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Abstract
The case expressions of Scheme can and should be im-
plemented efficiently. A three-level dispatch performs
well, even when dispatching on symbols, and scales to
large case expressions.

Categories and Subject Descriptors D.3.4 [Program-
ming Languages]: Processors—compilers, optimiza-
tion

General Terms Algorithms, Languages, Performance

Keywords case expressions, symbols, Scheme

1. Introduction
Programming languages should be implemented not by
piling hack upon hack, but by removing the inefficien-
cies and restrictions that make additional hacks appear
necessary.

The case expressions of Scheme are a convenient
syntax for rapid selection between actions determined
by a computed value that is expected to lie within a
known finite set of symbols, numbers, characters, and
booleans [5].

Although Scheme’s case expressions are fast by
design, too many systems still implement them inef-
ficiently. These inefficient implementations have led
some programmers to write contorted and inefficient
code for case dispatch when case expressions would
have been more natural and more efficient.

In particular, some Scheme programmers believe the
evaluation of a case expression requires time propor-
tional to the number of literals mentioned in its clauses.
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Others believe the efficiency of multi-way case dis-
patch on characters depends upon the size of the char-
acter set. Some understand that multi-way case dis-
patch on numbers and characters is efficient, but believe
that multi-way case dispatch on symbols is inherently
inefficient. These incorrect beliefs have led some pro-
grammers to eschew the use of symbols as enumerated
values, to fear Unicode, or to avoid case expressions
altogether.

The contributions of this paper are:

1. To show that Scheme’s case expressions are effi-
cient when implemented properly.

2. To describe an efficient triple-dispatch technique for
implementing general case dispatch.

The techniques used to implement fast case dispatch
in languages like Pascal, C, and Java are well-known,
so the primary focus of this paper is on more Scheme-
specific issues: fast dispatch for symbols and for dis-
patch on values of mixed types.

2. Implementation
This section describes the implementation of case
expressions in Larceny v0.92, which uses the Twobit
compiler [1, 4].

The basic idea can be seen in figure 1:

1. Dispatch on the type.

2. Use some type-specific dispatch to map the value to
the index of its associated clause.

3. Use binary search on the clause index to select the
expressions to be evaluated for that clause.

What remains to be explained are the details. Following
Orbit’s example [7], Twobit’s first pass macro-expands
case expressions into more primitive expressions, as
described in R5RS 7.3 [5].

When control optimization is enabled, Twobit’s sec-
ond pass recognizes if expressions whose test is a call
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(let ((n (cond ((char? var0)
<dispatch-on-char>)
((symbol? var0)
<dispatch-on-symbol>)
; miscellaneous constants
((eq? var0 ’#f) ...)
...
((fixnum? var0)
<dispatch-on-fixnum>)
(else 0))))

<dispatch-on-n>)

Figure 1. General form of triple dispatch

to eq?, eqv?, memq, or memv whose first argument is
a variable and whose second argument is a literal con-
stant. When such an expression is found, Twobit looks
for nested if expressions of the same form whose test
compares the same variable against one or more literal
constants. Twobit analyzes these nested if expressions
to reconstruct the equivalent of a set of case clauses,
each consisting of a set of constants paired with the ex-
pressions to be evaluated if the variable’s value is one of
those constants. This analysis removes duplicate con-
stants, so the sets of constants are disjoint.

Twobit then decides between one of two strategies:

• brute-force sequential search
• the triple dispatch of figure 1

Sequential search is used if the total number of con-
stants is less than some threshold, typically 12, for
which benchmarks have shown the triple-dispatch tech-
nique to be faster than a simple sequential search.

If Twobit decides to use triple dispatch, then it num-
bers the clauses sequentially (reserving 0 for the else
clause, if any) and generates code of the form shown in
figure 1. If there are no miscellaneous constants, then
the corresponding cond clauses will not appear. If there
are no character constants, then the character clause is
unnecessary, and similarly for the symbol and fixnum
clauses.

(A fixnum is a small exact integer. Twobit’s idea
of the fixnum range may be smaller than the fixnum
range that is actually defined by some of Larceny’s
back ends, so Twobit may misclassify a large fixnum
as a miscellaneous constant. That misclassification is
safe because the miscellaneous constants come before
the fixnum? test in figure 1.)

(lambda (x)
(case x
((#\a #\e #\i #\o #\u #\A #\E #\I #\O #\U
a e i o u)
(f-vowel x))
((#\b #\c #\d #\f #\g #\h #\j #\k #\l #\m
#\n #\p #\q #\r #\s #\t #\v #\w #\x #\y #\z
#\B #\C #\D #\F #\G #\H #\J #\K #\L #\M
#\N #\P #\Q #\R #\S #\T #\V #\W #\X #\Y #\Z
b c d f g h j k l m n p q r s t v w x y z)
(f-consonant x))
(else
(f-other x))))

Figure 2. Example: source code

The three type-specific dispatches are independent,
and can be implemented in completely different ways.

To map a fixnum to a clause index, Twobit chooses
one of these techniques:

• sequential search
• binary search
• table lookup

Sequential search is best when there are only a few
fixnum constants, with gaps between them. The cost
of a binary search depends on the number of intervals,
not on the number of constants; for example, the cost
of testing for membership in [1, 127] is the same as the
cost of testing for membership in [81, 82]. The choice
between binary search and table lookup is made on
the basis of code size: a binary search costs about 5
machine instructions per interval, while a table lookup
costs about hi − lo words, where lo and hi are the least
and greatest fixnums to be recognized. Binary search
followed by table lookup would be an excellent general
strategy, but Twobit does not yet combine binary search
with table lookup.

To map a character to a clause index, Twobit con-
verts the character to a fixnum and performs a fixnum
dispatch.

To map a symbol to a clause index, Twobit can use
either sequential search or a hash lookup. In Larceny,
every symbol’s hash code is computed when the sym-
bol is created and is stored explicitly as part of the
symbol structure, so hashing on a symbol is very fast.
Twobit uses a closed hash table, represented by a vector
of symbols (or #f) alternating with the corresponding
clause index (or 0 for the else clause). As this vector is
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(lambda (x)
(let* ((temp x)

(n (if (char? temp)
(let ((cp (char->integer:chr temp)))
(if (<:fix:fix cp 65)

0
(if (<:fix:fix cp 124)

(vector-ref:trusted
’#(1 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2

2 2 2 2 1 2 2 2 2 2 0 0 0 0 0 0
1 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2
2 2 2 2 1 2 2 2 2 2 0)

(-:idx:idx cp 65))
0)))

(if (symbol? temp)
(let ((symtable

’#(#f 0 #f 0 #f 0 #f 0 w 2 x 2 y 2 z 2
#f 0 #f 0 #f 0 #f 0 #f 0 #f 0 #f 0 #f 0
#f 0 #f 0 #f 0 #f 0 #f 0 #f 0 #f 0 #f 0
#f 0 #f 0 #f 0 #f 0 #f 0 #f 0 #f 0 #f 0
#f 0 #f 0 #f 0 #f 0 #f 0 #f 0 #f 0 #f 0
c 2 d 2 e 1 f 2 #f 0 #f 0 a 1 b 2
k 2 l 2 m 2 n 2 g 2 h 2 i 1 j 2
s 2 t 2 u 1 v 2 o 1 p 2 q 2 r 2))

(i (fixnum-arithmetic-shift-left:fix:fix
(fixnum-and:fix:fix 63 (symbol-hash:trusted temp))
1)))

(if (eq? temp (vector-ref:trusted symtable i))
(vector-ref:trusted symtable (+:idx:idx i 1))
0))

0))))
(if (<:fix:fix n 1)

(f-other x)
(if (<:fix:fix n 2)

(f-vowel x)
(f-consonant x)))))

Figure 3. Example: partially optimized intermediate code

generated, Twobit computes the maximum distance be-
tween the vector index computed from a symbol’s hash
code and the vector index at which the symbol is actu-
ally found. This bound on the closed hash search allows
Twobit to generate straight-line code, without loops.

All of the fixnum, character, symbol, and vector
operations that implement these strategies will operate
on values that are known to be of the correct type and
in range, so most of those operations will compile into
a single machine instruction.

Figures 2 and 3 show the complete code for an ar-
tificial example. (For this example, all of the symbols
are found at the vector index computed from their hash

code, so no further search is necessary. The intermedi-
ate code has been edited to improve its readability.)

Twobit’s optimization of case expressions could
have been performed by implementing case as a low-
level macro. This would be slightly less effective than
what Twobit actually does, because Twobit will op-
timize nested if expressions that are equivalent to
a case expression, even if no case expression was
present in the original source code. The macro ap-
proach may nonetheless be the easiest way to add effi-
cient case dispatch to simple compilers or interpreters.
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3. Survey
An incomplete survey of about 140,000 lines of Scheme
code distributed with Larceny v0.92 located about
330 case expressions [4]. Of the 180 that were ex-
amined in detail, the largest and most performance-
critical were found within various assemblers and
peephole optimizers, written by at least three differ-
ent programmers. The largest case expression is part
of Common Larceny’s new in-memory code generator
(for which the fashionable term would be “JIT com-
piler”), and translates symbolic names of IL instruc-
tions to the canonical strings expected by Microsoft’s
System.Reflection.Emit namespace. This case
expression contains 217 clauses with 363 symbols. The
next largest contains 17 clauses with 102 symbols. Four
case expressions contain 32 to 67 fixnum literals, and
another dozen or so contain 16 to 31 symbols.

Only seven of the 180 case expressions contain lit-
erals of mixed type. One is the 217-clause monster,
which contains 214 lists as literals in addition to its 363
symbols, but those list literals are useless and derive
from an otherwise benign bug in a local macro; the 363
symbols should have been the only literals. (Had the
list literals slowed this case dispatch, loading a source
file into Common Larceny would be even slower than
it is.) The mixed types in three other case expressions
were caused by that same bug. The three purposeful
examples of mixed-type dispatch contain 7, 10, or 11
literals, mixing symbols with booleans or fixnums, and
their performance is unimportant. Mixed-case dispatch
appears to be more common in the less performance-
critical code whose case expressions were not exam-
ined in detail.

4. Benchmarks
Source code for the benchmarks described in this sec-
tion is available online [2].

A six-part case micro-benchmark was written to
test the performance of case dispatch on fixnums and
on symbols, for case expressions with 10, 100, or 1000
clauses that match one fixnum or symbol each. Figure 4
shows the 10-clause case expression for symbols, from
which the other five parts of the micro-benchmark can
be inferred. Each of the six parts performs one million
case dispatches, so any differences in timing between
the six parts must be attributed to the number of clauses
in each case dispatch, and to the difference between
dispatching on a fixnum and dispatching on a symbol.

(define (s10 x)
(define (f x sum)
(case x
((one) (f ’two (- sum 1)))
((two) (f ’three (+ sum 2)))
((three) (f ’four (- sum 3)))
((four) (f ’five (+ sum 4)))
((five) (f ’six (- sum 5)))
((six) (f ’seven (+ sum 6)))
((seven) (f ’eight (- sum 7)))
((eight) (f ’nine (+ sum 8)))
((nine) (f ’onezero (- sum 9)))
((onezero) (f ’oneone (+ sum 10)))
(else (+ sum 9))))

(f x 0))

Figure 4. One part of the case micro-benchmarks

The monster micro-benchmark is a mixed-type
case dispatch that uses the 217-clause, 577-literal case
expression of Common Larceny v0.92 to translate one
million symbols to strings. (That many translations
might actually occur when a moderately large program
is loaded into Common Larceny.)

A set of four benchmarks was written to measure
performance of Scheme systems on components of
a realistic parsing task [2]. The parsing benchmark
reads a file of Scheme code, converts it to a string, and
then parses that string repeatedly, creating the same
data structures the read procedure would create. The
timed portion of the parsing benchmark begins af-
ter the input file has been read into a string, and does
not include any i/o. The lexing and casing bench-
marks are simplifications of the parsing benchmark,
and measure the time spent in lexical analysis and in
case dispatch, respectively. (The lexing benchmark
computes the same sequence of lexical tokens that are
computed by the parsing benchmark, but does not
perform any other parsing. The main differences be-
tween the lexing benchmark and the casing bench-
mark are that the casing benchmark does not copy
the characters of each token to a token buffer and does
not keep track of source code locations. The casing
benchmark still includes all other string operations that
are performed on the input string during lexical anal-
ysis, so it is not a pure case dispatch benchmark.) The
reading benchmark performs the same task as the
parsing benchmark, but uses the built-in read proce-
dure to read from a string port (SRFI 6 [3]). The main
purpose of the reading benchmark is to show that the
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parsing benchmark’s computer-generated lexical an-
alyzer and parser are not outrageously inefficient.

Both the state machine of the lexical analyzer and
the recursive descent parser were generated by the au-
thor’s LexGen and ParseGen, which can generate lex-
ical analyzers and parsers written in Scheme, Java,
or C [2]. This made it fairly easy to translate the
parsing benchmark into Java. As it was not obvious
whether the strings of the Scheme benchmark should
be translated into arrays of char or into instances of the
StringBuilder class, two versions of the Java code
were written; a third version, just for grins, uses the
thread-safe StringBuffer class.

The timings reported in the next section for the
casing, lexing, parsing, and reading benchmarks
were obtained by casing, lexing, parsing, or reading the
nboyer benchmark one thousand times [2].

5. Benchmark Results
Tables 1 and 2 show execution times for the bench-
marks, in seconds, as measured for several implementa-
tions on an otherwise unloaded SunBlade 1500 (64-bit,
1.5-GHz UltraSPARC IIIi). Most of the timings rep-
resent elapsed time, but a few of the slower timings
represent CPU time. For the compiled systems and the
fastest interpreters, the timings were obtained by aver-
aging at least three runs. For the slower interpreters, the
reported timing is for a single run.

For the two largest case micro-benchmarks, three
of the Scheme compilers generated C code that was too
large or complex for gcc to handle.

From table 1, it appears that compilers C and D use
sequential search for all case expressions. Compilers
B, E, and F generate efficient code when dispatching
on fixnums, but appear to use sequential search for
symbols.

Compiler A (Larceny v0.92) has the best overall per-
formance on the micro-benchmarks, and Compiler B
(Larceny v0.91) is next best. The difference between
them is that Larceny v0.92 implements case expres-
sions as described in this paper.

Table 2 shows that, for the parsing benchmark,
most of these implementations of Scheme spend roughly
half their time in case dispatch. The two that spend the
least time in case dispatch, compilers F and B, perform
well on the fixnum case micro-benchmarks and appear
to be doing well on the parsing benchmark’s charac-
ter dispatch also. Compiler C’s performance may mean

sequential search is fast enough for this benchmark, or
it may mean that compiler C recognizes case clauses
that match sets of consecutive characters (such as #\a
through #\z, #\A through #\Z, and #\0 through #\9)
and tests for them using a range check instead of testing
individually for each character.

The difference between Larceny v0.92 and v0.91
(compilers A and B) does not matter for the parsing
benchmark, because v0.91 was already generating effi-
cient code for case dispatch on characters.

6. Related Work
Compilers for mainstream languages typically imple-
ment case/switch statements using sequential search,
binary search, or jump tables [6].

A binary search usually concludes with a jump to
code for the selected case. In the subset of Scheme
that serves as Twobit’s main intermediate language,
jumps are best implemented as tail calls. Those calls
would interfere with many of Twobit’s intraprocedural
optimizations, so Twobit does not use a single-level
binary search.

Jump tables are hard to express in portable Scheme
without using case expressions, which are not part
of Twobit’s intermediate language. Adding even a re-
stricted form of case expressions to Twobit’s interme-
diate language is unattractive, because it would com-
plicate most of Twobit’s other optimizations.

Jump tables can be implemented portably using a
vector of closures, but it would cost too much to create
those closures and to store them into a vector every time
the scope containing a case expression is entered. A
vector of lambda-lifted closures could be created once
and for all, but would entail the costs of passing extra
arguments and of making an indirect jump. With either
form of jump table, calling a closure that cannot be
identified at compile time would interfere with many
of Twobit’s intraprocedural optimizations.

The Orbit compiler demonstrated that it is practical
to macro-expand case expressions into if expressions,
and for control optimization to recognize and to gener-
ate efficient code from those if expressions [7].
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case monster
10 literals 100 literals 1000 literals 577 literals

fixnum symbol fixnum symbol fixnum symbol mixed
Compiler A .04 .05 .04 .08 .11 .13 .16
Compiler B .04 .05 .07 .21 .14 3.94 3.04
Compiler C .04 .04 .18 .17 3.80 4.61 8.33
Compiler D .09 .09 .24 .22 — — 15.94
Compiler E .06 .12 .02 .50 — — 15.11
Compiler F .05 .70 .04 6.03 — — 26.95
Interpreter G 1.52 1.30 10.00 7.80 96.81 78.03 26.21
Interpreter H 1.79 1.76 10.65 10.91 115.52 119.67
Interpreter I 3.48 3.48 15.62 15.38 188.12 186.38 33.50
Interpreter J 6.00 6.33 20.99 21.63 193.17 196.21 60.26
Interpreter K 5.00 5.00 21.00 24.00 211.00 256.00 59.00
Interpreter L 5.36 5.38 29.09 28.30 280.22 289.58 147.43
Interpreter M 6.12 4.48 49.48 30.42 447.08 301.53 338.78
Interpreter N 13.82 13.88 77.68 78.18 757.16 776.75 459.51

Table 1. Timings in seconds for the case and monster micro-benchmarks

casing lexing parsing reading
HotSpot (array of char) 11.05
HotSpot (StringBuilder) 12.21
Compiler C 7.36 10.67 13.27 2.23
Compiler F 2.83 5.39 14.48 2.60
Compiler B 6.93 12.84 21.17 14.67
HotSpot (StringBuffer) 24.95
Compiler D 13.53 22.65 27.20 17.78
Compiler E 45.67 63.88 84.46 72.53
Interpreter G 79.93 108.44 128.95 13.88
Interpreter H 82.80 116.12 214.82 18.98
Interpreter I 180.64 237.37 297.96
Interpreter L 257.13 383.77 432.13
Interpreter J 436.19 566.83 645.31
Interpreter M 479.36 589.17 701.70
Interpreter K 468.00 628.00 745.00
Interpreter N 1341.93 1572.89 1793.64

Table 2. Timings in seconds for parsing and related benchmarks
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A. Notes on Benchmarking
The benchmarked systems:

HotSpot is the Java HotSpot(TM) Client VM
of Sun Microsystems (build 1.5.0 01-b08, mixed
mode, sharing).

A is Larceny v0.92.

B is Larceny v0.91.

C is Chez Scheme v6.1.

D is Gambit 4.0b17.

E is Chicken Version 1, Build 89.

F is Bigloo 2.7a.

G is MzScheme v352.

H is MzScheme v301.

I is the Larceny v0.92 interpreter.

J is the Gambit 4.0b17 interpreter.

K is the Bigloo 2.7a interpreter.

L is the MIT Scheme 7.3.1 interpreter.

M is the Scheme 48 1.3 interpreter.

N is the Chicken 1,89 interpreter.

Except for MzScheme, the interpreters were bench-
marked with no declarations and with the default
settings. The compilers and MzScheme were bench-
marked as in Chez Scheme’s (optimize-level 2):
safe code, generic arithmetic, inlining the usual proce-
dures. Specifically:
A was compiled with
(compiler-switches ’fast-safe) and
(benchmark-mode #f).
B was compiled the same as A.
C was compiled with (optimize-level 2).
D was compiled with
-prelude "(declare (extended-bindings))"
-cc-options "-O2" -dynamic.
E was compiled with -no-trace
-optimize-level 2 -block -lambda-lift.
F was compiled as a module with -O6 -copt -O2.
G was interpreted as a module.
H was interpreted the same as G.
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