
Experiences with Scheme in an Electro-Optics Laboratory

Richard A. Cleis
Air Force Research Laboratory

Keith B. Wilson
Air Force Research Laboratory

Abstract
The Starfire Optical Range is an Air Force Research Laboratory en-
gaged in Atmospheric Research near Albuquerque, New Mexico.
Since the late 1980’s it has developed numerous telescope systems
and auxiliary devices. Nearly all are controlled by C programs that
became difficult to manage due to the large number of configura-
tions required to support the experiments. To alleviate the problem,
Scheme has been introduced in at least six distinct ways. This paper
describes the uses of Scheme, emerging programming techniques,
and general experiences of the past several years.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming — Scheme

; D.2.3 [Programming Techniques]: Coding Tools and Tech-
niques — DrScheme, MzScheme

; J.2 [Computer Applications]: Physical Sciences and Engi-
neering — aerospace, astronomy, engineering

General Terms Algorithms, Design

Keywords embedding, scripting, extension language, motion con-
trol, servo, communication, remote development

1. Introduction
Laboratory Mission The primary mission of the Starfire Optical
Range (SOR) is to develop and demonstrate optical wavefront con-
trol technologies. In other words, it builds systems that remove the
distortion caused by air turbulence when light propagates through
the atmosphere. [1] The site also supports field experiments by oth-
ers within the research community.

Experiments are conducted on five permanent precision tele-
scope systems. Many experiments involve multiple telescopes and
all telescopes are used for multiple experiments. Some telescopes
have components that must move in concert with the main gimbals
and most have at least one tracking system. The variety of systems
is significant; the largest telescope has a 3.5 meter diameter pri-
mary mirror and weighs nearly 150 tons, while the smallest has an
aperture of about a quarter meter and weighs about one half ton.

Tracking requirements include celestial objects, artificial satel-
lites, aircraft, balloons, lunar retro-reflectors, interplanetary space-
craft, Space Shuttles returning from space, Leonids meteor trails,
terrestrial vehicles, and diagnostic sites downrange of the SOR.

Proceedings of the 2006 Scheme and Functional Programming Workshop
University of Chicago Technical Report TR-2006-06

Laboratory Environment The following lists highlight, from the
perspective of developing and operating telescope systems, the
nature of the laboratory and strategic improvements that could
increase the effectiveness of laboratory software.

• Five telescope systems are run with about a dozen computers.
• As many as three telescopes are needed for a single experiment.
• Two developers do most telescope related programming.
• About eight developers are needed to program all systems.
• Most telescopes are used for several long term experiments.
• At least several operators are needed for most experiments.
• Operators have only casual knowledge of the technology.
• Principle Investigators normally have only casual knowledge of

the software.
• New experiments sometimes require new computations and

configurations.
• Debugging is sometimes only possible during experiments.
• Subsytems need to communicate during experiments.
• Extensive legacy C software is essential to real-time operations.
• Planning requires significant computations.
• Software developers must consider safety.

At least several of us believe that software could be significantly
more effective if the following issues were addressed:

• A non-expert programmer needs to be able to maintain the com-
putational and control systems. Currently, only one developer
can maintain or improve them.

• Software is needed to reliably repeat operations as much as
several years apart. Currently, if specific operations are to be
repeated, the original crew is normally required; this is often
difficult for a variety of reasons.

• Principle Investigators need to be provided with clear scripting
interfaces for their experiment, even if they only use them to
understand and record the procedures.

• Non-expert programmers need to be able to program the cre-
ations of the expert computer engineers; most programs can
only be maintained by the original engineer.

• Maintenance and performance verification needs to be auto-
mated so that they are accomplished more often and trends can
be identified.

• Experiments need to be more automated. Most events are se-
quenced by operators pushing virtual buttons on user interfaces.

Why Scheme? We chose Scheme to address the above issues for
a number of reasons. Its elegant syntax appropriately matches the

71

modest programming requirements, and macros are used to pro-
vide simpler syntaxes for scripting. S-expressions are suitable for
ethernet communications between dozens of our platforms, includ-
ing those hosting scripting environments. The same s-expressions
may be created and read by C++ and Java programs; this allows
Scheme to be used in the lab without requiring all programmers to
adopt it. Garbage collection, the absence of assignment statements,
and the ability to redefine functions while programs are running are
capabilities essential to the rapid development that is occasionally
needed while experiments are in progress.

As a Functional Programming Language, Scheme is suitable
even in scripting environments that are mainly used to sequence the
movement of equipment. Beneath the procedural scripting, func-
tional programming elegantly access values on remote systems, ap-
ply filters, and delivers the results to other remote systems. Scheme
is also appropriate for eventually extending our C language plan-
ning and scheduling software; functional programming in Scheme
could more sensibly manipulate lists which are normally built from
the results of functions related to celestial and orbital mechanics.

MzScheme, in particular, is embeddable in C and extendable by
C. Both techniques are used to access hardware. MzScheme is also
a reliable environment for subsystems that run continuously.

Aside from the useful tools that are provided, we chose PLT
Scheme because it is supported by numerous teaching aids: web tu-
torials, textbooks, and an active online forum. The efforts expressed
in this paper represent a shift in the implementation of telescope
system computers at the SOR; the changes would reverse if learn-
ing materials were not available to the programmers who choose to
see the value of Scheme.

2. Six Uses for Scheme
The SOR is an electro-optics laboratory that depends on numer-
ous devices which were nearly all programmed in C over the past
two decades; C is the natural choice because most programs re-
quire access to the hardware bus. Experiments require the specific
configuration of up to ten telescope subsystems, a problem which
becomes more difficult to manage as the laboratory grows, more
devices are built, and more experiments are attempted. To allevi-
ate these problems, extension languages have been implemented in
many of the motion control devices such as the telescope gimbals
and large optical components. These telescope gimbals consist of
precision bearing structures, accurate position transducers, and em-
bedded motors which form closed-loop servos that precisely move
the telescopes.

We are using Scheme in six different ways: embedding in
C, Scheme motion controllers, C-language gimbals servos inter-
faced with s-expression parsers, the remote command and status
paradigm for all telescope systems, scripting environments for ex-
periments, and the remote development environment for gimbals
servos. Highlights are shown in this section.

Embedding in C We embedded MzScheme in the site’s ubiqui-
tous motion control application, the Starfire Optical Range Acqui-
sition and Pointing System (SORAPS). This C application had be-
come unwieldy after numerous capabilities were gradually added,
since 1987, to accommodate all experiments conducted on the prin-
ciple telescopes. We also embedded MzScheme in several pro-
grams required for the operation of subsystems. Configuring and
controlling these programs is significantly more efficient using
Scheme because behavior can be changed without rebuilding C.

Motion Control Systems We developed Scheme motion control
systems for two optical rotators and the 3-axis secondary mirror
controller on the largest telescope. Using DrScheme, we proto-
typed these relatively low bandwidth controllers then installed the
final program on a single board computer that continuously runs

MzScheme. We could have used one of the commercial servo de-
velopment tools acquired for other projects, but they impose re-
strictions on hardware and software. MzScheme enabled us to build
unique controllers with open communications; they can be ported
to a variety of ordinary hardware capable of running MzScheme.

Interface to Servos for Large Gimbals The gimbals servos for
the three largest telescopes are C language applications linked to
the Small Fast S-expression library. [2] We extended the library to
provide rudimentary single-depth evaluation of s-expressions that
are either received via ethernet or read from a configuration file.
This approach allows the servos to be configured and accessed as
if they had Scheme embedded, maintaining consistency with the
Scheme systems yet requiring only a very light weight library.

Paradigm for Remote Commands and Status S-expressions are
the only messages used for remote commands and status of the
telescope systems. Other devices (e.g. optical image stabilizers and
telemetry servers) also communicate to the system with Scheme
commands, even if formed with a printf statement in C. The typi-
cal “bit-speak” often found in hardware interface documents is re-
placed with elegant and self-documenting s-expressions.

Scripting Environment for Experiments We use DrScheme as
a scripting environment to automate the telescope and subsystems
during experiments. The scripts consists of macros that access sup-
port functions which maintain communications with remote sys-
tems and control their activity. DrScheme enables our most com-
plex telescope experiments to be conducted using simple keywords
that may be manipulated without interrupting operations.

Remote Development Environment We wrote tools in DrScheme
for remotely running and testing the gimbals servos of the three
largest telescopes. The “viewport graphics” displayed performance
while we used the REPL and threads to move the gimbals and
optimize properties contained in the servo. After developing the
tools for a new controller for the largest telescope, we used them
to complete similar controllers on two other telescopes. Only a few
days were required for each of the second two because DrScheme
had enabled us to easily write and reuse tools specific to large
telescopes.

3. Programs and Tools
The first author wrote most of the following software, the second
author has been writing the programs for the newest subsystems
and has been configuring the diskless linux platforms that host most
of the controllers.

Major Programs The major programs are SORAPS and NMCS.
Each of five telescopes needs to be connected via ethernet to one of
many installations of SORAPS, a full featured C program that han-
dles operations, planning, and real-time computation. MzScheme
was embedded to aid configuration and communication.

NMCS is a gimbals servo written in C and linked to the Small
Fast S-Expression Library. The gimbals for the three largest tele-
scopes require a separate NMCS; each runs continuously on a sin-
gle board computer. SORAPS and NMCS are linked via ethernet
and communicate exclusively with s-expressions. The remaining
two gimbals are controlled via serial ports connected to SORAPS.

Minor Programs Embedded MzScheme programs are used to
control a secondary telescope mirror and bridge new s-expressions
to legacy subsystems that require proprietary communication for-
mats. These programs communicate to both SORAPS and the
scripting environment for purposes such as dome control, optical
configuration and alignment, and telescope focus.

Two optical rotators are controlled by programs we wrote for
MzScheme, using a few extensions to access the hardware. These

72 Scheme and Functional Programming, 2006

rotators communicate with SORAPS to report their position and
receive commands.

Applications we created in DrScheme include simulators for
gimbals, telemetry, an image-stabilizer, a rotator, and a commu-
nication bridge.

Developmental Software We developed a suite of functions and
a module to script the telescope systems for complex experiments.
We also developed servo development tools that were used to opti-
mize NMCS for each of the three telescope gimbals.

Libraries, Extensions, and Development Tools Programs that
embed MzScheme are linked to libmzgc.a and libmzscheme.a. SO-
RAPS and all of its supporting Scheme files are contained in a vol-
ume which can be mounted by any OS X platform. Because the
libraries are linked to the application, platforms can run SORAPS
even if no Scheme environments are installed.

NMCS programs are linked to libsexp.a, built from the source
files of the Small Fast S-Expressions project. Two telescopes and
one rotator are connected via serial ports implemented in a Scheme
extension that we wrote. For all of the development described in
this paper, we used DrScheme, KDevelop, and Xcode.

4. Using Scheme to Script a Telescope System
We developed Scheme functions and scripts for a long term series
of experiments that began in early 2006. The scripts are designed to
be readable by non-programmers and modifiable by personnel who
understand the operations. They serve as an executable operational
summary as well as an essential tool for operations. A principle
script is used to guarantee operations; it assumes no state and
performs all known initializations. Other scripts are used to suspend
and resume the principle script without performing initializations
that would be disruptive.

The scripts are supported by a suite of functions that commu-
nicate with the subsystems and perform experiment-specific com-
putations. A module of macros defines key-phrases that can be se-
quenced by a macro that defines each script.

4.1 The Principle Script
The system needs to point to a moving balloon-borne platform con-
taining scientific instruments. Telemetry messages are requested,
filtered, and routed to SORAPS which computes dynamic vectors
for the telescope, the dome, the elevation window contained by
the dome, and the optical rotator. All subsystems are set into mo-
tion, then the script waits until they mechanically converge on the
platform. The script also positions several mirrors in the optical
path and sets the position of the mirror used for focus. A macro,
define-sor-script, creates a script that is named with the first
parameter:

(define-sor-script find-platform
prepare-subsystem-connections
verify-subsystem-connections
prepare-soraps-for-wgs84-propagation
feed-telemetry-to-soraps
tell-subsystems-to-follow-soraps
wait-for-subsystems-to-converge)

Define-sor-script wraps the script elements in an exception
handler that will call a function that stops the system if an error
occurs. It then executes the sequence in a thread that can be killed
by other scripts, such as stop.

(define-syntax define-sor-script
(syntax-rules ()

((_ proc-name f1 ...)

(define-syntax proc-name
(syntax-id-rules
()

(_ (begin
(keep-thread
(thread
(lambda ()

(with-handlers
((exn?

(lambda (exn)
(stop-system
(exn-message exn)))))

(f1) ...
(display-final-message ’proc-name)))))

(display-initial-message ’proc-name))))))))

The module containing define-sor-script manages the thread
(saved with keep-thread) and defines functions that display ini-
tial and final messages in the REPL. The script is defined with
syntax-id-rules to enable operators to type the name, without
parentheses, to execute the script. This elementary macro threads
the sequence, stops the system when an exception occurs, and pro-
vides diagnostics messages; the script writer is merely required to
use define-sor-script.

Prepare-subsystem-connections is a macro that sets the
addresses and ports of connections to all subsystems and starts a
thread that evaluates incoming messages. It also sends a message
to a a common displayer used to show the occurrence of significant
events:

(define-syntax prepare-subsystem-connections
(syntax-id-rules
()
(_ (begin (set-senders-to-subsytems!)

(start:evaluate-network-inputs)
(send-to-displayer
"Connections were created.")))))

This macro is typical of those in the rest of the script. It contains
functions that provide utility to a script writer, and it has alterna-
tives which make it necessary; macros for simulators could have
been used instead. Some macros could have been implemented as
functions, but we wanted all elements of the scripting environment
to be executable without parentheses. This allows the script writer
to test individual macros in the REPL.

More complex scripts include search algorithms and the use of
automatic tracking systems, but we have not yet used them.

We developed this elementary environment and started using it
for all balloon experiments. However, it is merely a first attempt at
scripting, a software experiment inside of a physics experiment. We
plan to thoroughly investigate other possibilities, such as creating
specific languages for the experiments and subsystems.

4.2 Strategy
Writing scripts and their support functions “from the top, down”
biased scripts toward what users want, rather than what program-
mers want to write. To minimize the use of resources, we devel-
oped as much software as possible before requiring the operation
of any remote subsystems. Skeleton functions in each layer were
debugged with the entire program before the skeletons were “filled
in”, creating the need for another layer. The lowest layer provided
the network connections; they simulated messages from the remote
systems which were not yet available.

This minimal executable script served as executable documen-
tation suitable for preparing for the Critical Design Review. Each
network simulation also provided an operating specification for the

Scheme and Functional Programming, 2006 73

development of incomplete subsystems. Eventually, we debugged
the connections, one at a time, as we replaced each simulator with
the corresponding subsystem.

We used an outliner program to specify the scripts. Simple
conditionals and looping can be represented in an outline; anything
more complicated was not considered for the scripting layer. After
many iterations, the top layer of the outlines evolved into simple
lists of procedures that were eventually implemented as macros.
The second layer was implemented as the top layer of Scheme
functions; so no conditionals or looping was required in the script.

The outline formed what is suggestive of “wish lists” in the text
How to Design Programs. [4] Functions were written to simulate
requirements of the wish lists so that a working simulation could be
completed before expensive engineering commenced. In the future,
we intend to employ such textbook ideas in documentation for
writing scripts and support functions.

We developed the software with the intent that it could be main-
tained and extended in three levels. The highest level, scripting, is
usable by anyone who has familiarity with programming. The low-
est level functions are to be maintained by the experts who cre-
ated the optical-mechanical subsystems. The middle level is for
programmers who can understand the needs of the script writers
and the operation of the systems. We expect that this strategy will
help us effectively manage the software for telescope systems and
experiments.

5. Details of Scheme Use
5.1 Embedding in C
We embedded MzScheme in C programs for three reasons. First,
it serves as the extension language for the legacy C program, SO-
RAPS. Second, it runs Scheme programs that access hardware in
C. Third, it provides a bridge between Scheme programs and pro-
prietary network libraries. Embedding Scheme, here, refers to link-
ing MzScheme with C and creating a single Scheme environment
when the C program is started. This environment contains defini-
tions of scheme primitives that access functions previously written
in C. Functions in the environment are invoked by the evaluation of
Scheme files, the evaluation of expressions received via ethernet,
or by calls from the C side of the program.

5.1.1 Extension Language for SORAPS
Embedding MzScheme in SORAPS allows other programs to con-
figure it, enables networked operation, and provides a means for
other programs to access essential calculations.

Configuring SORAPS Configuring SORAPS is a difficult prob-
lem. Individual SORAPS installations control the five largest tele-
scopes, and multiple installations may control each telescope. Also,
temporary subsystems (including telescopes) occasionally need ac-
cess to the calculations. These configurations cannot be handled
elegantly with simple configuration files partly because the tele-
scopes have different command and status requirements. Further-
more, many configuration items will likely be moved from legacy
files to an on-site database.

The differences between the telescopes are not trivial abstrac-
tion issues. The NMCS control systems are a service provided to
SORAPS via ethernet, as SORAPS initiates all transactions with
little time restriction. A commercial system behaves as a client
to SORAPS, pushing status over a serial port in a precisely syn-
chronous manner. Another commercial system is a combination of
the two. Two recently replaced systems had no communication pro-
tocol at all; they required a hardware connection to their bus. Fur-
thermore, telescope systems often have components that affect the
optical perspective of other components in the system. The Scheme

environment of SORAPS contains functions to handle these prob-
lems so that computations can be modified for affected devices, yet
SORAPS doesn’t need to be rebuilt or restarted.

Configuration, command, and status functions are contained in
Scheme files that may be manipulated in an external environment
like DrScheme. Primitives provide a means for setting properties of
the system with relatively unrestricted programs instead of fixed-
format files that were required by the original C program.

Serial ports are sometimes needed to interface dynamic equip-
ment such as gimbals controllers. Scheme programs, embedded or
independent, load a serial extension and interface functions specific
to the application. This is an advantage over earlier solutions that
depended on configuration-specific libraries; the Scheme files are
available and editable on the operations computer, only a text edi-
tor is required to change the behavior of the program significantly.

The following fragment represents the kind of function used for
configuring fundamental properties of a telescope:

(let ((id ’("3.5m Telescope" "cetus")
; long name, short name (no spaces)
)

(loc (list wgs84-semimajor-axis
wgs84-inverse-flattening-factor
;any ellipsoid may be used

34.9876543 ; deg latitude
-106.456789 ; deg longitude
1812.34 ; met height
6 ; hours local to utc in summmer
)))

(display (set-system-gimbals cetus id loc))
(newline))

Set-system-gimbals is a primitive in C, it returns readable mes-
sages that indicate success or failure. “Wgs84...” are numbers that
are defined in Scheme, but any reference ellipsoid may be used; on
rare occasions, researchers want to use their own.

An example for configuring an evaluator of network messages:

(define eval-socket (udp-open-socket))
(define eval-the-socket

(make-function-to-eval eval-socket 4096))

Make-function-to-eval was written to support Scheme com-
munications (it is explained later.) Its product, eval-the-socket,
is either used in a thread or it can be called by scheduling functions
invoked by C. Both the behavior of the communications and their
implementation are entirely handled in Scheme, a more effective
environment than C for maintaining the communications.

Operating SORAPS We installed primitives in SORAPS to allow
the selection of computations and the control of its associated
telescopes. For telescope movement, a mode primitive is installed
to evaluate expressions like:

(do-mode telescope-index ’stop)

Changing between stop and vect makes a telescope stop or follow
vectors that are supplied by other expressions. Following is the C
function needed for the primitive.

static Scheme_Object
do_mode(int nArgs, Scheme_Object args[])
{

enum { SYSTEM = 0, MODE };
char text[32] = "’’"; //For quoted symbol

int iSystem = 0;
char *pChars = 0L; // 0L will retrieve mode
const char *pMode = "error";

74 Scheme and Functional Programming, 2006

if(int_from_num(&iSystem, args[SYSTEM])) {
if(nArgs == 2) {

if(!char_ptr_from_string_or_symbol(
&pChars, args[MODE])) {
pChars = 0L; // paranoia

} }
pMode = DoSorapsMode(iSystem, pChars);
// returns a string from legacy C

}

strcpy(&text[2], pMode);
return scheme_eval_string(text, sEnv);
// e.g. "’’stop" evals to a quoted symbol

}

The first object in args is an index to a telescope and the sec-
ond is the desired control mode: stop, vect, etc. If the second
argument is not provided, no attempt is made to change the mode.
The primitive returns the final mode, in either case, as a quoted
symbol suitable in expressions evaluated by the client. Internally,
DoSorapsMode returns a string that represents the mode contained
in the original C code. Typical primitives are more complex.

This simple primitive allows the control mode to be changed by
any embedded Scheme program or any remote program that sends
a do-mode expression. (A few more lines of code are needed to add
do-mode to Scheme and bind it to the primitive.)

Serving Calculations A telescope system may include several
subsystems that need information calculated by SORAPS. Rotators
sometimes maintain orientation in a telescope’s naturally rotating
optical path, so they typically send an expression that uses the prim-
itive path-deg; it contains arguments that specify the telescope
and the location in the optical path where the rotation is needed.
Other primitives perform time conversions or supply values such
as range to satellites. These primitives are a work in progress. As
requirements are added, primitives are written so that the capabil-
ities are available to any s-expression that any client sends; this is
more effective than writing specific messages for specific clients.

5.1.2 Bridge to Proprietary Network Libraries
Some systems are accessible only through nonstandard network
libraries, so we embedded MzScheme in C programs that access
those libraries. Primitives were then written to complete the bridge.
This gives the other Scheme applications on the network a con-
sistent way to access the bridged systems. These systems include
a telescope focus controller, a dome controller, electro-pneumatic
mirror actuators, and temperature sensors.

5.1.3 Hardware Access
We embedded MzScheme in several C programs that need to read
and write electronic hardware in servos. Hardware includes analog
output voltages, analog input voltages, parallel input ports, and
bidirectional serial ports. Simple C programs were first written
and debugged, then Scheme was embedded and furnished with
primitive access to the hardware functions. The main software was
then written in Scheme.

5.2 Motion Control Systems
We wrote servo software for a three-axis secondary mirror in
Scheme. The program runs in MzScheme embedded in a small
C program that accesses the hardware. A few primitives provide
access to the input voltages, which indicate position, and the out-
put voltages that drive the axes. Scheme reads the position voltages
of the axes, calculates command voltages based on the position and
the desired state, then sets the output voltages.

The program may access SORAPS to determine the range to
the object and the elevation angle of the telescope. These values
are used to adjust the focus and to maintain alignment between the
primary and secondary mirrors. The servos also receive commands
from user interfaces that are connected to the network.

The development process was remarkably efficient. On a suit-
able workstation, the servo program was developed remotely from
DrScheme by using sockets to access the hardware primitives (i.e.,
the input and output voltages) on the servo computer (which is in-
convenient for development.) When completed, the program was
transferred to the servo computer and run in the embedded Scheme.

We also developed two optical-mechanical rotators, both pro-
totyped in DrScheme. One interfaces custom hardware, while the
other uses a serial port to interface a commercial motor driver.

5.3 S-expression Interface to Gimbals Servos
The gimbals for each of the three largest telescopes are controlled
by a Networked Motion Control System, a C-program we devel-
oped for single board linux computers. An S-expression interface
was developed for configuration, command, and networked con-
trol. NMCS periodically reads the encoders, computes the desired
state vectors, computes the desired torques, drives the two axes,
then processes s-expressions if any arrived over ethernet. These
systems are markedly different than typical servos which are im-
plemented with real time operating systems, digital signal proces-
sors, and rigid command and status interfaces. In NMCS, we use
excess processor speed to run elegant interface software that can be
accessed with anything that can read and write text over ethernet.

5.3.1 How S-Expressions are Used
The s-expression interface is used to configure the program, accept
commands from SORAPS, and return servo status to SORAPS.
Typical configuration values are position limits, rate limits, fric-
tion coefficients, and torque constants. Commands are required to
periodically set the time, report the position of the sun, and pro-
vide state-vectors for the gimbals. A few examples demonstrate the
flexibility of using s-expressions to specify one or more axes of the
gimbals and to specify trajectories of variable order.

Commands Trajectories are specified as lists, and lists may con-
tain lists for each axis:

(do-axes 0 ’(t0 position velocity acceleration))

where 0 indicates axis-0, and the quantities represent numbers that
describe a trajectory with a reference time of t0. Multiple axes are
specified with a list of lists:

(do-axes ’((t0 p0 v0 a0)(t1 p1 v1 a1)))

where all elements (t0 etc.) represent numbers. For higher clar-
ity, it is not necessary to list zeros in trajectories of lower order;
the program integrates the available terms to calculate the position
propagated from t0. For example, the following two expressions
evaluate to the same fixed position for axis-1; the rate and acceler-
ation are assumed to be zero in the second case:

(do-axes 1 ’(12345678.01 45.0 0 0))
(do-axes 1 ’(12345678.01 45.0))

The reference time, t0, is not needed for calculating fixed posi-
tions, but it is used to validate the command by testing if the trajec-
tory time is within one second of the servo’s time.

Status Lists of variable length are used to return status values that
are ring-buffered each time the servo is serviced (typically every
20 milliseconds.) It is assumed that only one client is operating any
telescope, so the primitives only return data that was buffered since

Scheme and Functional Programming, 2006 75

the previous request. This method allows the client program to ca-
sually query the servo for groups of information rather than forcing
it to accept data as it is produced. An upper limit is established for
the size of the replies in case the status was not recently requested.

For example, (get-diffs) returns a list of two lists. Each
list contains the differences between the calculated and sensed
positions for an axis. SORAPS queries about every quarter second
and receives lists of about 12 values for each axis of each diagnostic
value that was requested. These are used to compute statistics,
display diagnostics on user interfaces, and to optimize the servo.

5.3.2 How NMCS Processes S-Expressions
The Small Fast S-Expression Library (SFSExp) is used to parse the
s-expressions that NMCS receives over ethernet or reads from its
configuration file. SFSExp was developed for a high speed cluster
monitor at Los Alamos National Laboratories, so it easily handles
the relatively low speed requirements for the motion control sys-
tems at the SOR.

We originally embedded MzScheme in NMCS, but garbage
collections consumed around 10ms every 10 seconds or so; that
was too marginal for the 20ms time slices needed by the servo.
Rather than pursue a solution involving high priority interrupts or
a real time operating system, the SFSExp library was employed to
parse incoming expressions that essentially select C functions and
call them with the remaining parameters.

Form for Data Modification and/or Access The only form im-
plemented or needed in NMCS is

(list [’callback] (function1 parameter1...) ...)

where the optional callback function is intended to be defined
on the client and the parameters of the functions cannot contain
functions. All functions return s-expressions.

Functions return a value or a list; if parameters are supplied then
the function attempts to set the values before returning the result.
The gimbals have multiple axes, so lists-of-lists are converted into
C arrays for each axis.

Destination of Replies NMCS supports a single socket that eval-
uates the incoming expressions and returns the result. The above
message returns an expression that the client may evaluate:

(callback result1 ...)

The clients nearly always have a single receive thread that evaluates
these responses. In other words, NMCS allows the client to call its
own function with the results of NMCS functions. This behavior
is compatible with the communications paradigm, described else-
where in this document, that is more thoroughly implemented in
MzScheme.

Tools for the Form We developed an API in C to provide a con-
sistent way to set upper and lower limits on values and values in
arrays. It also returns errors for illegal values or bad indices, for
example. These features proved to be invaluable during the devel-
opment of the servos because nearly all of the expressions involved
passing numbers. Even these tiny subsets of language behavior are
more useful than methods typically found in engineering: passing
cryptic bits with rigid procedure calls, many without descriptive
error messages.

5.4 Paradigm for Remote Command and Status
All communications between telescopes and their subsystems are
conducted with s-expressions that can be evaluated with MzScheme
or the s-expression interface of NMCS. The outgoing expressions
produce incoming expressions that, when evaluated, cause a local
function to be called with parameters that consist of the results of

functions that were called on the remote system. This style allows
concurrent access of multiple remote systems without requiring
input decision trees or the management of multiple connections.
When a programmer is working from a REPL, the callback mecha-
nism is occasionally not used; in those cases the requesting function
sends for a list of results by using a local function that blocks until
it receives the result.

Communication takes place over UDP sockets whenever possi-
ble. Blocked TCP connections, whether due to network problems or
software, are difficult for operators to solve because they often have
no programming experience and little technical experience. A sin-
gle unresolved timeout often leads to wholesale rebooting of com-
puter systems if the connection can not be reestablished. Beginning
with the implementation of PLT Scheme, nearly all connections
are UDP, and all programs are written to be tolerant of incorrect
or missing messages. We originally intended to write error detec-
tion functions for the adopted paradigm, but all of our activity takes
place on a quality private network that is either working perfectly or
not at all. This author observes that the connection problems caused
by TCP far outweigh the packet error problems that they solve.

Typical programs use two sockets that may communicate with
all of the remote systems. One socket sends all requests and evalu-
ates any replies. The other socket evaluates any incoming requests
then sends the replies. A catch-all exception handler was imple-
mented after debugging was completed.

The functions shown below were used with version 209; slight
changes are required for later releases of PLT Scheme, mainly due
to unicode implementation.

Form for Requests Requests merely ask for a list of results of
functions called on the remote application. The message form is de-
scribed in Form for Data Modification and/or Access (for NMCS),
but is much more generally useful in Scheme environments because
no restrictions are placed on the expressions.

Send-Receive-Evaluate Requests can be sent with udp-send or
udp-send-to, then incoming replies on the same socket are dis-
covered and evaluated with a function that is either polled or looped
in a blocking thread. The polled version is used in SORAPS be-
cause it is designed to wake up, check the socket, perform tasks,
then sleep. On the other hand, scripts might use a blocking version
if an operator is using commands in a REPL. The following func-
tion is intended to be polled, while a blocking version can be made
by eliminating ‘*’ from udp-receive!*.

(define make-function-to-eval ; accept udp socket
(lambda(socket buffer-size)

(define buffer (make-string buffer-size))
(lambda()

; messages must fit in a single packet
; perhaps udp? should verify socket type
(if (udp-bound? socket)

(let ((n-rxed (call-with-values
(lambda()

(udp-receive!* socket
buffer))

(lambda(n ip port) n))))
(if n-rxed

(with-handlers((exn? exn-message))
(eval
(read
(open-input-string
(substring
buffer 0 n-rxed)))))

#f)) ; false instead of void
#f)))) ; ditto

76 Scheme and Functional Programming, 2006

Receive-Evaluate-Reply The following form evaluates any re-
quest, then sends the reply. A simpler function uses MzScheme’s
format instead of the output string, but this function was devel-
oped first and has been used for several years.

(define make-function-to-eval-then-reply
(lambda (socket buffer-size)

(define buffer (make-string buffer-size))
(lambda()

(if (udp-bound? socket)
(let-values

(((n-rxed ip port)
(udp-receive!* socket

buffer)))
(if n-rxed

(udp-send-to
socket ip port
(let ((o (open-output-string)))

(write
(with-handlers

((exn? exn-message))
(eval
(read
(open-input-string
(substring
buffer 0 n-rxed))))) o)

(get-output-string o)))
#f))

#f))))

Multiple messages may be sent over the same socket because the
replies may arrive in any order.

5.5 Scripting Environment for Experiments
DrScheme served as a scripting environment during development
and operations of an experiment that required numerous motion
control systems. This is described in Using Scheme to Script a
Telescope System.

During operations required for the experiment, we were able to
modify programs that were in use. For example, a telemetry thread
in the DrScheme environment requests data via ethernet socket,
processes the positions in the reply, then sends the results to SO-
RAPS. When marginal reception was encountered, we developed
and debugged a filter in a separate workspace. Genuine packets
were taken from the running workspace to test the filter. When the
filter was complete, we installed it and restarted the thread in a mat-
ter of seconds. Telescope operations were not interrupted.

We also over-wrote a measurement function while it was in use.
Measurements from video tracking subsystems are scaled and ro-
tated in Scheme before they are applied to SORAPS. The opera-
tion is complicated by the dynamic rotator that affects the apparent
orientation of the tracker. A new tracker and rotator had unknown
orientation, so we debugged the measurement function simply by
editing and loading a file that overwrote the previous version. In the
past, we rebuilt and restarted C code in the tracker for every itera-
tion. Using Scheme, we were able to accomplish in one hour what
previously required many.

5.6 Remote Development Environment
We used DrScheme for remote control and diagnostics while de-
veloping NMCS. Normal debugging techniques could not be used
because such programs can not be arbitrarily suspended; the gim-
bals would “run away” if a breakpoint were encountered while
torque was being applied. The environment consisted of threads
which sent simulations of essential data that is normally sent from
SORAPS. In the meantime, servo properties were changed by

sending expressions from the REPL. The “viewport graphics” in
MzScheme were used to display servo parameters while test func-
tions moved the telescope along trajectories designed to be sensi-
tive to parameters being adjusted.

We could have used one of several commercial development en-
vironments that we maintain, but they restrict both the hardware
selection and the software techniques. On the other hand, NMCS
is designed to be portable to anything that can support sockets and
run programs built from C. The commercial environments are in-
tended to run very fast, so they sacrifice software flexibility. Large
telescopes cannot benefit from such speeds, so we do not believe
performance could be gained by accepting the aforementioned re-
strictions. Furthermore, writing specific tools in DrScheme is ar-
guably as fast as learning and using the commercial tools.

Threads and REPL Tests To prevent unsupervised telescope mo-
tion and prevent expensive damage due to slewing through the sun,
three essential messages are periodically delivered to NMCS: the
time, the desired trajectories of the axes, and the position of the
sun. NMCS stops the gimbals if any of the messages are missed
for more than a specified period; it uses the information to predict
where the gimbals are going as well as the current location. Human
action (on the SORAPS GUI) is then required to restart the gimbals
to avoid an accident after a network dropout is resolved, for exam-
ple. DrScheme was used to test these behaviors as KDevelop was
used to debug NMCS.

To simulate SORAPS, three threads were started. One sent the
position of the sun every 20 seconds, another sent the time every
10 seconds, and one sent gimbals vectors every second. From the
REPL, the threads were individually suspended (while the gimbals
were running) to ensure that NMCS stopped the gimbals. They
were then restarted to ensure that NMCS did not start the gimbals
without receiving other required commands that were also tested
from the REPL.

Adjustment of Servo Properties We adjusted properties like
torque constants, friction coefficients, and coefficients for parame-
ter estimation while the telescope was following trajectories com-
manded by a thread that sent gimbals-vectors. Performance was
optimized by viewing diagnostics displayed in the viewport win-
dow. These diagnostics included position, velocity, servo error,
command difference, integrated torque, and timing errors.

Instead of creating large sets of functions and possibly GUI’s
to access them, we interactively wrote functions to change subsets
of arguments during the servo optimization activities. For example,
three acceleration constants are required by NMCS, but sometimes
only one of them is adjusted:

(define (aa1 torque-per-bit) ;; aa1: adjust axis-1
(send-to-nmcs
(format
"(list ’show (do-acceleration 1 ’(1 2046 ~s)))"
torque-per-bit)))

A receive thread evaluates the reply, causing the local function
show to be called with the results of do-acceleration when
it was called on NMCS. We intend to automate many of these
optimization procedures, so this REPL approach forms a more
appropriate foundation than a GUI.

The above expressions, especially ones that have variables, are
sometimes assembled from lists rather than using format. It is
arguably more sensible to do so, but some sort of formatting must
eventually occur before the message is sent. We tend to form the
strings as shown because they are blatantly readable.

Test Functions Test functions included sine-waves, constant rate
dithering, and “racetracks”. Trajectories were closed so that they

Scheme and Functional Programming, 2006 77

could be run indefinitely. This functional method contrasts typi-
cal servo development where files are “followed” after the gim-
bals are positioned before each diagnostic run. This technique was
motivated by the use of functional programming: Commands are
created from nested calls of functions whose only root variable is
represented by a function, MzScheme’s current-milliseconds.

6. Programming Techniques
This section describes many of the reusable techniques that were
developed while working with MzScheme version 209.

6.1 Senders and Displayer
We wrote a simple displayer to show, in sequence, incoming and
outgoing messages that access remote subsystems. Make-sender
labels the diagnostics (to indicate their origin) and sends them to a
program running in a separate DrScheme workspace (i.e., another
window with a REPL.) Using a separate workspace prevents clut-
tering the operations REPL. A socket is implemented so that the
displayer may also be hosted on a separate computer.

The displayer is normally a file that evaluates the following:

(letrec
((uos (udp-open-socket))
(buffer (make-string 256))
(lupe (lambda()

(let-values
(((n ipa port)

(udp-receive! uos buffer)))
(display (substring buffer 0 n))
(newline))

(lupe))))
(udp-bind! uos #f 9999)
(lupe))

The sender to each remote system is created with the function:

(define (make-sender soc ipa port prefix)
(if (equal? prefix "")

(lambda (text)
(udp-send-to soc ipa port text))
(lambda (text)
(udp-send-to soc ipa port text)
(udp-send-to
soc "127.0.0.1" 9999
(format "~a ~a" prefix text)))))

When the sender is created, non-empty text in prefix will cause
all expressions passing through that sender to be displayed with the
contents of prefix. The scripting environment also sends received
expressions to the displayer, so that a clear ordering of messages is
indicated in the window.

6.2 Simulating Transactions
We wrote a general transaction simulator before implementing eth-
ernet communications. This simulator was used often:

(define (sim-transaction sleep-sec text)
(thread
(lambda()

(sleep sleep-sec) ; simulate round-trip
(eval
(eval (read (open-input-string text)))))))

It first sleeps to simulate the expected round-trip delay, then evalu-
ates the outgoing expression, and finally evaluates the result which
is returned from a local simulation of the remote function. For ex-
ample, the following will simulate stopping the gimbals:

(sim-transaction 1.5 "(list ’do-gimbals-mode
(do-mode corvus

’stop))")

The simulation requires a local definition (a simulation) of the
function do-mode and the definition of the telescope designator
corvus. The callback function do-gimbals-mode is at the core of
the local software that is being tested. Simulating the remote defini-
tions also guided the creation of a clear, executable specification for
the interface. For long delays, such as waiting several minutes for
a telescope to move to a new location, the reference returned from
sim-transaction was available for manipulating the thread.

6.3 Exception Handlers
We added exception handlers to the evaluator functions when we
started using the new software. During development, it was better
to let Scheme handle the exception and generate an error message.
The exception handler is mainly used to prevent programs from
halting due to misspelled or improperly formed expressions that
are generated by new clients.

6.4 Connection Protocol
The communication paradigm relies on application level error con-
trol to compensate for the lack of detection and recovery provided
by TCP-like protocols. To prevent the applications from halting, the
message evaluators are wrapped in exception handlers which return
any error message to the client. The motion control systems check
messages by content; e.g., a rate of a thousand degrees per sec-
ond is not accepted even if delivered without error. Most systems
are designed to tolerate missed messages; e.g., a second order tra-
jectory vector can be missed without noticeable errors in tracking.
The clients nearly always use the response from a server to verify
correct delivery; e.g., if a client sends a message to start a compu-
tational process in SORAPS, the response is used for verification.

We started to develop general techniques for error detection,
such as echoing requests along with the responses, but we stopped
for the lack of ways to cause or at least experience network errors.

6.5 Casual Polling of Remote Systems
Because TCP connections are avoided for practical reasons, we use
an efficient technique for for getting uninterrupted repetitive data
like telemetry. About every 8 seconds, the remote telemetry system
is sent a message that requests data for ten seconds. This keeps the
data flowing, it doesn’t require the client to terminate the messages,
yet it does not require a transaction for every message. A data
message is not repeated after an overlapping request. Generally,
the requests have the form:

(get-data ’callback-function seconds-to-send)

The server is required to send expressions of the form:

(callback-function the-data)

A related form is:

(get-data-if-available ’callback-function
within-the-next-n-seconds)

The server is required to send new data only if it is available within
the next n seconds. This can be used when a telescope system is
scanning for an object and it needs a camera to report when it
firsts detects the object. The time limit prevents the camera from
unexpectedly sending information at a much later time.

6.6 Message Timing
The arrival time of some expressions are stored in global variables.
Typical functions that use these variables determine lateness and

78 Scheme and Functional Programming, 2006

provide re-triggering of events. For example, a task may keep the
latest arrival time of a message, then compare it later to determine
if a new one has arrived. Boolean techniques are not much simpler,
and they do not contain enough information to determine elapsed
time.

6.7 Making Specifications
A Scheme program needed access to a remote system written in
C++, so we agreed that it must communicate via s-expressions.
We wrote a Scheme simulation of the remote system and tested
it with the Scheme client, then gave the simulation to the C++
programmer; no other specification was required because it was a
working program written in an elegant language. We integrated and
tested the complete system in about an hour, yet most of the hour
was needed for the C++ programmer to debug socket software that
he would not have needed to write had he used Scheme.

7. General Experience
How Scheme was Adopted I (the first author) was introduced
to Scheme running on an Astronomer’s Palm Pilot. Incapable of
seeing usefulness, I dismissed Scheme until an email from the
same person contained Scheme in one Day (SIOD), a pioneering
Scheme environment. I obliged his suggestion to embed it in SO-
RAPS at the same time that we were preparing to run the largest
telescope remotely as it interacted with another telescope. Con-
currently, another colleague showed me a paper on the Small Fast
S-Expression Library because we were in search of a consistent
way for our subsystems to communicate. By then, the potential of
Scheme was obvious. I embedded MzScheme in SORAPS along
with SIOD and gradually converted the few functions accessed by
SIOD to MzScheme primitives. SIOD was finally removed, and I
began writing a full suite of MzScheme primitives.

Reliability MzScheme v209 has been running continuously on
4 subsystems which are mostly single board computers running a
diskless linux. One of them has been running for over a year, the
rest are newer. Power failures and lightning strikes make it difficult
to determine a “mean time before failure” that can be assigned
to the subsystems; they normally are interrupted by such external
events before they have a chance to fail.

The Small Fast S-expression Library has proven to be perfectly
reliable as three have been running continuously for several years,
only to be interrupted by power failures and lightning strikes. Iron-
ically, the only maintenance needed in the first few years was a
single-line fix of a memory leak caused by the first author... a leak
that couldn’t have occurred in a Scheme environment.

Language Issues Scheme statements have proven to be an effec-
tive basis for operating the systems. We have written thirty two
primitives for SORAPS and a few dozen for the gimbals servos.
Other subsystems have about a dozen. Error messages are a sig-
nificant benefit of using Scheme. When a programmer incorrectly
requests a message (especially from a REPL), an error message is
returned which often reveals the problem. Typically, a parameter is
forgotten, a Scheme error message is returned to the REPL, and the
user solves the problem by reforming the message. When the serv-
ing program is implemented with MzScheme, the error messages
are produced by the environment; the programmer is not required
to develop them.

Elementary scripts have been written and used extensively for
one experiment, they are planned for two more. Four scripts are
needed for the current experiment, about four more will be required
when all of the subsystems are complete. The scripting strategy has
been unquestionably successful, but we will not improve it until we
thoroughly study the possibilities... which include abandoning the
approach and requiring users to learn basic Scheme.

We used closures as an effective way to realize object like be-
havior. The language requirements for any of the efforts in this pa-
per are not overly complex, so adopting a much more complicated
object oriented programming environment is probably not a good
trade for the elegance of Scheme. The object system provided by
PLT Scheme was not used in any of this work, mainly because of a
lack of time to learn any of it.

Simulations We wrote simulations of nearly all subsystems;
DrScheme was used to create executables for them. The simula-
tions are used for developing scripts and to verify system operation
before an experiment session begins. The balloon experiment has
never been delayed by telescope systems because operations are
tested with appropriate simulators before the experiment begins;
electrical and mechanical problems are sometimes discovered and
fixed. For these reasons, the combination of scripting and simula-
tions are planned for all future experiments.

Foreign Function Interface vs Embedding Foreign Function In-
terfaces were not used in any of this work, mostly because the
largest efforts were concentrated on SORAPS. Its C functions are
so tightly tied to an event loop and graphical user interface that they
are not appropriate for a Scheme interface. SORAPS functions are
are being rewritten as primitives are added, so FFI’s will be even-
tually be a viable option.

8. Conclusions
Scheme has significantly improved the efficiency of the two pro-
grammers who maintain telescope systems and prepare them for
experiments. By using Scheme for configuration, communication,
control, and at least elementary scripting, we are able to maintain
the software for all systems and experiments in almost as little time
as we previously needed for each. We modify SORAPS much less
and the majority of configuration files have been eliminated be-
cause most configuration and all communication are contained in a
few files of Scheme programs. We were able to create a single vol-
ume with directories containing software for all experiments and
telescope systems; small Scheme programs load Scheme residing
in the directories needed for given experiments.

Scripting the balloon experiment was valuable for two reasons.
We successfully used the system at least once per month, yet an-
other reason is perhaps more significant: Making scripts leads to
better programs because the development process demands an ac-
curate description of the problem. We were forced to answer two
questions: What will be the sequence of events? What functions are
needed to support them? The final few scripts for our experiment
were so simple that they hardly seem worthy of discussion, but
many iterations were required because problem definition is more
difficult than many of us want to admit. This scripting effort directly
contrasts our previous programs which rely entirely on graphical
user interfaces. In those cases, we asked different questions: What
GUI features are needed for fundamental operations? How can they
be arranged so that operators can figure out how to conduct differ-
ent experiments? Developing programs using the second approach
is easier, but those programs depend on human expertise.

The s-expression communication paradigm allowed program-
mers to avoid using Scheme rather than encourage them to use it.
SORAPS services messages sent from tracking systems, video dis-
plays, and timing devices which are written in C++, Java, and pro-
prietary embedding languages. The lack of embedded Scheme in
these systems significantly reduced development efficiency because
each required the debugging of new communication software and
new parsers; neither effort would have been required had Scheme
been used. Most of our programmers (about 6) did not mind these
difficulties, so they did not choose to adopt Scheme. Perhaps this
is due to the fact that the basics of Scheme are easy to learn, then

Scheme and Functional Programming, 2006 79

programmers reject Scheme without realizing how much more it
can offer.

We can gain much more utility from Scheme, even though the
basics have contributed so positively. However, deciding where to
spend development time is becoming more difficult. Significant
wisdom is needed to understand the relationships between Scheme
staples like modules, units, macros, and languages. Such knowl-
edge is essential to the development of formal laboratory tools that
could safely be used by people with diverse capabilities. An ex-
perienced computer scientist could contribute significantly to these
efforts, but personnel in laboratories like ours need to be convinced
that computer science can provide more than just programmers and
compilers.

9. Future Effort
Future effort will include developing formal language layers for the
controllers and experiments. Common functions have already been
adopted, so a few layers of modules should guarantee common
behavior.

Automatic optimization of servos and automatic calibration of
gimbals pointing are also planned. While tracking stars and satel-
lites, a Scheme program could observe control loop behavior and
pointing corrections. From these observations, it could then update
servo parameters and pointing models. These tasks are currently
done manually.

References
[1] R. Q. Fugate, Air Force Phillips Lab; et. al. Two Generations of Laser

Guidestar Adaptive Optics at the Starfire Optical Range. Journal of the
Optical Society of America A II, 310-314 1994

[2] Matt Sottile, sexpr.sourceforge.net

[3] Matthew Flatt, Inside PLT Scheme 206.1

[4] Felleisen, Findler, Flatt, Krishnamurthi, How to Design Programs, MIT
Press, Section 12.1

80 Scheme and Functional Programming, 2006

