Felleisen and
Dave Herman. Several anonymous reviewers offered numerous in-
valuable comments on the content and presentation. We also thank
the many users of the PLT Scheme Web server and the CONTINUE
conference manager. This work was supported by NSF grants CCR-
0305949, CPA-0429492, and CCF-0447509.

References
[1] D. Atkins, T. Ball, M. Benedikt, G. Bruns, K. Cox, P. Mataga, and

K. Rehor. Experience with a domain specific language for form-based
services. In Conference on Domain-Specific Languages, 1997.

[2] C. Brabrand, A. Møller, and M. I. Schwartzbach. The <bigwig>
project. ACM Transactions on Internet Technology, 2(2):79–114,
2002.

[3] C. Bruggeman, O. Waddell, and R. K. Dybvig. Representing control
in the presence of one-shot continuations. In ACM SIGPLAN
Conference on Programming Language Design and Implementation,
pages 99–107, 1996.

[4] A. S. Christensen, A. Møller, and M. I. Schwartzbach. Extending
Java for high-level Web service construction. ACM Transactions on
Programming Language Systems, 25(6):814–875, 2003.

[5] S. Ducasse, A. Lienhard, and L. Renggli. Seaside - a multiple control
flow web application framework. In European Smalltalk User Group
- Research Track, 2004.

[6] M. Felleisen. On the expressive power of programming languages.
Science of Computer Programming, 17:35–75, 1991.

[7] M. Felleisen and R. Hieb. The revised report on the syntactic theories
of sequential control and state. Theoretical Computer Science,
102:235–271, 1992.

[8] M. Flatt and M. Felleisen. Cool modules for HOT languages. In
ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 236–248, 1998.

[9] M. Flatt, R. B. Findler, S. Krishnamurthi, and M. Felleisen.
Programming languages as operating systems (or, Revenge of the Son
of the Lisp Machine). In ACM SIGPLAN International Conference
on Functional Programming, pages 138–147, Sept. 1999.

[10] A. J. Flavell. Redirect in response to POST transaction, 2000.
http://ppewww.ph.gla.ac.uk/%7Eflavell/www/post-redirect.html.

[11] M. Gasbichler, E. Knauel, M. Sperber, and R. A. Kelsey. How to
add threads to a sequential language without getting tangled up. In
Scheme Workshop, Oct. 2003.

[12] D. Gelernter, S. Jagannathan, and T. London. Environments as first
class objects. In ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 98–110, 1987.

[13] P. Graham. Beating the averages, Apr. 2001.
http://www.paulgraham.com/avg.html.

[14] P. T. Graunke, S. Krishnamurthi, S. van der Hoeven, and M. Felleisen.
Programming the Web with high-level programming languages. In
European Symposium on Programming, pages 122–136, Apr. 2001.

[15] P. W. Hopkins. Enabling complex UI in Web applications with
send/suspend/dispatch. In Scheme Workshop, 2003.

[16] J. Hughes. Generalising monads to arrows. Science of Computer
Programming, 37(1–3):67–111, May 2000.

[17] S. Krishnamurthi. The CONTINUE server. In Symposium on the
Practical Aspects of Declarative Languages, pages 2–16, January
2003.

[18] S. Krishnamurthi, R. B. Findler, P. Graunke, and M. Felleisen.
Modeling Web interactions and errors. In D. Goldin, S. Smolka,
and P. Wegner, editors, Interactive Computation: The New Paradigm,
Springer Lecture Notes in Computer Science. Springer-Verlag, 2006.
To appear.

[19] S.-D. Lee and D. P. Friedman. Quasi-static scoping: sharing variable
bindings across multiple lexical scopes. In ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 479–
492, New York, NY, USA, 1993. ACM Press.

[20] D. R. Licata and S. Krishnamurthi. Verifying interactive Web
programs. In IEEE International Symposium on Automated Software

Engineering, pages 164–173, Sept. 2004.
[21] Mason HQ. The Mason Manual, 2005.
[22] C. Queinnec. The influence of browsers on evaluators or, contin-

uations to program web servers. In ACM SIGPLAN International
Conference on Functional Programming, pages 23–33, 2000.

[23] Ruby on Rails. The Ruby on Rails Documentation, 2005.
[24] O. Shivers. The anatomy of a loop: a story of scope and control. In

ACM SIGPLAN International Conference on Functional Program-
ming, pages 2–14, 2005.

[25] Sun Microsystems, Inc. JSR154 - JavaTMServlet 2.4 Specification,
2003.

[26] Sun Microsystems, Inc. The Class:ThreadLocal Documentation,
2005.

[27] The Apache Struts Project. The Struts User’s Guide. The Apache
Software Foundation, 2005.

[28] The Zope Community. The Zope Book, 2005.
[29] P. Thiemann. WASH/CGI: Server-side web scripting with sessions

and typed, compositional forms. In Symposium on the Practical
Aspects of Declarative Languages, pages 192–208, 2002.

[30] A. Tolmach and A. W. Appel. A debugger for Standard ML. Journal
of Functional Programming, 5(2):155–200, Apr. 1995.

146 Scheme and Functional Programming, 2006


