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The HOP Development Kit

Manuel Serrano
Inria Sophia Antipolis

2004 route des Lucioles - BP 93 F-06902 Sophia Antipolis, Cedex, France
http://www.inria.fr/mimosa/Manuel.Serrano

ABSTRACT
Hop, is a language dedicated to programming reactive and dynamic
applications on the web. It is meant for programming applications
such as web agendas, web galleries, web mail clients, etc. While
a previous paper (Hop, a Language for Programming the Web
2.0, available at http://hop.inria.fr) focused on the linguistic
novelties brought by Hop, the present one focuses on its execution
environment. That is, it presents Hop’s user libraries, its extensions
to the HTML-based standards, and its execution platform, the Hop
web broker.

DOWNLOAD
Hop is available at: http://hop.inria.fr.

The web site contains the distribution of the source code, the
online documentation, and various demonstrations.

1. Introduction
Along with games, multimedia applications, and email, the web
has popularized computers in everybody’s life. The revolution is
engaged and we may be at the dawn of a new era of computing
where the web is a central element.

Many of the computer programs we write, for professional
purposes or for our own needs, are likely to extensively use the
web. The web is a database. The web is an API. The web is a novel
architecture. Therefore, it needs novel programming languages and
novel programming environments. Hop is a step in this direction.

A previous paper [1] presented the Hop programming language.
This present paper presents the Hop execution environment. The
rest of this section presents the kind of end-user applications Hop
focuses on (Section 1.1) and the technical solutions it promotes
(Section 1.2). The rest of this paper assumes a familiarity with strict
functional languages and with infix parenthetical syntaxes such as
the ones found in Lisp and Scheme.

Because it is normal for a web application to access databases,
manipulate multimedia documents (images, movies, and music),
and parse files according to public formats, programming the web
demands a lot of libraries. Even though it is still young, Hop
provides many of them. In an attempt to avoid a desperately boring
presentation this paper does not present them all! Only the library

[Copyright c© 2006, Manuel Serrano]
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for building HTML graphical user interfaces is presented here. It
is presented in Section 2, along with a presentation of the Hop
solution for bringing abstraction to Cascade Style Sheets.

The section 3 focuses on programming the Hop web broker.
Its presents basic handling of client requests and it presents the
facilities for connecting two brokers and for gathering information
scattered on the internet. The Section 4 presents the main functions
of the broker programming library.

1.1 The web 2.0
In the newsgroup comp.lang.functional, a Usenet news group
for computer scientists (if not researchers in computer science)
someone reacted rather badly to the official announce of the avail-
ability of the first version Hop:

“I really don’t understand why people are [so] hyped-up over
Web 2.0. It’s just Java reborn with a slower engine that doesn’t
even have sandboxing capabilities built into it. I guess this hype
will taper off just like the Java hype, leaving us with yet another
large technology and a few niches where it’s useful.”

This message implicitly compares two programming languages,
namely Java and JavaScript and reduces Hop to yet another
general-purpose programming language. This is a misunderstand-
ing. The point of Hop is to help writing new applications that are
nearly impossible (or at least, discouragingly tedious) to write us-
ing traditional programming languages such as Java and the like. As
such, its goal is definitively not to compete with these languages.

As a challenge, imagine implementing a program that represents
the user with a map of the United States of America that : lets the
user zoom in and out on the map, and also helps with trip planning.
In particular the user may click on two cities, and the application
responds with the shortest route between the cities, the estimated
trip time, the price of the gas for the trip (using local pump prices)
the weather forecasts along the route (for the appropriate tires), and
where to find the best pizza and gelatos in each town along the way.
Although it is possible to write such a program using Java or C and
existing resources available online, the web 2.0 is the infrastructure
that makes it feasible to write such programs. Because the web
2.0 provides the potential to easily combine fancy graphics and
information from disparate sources online into new, information-
aware applications. Unfortunately, the programming model for the
web 2.0 is missing. Hop is one attempt to provide the right model,
and the rest of this paper explains how.

1.2 The HOP architecture
Hop enforces a programming model where the graphical user inter-
face and the logic of an application are executed on two different
engines. In theory, the execution happens as if the two engines are
located on different computers even if they are actually frequently
hosted by a single computer. In practice, executing a Hop applica-
tion requires:
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• A web browser that plays the role of the engine in charge of the
graphical user interface. It is the terminal of the application. It
establishes communications with the Hop broker.

• A Hop broker which is the execution engine of the application.
All computations that involve resources of the local computer
(CPU resource, storage devices, various multi-media devices,
...) are executed on the broker. The broker it also in charge of
communicating with other Hop brokers or regular web servers
in order to gather the information needed by the application.

The Hop programming language provides primitives for managing
the distributed computing involved in a whole application. In par-
ticular, at the heart of this language, we find the with-hop form.
Its syntax is:

(with-hop (service a0 ..) callback )

Informally, its evaluation consists in invoking a remote service ,
i.e., a function hosted by a remote Hop broker, and, on completion,
locally invoking the callback . The form with-hop can be used
by engines executing graphical user interfaces in order to spawn
computations on the engine in charge of the logic of the appli-
cation. It can also be used from that engine in order to spawn
computations on other remote computation engines.

2. Graphical User Interfaces
This section presents the support of Hop for graphical user inter-
faces. It presents the library of widgets supported by Hop and its
proposal for bringing more abstraction to Cascade Style Sheets
(CSS).

2.1 HOP Widgets
Graphical user interfaces are made of elementary graphical objects
(generally named widgets). Each of these objects has its own graph-
ical aspect and graphical behavior and it reacts to user interactions
by intercepting mouse events and keyboard events. Hence, toolkits
for implementing graphical user interfaces are characterized by:

1. the mechanisms for catching user interactions, and

2. the composition of graphical elements, and

3. the richness of them widgets.

HTML (either W3C’s HTML-4 or XHTML-1) do a good job at
handling events. Each HTML elements is reactive and JavaScript,
the language used for programming events handlers, is adequate.
CSS2, the HTML composition model based on boxes, is close to
be sufficient. The few lacking facilities are up to be added to the
third revision. On the other hand, the set of HTML widgets is poor.
It mainly consists of boxes, texts, and buttons. This is insufficient
if the web is considered for implementing modern graphical user
interfaces. Indeed, these frequently use sliders for selecting integer
values, trees for representing recursive data structures, notepads for
compact representations of unrelated documents, and many others.
HTML does not support these widgets and, even worse, since it is
not a programming language, it does not allow user to implement
their own complementary sets of widgets. Hop bridges this gap.

Hop proposes a set of widgets for easing the programming of
graphical user interfaces. In particular, it proposes a slider widget
for representing numerical values or enumerated sets. It proposes a
WYSIWYG editor. It extends HTML tables for allowing automatic
sorting of columns. It supports various container widgets such as a
pan for splitting the screen in two horizontal or vertical re-sizable
areas, a notepad widget for implementing tab elements, a hop-
iwindow that implements a window system in the browser, etc.

In this paper, we focus on one widget that is representative of the
container family, the tree widget.

2.1.1 The tree widget
A tree is a traditional widget that is frequently used for representing
its eponymous data structure. For instance, it is extensively used
for implementing file selectors. The syntax of Hop trees is given
below. The meta elements required by the syntax are expressed
using lower case letters and prefixed with the character %. The
concrete markups only use upper case letters. The meta element
%markup refers to the whole set of Hop markups.

%markup −→ ... | %tree

%tree −→ (<TREE> %tree-head %tree-body )
%tree-head −→ (<TRHEAD> %markup )
%tree-body −→ (<TRBODY> %leaf-or-tree *)
%leaf-or-tree −→ %leaf | %tree
%leaf −→ (<TRLEAF> %markup )

As an example, here is a simple tree.

(define (dir->tree dir)
(<TREE>

(<TRHEAD> dir)
(<TRBODY>

(map (lambda (f)
(let ((p (make-file-name dir f)))

(if (directory? p)
(dir->tree p)
(<TRLEAF> :value qf f))))

(directory->list dir)))))

When an expression such as (dir->tree "/") is evaluated on the
broker, a tree widget representing the hierarchy of the broker files
is built. It has to be sent to a client for rendering.

Hop containers (i.e., widgets that contain other widgets) are
static, as in the example above, or dynamic. A static container
builds its content only once. A dynamic container rebuilds its con-
tent each time it has to be displayed. A static tree has a fixed set of
subtrees and leaves. A dynamic tree recomputes them each time un-
folded. A dynamic tree is characterized by the use of the <DELAY>
markup in its body. The syntax of this new markup is:

(<DELAY> thunk)

The argument thunk is a procedure of no argument. Evaluating
a <DELAY> form on the Hop broker installs an anonymous service
whose body is the application of this thunk. When the client, i.e.,
a web browser, unfolds a dynamic tree, its invokes the service
associated with the thunk on the broker. This produces a new tree
that is sent back to the client and inserted in the initial tree.

(define (dir->dyntree dir)
(<TREE>

(<TRHEAD> dir)
(<TRBODY>

(<DELAY>
(lambda ()

(map (lambda (f)
(let ((p (make-file-name dir f)))

(if (directory? p)
(dir->dyntree p)
(<TRLEAF> :value qf f))))

(directory->list dir)))))))

Even if the function dir->dyntree only differs from dir->tree
by the use of the <DELAY> markup, its execution is dramatically dif-
ferent. When the expression (dir->dyntree "/") is evaluated,
the broker no longer traverses its entire hierarchy of files. It only
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inspects the files located in the directory "/". When the client, i.e.,
a web browser, unfolds a node representing a directory, the bro-
ker traverses only that directory for scanning the files. Contrary to
dir->tree, the directories associated with nodes that are never
unfolded are never scanned by dir->dyntree.

2.1.2 Extending existing HTML markups
Because Hop is not HTML it is very tempting to add some HTML
facilities to Hop, for instance by adding new attributes to markups.
In order to keep the learning curve as low as possible, we resist this
temptation. Hop offers the HTML markups as is, with on exception:
the <IMG> markup. In HTML, this markup has a src attribute that
specifies the actual implementation of the image. It can be an URL
or an in-line encoding of the image. In that case, the image is
represented by a string whose first part is the declaration of a mime
type and the second part a row sequence of characters representing
the encoding (e.g., a base64 encoding of the bytes of the image).
While this representation is close to impractical for a hand-written
HTML documents, it is easy to produce for automatically generated
documents, such as the ones produced by Hop. Hop adds a new
attribute inline to HTML images. When this attribute is set to #t
(the representation of the value true in the concrete Hop syntax),
the image is encoded on the fly.

This tiny modification to HTML illustrates why a programming
language can dramatically help releasing documents to the web.
Thanks to this inline attribute, it is now easy to produce stand
alone HTML files. This eliminates the burden of packaging HTML
documents with external tools such as tar or zip.

2.2 HOP Cascade Style Sheets
Cascading Style Sheets (CSS) enable graphical customizations of
HTML documents. A CSS specifies rendering information for vi-
sualizing HTML documents on computer screens, printing them
on paper, or even pronouncing them on aural devices. A CSS uses
selectors to designate the elements onto which a customization ap-
plies. Attributes, which are associated with selectors, specify the
rendering information. The set of possible rendering attributes is
rich. CSS exposes layout principles based on horizontal and ver-
tical boxes in the spirit of traditional text processing applications.
CSS version 2 suffers limitations (for instance, it only supports one
column layout) that are to be overcome by CSS version 3. CSS is
so expressive that we think that when CSS v3 is fully supported by
web browsers, HTML will compete with text processors like Latex
for printing high quality documents.

CSS selectors are expressed in a little language. The elements
to which a rendering attribute applies are designed either by their
identities, their classes, their local or global positions in the HTML
tree, and their attributes. The language of selectors is expressive
but complex, even if not Turing-complete. On the one hand, the
identity and class designations are suggestive of object-oriented
programming. On the other hand, they do not support inheritance.
Implementing re-usable, compact, and easy-to-understand CSS is
a challenging task. Frequently the HTML documents have to be
modified in order to best fit the CSS model. For instance, dummy
<DIV> or <SPAN> HTML elements have to be introduced in order to
ease the CSS selection specification. We think that this complexity
is a drawback of CSS, and Hop offers an improvement.

Like the Hop programming language, Hop-CSS (HSS in short)
uses a stratified language approach. HSS extends CSS in one di-
rection: it enables embedding, inside standard CSS specifications,
Hop expressions. The CSS syntax is extended with a new construc-
tion. Inside a HSS specification, the $ character escapes from CSS
and switches to Hop. This simple stratification enables arbitrary
Hop expressions to be embedded in CSS specifications. We have
found this extension to be useful to avoiding repeating constants.

For instance, instead of duplicating a color specification in many
attributes, it is convenient to declare a variable holding the color
value and use that variable in the CSS. That is, the traditional CSS:

button {
border: 2px inset #555;

}
span.button {

border: 2px inset #555;
}

in Hop can be re-written as:

$(define border-button-spec "2px inset #555")

button {
border: $border-button-spec;

}
span.button {

border: $border-button-spec;
}

In other situations, the computation power of Hop significantly
helps the CSS specifications. As an example, imagine a graphical
specification for 3-dimensional borders. Given a base color, a 3-
dimensional inset border is implemented by lightening the top and
left borders and darkening the bottom and right borders. Using the
two Hop library functions color-ligher and color-darker this
can be implemented as:

$(define base-color "#555")

button {
border-top: 1px solid $(color-lighter base-color);
border-left: 1px solid $(color-lighter base-color);
border-bottom: 1px solid $(color-darker base-color);
border-right: 1px solid $(color-darker base-color);

}

The specification of the buttons border is actually a compound
property made of four attributes. It might be convenient to bind
these four attributes to a unique Hop variable. Since the HSS $
escape character enables to inject compound expressions, this can
be wriiten as:

$(define base-color "#555")
$(define button-border

(let ((c1 (color-lighter base-color))
(c2 (color-darker base-color)))

{ border-top: 1px solid $c1;
border-left: 1px solid $c2;
border-bottom: 1px solid $c2;
border-right: 1px solid $c1 }))

button {
$button-border;

}

3. Programming the HOP web broker
The Hop web broker implements the execution engine of an ap-
plication. While the client executes in a sandbox, the broker has
privileged accesses to the resources of the computer it execution
on. As a consequence, the client has to delegate to the broker the
operations it is not allowed to execute by itself. These operations
might be reading a file, executing a CPU-intensive operation, or
collecting information from another remote Hop broker or from a
remote web server. In that respect, a Hop broker is more than a web
server because it may act has a client itself for handling external
requests. Still, a Hop broker resembles a web server. In particular,
it conforms to the HTTP protocol for handling clients connections
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and requests. When a client request is parsed, the broker elaborates
a response. This process is described in the next sections.

3.1 Requests to Responses
Clients send HTTP messages to Hop brokers that parse the mes-
sages and build objects representing these requests. For each such
objects, a broker elaborates a response. Programming a broker
means adding new rules for constructing responses. These rules are
implemented as functions accepting requests. On return, they either
produce a new request or a response. The algorithm for construct-
ing the responses associated with requests is defined as follows.

(define (request->response req rules)
(if (null? rules)

(default-response-rule req)
(let ((n ((car rules) req)))

(cond
((is-response? n)
n)

((is-request? n)
(request->response n (cdr rules)))

(else
(request->response req (cdr rules)))))))

The else branch of the conditional is used when no rule applies.
It allows rules to be built using when and unless, without having
to be a series of nested ifs.

A rule may produce a response. In that case, the algorithm
returns that value. A rule may also annotate a request or build a new
request from the original one. In that case, the algorithm applies the
remaining rules to that new request.

The default response rule, which is used when no other rule
matches, is specified in the configuration files of the broker.

3.2 Producing responses
The broker has to serve various kind of responses. Some responses
involve local operations (such as serving a file located on the disk
of the computer where the broker executes). Some other responses
involve fetching information from the internet. Hop proposes sev-
eral type of responses that correspond to the various ways it may
fulfill client requests.

From a programmer’s point of view, responses are represented
by subclasses of the abstract class %http-response. Hop pro-
poses an extensive set of pre-declared response classes. The most
important ones are presented in the rest of this section. Of course,
user programs may also provide new response classes.

3.2.1 No response!
Responses instance of the class http-response-abort are ac-
tually no response. These objects are used to prevent the broker
for answering unauthorized accesses. For instance, on may wish
to prevent the broker for serving requests originated from a re-
mote host. For that, he should had a rule that returns an instance
of http-response-abort for such requests.

Hop provides predicates that return true if and only if a request
comes from the local host. Hence, implementing remote host access
restriction can be programmed as follows.

(hop-add-rule!
(lambda (req)

(if (is-request-local? req)
req
(instantiate::http-response-abort))))

3.2.2 Serving files
The class http-response-file is used for responding files. It
is used for serving requests that involve static documents (static

HTML documents, cascade style sheets, etc.). It declares the field
path which is used to denote the file to be served. In general these
responses are produced by rules equivalent to the following one.

(hop-add-rule!
(lambda (req)

(if (and (is-request-local? req)
(file-exists? (request-path req)))

(instantiate::http-response-file
(path (request-path req))))))

In order to serve http-response-file responses, the broker
reads the characters from the disk and transmit them to the client via
a socket. Some operating systems (such as Linux 2.4 and higher)
propose system calls for implementing this operation efficiently.
This liberates the application from explicitly reading and writing
the characters of the file. With exactly one system call, the whole
file is read and written to a socket. For this, Hop uses subclasses of
http-response-file.

The class http-response-shoutcast is one of them. It is
used for serving music files according to the shoutcast protocol1.
This protocol adds meta-information such as the name of the music,
the author, etc., to the music broadcasting. When a client is ready
for receiving shoutcast information, it must add an icy-metadata
attribute to the header of its requests. Hence, in order to activate
shoutcasting on the broker one may use a rule similar to the follow-
ing one.

(hop-add-rule!
(lambda (req)

(if (and (is-request-local? req)
(file-exists? (request-path req)))

(if (is-request-header? req ’icy-metadata)
(instantiate::http-response-shoutcast

(path (request-path req)))
(instantiate::http-response-file

(path (request-path req)))))))

Note that since the rules scanned in the inverse order of the
their declaration, the shoutcast rule must be added after the rule
for regular files.

3.2.3 Serving dynamic content
Hop provides several classes for serving dynamic content. The first
one, http-response-procedure, is used for sending content that
varies for each request. The instances of that class carry a procedure
that is invoked each time the response is served. In the example
above, we add a rule that create a virtual URL /count that returns
the value of an incremented counter each time visited.

(let ((count 0)
(resp (instantiate::http-response-procedure

(proc (lambda (op)
(set! count (+ 1 count))
(printf op

"<HTML>~a</HTML>"
count))))))

(hop-add-rule!
(lambda (req)

(when (and (is-request-local? req)
(string=? (request-path req) "/count"))

resp))))

3.2.4 Serving data
Hop programs construct HTML documents on the server. On de-
mand they are served to clients. These responses are implemented

1 http://www.shoutcast.com/.
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by the http-response-hop class. When served, the XML tree in-
side a response of this type is traversed and sent to the client. As
an example, consider a rule that adds the URL /fact to the broker.
That rule computes a HTML table filled with factorial numbers.

(hop-add-rule!
(lambda (req)

(when (and (is-request-local? req)
(string=? (request-path req) "/fact"))

(instantiate::http-response-hop
(xml (<TABLE>

(map (lambda (n)
(<TR>

(<TH> n)
(<TD> (fact n))))

(iota 10 1))))))))

Instead of always computing factorial value from 1 to 10, it is easy
to modify the rule for adding a range.

(hop-add-rule!
(lambda (req)

(when (and (is-request-local? req)
(substring? (request-path req) "/fact/"))

(let ((m (string->integer
(basename (request-path req)))))

(instantiate::http-response-hop
(xml (<TABLE>

(map (lambda (n)
(<TR>

(<TH> n)
(<TD> (fact n))))

(iota m 1)))))))))

Next, we now show how to modify the rule above so that
the computation of the HTML representation of the factorial
table is moved from the broker to the client. As presented in
Section 1.2, the Hop programming language supports the form
with-hop. This invokes a service on the broker and applies, on
the client, a callback with the value produced by the service. This
value might be an HTML fragment or another Hop value. On the
server, HTML fragments are represented by responses of the class
http-response-hop. The other values are represented by the
class http-response-js. When such a response is served to the
client, the value is serialized on the broker according to the JSON
format2 and unserialized on the client. We can re-write the previous
factorial example in order to move the computation of the HTML
table from the broker to the client. For that, we create a rule that
returns the factorial values in a list.

(hop-add-rule!
(lambda (req)

(when (and (is-request-local? req)
(substring? (request-path req) "/fact/"))

(let ((m (string->integer
(basename (request-path req)))))

(instantiate::http-response-js
(value (map (lambda (n)

(cons n (fact n)))
(iota m 1))))))))

The /fact URL can be used in client code as follows.

2 http://www.json.org/.

(with-hop "/hop/fact/10"
(lambda (l)

(<TABLE>
(map (lambda (p)

(<TR>
(<TH> (car p))
(<TD> (cdr p))))

l))))

The point of this last example is not to argue in favor of moving
this particular computation from the broker to the client. It is just
to show how these moves can be programmed with Hop.

3.2.5 Serving remote documents
Hop can also act as a web proxy. In that case, it intercepts requests
for remote hosts with which it establishes connections. It reads the
data from those hosts and sends them back to its clients. The class
http-response-remote represents such a request.

In order to let Hop act as a proxy, one simply adds a rule similar
to the one below.

(hop-add-rule!
(lambda (req)

(unless (is-request-local? req)
(instantiate::http-response-remote

(host (request-host req))
(port (request-port req))
(path (request-path req))))))

This rule is a good candidate for acting as the default rule presented
in Section 3.1. The actual Hop distribution uses a default rule
almost similar to this one. It only differs from this code by returning
an instance of the http-response-string class for denoting a
404 error when the requests refer to local files.

3.2.6 Serving strings of characters
Some requests call for simple responses. For instance when a re-
quest refers to an non existing resource, a simple error code must
be served to the client. The class http-response-string plays
this role. It is used to send a return code and, optionally, a message,
back to the client.

The example below uses a http-response-string to re-
direct a client. From time to time, Google uses bouncing which is
a technique that allows them to log requests. That is, when Google
serves a request, instead of returning a list of found URLs, it returns
a list of URLs pointing to Google, each of these URL containing a
forward pointer to the actual URL. Hence Google links look like:

http://www.google.com/url?q=www.inria.fr

When Hop is configured for acting as a proxy it can be used to
avoid this bouncing. A simple rule may redirect the client to the
actual URL.

(hop-add-rule!
(lambda (req)

(when (and (string=? (request-host req)
"www.google.com")

(substring? (request-path req) "/url" 0))
(let ((q (cgi-fetch-arg "q" path)))

(instantiate::http-response-string
(start-line "HTTP/1.0 301 Moved Permanently")
(header (list (cons ’location: q))))))))

A similar technique can be used for implementing blacklisting.
When configured as web proxy, Hop can be used to ban ads con-
tained in HTML pages. For this, let us assume a black list of do-
main names held in a hash table loaded on the broker. The rule
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above prevents pages from these domains to be served. It lets the
client believe that ads pages do not exist.

(hop-add-rule!
(lambda (req)

(when (hashtable-get *blacklist* (request-host req))
(instantiate::http-response-string

(start-line "HTTP/1.0 404 Not Found")))))

3.3 Broker hooks
When a response is generated by the algorithm presented in Section
3.1 and using the rules of Section 3.2 the broker is ready to fulfill
a client request. Prior to sending the characters composing the an-
swer, the broker still offers an opportunity to apply programmable
actions to the generated request. That is, before sending the re-
sponse, the broker applies hooks. A hook is a function that might
be used for applying security checks, for authenticating requests or
for logging transactions.

A hook is a procedure of two arguments: a request and a re-
sponse. It may modify the response (for instance, for adding extra
header fields) or it may return a new response. In the following
example, a hook is used to restrict the access of the files of the
directory /tmp.

(hop-hook-add!
(lambda (req resp)
(if (substring? (request-path req) "/tmp/")
(let ((auth (get-request-header req ’authorization)))
(if (file-access-denied? auth "/tmp")
(instantiate::http-response-authentication

(header ’("WWW-Authenticate: Basic realm=Hop"))
(body (format "Authentication required.")))

resp))
resp)))

When a request refers to a file located in the directory /tmp,
the hook presented above forces Hop to check if that request is au-
thenticated (a request is authenticated when it contains a header
field authorization with correct values). When the authentica-
tion succeeds, the file is served. Otherwise, a request for authenti-
cation is sent back to the client.

4. The HOP library
The Hop standard library provides APIs for graphical user inter-
faces, for enabling communication between the clients and the bro-
ker, for decoding standards documents formats (e.g., EXIF for jpeg
pictures, ID3 for mp3 music, XML, HTML, RSS, ...). It also of-
fers APIs for enabling communications between two brokers and
between brokers and regular web servers. Since the communica-
tion between two brokers is similar to the communication between
clients and brokers (see the form with-hop presented Section 1.2),
it is not presented here. In this section we focus on the communi-
cations between brokers and regular web servers.

The Hop library provides facilities for dealing with low-level
network communications by the means of sockets. While this is
powerful and enables all kind of communications it is generally
tedious to use. In order to remove this burden from programmers,
Hop provides two high-level constructions: the <INLINE> markup
and the with-url form.

4.1 The <INLINE> markup
The <INLINE> markup lets a document embed subparts of another
remote document. When the broker sends a HTML tree to a client,
it resolves its <INLINE> nodes. That is, it opens communication
with the remote hosts denoted to by the <INLINE> nodes, it parses

the received documents and it includes these subtrees to the re-
sponse sent to its client.

The <INLINE> node accepts two options. The first one, :src,
is mandatory. It specifies the URL of the remote host. The example
below builds a HTML tree reporting information about the current
version of the Linux kernel. This information is fetched directly
from the kernel home page. It is contained in an element whose
identifier is versions.

(<HTML>
(<BODY>

"The current Linux kernel versions are:"
(let ((d (<INLINE> :src "http://www.kernel.org")))

(dom-get-element-by-id d "versions"))))

This program fetches the entire kernel home page. From that
document it extracts the node named versions. The second op-
tion of the <INLINE> node allows a simplification of the code by
automatically isolating one node of the remote document. The :id
option restricts the inclusion, inside the client response, to one el-
ement whose identifier is :id. Using this second option, our pro-
gram can be simplified as shown below.

(<HTML>
(<BODY>

"The current Linux kernel versions are:"
(<INLINE> :src "http://www.kernel.org"

:id "versions")))

In addition to be more compact, this version is also more ef-
ficient because it does not require the entire remote document to
be loaded on the broker. As it receives characters from the net-
work connection, the broker parses the document. As soon as it has
parsed a node whose identifier is versions it closes the connec-
tion.

4.2 The with-url form
The syntax of the form with-url is as follows:

(with-url url callback )

Informally, its evaluation consists in fetching a remote document
from the web and on completion, invoking the callback with
the read characters as argument. Unlike to the <INLINE> node,
the characters do not need to conform any particular syntax. More
precisely, the fetched document does not necessarily need to be
a valid XML document. In the example below, we show how the
with-url form can be used to implement a simple RSS reader.

The function rss-parse provided by the standard Hop library
parses a string of characters according to the RSS grammar. It ac-
cepts four arguments, the string to be parsed and three construc-
tors. The first and seconds build a data structure representing RSS
sections. The last one builds data structures for representing RSS
entries.

(define (make-rss channel items)
(<TREE>

channel
(<TRBODY> items)))

(define (make-channel channel)
(<TRHEAD> channel))
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(define (make-item link title date subject descr)
(<TRLEAF>

(<DIV>
:class "entry"
(<A> :href link title)
(if date (list "(" date ")"))
(if subject (<I> subject))
descr)))

Once provided with the tree constructors, parsing RSS documents
is straightforward.

(define (rss->html url)
(with-url url

(lambda (h)
(rss-parse h make-rss make-channel make-item))))

Producing a RSS report is then as simple as:

(rss->html "kernel.org/kdist/rss.xml")

5. Conclusion
Hop is a programming language dedicated to programming interac-
tive web applications. It differs from general purpose programming
languages by providing support for dealing with programs whose
execution is split across two computers. One computer is in charge
of executing the logic of the application. The other one is in charge
of dealing with the interaction with users.

This article focuses on the Hop development kit. It presents
some extensions to HTML that enable fancy graphical user inter-
faces programming and it presents the Hop web broker program-
ming. In the presentation various examples are presented. In partic-
ular, the paper shows how to implement simple a RSS reader with
Hop in no more than 20 lines of code!

The Hop library is still missing important features for web pro-
gramming. In particular, it does not provide SOAP interface, it can-
not handle secure HTTPS connections, and it does not implement
graphical visual effects. We continue to work on Hop, however, and
would love your feedback.
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Abstract
Even in the days of Lisp’s simple defmacro systems, macro devel-
opers did not have adequate debugging support from their program-
ming environment. Modern Scheme macro expanders are more
complex than Lisp’s, implementing lexical hygiene, referential
transparency for macro definitions, and frequently source proper-
ties. Scheme implementations, however, have only adopted Lisp’s
inadequate macro inspection tools. Unfortunately, these tools rely
on a naive model of the expansion process, thus leaving a gap
between Scheme’s complex mode of expansion and what the pro-
grammer sees.

In this paper, we present a macro debugger with full support
for modern Scheme macros. To construct the debugger, we have
extended the macro expander so that it issues a series of expan-
sion events. A parser turns these event streams into derivations in
a natural semantics for macro expansion. From these derivations,
the debugger extracts a reduction-sequence (stepping) view of the
expansion. A programmer can specify with simple policies which
parts of a derivation to omit and which parts to show. Last but not
least, the debugger includes a syntax browser that graphically dis-
plays the various pieces of information that the expander attaches
to syntactic tokens.

1. The Power of Macros
Modern functional programming languages support a variety of
abstraction mechanisms: higher-order functions, expressive type
systems, module systems, and more. With functions, types, and
modules, programmers can develop code for reuse; establish sin-
gle points of control for a piece of functionality; decouple distinct
components and work on them separately; and so on. As Paul Hu-
dak [18] has argued, however, “the ultimate abstraction of an ap-
plication is a . . . language.” Put differently, the ideal programming
language should allow programmers to develop and embed entire
sub-languages.

The Lisp and Scheme family of languages empower program-
mers to do just that. Through macros, they offer the programmer
the ability to define syntactic abstractions that manipulate bind-
ing structure, perform some analyses, re-order the evaluation of ex-
pressions, and generally transform syntax in complex ways—all at
compile time. As some Scheme implementors have put it, macros
have become a true compiler (front-end) API.

Proceedings of the 2006 Scheme and Functional Programming Workshop
University of Chicago Technical Report TR-2006-06

In the context of an expressive language [9] macros suffice to
implement many general-purpose abstraction mechanisms as li-
braries that are indistinguishable from built-in features. For exam-
ple, programmers have used macros to extend Scheme with con-
structs for pattern matching [32], relations in the spirit of Pro-
log [8, 27, 15, 20], extensible looping constructs [7, 26], class sys-
tems [24, 1, 14] and component systems [30, 13, 5], among others.
In addition, programmers have also used macros to handle tasks tra-
ditionally implemented as external metaprogramming tasks using
preprocessors or special compilers: Owens et al. [23] have added a
parser generator library to Scheme; Sarkar et al. [25] have created
an infrastructure for expressing nano-compiler passes; and Herman
and Meunier [17] have used macros to improve the set-based analy-
sis of Scheme. As a result, implementations of Scheme such as PLT
Scheme [12] have a core of a dozen or so constructs but appear to
implement a language the size of Common Lisp.

To support these increasingly ambitious applications, macro
systems had to evolve, too. In Lisp systems, macros are compile-
time functions over program fragments, usually plain S-expressions.
Unfortunately, these naive macros don’t really define abstractions.
For example, these macros interfere with the lexical scope of their
host programs, revealing implementation details instead of encap-
sulating them. In response, Kohlbecker et al. [21] followed by
others [4, 6, 11] developed the notions of macro hygiene, refer-
ential transparency, and phase separation. In this world, macros
manipulate syntax tokens that come with information about lexical
scope; affecting scope now takes a deliberate effort and becomes
a part of the macro’s specification. As a natural generalization,
modern Scheme macros don’t manipulate S-expressions at all but
opaque syntax representations that carry additional information. In
the beginning, this information was limited to binding information;
later Dybvig et al. [6] included source information. Now, Scheme
macros contain arbitrary properties [12] and programmers discover
novel uses of this mechanism all the time.

Although all these additions were necessary to create true syn-
tactic abstraction mechanisms, they also dramatically increased the
complexity of macro systems. The result is that both inexperienced
and advanced users routinely ask on Scheme mailing lists about un-
foreseen effects, subtle errors, or other seemingly inexplicable phe-
nomena. While “macrologists” always love to come to their aid,
these questions demonstrate the need for software tools that help
programmers explore their macro programs.

In this paper, we present the first macro stepper and debugger.
Constructing this tool proved surprisingly complex. The purpose
of the next section is to explain the difficulties abstractly, before we
demonstrate how our tool works and how it is constructed.
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2. Explaining Macros
Macro expansion takes place during parsing. As the parser traverses
the concrete syntax,1 it creates abstract syntax nodes for primitive
syntactic forms, but stops when it recognizes the use of a macro.
At that point, it hands over the (sub)phrases to the macro, which,
roughly speaking, acts as a rewriting rule.

In Lisp and in some Scheme implementations, a macro is ex-
pressed as a plain function; in R5RS Scheme [19], macros are
expressed in a sub-language of rewriting rules based on patterns.
Also in Lisp, concrete syntax are just S-expressions; Lisp macro
programming is thus typically first-order functional programming2

over pairs and symbols. The most widely used Scheme imple-
mentations, however, represent concrete syntax with structures that
carry additional information: lexical binding information, origi-
nal source location, code security annotations, and others. Scheme
macro programming is therefore functional programming with a
rich algebraic datatype.

Given appropriate inputs, a Lisp macro can go wrong in two
ways. First, the macro transformer itself may raise a run-time ex-
ception. This case is naturally in the domain of run-time debuggers;
after all, it is just a matter of traditional functional programming.
Second, a Lisp macro may create a new term that misuses a syntac-
tic form, which might be a primitive form or another macro. This
kind of error is not detected when the macro is executing, but only
afterwards when the parser-expander reaches the misused term.

Modern Scheme macros might go wrong in yet another way.
The additional information in a syntax object interacts with other
macros and primitive special forms. For example, macro-introduced
identifiers carry a mark that identifies the point of their introduc-
tion and binding forms interpret identifiers with different marks
as distinct names. Scheme macros must not only compute a cor-
rect replacement tree but also equip it with the proper additional
properties.

Even in Lisp, which has supported macros for almost 50
years now, macros have always had impoverished debugging en-
vironments. A typical Lisp environment supports just two pro-
cedures/tools for this purpose: expand and expand-once (or
macroexpand and macroexpand-1 [28]). All Scheme implemen-
tations with macros have adapted these procedures.

When applied to a term, expand completely parses and expands
it; in particular, it does not show the intermediate steps of the rewrit-
ing process. As a result, expand distracts the programmer with too
many irrelevant details. For example, Scheme has three conditional
expressions: if, cond, and case. Most Scheme implementations
implement only if as a primitive form and define cond and case
as macros. Whether or not a special form is a primitive form or a
macro is irrelevant to a programmer except that macro expansion
reveals the difference. It is thus impossible to study the effects of
a single macro or a group of related macros in an expansion, be-
cause expand processes all macros and displays the entire abstract
syntax tree.

The task of showing individual expansion steps is left to the sec-
ond tool: expand-once. It consumes a macro application, applies
the matching macro transformer, and returns the result. In partic-
ular, when an error shows up due to complex macro interactions,
it becomes difficult to use expand-once easily because the of-
fending or interesting pieces are often hidden under a large pile of
syntax. Worse, iterated calls to expand-once lose information be-
tween expansion steps, because lexical scope and other information
depends on the context of the expansion call. This problem renders
expand-once unfit for serious macro debugging.

1 We consider the result of (read) as syntax.
2 Both Lisp and Scheme macro programmers occasionally use side-effects
but aside from gensym it is rare.

Implementing a better set of debugging tools than expand and
expand-once is surprisingly difficult. It is apparently impossible
to adapt the techniques known from run-time debugging. For exam-
ple, any attempt to pre-process the syntax and attach debugging in-
formation or insert debugging statements fails for two reasons: first,
until parsing and macro expansion happens, the syntactic structure
of the tree is unknown; second, because macros inspect their argu-
ments, annotations or modifications are likely to change the result
of the expansion process [31].

While these reasons explain the dearth of macro debugging
tools and steppers, they don’t reduce the need for them. What we
present in this paper is a mechanism for instrumenting the macro
expander and for displaying the expansion events and intermediate
stages in a useful manner. Eventually we also hope to derive a well-
founded model of macros from this work.

3. The Macro Debugger at Work
The core of our macro debugging tool is a stepper for macro
expansion in PLT Scheme. Our macro debugger shows the macro
expansion process as a reduction sequence, where the redexes are
macro applications and the contexts are primitive syntactic forms,
i.e., nodes in the final abstract syntax tree. The debugger also
includes a syntax display and browser that helps programmers
visualize properties of syntax objects.

The macro stepper is parameterized over a set of “opaque”
syntactic forms. Typically this set includes those macros imported
from libraries or other modules. The macro programmers are in
charge, however, and may designate macros as opaque as needed.
When the debugger encounters an opaque macro, it deals with the
macro as if it were a primitive syntactic form. That is, it creates an
abstract syntax node that hides the actual expansion of the macro.
Naturally, it does show the expansion of the subexpressions of the
macro form. The parameterization of primitive forms thus allows
programmers to work at the abstraction level of their choice. We
have found this feature of the debugger critical for dealing with
any nontrivial programs.

The rest of this section is a brief illustrative demonstration of the
debugger. We have picked three problems with macros from recent
discussions on PLT Scheme mailing lists, though we have distilled
them into a shape that is suitably simple for a technical paper.

3.1 Plain Macros
For our first example we consider a debugging scenario where the
macro writer gets the form of the result wrong. Here are three dif-
ferent versions of a sample macro that consumes a list of identifiers
and produces a list of trivial definitions for these identifiers:

1. in Lisp, the macro writer uses plain list-processing functions to
create the result term:

(define-macro (def-false . names)
(map (lambda (a) ‘(define ,a #f)) names))

2. in R5RS the same macro is expressed with a rewriting rule
notation like this:

(define-syntax def-false
(syntax-rules ()
[(def-false a ...) ((define a #f) ...)]))

3. in major alternative Scheme macro systems, the rule specifica-
tion is slightly different:

(define-syntax (def-false stx)
(syntax-case stx ()
[(_ a ...) (syntax ((define a #f) ...))]))
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The macro definition is a function that consumes a syntax tree,
named stx. The syntax-case construct de-structures the tree
and binds pattern variables to its components. The syntax
constructor produces a new syntax tree by replacing the pattern
variables in its template with their values.

Using the macro, like thus:

(def-false x y z)

immediately exposes a problem. The macro expander fails with
an error explaining that definitions can’t occur in an expression
context. Of course, the problem is that the macro produces a list of
terms, which the macro expander interprets as an application and
which, in turn, may not contain any definitions.

Our macro stepper shows the sequence of macro expansion
steps, one at a time:

Here we can see both the original macro form and the output of the
macro application. The original appears at the top, the output of the
first step at the bottom. The highlighted subterms on the top and
bottom are the redex and contractum, respectively. The separator
explains that this is a macro expansion step. At this point, an
experienced Lisp or Scheme programmer recognizes the problem.
A novice may need to see another step:

Here the macro expander has explicitly tagged the term as an
application. The third step then shows the syntax error, highlighting
the term and the context in which it occurred.

The macro debugger actually expands the entire term before it
displays the individual steps. This allows programmers to skip to
the very end of a macro expansion and to work backwards. The
stepper supports this approach with a graphical user interface that
permits programmers to go back and forth in an expansion and also
to skip to the very end and the very beginning. The ideas for this
interface have been borrowed from Clements’s algebraic run-time
stepper for PLT Scheme [3]; prior to that, similar ideas appeared in
Lieberman’s stepper [22] and Tolmach’s SML debugger [29].

3.2 Syntax properties
Nearly all hygienic macro papers use the or macro to illustrate the
problem of inadvertent variable capture:

(define-syntax (or stx)
(syntax-case stx ()

[(or e1 e2)
(syntax (let ([tmp e1]) (if tmp tmp e2)))]))

In Scheme, the purpose of (or a b) is to evaluate a and to produce
its value, unless it is false; if it is false, the form evaluates b and
produces its value as the result.

In order to keep or from evaluating its first argument more than
once, the macro introduces a new variable for the first result. In
Lisp-style macro expanders (or Scheme prior to 1986), the new tmp
binding captures any free references to tmp in e2, thus interfering
with the semantics of the macro and the program. Consequently,
the macro breaks abstraction barriers. In Scheme, the new tmp
identifier carries a mark or timestamp—introduced by the macro
expander—that prevents it from binding anything but the two oc-
currences of tmp in the body of the macro-generated let [21]. This
mark is vital to Scheme’s macro expansion process, but no interface
exists for inspecting the marks and the marking process directly.

Our macro debugger visually displays this scope information at
every step. The display indicates with different text colors3 from
which macro expansion step every subterm originated. Further-
more, the programmer can select a particular subterm and see how
the other subterms are related to it. Finally, the macro stepper can
display a properties panel to show more detailed information such
as identifier bindings and source locations.

The following example shows a programmer’s attempt to create
a macro called if-it, a variant of if that tries to bind the variable
it to the result of the test expression for the two branches:

(define-syntax (if-it1 stx) ;; WARNING: INCORRECT
(syntax-case stx ()

[(if-it1 test then else)
(syntax
(let ([it test]) (if it then else)))]))

The same mechanism that prevents the inadvertent capture in the or
example prevents the intentional capture here, too. With our macro
debugger, the puzzled macro writer immediately recognizes why
the macro doesn’t work:

When the programmer selects an identifier, that identifier and all
others with compatible binding properties are highlighted in the
same color. Thus, in the screenshot above, the occurrence of it
from the original program is not highlighted while the two macro-
introduced occurrences are.

3 Or numeric suffixes when there are no more easily distinguishable colors.
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For completeness, here is the macro definition for a working
version of if-it:

(define-syntax (if-it2 stx)
(syntax-case stx ()
[(if-it2 test then else)
(with-syntax

([it (datum->syntax-object #’if-it2 ’it)])
(syntax

(let ([it test])
(if it then else))))]))

This macro creates an identifier named it with the lexical con-
text of the original expression. The syntax form automatically un-
quotes it and injects the new identifier, with the correct proper-
ties, into the output. When the programmer examines the expansion
of (if-it2 a b c), all occurrences of it in then and else are
highlighted now.

3.3 Scaling up
The preceding two subsections have demonstrated the workings
of the macro debugger on self-contained examples. Some macros
cannot be tested in a stand-alone mode, however, because it is
difficult to extract them from the environment in which they occur.

One reason is that complex macros add entire sub-languages,
not just individual features to the core. Such macros usually in-
troduce local helper macros that are valid in a certain scope but
nowhere else. For example, the class form in PLT Scheme, which
is implemented as a macro, introduces a super form—also a
macro—so that methods in derived classes can call methods in
the base class. Since the definition of super depends on the rest
of the class, it is difficult to create a small test case to explore its
behavior. While restructuring such macros occasionally improves
testability, requiring restructuring for debugging is unreasonable.

In general, the problem is that by the time the stepper reaches
the term of interest, the context has been expanded to core syntax.
Familiar landmarks may have been transformed beyond recogni-
tion. Naturally this prevents the programmer from understanding
the macro as a linguistic abstraction in the original program. For
the class example, when the expander is about to elaborate the
body of a method, the class keyword is no longer visible; field
and access control declarations have been compiled away; and the
definition of the method no longer has its original shape. In such a
situation, the programmer cannot see the forest for all the trees.

The macro debugger overcomes this problem with macro hid-
ing. Specifically, the debugger implements a policy that determines
which macros the debugger considers opaque; the programmer can
modify this policy as needed. The macro debugger does not show
the expansion of macros on this list, but it does display the ex-
pansions of the subtrees in the context of the original macro form.
That is, the debugger presents steps that actually never happen and
it presents terms that the expander actually never produces. Still,
these intermediate terms are plausible and instructive, and for well-
behaved macros,4 they have the same meaning as the original and
final programs.

Consider the if-it2 macro from the previous subsection. After
testing the macro itself, the programmer wishes to employ it in the
context of a larger program:

(match expr
[(op . args)
(apply (eval op) (map eval args))]
[(? symbol? x)

4 For example, a macro that clones one of its subexpressions or inspects the
structure of a subexpression is not well-behaved.

(if-it2 (lookup x)
(fetch it)
(error ’unbound))])))

This snippet uses the pattern-matching form called match from a
standard (macro) library.

If the debugger had no “opaqueness policy” covering match, the
macro expander and therefore the stepper would show the expan-
sion of if-it2 within the code produced by match macro. That
code is of course a tangled web of nested conditionals, interme-
diate variable bindings, and failure continuations, all of which is
irrelevant and distracting for the implementor of if-it2.

To eliminate the noise and focus on just the behavior of interest,
the programmer instructs the macro debugger to consider match an
opaque form. Then the macro debugger shows the expansion of the
code above as a single step:

Although macro hiding and opaqueness policies simplify the
story of expansion presented to the programmer, it turns out that
implementing them is difficult and severely constrains the internal
organization of the macro stepper. Before we can explain this,
however, we must explain how Scheme expands macros.

4. Macro Expansion
Our model of macro expansion is an adaptation of Clinger and
Rees’s model [4], enriched with the lexical scoping mechanism of
Dybvig et al. [6] and the phase separation of Flatt [11]. Figures 1
through 3 display the details.

Macro expansion is a recursive process that takes an expression
and eliminates the macros, resulting in an expression in the core
syntax of the language. The macro expander uses an environment
to manage bindings and a phase number to manage staging. We use
the following judgment to say the term expr fully macro expands
into expr ′ in the syntactic environment E in phase number p:

p, E ` expr ⇓ expr′
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Terms expr ::= identifier
| datum
| (expr · · · expr)

Identifiers x , kw ::= symbol
| mark(identifier ,mark)
| subst(ident , ident , symbol)

Symbols s ::= countable set of names
Marks mark ::= countable set
Phases p ::= number: 0, 1, 2, . . .
Denotation d ::= variable

| 〈primitive, symbol〉
| 〈macro, transformer〉

Environments E : symbol × phase → denotation

Expansion relation p, E ` expr ⇓ expr
Macro step relation p, E ` expr → expr
Evaluation relation p, E ` expr ⇓eval expr

Figure 1. Semantic domains and relations

Figure 1 summarizes the domains and metavariables we use to
describe the semantics.5

The structure of expressions varies from system to system.
Lisp macro expanders operate on simple concrete syntax trees.
Scheme macro systems are required to be hygienic—that is, they
must respect lexical binding—and the expressions they manipulate
are correspondingly complex. The hygiene principle [21, 4] of
macro expansion places two requirements on macro expansion’s
interaction with lexical scoping:

1. Free identifiers introduced by a macro are bound by the binding
occurrence apparent at the site of the macro’s definition.

2. Binding occurrences of identifiers introduced by the macro (not
taken from the macro’s arguments) bind only other identifiers
introduced by the same macro expansion step.

The gist of the hygiene requirement is that macros act “like clo-
sures” at compile time. Hence the meaning of a macro can be de-
termined from its environment and its input; it does not depend on
the context the macro is used in. Furthermore, if the macro creates
a binding for a name that comes from the macro itself, it doesn’t
affect expressions that the macro receives as arguments.

Thinking of macro expansion in terms of substitution provides
additional insight into the problem. There are two occurrences of
substitution, and two kinds of capture to avoid. The first substitu-
tion consists of copying the macro body down to the use site; this
substitution must not allow bindings in the context of the use site
to capture names present in the macro body (hygiene condition 1).
The second consists of substituting the macro’s arguments into the
body; names in the macro’s arguments must avoid capture by bind-
ings in the macro body (hygiene condition 2), even though the latter
bindings are not immediately apparent in the macro’s result.

Consider the following sample macro:

(define-syntax (munge stx)
(syntax-case stx ()
[(munge e)
(syntax (mangle (x) e))]))

This macro puts its argument in the context of a use of a mangle
macro. Without performing further expansion steps, the macro ex-
pander cannot tell if the occurrence of x is a binding occurrence.

5 For simplicity, we do not model the store. Flatt [11] presents a detailed
discussion of the interaction between phases, environments, and the store.

The expander must keep enough information to allow for both pos-
sibilities and delay its determination of the role of x.

The hygiene requirement influences the way lexical bindings are
handled, and that in turn influences the structure of the expression
representation. Technically, the semantics utilizes substitution and
marking operations on expressions:

subst : Expr × Identifier × Symbol → Expr

mark : Expr ×Mark → Expr

Intuitively, these operations perform renaming and reversible
stamping on all the identifiers contained in the given expression.
These operations are generally done lazily for efficiency. There is
an accompanying forcing operation called resolve

resolve : Identifier → Symbol

that sorts through the marks and substitutions to find the meaning
of the identifier. Dybvig et al. [6] explain identifier resolution in
detail and justify the lazy marking and renaming operations.

The expander uses these operations to implement variable re-
naming and generation of fresh names, but they don’t carry the
meaning of the identifiers; that resides in the expander’s environ-
ment. This syntactic environment maps a symbol and a phase to a
macro, name of a primitive form, or the designator variable for a
value binding.

Determining the meaning of an identifier involves first resolving
the substitutions to a symbol, and then consulting the environment
for the meaning of the symbol in the current phase.

4.1 Primitive syntactic forms
Handling primitive syntactic forms generally involves recursively
expanding the expression’s subterms; sometimes the primitive ap-
plies renaming steps to the subterms before expanding them. De-
termining which rule applies to a given term involves resolving
the leading keyword and consulting the environment. Consider
the lambda rule from Figure 2. The keyword may be something
other than the literal symbol lambda, but the rule applies to any
form where the leading identifier has the meaning of the primitive
lambda in the current environment.

The lambda syntactic form generates a new name for each of
its formal parameters and creates a new body term with the old for-
mals mapped to the new names—this is the renaming step. Then it
extends the environment, mapping the new names to the variable
designator, and expands the new body term in the extended envi-
ronment. Finally, it re-assembles the lambda term with the new
formals and expanded body.

When the macro expander encounters one of the lambda-bound
variables in the body expression, it resolves the identifier to the
fresh symbol from the renaming step, checks to make sure that
the environment maps it to the variable designator (otherwise
it is a misused macro or primitive name), and returns the resolved
symbol.

The if and app (application) rules are simple; they just expand
their subexpressions in the same environment.

The let-syntax form, which introduces local macro defini-
tions, requires the most complex derivation rule (Figure 3). Like
lambda, it constructs fresh names and applies a substitution to
the body expression. However, it expands the right hand sides of
the bindings using a phase number one greater than the current
phase number. This prevents the macro transformers, which exist
at compile time, from accessing run-time variables.6 The macro
transformers are then evaluated in the higher phase, and the envi-

6 Flatt [11] uses phases to guarantee separate compilation on the context
of modules that import and export macros, but those issues are beyond the
scope of this discussion.
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ronment is extended in the original phase with the mapping of the
macro names to the resulting values. The body of the let-syntax
form is expanded in the extended environment, but with the original
phase number.

For our purposes the run-time component of the semantics is
irrelevant; we simply assume that the macro transformers act as
functions that compute the representation of a new term when
applied to a representation of the macro use. Thus, we leave the
evaluation relation (⇓eval ) unspecified.

4.2 Macros
Expanding a macro application involves performing the immediate
macro transformation and then expanding the resulting term. The
transformation step, represented by judgments of the form:

p, E ` expr → expr

essentially consists of retrieving the appropriate macro transformer
function from the environment and applying it to the macro use.
We assume an invertible mapping from terms to data:

reflect : Expr → Datum
reify : Datum → Expr

reify(reflect(expr)) = expr

Like the evaluation relation (⇓eval ), the details [6] of this operation
are unimportant.

The interesting part of the macro rule is the marking and un-
marking that supports the second hygiene condition. Identifiers in-
troduced by the macro should not bind occurrences of free vari-
ables that come from the macro’s arguments. The macro expander
must somehow distinguish the two. The expander marks the macro
arguments with a unique mark. When the macro transformer re-
turns a new term, the parts originating from arguments still have
a mark, and those that are newly introduced do not. Applying the
same mark again cancels out the mark on old expressions and re-
sults in marks on only the introduced expressions.

When a marked identifier is used in a binding construct, the
substitution only affects identifiers with the same name and the
same mark. This satisfies the requirements of the second hygiene
condition.

4.3 Syntax properties
The semantics shows how one kind of syntax property (scoping in-
formation) is manipulated and propagated by the macro expansion
process.

The macro systems of real Scheme implementations define var-
ious other properties. For example, some put source location in-
formation in the syntax objects, and this information is preserved
throughout macro expansion. Run time tools such as debuggers and
profilers in these systems can then report facts about the execution
of the program in terms of positions in the original code.

PLT Scheme allows macro writers to attach information keyed
by arbitrary values to syntax. This mechanism has given rise to
numerous lightweight protocols between macros, primitive syntax,
and language tools.

5. Implementation
Programmers think of macros as rewriting specifications, where
macro uses are replaced with their expansions. Therefore a macro
debugger should show macro expansion as a sequence of rewrit-
ing steps. These steps are suggestive of a reduction semantics, but
in fact we have not formulated a reduction semantics for macro
expansion.7 For a reduction semantics to be as faithful as the nat-

7 Bove and Arbilla [2], followed by Gasbichler [16], have formulated re-
duction systems that present the macro expansion process as an ordered

ural semantics we have presented, it would have to introduce ad-
ministrative terms that obscure the user’s program. We prefer to
present an incomplete but understandable sequence of steps con-
taining only terms from the user’s program and those produced by
macro expansion.

This section describes how we use the semantics in the imple-
mentation of the stepper, and the relationship between the seman-
tics and the information displayed to the user.

5.1 Overview
The structure of a debugger is like the structure of a compiler.
It has a front end that sits between the user and the debugger’s
internal representation of the program execution, a “middle end” or
optimizer that performs translations on the internal representation,
and a back end that connects the internal representation to the
program execution.

While information flows from a compiler’s front end to the back
end, information in a debugger starts at the back end and flows
through the front end to the user. The debugger’s back end monitors
the low-level execution of the program, and the front end displays
an abstract view of the execution to the user. The debugger’s middle
end is responsible for finessing the abstract view, “optimizing” it
for user comprehension.

Figure 4 displays the flow of information through our debugger.
We have instrumented the PLT Scheme macro expander to emit
information about the expansion process. The macro debugger re-
ceives this low-level information as a stream of events that carry
data representing intermediate subterms and renamings. The macro
debugger parses this low-level event stream into a structure repre-
senting the derivation in the natural semantics that corresponds to
the execution of the macro expander. These derivations constitute
the debugger’s intermediate representation.

The debugger’s middle end operates on the derivation gener-
ated by the back end, computing a new derivation tree with cer-
tain branches pruned away in accordance with the macro hiding
policy. Finally, the front end traverses the optimized intermediate
representation of expansion, turning the derivation structure into
a sequence of rewriting steps, which the debugger displays in a
graphical view. This view supports the standard stepping naviga-
tion controls. It also decorates the text of the program fragments
with colors and mark-ups that convey additional information about
the intermediate terms.

5.2 The Back End: Instrumentation
The macro expander of PLT Scheme is implemented as a collec-
tion of mutually recursive functions. Figure 5 presents a distilled
version of the main function (in pseudocode).

The expand-term function checks the form of the given term.
It distinguishes macro applications, primitive syntax, and variable
references with a combination of pattern matching on the struc-
ture of the term and environment lookup of the leading keyword.
Macro uses are handled by applying the corresponding transformer
to a marked copy of the term, then unmarking and recurring on
the result. Primitive forms are handled by calling the correspond-
ing primitive expander function from the environment. The initial
environment maps the name of each primitive (such as lambda) to
its primitive expander (expand-primitive-lambda). When the
primitive expander returns, expansion is complete for that term.
The definitions of some of the primitive expander functions are

sequence of states. Each state is a term in an explicit substitution syntax
(plus additional attributes). Unfortunately, these semantics are complex and
unsuitable as simple specifications for a reduction system. In comparison,
Clements [3] uses beta-value and delta-value rules as a complete specifica-
tion and proves his stepper correct.
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LAMBDA

E(resolve(kw), p) = 〈primitive, lambda〉 formals is a list of distinct identifiers
formals ′ = freshnamesE(formals) body ′ = subst(body , formals, formals ′)

E′ = E[
〈
formals ′, p

〉
7→ variable] p, E′ ` body ′ ⇓ body ′′

p, E ` (kw formals body) ⇓ (kw formals ′ body ′′
)

VARIABLE
resolve(x ) = x ′ E(x ′, p) = variable

p, E ` x ⇓ x ′

IF

E(resolve(kw), p) = 〈primitive, if〉
p, E ` test ⇓ test ′ p, E ` then ⇓ then ′ p, E ` else ⇓ else ′

p, E ` (kw test then else) ⇓ (kw test ′ then ′ else ′
)

APPLICATION

E(resolve(kw), p) = 〈primitive, app〉
∀i ≤ n : p, E ` expr ⇓ expr ′

p, E ` (kw expr0 · · · exprn) ⇓ (kw expr ′
0 · · · expr ′

n)

Figure 2. Primitive syntactic forms

LET-SYNTAX

E(resolve(kw), p) = 〈primitive, let-syntax〉 each vari is a distinct identifier
∀i ≤ n : var ′

i = freshnameE(var i)
vars = {var0, . . . , varn} vars ′ = {var ′

0, . . . , var
′
n} body ′ = subst(body , vars, vars ′)

∀i ≤ n : p + 1, E ` rhsi ⇓ rhs ′
i ∀i ≤ n : p + 1, E ` rhs ′

i ⇓eval transformer i

E′ = E[{
〈
var ′

i, p
〉
7→ transformer i}] p, E′ ` body ′ ⇓ body ′′

p, E ` (kw ((var0 rhs0) · · · (varn rhsn)) body) ⇓ body ′′

MACRO
p, E ` expr → expr′ p, E ` expr′ ⇓ expr′′

p, E ` expr ⇓ expr ′′

MACRO-STEP

E(resolve(kw), p) = 〈macro, transformer〉 mark = freshmarkE

expr = (kw form1 · · · formn) stx = reflect(mark(expr ,mark))
p + 1, E ` (transformer stx) ⇓eval stx ′ expr ′ = mark(reify(stx ′),mark)

p, E ` (kw form1 · · · formn) → expr ′

Figure 3. Macro definitions and uses

macro hiding
policy

annotated
grammar

Event Stream

Derivation

Synthetic Derivation

Rewriting Steps

parser Back End

Front End

Middle End

Figure 4. Implementation overview

given in Fig. 6; they recursively call expand-term on their sub-
terms, as needed.

The shaded code in Fig. 5 and Fig. 6 represents our additions to
the expander to emit debugging events. The calls to emit-event
correspond to our instrumentation for the macro debugger. A call
to emit-event send an event through a channel of communication
to the macro debugger.

The events carry data about the state of the macro expander.
Figure 7 shows a few of the event variants and the types of data

they contain. A visit event indicates the beginning of an expan-
sion step, and it contains the syntax being expanded. Likewise,
the expansion of every term ends with a return event that carries
the expanded syntax. The enter-macro and exit-macro events
surround macro transformation steps, and the macro-pre and
macro-post contain the marked versions of the starting and result-
ing terms. The enter-primitive and exit-primitive events
surround all primitive form expansions. For every primitive, such as
if, there is an event (primitive-if) that indicates that the macro
expander is in the process of expanding that kind of primitive form.
Primitives that create and apply renamings to terms send rename
events containing the renamed syntax. The next signal separates
the recursive expansion of subterms; next-part separates differ-
ent kinds of subterms for primitives such as let-syntax.

5.3 The Back End: From Events to Derivations
The back end of the macro debugger transforms the low-level event
stream from the instrumented expander into a derivation structure.
This derivation structure corresponds to the natural semantics ac-
count of the expansion process.

The kinds of events in the stream determine the structure of the
derivation, and the information carried by the events fills in the
fields of the derivation objects. Figure 8 lists a few of the variants
of the derivation datatype.
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expand-term(term, env, phase) =
emit-event("visit", term)
case term of

(kw . _)
where lookup(resolve(kw), env, phase)

= ("macro", transformer)

=> emit-event("enter-macro", term)

let M = fresh-mark
let term/M = mark(term, M)

emit-event("macro-pre", term/M)

let term2/M = transformer(term/M)

emit-event("macro-post", term/M)

let term2 = mark(term2/M, M)

emit-event("exit-macro", term2)

return expand-term(term2, env, phase)
(kw . _)

where lookup(resolve(kw), env, phase)
= ("primitive", expander)

=> emit-event("enter-primitive", term)

let term2 = expander(term, env, phase)

emit-event("exit-primitive", term2)

emit-event("return", term2)

return term2
id

where lookup(resolve(id), env, phase)
= "variable"

=> emit-event("enter-primitive", id)

let term2 = expand-variable(id, env, phase)

emit-event("exit-primitive", term2)

emit-event("return", term2)

return term2
else

=> raise syntax error

Figure 5. Expansion function

Recall the inference rules from Fig. 2 and Fig. 3. The corre-
sponding derivation structures contain essentially the same infor-
mation in a different form. The first two fields of all derivation vari-
ants are the terms before and after expansion. The remaining fields
are specific to the variant. In the mrule variant, the remaining field
contains the derivation of the macro’s result. In the lambda variant,
the third field contains the new formal parameters and body expres-
sion after renaming, and the final field contains the derivation that
represents the expansion of the renamed body expression. In the if
variant, the three additional fields are the derivations for the three
if subexpressions. The phase and environment parameters are not
stored explicitly in the derivation structures, but they can be recon-
structed for any subderivation from its context.

Creating structured data from unstructured sequences is a pars-
ing problem. By inspecting the order of calls to emit-event, re-
cursive calls to expand-term, and calls to other auxiliary func-
tions, it is possible to specify a grammar that describes the lan-
guage of event streams from the instrumented expander. Figure 9
shows such a grammar. By convention, non-terminal names start
with upper-case letters and terminal names start with lower-case
letters.

The ExpandTerm non-terminal describes the events generated
by the expand-term function (Fig. 5) in expanding a term, whether
it is the full program or a subterm. It has two variants: one for
macros and one for primitive syntax. The Primitive non-terminal
has a variant for each primitive syntactic form, and the productions

expand-prim-lambda(term, env, phase) =

emit-event("primitive-lambda")

case term of
(kw formals body)

where formals is a list of identifiers
=> let formals2 = freshnames(formals)

let env2 =
extend-env(env, formals, "variable", phase)

let body2 = rename(body, formals, formals2)

emit-event("rename", formals2, body2)

let body3 = expand-term(body2, env2)
return (kw formals2 body3)

else => raise syntax error

expand-prim-if(term, env, phase) =

emit-event("primitive-if")

case term of
(if test-term then-term else-term)

=> emit-event("next")

let test-term2 = expand-term(test-term, env)

emit-event("next")

let then-term2 = expand-term(then-term, env)

emit-event("next")

let else-term2 = expand-term(else-term, env)
return (kw test-term2 then-term2 else-term2)

else => raise syntax error

expand-variable(id, env, phase) =
let id2 = resolve(id)

emit-event("variable", id2)

return id2

expand-primitive-let-syntax(term, env, phase)

emit-event("primitive-let-syntax", term)

case term of
(kw ([lhs rhs] ...) body)

where each lhs is a distinct identifier
=> let lhss = (lhs ...)

let rhss = (rhs ...)
let lhss2 = freshnames(lhss)
let body2 = rename(body, lhss, lhss2)

emit-event("rename", lhss2 body2)

let rhss2 =
for each rhs in rhss:

emit-event("next")

expand-term(rhs, env, phase+1)
let transformers =

for each rhs2 in rhss2:
eval(rhs2, env)

emit-event("next-part")

let env2 =
extend-env(env, lhss2, transformers, phase)

let body3 = expand-term(body2, env2, phase)
return body3

else => raise syntax error

Figure 6. Expansion functions for primitives and macros
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visit : Syntax
return : Syntax
enter-macro : Syntax
exit-macro : Syntax
macro-pre : Syntax
macro-post : Syntax
enter-primitive : Syntax
exit-primitive : Syntax
rename : Syntax × Syntax
next : ()
next-part : ()
primitive-lambda : ()
primitive-if : ()
primitive-let-syntax : ()

Figure 7. Selected primitive events and the data they carry

for each primitive reflect the structure of the primitive expander
functions from Fig. 6.

The macro debugger parses event streams into derivations ac-
cording to this grammar. After all, a parse tree is the derivation
proving that a sentence is in a language.8 The action routines for
the parser simply combine the data carried by the non-terminals—
that is, the events—and the derivations constructed by the recursive
occurrences of ExpandTerm into the appropriate derivation struc-
tures. There is one variant of the derivation datatype for each infer-
ence rule in the natural semantics (see Fig. 8).

5.4 Handling syntax errors
Both the derivation datatype from Fig. 8 and the grammar fragment
in Fig. 9 describe only successful macro expansions, but a macro
debugger must also deal with syntax errors. Handling such errors
involves two additions to our framework:

1. new variants of the derivation datatype to represent interrupted
expansions; after all, a natural semantics usually does not cope
with errors

2. representation of syntax errors in the event stream, and addi-
tional grammar productions to recognize the new kinds of event
streams

5.4.1 Derivations representing errors
A syntax error affects expansion in two ways:

1. The primitive expander function or macro transformer raises an
error and aborts. We call this the direct occurrence of the error.

2. Every primitive expander in its context is interrupted, having
completed some but not all of its work.

It is useful to represent these two cases differently. Figure 10
describes the extended derivation datatype.

For example, consider the expansion of this term:

(if x (lambda y) z)

The form of the if expression is correct; expand-primitive-if
expands its subterms in order. When the expander encounters the
lambda form, it calls the expand-primitive-lambda function,
which rejects the form of the lambda expression and raises a syntax
error. We represent the failed expansion of the lambda expression
by wrapping a prim:lambda node in an error-wrapper node.
The error wrapper also includes the syntax error raised.

8 Parser generators are widely available; we used the PLT Scheme parser
generator macro [23].

That failure prevents expand-primitive-if from expand-
ing the third subexpression and constructing a result term—
but it did successfully complete the expansion of its first sub-
term. We represent the interrupted expansion of the if expres-
sion by wrapping the partially initialized prim:if node with an
interrupted-wrapper. The interrupted wrapper also contains
a tag that indicates that the underlying prim:if derivation has
a complete derivation for its first subterm, it has an interrupted
derivation for its second subterm, and it is missing the derivation
for its third subterm.

5.4.2 The Error-handling Grammar
When an expansion fails, because either a primitive expander func-
tion or a macro transformer raises an exception, the macro expander
places that exception at the end of the event stream as an error
event. The event stream for the bad syntax example in Sec. 5.4.1 is:

visit enter-prim prim-if
next visit enter-prim variable exit-prim return
next visit enter-prim prim-lambda error

To recognize the event streams of failed expansions, we extend the
grammar in the following way: for each non-terminal representing
successful event streams, we add a new non-terminal that repre-
sents interrupted event streams. We call this the interrupted non-
terminal, and by convention we name it by suffixing the original
non-terminal name with “/Error.” This interruption can take the
form of an error event concerning the current rule or an interrup-
tion in the processing of a subterm.

Figure 11 shows two examples of these new productions.9 The
first variant of each production represents the case of a direct
error, and the remaining variants represent the cases of errors in
the expansions of subterms. The action routines for the first sort
of error uses error-wrapper, and those for the second sort use
interrupted-wrapper.

Finally, we change the start symbol to a new non-terminal called
Expansion with two variants: a successful expansion ExpandTerm
or an unsuccessful expansion ExpandTerm/Error.

The error-handling grammar is roughly twice the size of the
original grammar. Furthermore, the new productions and action
routines share a great deal of structure with the original produc-
tions and action routines. We therefore create this grammar auto-
matically from annotations rather than manually adding the error-
handling productions and action routines. The annotations specify
positions for potential errors during the expansion process and po-
tentially interrupted subexpansions. They come in two flavors: The
first is the site of a potential error, written (! tag), where tag is
a symbol describing the error site. The second is a non-terminal
that may be interrupted, written (? NT tag), where NT is the non-
terminal.

Figure 12 gives the definitions of the PrimitiveLambda and
PrimitiveIf non-terminals from the annotated grammar. From
these annotated definitions we produce the definitions of both the
successful and interrupted non-terminals from Fig. 9 and Fig. 11,
respectively.

The elaboration of the annotated grammar involves splitting ev-
ery production alternate containing an error annotation into its suc-
cessful and unsuccessful parts. This splitting captures the meaning
of the error annotations:

• A potential error is either realized as an error that ends the
event stream, or no error occurs and the event stream continues
normally.

9 Figure 11 also shows that we rely on the delayed commitment to a partic-
ular production possible with LR parsers.
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Derivation ::= (make-mrule Syntax Syntax Derivation)
| (make-prim:if Syntax Syntax Derivation Derivation Derivation)
| (make-prim:lambda Syntax Syntax Renaming Derivation)
| (make-prim:let-syntax Syntax Syntax Renaming DerivationList Derivation)

. . .
Renaming ::= Syntax × Syntax

Figure 8. Derivation structures

ExpandTerm ::= visit enter-macro macro-pre macro-post exit-macro ExpandTerm
| visit enter-primitive Primitive exit-primitive return

Primitive ::= PrimitiveLambda
| PrimitiveIf
| PrimitiveApp
| PrimitiveLetSyntax
| ...

PrimitiveLambda ::= primitive-lambda rename ExpandTerm

PrimitiveIf ::= primitive-if next Expandterm next ExpandTerm next ExpandTerm

PrimitiveLetSyntax ::= primitive-let-syntax rename NextExpandTerms next-part ExpandTerm

NextExpandTerms ::= ε
| next ExpandTerm NextExpandTerms

Figure 9. Grammar of event streams

Derivation ::= . . .

| (make-error-wrapper Symbol Exception Derivation)

| (make-interrupted-wrapper Symbol Derivation)

Figure 10. Extended derivation datatype

PrimitiveLambda/Error ::= primitive-lambda error
| primitive-lambda renames ExpandTerm/Error

PrimitiveIf/Error ::= primitive-if error
| primitive-if next ExpandTerm/Error
| primitive-if next ExpandTerm next ExpandTerm/Error
| primitive-if next ExpandTerm next ExpandTerm next ExpandTerm/Error

Figure 11. Grammar for interrupted primitives

PrimitiveLambda ::= primitive-lambda (! ’malformed) renames (? ExpandTerm)

PrimitiveIf ::= primitive-if (! ’malformed) next (? ExpandTerm ’test) next (? ExpandTerm ’then)
next (? ExpandTerm ’else)

Figure 12. Grammar with error annotations
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• A potentially interrupted subexpansion is either interrupted and
ends the event stream, or it completes successfully and the event
stream continues normally.

Naturally, we use a macro to elaborate the annotated grammar
into the error-handling grammar. This is a nontrivial macro, and we
made mistakes, but we were able to debug our mistakes using an
earlier version of the macro stepper itself.

5.5 The Middle End: Hiding Macros
Once the back end has created a derivation structure, the macro
debugger processes it with the user-specified macro hiding policy
to get a new derivation structure. The user can change the policy
many times during the debugging session. The macro debugger
retains the original derivation, so updating the display involves
only redoing the tree surgery and re-running the front end, which
produces the rewriting sequence.

Conceptually, a macro hiding policy is simply a predicate on
macro derivations. In practice, the user of the debugger controls the
macro hiding policy by designating modules and particular macros
as opaque or transparent. The debugger also provides named col-
lections of modules, such as “mzscheme primitives,” that can be
hidden as a group. Policies may also contain more complicated pro-
visions, and we are still exploring mechanisms for specifying these
policies. We expect that time and user feedback will be necessary
to find the best ways of building policies.

We refer to the original derivation as the true derivation, and the
one produced by applying the macro policy as the synthetic deriva-
tion. The datatype of synthetic derivations contains an additional
variant of node that does not correspond to any primitive syntactic
form. This node contains a list of subterm expansions, where each
subterm expansion consists of a derivation structure and a path rep-
resenting the context of the subterm in the node’s original syntax.

The middle end constructs the synthetic derivation by walking
the true derivation and applying the policy predicate to every macro
step. When the policy judges a macro step opaque, the debugger
hides that step and the derivation for the macro’s result, replacing
the macro node with a synthetic node. The debugger then searches
for expanded subterms within the hidden derivation. While search-
ing through the subterms, it keeps track of the path through the
opaque term to the subterms. When it finds an expanded subterm,
it adds the derivation for the subterm’s expansion, together with the
path to that subterm, to the synthetic node.

Figure 13 illustrates one step of the macro hiding process. Sup-
pose that the expansion of let/cc is marked as hidden. The de-
bugger searches through the hidden derivation for subderivations
corresponding to subterms of the opaque term. In the example from
the figure, there is no subderivation for k, but there is a subderiva-
tion for e1 . The macro hiding pass produces a new derivation with
a synthetic node containing the derivation of e1 and the path to e1
in the original term. In this case, e1 can be reached in the term
(let/cc k e1) through the path (-- -- []).

If the expansion of e1 involves other opaque macros, then the
debugger processes the derivation of e1 and places its correspond-
ing synthetic derivation in the list of subterm derivations instead.

As a side benefit, macro hiding enables the debugger to detect
a common beginner mistake: putting multiple copies of an input
expression in the macro’s output. If macro hiding produces a list of
paths with duplicates (or more generally, with overlapping paths),
the debugger reports an error to the programmer.
Engineering note 1: Macro hiding is complicated slightly by the
presence of renaming steps. When searching for derivations for
subterms, if the macro hider encounters a renaming step, it must
also search for derivations for any subterms of the renamed term
that correspond to subterms of the original term.

Engineering note 2: Performing macro hiding on the full lan-
guage is additionally complicated by internal definition blocks.
PLT Scheme partially expands the contents of a block to expose
internal definitions, then transforms the block into a letrec ex-
pression and finishes handling the block by expanding the interme-
diate letrec expression.10 Connecting the two passes of expansion
for a particular term poses significant engineering problems to the
construction of the debugger.

5.6 The Front End: Rewriting Steps
Programmers think of macro expansion as a term rewriting process,
where macro uses are the redexes and primitive syntactic forms are
the contexts. The front end of the debugger displays the process
of macro expansion as a reduction sequence. More precisely, the
debugger displays one rewriting step at a time, where each step
consists of the term before the step and the term after the step,
separated by an explanatory note.

The macro stepper produces the rewriting steps from the deriva-
tion produced by the middle end, which contains three sorts of
derivation node. A macro step (mrule) node corresponds to a
rewriting step, followed of course by the steps generated by the
derivation for the macro’s result. A primitive node generates rewrit-
ing steps for the renaming of bound variables, and it also generates
rewriting steps from the expansion of its subterms. These rewrit-
ing steps occur in the context of the primitive form, with all of the
previous subterms replaced with the results of their expansions.

For example, given subderivations test, then, and else for the
three subterms of an if expression, we can generate the reduction
sequence for the entire expression. We simply generate all the
reductions for the first derivation and plug them into the original
context. We build the next context by filling the first hole with the
expanded version of the first subterm, and so on.

Opaque macros also act as expansion contexts. The synthetic
nodes that represent opaque macros contain derivations paired with
paths into the macro use’s term. The paths provide the location of
the holes for the contexts, and the debugger generates steps using
the subderivations just as for primitive forms.

6. Conclusion
Despite the ever increasing complexity of Scheme’s syntactic ab-
straction system, Scheme implementations have failed to provide
adequate tools for stepping through macro expansions. Beyond the
technical challenges that we have surmounted to implement our
macro stepper, there are additional theoretical challenges in prov-
ing its correctness. Macro expansion is a complex process that thus
far lacks a simple reduction semantics. We have therefore based our
macro stepper on a natural semantics, with an ad hoc translation of
derivations to reduction sequences.

First experiences with the alpha release of the debugger suggest
that it is a highly useful tool, both for experts and novice macro
developers. We intend to release the debugger to the wider Scheme
community soon and expect to refine it based on the community’s
feedback.
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Abstract
Compilers are perceived to be magical artifacts, carefully crafted
by the wizards, and unfathomable by the mere mortals. Books on
compilers are better described as wizard-talk: written by and for
a clique of all-knowing practitioners. Real-life compilers are too
complex to serve as an educational tool. And the gap between
real-life compilers and the educational toy compilers is too wide.
The novice compiler writer stands puzzled facing an impenetrable
barrier, “better write an interpreter instead.”

The goal of this paper is to break that barrier. We show that
building a compiler can be as easy as building an interpreter. The
compiler we construct accepts a large subset of the Scheme pro-
gramming language and produces assembly code for the Intel-x86
architecture, the dominant architecture of personal computing. The
development of the compiler is broken into many small incremen-
tal steps. Every step yields a fully working compiler for a progres-
sively expanding subset of Scheme. Every compiler step produces
real assembly code that can be assembled then executed directly
by the hardware. We assume that the reader is familiar with the
basic computer architecture: its components and execution model.
Detailed knowledge of the Intel-x86 architecture is not required.

The development of the compiler is described in detail in an
extended tutorial. Supporting material for the tutorial such as an
automated testing facility coupled with a comprehensive test suite
are provided with the tutorial. It is our hope that current and future
implementors of Scheme find in this paper the motivation for de-
veloping high-performance compilers and the means for achieving
that goal.

Categories and Subject Descriptors D.3.4 [Processors]: Compil-
ers; K.3.2 [Computer and Information Science Education]: Com-
puter science education

Keywords Scheme, Compilers

1. Introduction
Compilers have traditionally been regarded as complex pieces of
software. The perception of complexity stems mainly from tradi-
tional methods of teaching compilers as well as the lack of available
examples of small and functional compilers for real languages.

Compiler books are polarized into two extremes. Some of them
focus on “educational” toy compilers while the others focus on
“industrial-strength” optimizing compilers. The toy compilers are
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too simplistic and do not prepare the novice compiler writer to
construct a useful compiler. The source language of these compilers
often lacks depth and the target machine is often fictitious. Niklaus
Wirth states that “to keep both the resulting compiler reasonably
simple and the development clear of details that are of relevance
only for a specific machine and its idiosyncrasies, we postulate
an architecture according to our own choice”[20]. On the other
extreme, advanced books focus mainly on optimization techniques,
and thus target people who are already well-versed in the topic.
There is no gradual progress into the field of compiler writing.

The usual approach to introducing compilers is by describing
the structure and organization of a finalized and polished compiler.
The sequencing of the material as presented in these books mirrors
the passes of the compilers. Many of the issues that a compiler
writer has to be aware of are solved beforehand and only the final
solution is presented. The reader is not engaged in the process of
developing the compiler.

In these books, the sequential presentation of compiler imple-
mentation leads to loss of focus on the big picture. Too much focus
is placed on the individual passes of the compiler; thus the reader
is not actively aware of the relevance of a single pass to the other
passes and where it fits in the whole picture. Andrew Appel states
that “a student who implements all the phases described in Part I of
the book will have a working compiler”[2]. Part I of Appel’s book
concludes with a 6-page chapter on “Putting it all together” after
presenting 11 chapters on the different passes of Tiger.

Moreover, practical topics such as code generation for a real
machine, interfacing to the operating system or to other languages,
heap allocation and garbage collection, and the issues surround-
ing dynamic languages are either omitted completely or placed
in an appendix. Muchnick states that “most of the compiler ma-
terial in this book is devoted to languages that are well suited for
compilation: languages that have static, compile-time type systems,
that do not allow the user to incrementally change the code, and
that typically make much heavier use of stack storage than heap
storage”[13].

2. Preliminary Issues
To develop a compiler, there are a few decisions to be made.
The source language, the implementation language, and the target
architecture must be selected. The development time frame must
be set. The development methodology and the final goal must be
decided. For the purpose of our tutorial, we made the decisions
presented below.

2.1 Our Target Audience
We do not assume that the reader knows anything about assem-
bly language beyond the knowledge of the computer organization,
memory, and data structures. The reader is assumed to have very
limited or no experience in writing compilers. Some experience
with writing simple interpreters is helpful, but not required.

27



We assume that the reader has basic knowledge of C and the C
standard library (e.g. malloc, printf, etc.). Although our com-
piler will produce assembly code, some functionality is easier to
implement in C; implementing it directly as assembly routines dis-
tracts the reader from the more important tasks.

2.2 The Source Language
In our tutorial, we choose a subset of Scheme as the source pro-
gramming language. The simple and uniform syntax of Scheme
obviates the need for a lengthy discussion of scanners and parsers.
The execution model of Scheme, with strict call-by-value evalua-
tion, simplifies the implementation. Moreover, all of the Scheme
primitives in the subset can be implemented in short sequences of
assembly instructions. Although not all of Scheme is implemented
in the first compiler, all the major compiler-related issues are tack-
led. The implementation is a middle-ground between a full Scheme
compiler and a toy compiler.

In choosing a specific source language, we gain the advantage
that the presentation is more concrete and eliminates the burden
of making the connection from the abstract concepts to the actual
language.

2.3 The Implementation Language
Scheme is chosen as the implementation language of the compiler.
Scheme’s data structures are simple and most Scheme program-
mers are familiar with the basic tasks such as constructing and pro-
cessing lists and trees. The ability to manipulate Scheme programs
as Scheme data structures greatly simplifies the first steps of con-
structing a compiler, since the issue of reading the input program is
solved. Implementing a lexical-scanner and a parser are pushed to
the end of the tutorial.

Choosing Scheme as the implementation language also elimi-
nates the need for sophisticated and specialized tools. These tools
add a considerable overhead to the initial learning process and dis-
tracts the reader from acquiring the essential concepts.

2.4 Choosing The Target Architecture
We choose the Intel-x86 architecture as our target platform. The
x86 architecture is the dominant architecture on personal comput-
ers and thus is widely available.

Talking about compilers that are detached from a particular
architecture puts the burden on the reader to make the connection
from the abstract ideas to the concrete machine. Novice compiler
writers are unlikely to be able to derive the connection on their own.
Additionally, the compiler we develop is small enough to be easily
portable to other architectures, and the majority of the compiler
passes are platform independent.

2.5 Development Time Frame
The development of the compiler must proceed in small steps
where every step can be implemented and tested in one sitting. Fea-
tures that require many sittings to complete are broken down into
smaller steps. The result of completing every step is a fully working
compiler. The compiler writer, therefore, achieves progress in every
step in the development. This is in contrast with the traditional de-
velopment strategies that advocate developing the compiler as a se-
ries of passes only the last of which gives the sense of accomplish-
ment. With our approach of incremental development, where every
step results in a fully working compiler for some subset of Scheme,
the risk of not “completing” the compiler is minimized. This ap-
proach is useful for people learning about compilers on their own,
where the amount of time they can dedicate constantly changes. It
is also useful in time-limited settings such as an academic semester.

2.6 Development Methodology
We advocate the following iterative development methodology:

1. Choose a small subset of the source language that we can
compile directly to assembly.

2. Write as many test cases as necessary to cover the chosen subset
of the language.

3. Write a compiler that accepts an expression (in the chosen sub-
set of the source language) and outputs the equivalent sequence
of assembly instructions.

4. Ensure that the compiler is functional, i.e. it passes all the tests
that are written beforehand.

5. Refactor the compiler, if necessary, making sure that none of
the tests are broken due to incorrect refactoring.

6. Enlarge the subset of the language in a very small step and re-
peat the cycle by writing more tests and extending the compiler
to meet the newly-added requirements.

A fully working compiler for the given subset of the language
is available at every step in the development cycle starting from
the first day of development. The test cases are written to help en-
sure that the implementation meets the specifications and to guard
against bugs that may be introduced during the refactoring steps.
Knowledge of compilation techniques as well as the target machine
is built incrementally. The initial overhead of learning the assembly
instructions of the target machine is eliminated—instructions are
introduced only when they are needed. The compiler starts small
and is well focused on translating the source language to assembly,
and every incremental step reinforces that focus.

2.7 Testing Infrastructure
The interface to the compiler is defined by one Scheme procedure,
compile-program, that takes as input an s-expression represent-
ing a Scheme program. The output assembly is emitted using an
emit form that routes the output of the compiler to an assembly
file.

Defining the compiler as a Scheme procedure allows us to de-
velop and debug the compiler interactively by inspecting the output
assembly code. It also allows us to utilize an automated testing fa-
cility. There are two core components of the testing infrastructure:
the test-cases and the test-driver.

The test cases are made of sample programs and their expected
output. For example, the test cases for the primitive + may be
defined as follows:

(test-section "Simple Addition")
(test-case ’(+ 10 15) "25")
(test-case ’(+ -10 15) "5")
...

The test-driver iterates over the test cases performing the follow-
ing actions: (1) The input expression is passed to compile-program
to produce assembly code. (2) The assembly code and a minimal
run-time system (to support printing) are assembled and linked to
form an executable. (3) The executable is run and the output is
compared to the expected output string. An error is signaled if any
of the previous steps fails.

2.8 The End Goal
For the purpose of this paper, we define the end goal to be writing
a compiler powerful enough to compile an interactive evaluator.
Building such a compiler forces us to solve many interesting prob-
lems.
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A large subset of Scheme’s core forms (lambda, quote, set!,
etc) and extended forms (cond, case, letrec, internal define
etc.) must be supported by the compiler. Although most of these
forms are not essential, their presence allows us to write our pro-
grams in a more natural way. In implementing the extended forms,
we show how a large number of syntactic forms can be added with-
out changing the core language that the compiler supports.

A large collection of primitives (cons, car, vector?, etc.)
and library procedures (map, apply, list->vector, etc.) need
to be implemented. Some of these library procedures can be im-
plemented directly, while others require some added support from
the compiler. For example, some of the primitives cannot be im-
plemented without supporting variable-arity procedures, and others
require the presence of apply. Implementing a writer and a reader
requires adding a way to communicate with an external run-time
system.

3. Writing a Compiler in 24 Small Steps
Now that we described the development methodology, we turn our
attention to the actual steps taken in constructing a compiler. This
section is a brief description of 24 incremental stages: the first is a
small language composed only of small integers, and the last covers
most of the requirements of R5RS. A more detailed presentation of
these stages is in the accompanying extended tutorial.

3.1 Integers
The simplest language that we can compile and test is composed
of the fixed-size integers, or fixnums. Let’s write a small compiler
that takes a fixnum as input and produces a program in assembly
that returns that fixnum. Since we don’t know yet how to do that,
we ask for some help from another compiler that does know: gcc.
Let’s write a small C function that returns an integer:

int scheme_entry(){
return 42;

}

Let’s compile it using gcc -O3 --omit-frame-pointer -S
test.c and see the output. The most relevant lines of the output
file are the following:

1. .text
2. .p2align 4,,15
3. .globl scheme_entry
4. .type scheme_entry, @function
5. scheme_entry:
6. movl $42, %eax
7. ret

Line 1 starts a text segment, where code is located. Line 2 aligns
the beginning of the procedure at 4-byte boundaries (not important
at this point). Line 3 informs the assembler that the scheme entry
label is global so that it becomes visible to the linker. Line 4
says that scheme entry is a function. Line 5 denotes the start of
the scheme entry procedure. Line 6 sets the value of the %eax
register to 42. Line 7 returns control to the caller, which expects
the received value to be in the %eax register.

Generating this file from Scheme is straightforward. Our com-
piler takes an integer as input and prints the given assembly with
the input substituted in for the value to be returned.

(define (compile-program x)
(emit "movl $~a, %eax" x)
(emit "ret"))

To test our implementation, we write a small C run-time system
that calls our scheme entry and prints the value it returns:

/* a simple driver for scheme_entry */
#include <stdio.h>
int main(int argc, char** argv){
printf("%d\n", scheme_entry());
return 0;

}

3.2 Immediate Constants
Values in Scheme are not limited to the fixnum integers. Booleans,
characters, and the empty list form a collection of immediate val-
ues. Immediate values are those that can be stored directly in
a machine word and therefore do not require additional storage.
The types of the immediate objects in Scheme are disjoint, conse-
quently, the implementation cannot use fixnums to denote booleans
or characters. The types must also be available at run time to al-
low the driver to print the values appropriately and to allow us to
provide the type predicates (discussed in the next step).

One way of encoding the type information is by dedicating some
of the lower bits of the machine word for type information and
using the rest of the machine word for storing the value. Every type
of value is defined by a mask and a tag. The mask defines which bits
of the integer are used for the type information and the tag defines
the value of these bits.

For fixnums, the lower two bits (mask = 11b) must be 0
(tag = 00b). This leaves 30 bits to hold the value of a fixnum.
Characters are tagged with 8 bits (tag = 00001111b) leaving 24
bits for the value (7 of which are actually used to encode the ASCII
characters). Booleans are given a 7-bit tag (tag = 0011111b), and
1-bit value. The empty list is given the value 00101111b.

We extend our compiler to handle the immediate types appro-
priately. The code generator must convert the different immediate
values to the corresponding machine integer values.

(define (compile-program x)
(define (immediate-rep x)

(cond
((integer? x) (shift x fixnum-shift))
...))

(emit "movl $~a, %eax" (immediate-rep x))
(emit "ret"))

The driver must also be extended to handle the newly-added
values. The following code illustrates the concept:

#include <stdio.h>
#define fixnum_mask 3
#define fixnum_tag 0
#define fixnum_shift 2
...

int main(int argc, char** argv){
int val = scheme_entry();
if((val & fixnum_mask) == fixnum_tag){

printf("%d\n", val >> fixnum_shift);
} else if(val == empty_list){

printf("()\n");
} ...
return 0;

}

3.3 Unary Primitives
We extend the language now to include calls to primitives that ac-
cept one argument. We start with the simplest of these primitives:
add1 and sub1. To compile an expression in the form (add1 e),
we first emit the code for e. That code would evaluate e placing its
value in the %eax register. What remains to be done is incrementing
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the value of the %eax register by 4 (the shifted value of 1). The ma-
chine instruction that performs addition/subtraction is addl/subl.

(define (emit-expr x)
(cond
((immediate? x)
(emit "movl $~a, %eax" (immediate-rep x)))
((primcall? x)
(case (primcall-op x)

((add1)
(emit-expr (primcall-operand1 x))
(emit "addl $~a, %eax" (immediate-rep 1)))
...))

(else ...)))

The primitives integer->char and char->integer can be
added next. To convert an integer (assuming it’s in the proper
range) to a character, the integer (already shifted by 2 bits) is
shifted further 6 bits to make up a total of char-shift, the result is
then tagged with the char-tag. Converting a character to a fixnum
requires a shift to the right by 6 bits. The choice of tags for the
fixnums and characters is important for realizing this concise and
potentially fast conversion.

We implement the predicates null?, zero?, and not next.
There are many possible ways of implementing each of these pred-
icates. The following sequence works for zero? (assuming the
value of the operand is in %eax):

1. cmpl $0, %eax
2. movl $0, %eax
3. sete %al
4. sall $7, %eax
5. orl $63, %eax

Line 1 compares the value of %eax to 0. Line 2 zeros the value
of %eax. Line 3 sets %al, the low byte of %eax, to 1 if the two
compared values were equal, and to 0 otherwise. Lines 4 and 5
construct the appropriate boolean value from the one bit in %eax.

The predicates integer? and boolean? are handled similarly
with the exception that the tag of the value must be extracted (using
andl) before it is compared to the fixnum/boolean tag.

3.4 Binary Primitives
Calls to binary, and higher-arity, primitives cannot in general be
evaluated using a single register since evaluating one subexpression
may overwrite the value computed for the other subexpression. To
implement binary primitives (such as +, *, char<?, etc.), we use
a stack to save intermediate values of computations. For example,
generating the code for (+ e0 e1) is achieved by (1) emitting the
code for e1, (2) emitting an instruction to save the value of %eax on
the stack, (3) emitting the code for e0, and (4) adding the value of
%eax to the value saved on the stack.

The stack is arranged as a contiguous array of memory loca-
tions. A pointer to the base of the stack is in the %esp register. The
base of the stack, 0(%esp), contains the return-point. The return-
point is an address in memory where we return after computing the
value and therefore should not be modified. We are free to use the
memory locations above the return-point (-4(%esp), -8(%esp),
-12(%esp), etc.) to hold our intermediate values.

In order to guarantee never overwriting any value that will be
needed after the evaluation of an expression, we arrange the code
generator to maintain the value of the stack index. The stack index
is a negative number that points to the first stack location that
is free. The value of the stack index is initialized to −4 and is
decremented by 4 (the word-size, 4 bytes) every time a new value is
saved on the stack. The following segment of code illustrates how
the primitive + is implemented:

(define (emit-primitive-call x si)
(case (primcall-op x)

((add1) ...)
((+)
(emit-expr (primcall-operand2 x) si)
(emit "movl %eax, ~a(%esp)" si)
(emit-expr

(primcall-operand1 x)
(- si wordsize))

(emit "addl ~a(%esp), %eax" si))
...))

The other primitives (-, *, =, <, char=?, etc.) can be easily
implemented by what we know so far.

3.5 Local Variables
Now that we have a stack, implementing let and local variables
is straightforward. All local variables will be saved on the stack
and an environment mapping variables to stack locations is main-
tained. When the code generator encounters a let-expression, it
first evaluates the right-hand-side expressions, one by one, saving
the value of each in a specific stack location. Once all the right-
hand-sides are evaluated, the environment is extended to associate
the new variables with their locations, and code for the body of the
let is generated in the new extended environment. When a refer-
ence to a variable is encountered, the code generator locates the
variable in the environment, and emits a load from that location.

(define (emit-expr x si env)
(cond

((immediate? x) ...)
((variable? x)
(emit "movl ~a(%esp), %eax" (lookup x env)))
((let? x)
(emit-let (bindings x) (body x) si env))
((primcall? x) ...)
...))

(define (emit-let bindings body si env)
(let f ((b* bindings) (new-env env) (si si))

(cond
((null? b*) (emit-expr body si new-env))
(else
(let ((b (car b*)))
(emit-expr (rhs b) si env)
(emit "movl %eax, ~a(%esp)" si)
(f (cdr b*)

(extend-env (lhs b) si new-env)
(- si wordsize)))))))

3.6 Conditional Expressions
Conditional evaluation is simple at the assembly-level. The sim-
plest implementation of (if test conseq altern) is:

(define (emit-if test conseq altern si env)
(let ((L0 (unique-label)) (L1 (unique-label)))

(emit-expr test si env)
(emit-cmpl (immediate-rep #f) eax)
(emit-je L0)
(emit-expr conseq si env)
(emit-jmp L1)
(emit-label L0)
(emit-expr altern si env)
(emit-label L1)))

The code above first evaluates the test expression and compares
the result to the false value. Control is transferred to the alternate
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Figure 1. Illustration of the heap. The allocation pointer (ap) is is
held in the %esi register and its value is always aligned on 8-byte
boundaries. Individual objects are allocated at address %esi and the
allocation pointer is bumped to the first boundary after the object.

code if the value of the test was false, otherwise, it falls through to
the consequent.

3.7 Heap Allocation
Scheme’s pairs, vector, strings, etc. do not fit in one machine word
and must be allocated in memory. We allocate all objects from
one contiguous area of memory. The heap is preallocated at the
start of the program and its size is chosen to be large enough to
accommodate our current needs. A pointer to the beginning of the
heap is passed to scheme entry to serve as the allocation pointer.
We dedicate one register, %esi, to hold the allocation pointer. Every
time an object is constructed, the value of %esi is incremented
according to the size of the object.

The types of the objects must also be distinguishable from
one another. We use a tagging scheme similar to the one used
for fixnums, booleans, and characters. Every pointer to a heap-
allocated object is tagged by a 3-bit tag (001b for pairs, 010b for
vectors, 011b for strings, 101b for symbols, and 110b for closures;
000b, 100b and 111b were already used for fixnums and the other
immediate objects). For this tagging scheme to work, we need to
guarantee that the lowest three bits of every heap-allocated object
is 000b so that the tag and the value of the pointer do not interfere.
This is achieved by always allocating objects at double-word (or
8-byte) boundaries.

Let’s consider how pairs are implemented first. A pair requires
two words of memory to hold its car and cdr fields. A call to
(cons 10 20) can be translated to:

movl $40, 0(%esi) # set the car
movl $80, 4(%esi) # set the cdr
movl %esi, %eax # eax = esi | 1
orl $1, %eax
addl $8, %esi # bump esi

The primitives car and cdr are simple; we only need to re-
member that the pointer to the pair is its address incremented by 1.
Consequently, the car and cdr fields are located at −1 and 3 from
the pointer. For example, the primitive caddr translates to:

movl 3(%eax), %eax # cdr
movl 3(%eax), %eax # cddr
movl -1(%eax), %eax # caddr

Vectors and strings are different from pairs in that they vary in
length. This has two implications: (1) we must reserve one extra

memory location in the vector/string to hold the length, and (2)
after allocating the object, the allocation pointer must be aligned to
the next double-word boundary (allocating pairs was fine because
their size is a multiple of 8). For example, a call to the primitive
make-vector translates to:

movl %eax, 0(%esi) # set the length
movl %eax, %ebx # save the length
movl %esi, %eax # eax = esi | 2
orl $2, %eax
addl $11, %ebx # align size to next
andl $-8, %ebx # object boundary
addl %ebx, %esi # advance alloc ptr

Strings are implemented similarly except that the size of a string
is smaller than the size of a vector of the same length. The primitive
string-ref (and string-set!) must also take care of converting
a byte value to a character (and vise versa).

3.8 Procedure Calls
The implementation of procedures and procedure calls are perhaps
the hardest aspect of constructing our compiler. The reason for its
difficulty is that Scheme’s lambda form performs more than one
task and the compiler must tease these tasks apart. First, a lambda
expression closes over the variables that occur free in its body so we
must perform some analysis to determine the set of variables that
are referenced, but not defined, in the body of a lambda. Second,
lambda constructs a closure object that can be passed around.
Third, the notion of procedure calls and parameter-passing must
be introduced at the same point. We’ll handle these issues one at a
time starting with procedure calls and forgetting all about the other
issues surrounding lambda.

We extend the language accepted by our code generator to con-
tain top-level labels (each bound to a code expression containing a
list of formal parameters and a body expression) and label calls.

<Prog> ::= (labels ((lvar <LExpr>) ...) <Expr>)
<LExpr> ::= (code (var ...) <Expr>)
<Expr> ::= immediate

| var
| (if <Expr> <Expr> <Expr>)
| (let ((var <Expr>) ...) <Expr>)
| (primcall prim-name <Expr> ...)
| (labelcall lvar <Expr> ...)
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Figure 2. The view of the stack from (A) the Caller’s side before
making the procedure call, and (B) the Callee’s side on entry to the
procedure.
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Code generation for the new forms is as follows:

• For the labels form, a new set of unique labels are created and
the initial environment is constructed to map each of the lvars
to its corresponding label.

• For each code expression, the label is first emitted, followed
by the code of the body. The environment used for the body
contains, in addition to the lvars, a mapping of each of the
formal parameters to the first set of stack locations (−4, −8,
etc.). The stack index used for evaluating the body starts above
the last index used for the formals.

• For a (labelcall lvar e ...), the arguments are evaluated
and their values are saved in consecutive stack locations, skip-
ping one location to be used for the return-point. Once all of the
arguments are evaluated, the value of the stack-pointer, %esp
is incremented to point to one word below the return-point. A
call to the label associated with the lvar is issued. A call
instruction decrements the value of %esp by 4 and saves the ad-
dress of the next instruction in the appropriate return-point slot.
Once the called procedure returns (with a value in %eax), the
stack pointer is adjusted back to its initial position.

Figure 2 illustrates the view of the stack from the caller and callee
perspective.

3.9 Closures
Implementing closures on top of what we have so far should be
straightforward. First, we modify the language accepted by our
code generator as follows:

• The form (closure lvar var ...) is added to the lan-
guage. This form is responsible for constructing closures. The
first cell of a closure contains the label of a procedure, and the
remaining cells contain the values of the free variables.

• The code form is extended to contain a list of the free variables
in addition to the existing formal parameters.

• The labelcall is replaced by a funcall form that takes an
arbitrary expression as a first argument instead of an lvar.

The closure form is similar to a call to vector. The label
associated with the lvar is stored at 0(%esi) and the values of
the variables are stored in the next locations. The value of %esi is
tagged to get the value of the closure, and %esi is bumped by the
required amount.

The code form, in addition to associating the formals with the
corresponding stack locations, associates each of the free variables
with their displacement form the closure pointer %edi.

The funcall evaluated all the arguments as before but skips
not one but two stack locations: one to be used to save the current
value of the closure pointer, and one for the return point. After the
arguments are evaluated and saved, the operator is evaluated, and
its value is moved to %edi (whose value must be saved to its stack
location). The value of %esp is adjusted and an indirect call through
the first cell of the closure pointer is issued. Upon return from the
call, the value of %esp is adjusted back and the value of %edi is
restored from the location at which it was saved.

One additional problem needs to be solved. The source lan-
guage that our compiler accepts has a lambda form, and none of
the labels, code, closure forms. So, Scheme input must be con-
verted to this form before our code generator can accept it. The
conversion is easy to do in two steps:

1. Free-variable analysis is performed. Every lambda expression
appearing in the source program is annotated with the set of
variables that are referenced but not defined in the body of the
lambda. For example,
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Figure 3. One way of implementing proper tail calls is by collaps-
ing the tail frame. The figures show (A) the evaluation and place-
ment of the arguments on the stack above the local variables, then
(B) moving the arguments down to overwrite the current frame im-
mediately before making the tail jump.

(let ((x 5))
(lambda (y) (lambda () (+ x y))))

is transformed to:

(let ((x 5))
(lambda (y) (x) (lambda () (x y) (+ x y))))

2. The lambda forms are transformed into closure forms and the
codes are collected at the top. The previous example yields:

(labels ((f0 (code () (x y) (+ x y)))
(f1 (code (y) (x) (closure f0 x y))))

(let ((x 5)) (closure f1 x)))

3.10 Proper Tail Calls
The Scheme report requires that implementations be properly tail-
recursive. By treating tail-calls properly, we guarantee that an un-
bounded number of tail calls can be performed in constant space.

So far, our compiler would compile tail-calls as regular calls
followed by a return. A proper tail-call, on the other hand, must
perform a jmp to the target of the call, using the same stack position
of the caller itself.

A very simple way of implementing tail-calls is as follows
(illustrated in Figure 3):

1. All the arguments are evaluated and saved on the stack in the
same way arguments to nontail calls are evaluated.

2. The operator is evaluated and placed in the %edi register re-
placing the current closure pointer.

3. The arguments are copied from their current position of the
stack to the positions adjacent to the return-point at the base
of the stack.

4. An indirect jmp, not call, through the address in the closure
pointer is issued.

This treatment of tail calls is the simplest way of achieving
the objective of the requirement. Other methods for enhancing
performance by minimizing the excessive copying are discussed
later in Section 4.
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3.11 Complex Constants
Scheme’s constants are not limited to the immediate objects. Using
the quote form, lists, vectors, and strings can be turned into con-
stants as well. The formal semantics of Scheme require that quoted
constants always evaluate to the same object. The following exam-
ple must always evaluate to true:

(let ((f (lambda () (quote (1 . "H")))))
(eq? (f) (f)))

So, in general, we cannot transform a quoted constant into an
unquoted series of constructions as the following incorrect trans-
formation demonstrates:

(let ((f (lambda () (cons 1 (string #\H)))))
(eq? (f) (f)))

One way of implementing complex constants is by lifting their
construction to the top of the program. The example program can
be transformed to an equivalent program containing no complex
constants as follows:

(let ((tmp0 (cons 1 (string #\H))))
(let ((f (lambda () tmp0)))
(eq? (f) (f))))

Performing this transformation before closure conversion makes
the introduced temporaries occur as free variables in the enclosing
lambdas. This increases the size of many closures, increasing heap
consumption and slowing down the compiled programs.

Another approach for implementing complex constants is by
introducing global memory locations to hold the values of these
constants. Every complex constant is assigned a label, denoting its
location. All the complex constants are initialized at the start of the
program. Our running example would be transformed to:

(labels ((f0 (code () () (constant-ref t1)))
(t1 (datum)))

(constant-init t1 (cons 1 (string #\H)))
(let ((f (closure f0)))
(eq? (f) (f))))

The code generator should now be modified to handle the
data labels as well as the two internal forms constant-ref and
constant-init.

3.12 Assignment
Let’s examine how our compiler treats variables. At the source
level, variables are introduced either by let or by lambda. By
the time we get to code generation, a third kind (free-variables) is
there as well. When a lambda closes over a reference to a variable,
we copied the value of the variable into a field in the closure. If
more than one closure references the variable, each gets its own
copy of the value. If the variable is assignable, then all references
and assignments occurring in the code must reference/assign to the
same location that holds the value of the the variable. Therefore,
every assignable variable must be given one unique location to hold
its value.

The way we treat assignment is by making the locations of
assignable variables explicit. These locations cannot in general be
stack-allocated due to the indefinite extent of Scheme’s closures.
So, for every assignable variable, we allocate space on the heap (a
vector of size 1) to hold its value. An assignment to a variable x is
rewritten as an assignment to the memory location holding x (via
vector-set!) and references to x are rewritten as references to
the location of x (via vector-ref).

The following example illustrates assignment conversion when
applied to a program containing one assignable variable c:

(let ((f (lambda (c)
(cons (lambda (v) (set! c v))

(lambda () c)))))
(let ((p (f 0)))

((car p) 12)
((cdr p))))

=>
(let ((f (lambda (t0)

(let ((c (vector t0)))
(cons (lambda (v) (vector-set! c 0 v))

(lambda () (vector-ref c 0)))))))
(let ((p (f 0)))

((car p) 12)
((cdr p))))

3.13 Extending the Syntax
With most of the core forms (lambda, let, quote, if, set!,
constants, variables, procedure calls, and primitive calls) in place,
we can turn to extending the syntax of the language. The input to
our compiler is preprocessed by a pass, a macro-expander, which
performs the following tasks:

• All the variables are renamed to new unique names through α-
conversion. This serves two purposes. First, making all vari-
ables unique eliminates the ambiguity between variables. This
makes the analysis passes required for closure and assignment
conversion simpler. Second, there is no fear of confusing the
core forms with procedure calls to local variables with the same
name (e.g. an occurrence of (lambda (x) x) where lambda
is a lexical variable).

• Additionally, this pass places explicit tags on all internal
forms including function calls (funcall) and primitive calls
(primcall).

• Extended forms are simplified to the code forms. The forms
let*, letrec, letrec*, cond, case, or, and, when, unless,
and internal define are rewritten in terms of the core forms.

3.14 Symbols, Libraries, and Separate Compilation
All of the primitives that we supported so far were simple enough to
be implemented directly in the compiler as a sequence of assembly
instructions. This is fine for the simple primitives, such as pair?
and vector-ref, but it will not be practical for implementing more
complex primitives such as length, map, display, etc..

Also, we restricted our language to allow primitives to occur
only in the operator position: passing the value of the primitive car
was not allowed because car has no value. One way of fixing this
is by performing an inverse-η transformation:

car⇒ (lambda (x) (car x)).

This approach has many disadvantages. First, the resulting assem-
bly code is bloated with too many closures that were not present
in the source program. Second, the primitives cannot be defined
recursively or defined by using common helpers.

Another approach for making an extended library available is
by wrapping the user code with a large letrec that defines all
the primitive libraries. This approach is discouraged because the
intermixing of user-code and library-code hinders our ability to
debug our compiler.

A better approach is to define the libraries in separate files, com-
piling them independently, and linking them directly with the user
code. The library primitives are initialized before control enters the
user program. Every primitive is given a global location, or a la-
bel, to hold its value. We modify our compiler to handle two addi-
tional forms: (primitive-ref x) and (primitive-set! x v)
which are analogous to constant-ref and constant-init that

Scheme and Functional Programming, 2006 33



we introduced in 3.11. The only difference is that global labels are
used to hold the values of the primitives.

The first library file initializes one primitive: string->symbol.
Our first implementation of string->symbol need not be ef-
ficient: a simple linked list of symbols suffices. The primitive
string->symbol, as its name suggests, takes a string as input and
returns a symbol. By adding the core primitives make-symbol1 and
symbol-string, the implementation of string->symbol simply
traverses the list of symbols looking for one having the same string.
A new symbol is constructed if one with the same name does not
exist. This new symbol is then added to the list before it is returned.

Once string->symbol is implemented, adding symbols to our
set of valid complex constants is straightforward by the following
transformation:

(labels ((f0 (code () () ’foo)))
(let ((f (closure f0)))

(eq? (funcall f) (funcall f))))
=>

(labels ((f0 (code () () (constant-ref t1)))
(t1 (datum)))

(constant-init t1
(funcall (primitive-ref string->symbol)

(string #\f #\o #\o)))
(let ((f (closure f0)))

(eq? (funcall f) (funcall f))))

3.15 Foreign Functions
Our Scheme implementation cannot exist in isolation. It needs
a way of interacting with the host operating system in order to
perform Input/Output and many other useful operations. We now
add a very simple way of calling to foreign C procedures.

We add one additional form to our compiler:

<Expr> ::= (foreign-call <string> <Expr> ...)

The foreign-call form takes a string literal as the first argu-
ment. The string denotes the name of the C procedure that we intend
to call. Each of the expressions are evaluated first and their values
are passed as arguments to the C procedure. The calling convention
for C differs from the calling convention that we have been using
for Scheme in that the arguments are placed below the return point
and in reverse order. Figure 4 illustrates the difference.

To accommodate the C calling conventions, we evaluate the
arguments to a foreign-call in reverse order, saving the values
on the stack, adjusting the value of %esp, issuing a call to the
named procedure, then adjusting the stack pointer back to its initial
position. We need not worry about the C procedure clobbering the
values of the allocation and closure pointer because the Application
Binary Interface (ABI) guarantees that the callee would preserve
the values of the %edi, %esi, %ebp and %esp registers[14].

Since the values we pass to the foreign procedure are tagged,
we would write wrapper procedures in our run-time file that take
care of converting from Scheme to C values and back.

We first implement and test calling the exit procedure. Call-
ing (foreign-call "exit" 0) should cause our program to
exit without performing any output. We also implement a wrapper
around write as follows:

ptr s_write(ptr fd, ptr str, ptr len){
int bytes = write(unshift(fd),

string_data(str),
unshift(len));

return shift(bytes);
}

1 Symbols are similar to pairs in having two fields: a string and a value
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Figure 4. The parameters to Scheme functions are placed on the
stack above the return point while the parameters to C functions are
placed below the return point.

3.16 Error Checking and Safe Primitives
Using our newly acquired ability to write and exit, we can define
a simple error procedure that takes two arguments: a symbol
(denoting the caller of error), and a string (describing the error).
The error procedure would write an error message to the console,
then causes the program to exit.

With error, we can secure some parts of our implementation
to provide better debugging facilities. Better debugging allows us
to progress with implementing the rest of the system more quickly
since we won’t have to hunt for the causes of segfaults.

There are three main causes of fatal errors:

1. Attempting to call non-procedures.

2. Passing an incorrect number of arguments to a procedure.

3. Calling primitives with invalid arguments. For example: per-
forming (car 5) causes an immediate segfault. Worse, per-
forming vector-set! with an index that’s out of range causes
other parts of the system to get corrupted, resulting in hard-to-
debug errors.

Calling nonprocedures can be handled by performing a proce-
dure check before making the procedure call. If the operator is not
a procedure, control is transferred to an error handler label that sets
up a call to a procedure that reports the error and exits.

Passing an incorrect number of arguments to a procedure can be
handled by a collaboration from the caller and the callee. The caller,
once it performs the procedure check, sets the value of the %eax
register to be the number of arguments passed. The callee checks
that the value of %eax is consistent with the number of arguments
it expects. Invalid arguments cause a jump to a label that calls a
procedure that reports the error and exits.

For primitive calls, we can modify the compiler to insert explicit
checks at every primitive call. For example, car translates to:

movl %eax, %ebx
andl $7, %ebx
cmpl $1, %ebx
jne L_car_error
movl -1(%eax), %eax
...

L_car_error:
movl car_err_proc, %edi # load handler
movl $0, %eax # set arg-count
jmp *-3(%edi) # call the handler
...
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Another approach is to restrict the compiler to unsafe primitives.
Calls to safe primitives are not open-coded by the compiler, instead,
a procedure call to the safe primitive is issued. The safe primitives
are defined to perform the error checks themselves. Although this
strategy is less efficient than open-coding the safe primitives, the
implementation is much simpler and less error-prone.

3.17 Variable-arity Procedures
Scheme procedures that accept a variable number of arguments are
easy to implement in the architecture we defined so far. Suppose
a procedure is defined to accept two or more arguments as in the
following example:

(let ((f (lambda (a b . c) (vector a b c))))
(f 1 2 3 4))

The call to f passes four arguments in the stack locations
%esp-4, %esp-8, %esp-12, and %esp-16 in addition to the num-
ber of arguments in %eax. Upon entry of f, and after performing
the argument check, f enters a loop that constructs a list of the
arguments last to front.

Implementing variable-arity procedures allows us to define
many library procedures that accept any number of arguments
including +, -, *, =, <, . . . , char=?, char<?, . . . , string=?,
string<?, . . . , list, vector, string, and append.

Other variations of lambda such as case-lambda, which al-
lows us to dispatch different parts of the code depending on the
number of actual arguments, can be implemented easily and effi-
ciently by a series of comparisons and conditional jumps.

3.18 Apply
The implementation of the apply primitive is analogous to the
implementation of variable-arity procedures. Procedures accepting
variable number of arguments convert the extra arguments passed
on the stack to a list. Calling apply, on the other hand, splices a
list of arguments onto the stack.

When the code generator encounters an apply call, it generates
the code in the same manner as if it were a regular procedure call.
The operands are evaluated and saved in their appropriate stack
locations as usual. The operator is evaluated and checked. In case
of nontail calls, the current closure pointer is saved and the stack
pointer is adjusted. In case of tail calls, the operands are moved to
overwrite the current frame. The number of arguments is placed
in %eax as usual. The only difference is that instead of calling
the procedure directly, we call/jmp to the L apply label which
splices the last argument on the stack before transferring control to
the destination procedure.

Implementing apply makes it possible to define the library
procedures that take a function as well as an arbitrary number of
arguments such as map and for-each.

3.19 Output Ports
The functionality provided by our compiler so far allows us to
implement output ports easily in Scheme. We represent output ports
by vector containing the following fields:

0. A unique identifier that allows us to distinguish output ports
from ordinary vectors.

1. A string denoting the file name associated with the port.

2. A file-descriptor associated with the opened file.

3. A string that serves as an output buffer.

4. An index pointing to the next position in the buffer.

5. The size of the buffer.

The current-output-port is initialized at startup and its file
descriptor is 1 on Unix systems. The buffers are chosen to be
sufficiently large (4096 characters) in order to reduce the num-
ber of trips to the operating system. The procedure write-char
writes to the buffer, increments the index, and if the index of the
port reaches its size, the contents of the buffer are flushed us-
ing s write (from 3.15) and the index is reset. The procedures
output-port?, open-output-file, close-output-port, and
flush-output-port are also implemented.

3.20 Write and Display
Once write-char is implemented, implementing the procedures
write and display becomes straightforward by dispatching on
the type of the argument. The two procedures are identical except
for their treatment of strings and characters and therefore can be
implemented in terms of one common procedure. In order to write
the fixnums, the primitive quotient must be added to the com-
piler.

Implementing write in Scheme allows us to eliminate the now-
redundant writer that we implemented as part of the C run-time
system.

3.21 Input Ports
The representation of input ports is very similar to output ports.
The only difference is that we add one extra field to support “un-
reading” a character which adds very minor overhead to the prim-
itives read-char and peek-char, but greatly simplifies the im-
plementation of the tokenizer (next step). The primitives added
at this stage are input-port?, open-input-file, read-char,
unread-char, peek-char, and eof-object? (by adding a spe-
cial end-of-file object that is similar to the empty-list).

3.22 Tokenizer
In order to implement the read procedure, we first implement
read-token. The procedure read-token takes an input port as an
argument and using read-char, peek-char, and unread-char,
it returns the next token. Reading a token involves writing an de-
terministic finite-state automata that mimics the syntax of Scheme.
The return value of read-token is one of the following:

• A pair (datum . x) where x is a fixnum, boolean, character,
string, or symbol that was encountered next while scanning the
port.

• A pair (macro . x) where x denotes one of Scheme’s pre-
defined reader-macros: quote, quasiquote, unquote, or
unquote-splicing.

• A symbol left-paren, right-paren, vec-paren, or dot
denoting the corresponding non-datum token encountered.

• The end-of-file object if read-char returns the end-of-file ob-
ject before we find any other tokens.

3.23 Reader
The read procedure is built as a recursive-descent parser on top
of read-token. Because of the simplicity of the syntax (i.e. the
only possible output is the eof-object, data, lists, and vectors) the
entire implementation, including error checking, should not exceed
40 lines of direct Scheme code.

3.24 Interpreter
We have all the ingredients required for implementing an environment-
passing interpreter for core Scheme. Moreover, we can lift the first
pass of the compiler and make it the first pass to the interpreter as
well. We might want to add some restriction to the language of the
interpreter (i.e. disallowing primitive-set!) in order to prevent
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the user code from interfering with the run-time system. We might
also like to add different binding modes that determine whether
references to primitive names refer to the actual primitives or to
the current top-level bindings and whether assignment to primitive
names are allowed or not.

4. Beyond the Basic Compiler
There are several axes along which one can enhance the basic
compiler. The two main axes of enhancements are the feature-axis
and the performance-axis.

4.1 Enhancing Features
The implementation presented in Section 3 featured many of the es-
sential requirements for Scheme including proper tail calls, variable
arity-procedures, and apply. It also featured a facility for perform-
ing foreign-calls that allows us to easily leverage the capabilities
provided by the host operating system and its libraries. With sepa-
rate compilation, we can implement an extended library of proce-
dures including those required by the R5RS or the various SRFIs.
The missing features that can be added directly without changing
the architecture of the compiler by much include:

• A full numeric tower can be added. The extended numerical
primitives can either be coded directly in Scheme or provided
by external libraries such as GNU MP.

• Multiple values are easy to implement efficiently using our
stack-based implementation with very little impact on the per-
formance of procedure calls that do not use multiple values [3].

• User-defined macros and a powerful module system can be
added simply by compiling and loading the freely-available
portable syntax-case implementation [7, 18].

• Our compiler does not handle heap overflows. Inserting over-
flow checks before allocation attempts should be simple and
fast by comparing the value of the allocation pointer to an al-
location limit pointer (held elsewhere) and jumping to an over-
flow handler label. A simple copying collector can be imple-
mented first before attempting more ambitious collectors such
as the ones used in Chez Scheme or The Glasgow Haskell Com-
piler [6, 12].

• Similarly, we did not handle stack overflows. A stack-based im-
plementation can perform fast stack overflow checks by com-
paring the stack pointer to an end of stack pointer (held else-
where) and then jumping to a stack-overflow handler. The han-
dler can allocate a new stack segment and wire up the two stacks
by utilizing an underflow handler. Implementing stack overflow
and underflow handlers simplifies implementing efficient con-
tinuations capture and reinstatement [9].

• Alternatively, we can transform the input program into continu-
ation passing style prior to performing closure conversion. This
transformation eliminates most of the stack overflow checks
and simplifies the implementation of call/cc. On the down-
side, more closures would be constructed at run-time causing
excessive copying of variables and more frequent garbage col-
lections. Shao et al. show how to optimize the representation of
such closures [15].

4.2 Enhancing Performance
The implementation of Scheme as presented in Section 3 is sim-
ple and straightforward. We avoided almost all optimizations by
performing only the essential analysis passes required for assign-
ment and closure conversion. On the other hand, we have chosen
a very compact and efficient representation for Scheme data struc-

tures. Such choice of representation makes error-checks faster and
reduces the memory requirements and cache exhaustion.

Although we did not implement any source-level or backend
optimizations, there is no reason why these optimization passes
cannot be added in the future. We mention some “easy” steps that
can be added to the compiler and are likely to yield high payoff:

• Our current treatment of letrec and letrec* is extremely
inefficient. Better letrec treatment as described in [19] would
allow us to (1) reduce the amount of heap allocation since most
letrec-bound variables won’t be assignable, (2) reduce the
size of many closures by eliminating closures with no free-
variables, (3) recognize calls to known procedures which allows
us to perform calls to known assembly labels instead of making
all calls indirect through the code pointers stored in closures,
(4) eliminate the procedure check at calls to statically-known
procedure, (5) recognize recursive calls which eliminates re-
evaluating the value of the closures, (6) skip the argument-count
check when the target of the call is known statically, and (7)
consing up the rest arguments for known calls to procedures
that accept a variable number of arguments.

• Our compiler introduces temporary stack locations for all com-
plex operands. For example, (+ e 4) can be compiled by eval-
uating e first and adding 16 to the result. Instead, we trans-
formed it to (let ((t0 e)) (+ t0 4)) which causes unnec-
essary saving and reloading of the value of e. Direct evaluation
is likely to yield better performance unless good register allo-
cation is performed.

• Our treatment of tail-calls can be improved greatly by recogniz-
ing cases where the arguments can be evaluated and stored in
place. The greedy-shuffling algorithm is a simple strategy that
eliminates most of the overhead that we currently introduce for
tail-calls[4].

• None of the safe primitives were implemented in the compiler.
Open-coding safe primitives reduces the number of procedure
calls performed.

• Simple copy propagation of constants and immutable variables
as well as constant-folding and strength-reduction would allow
us to write simpler code without fear of inefficiencies. For
example, with our current compiler, we might be discouraged
from giving names to constants because these names would
increase the size of any closure that contains a reference to
them.

More sophisticated optimizations such as register allocation
[5, 4, 16], inlining [17], elimination of run time type checks [10,
21], etc. could be targeted next once the simple optimizations are
performed.

5. Conclusion
Compiler construction is not as complex as it is commonly per-
ceived to be. In this paper, we showed that constructing a com-
piler for a large subset of Scheme that targets a real hardware is
simple. The basic compiler is achieved by concentrating on the es-
sential aspects of compilation and freeing the compiler from so-
phisticated analysis and optimization passes. This helps the novice
compiler writers build the intuition for the inner-workings of com-
pilers without being distracted by details. First-hand experience in
implementing a basic compiler gives the implementor a better feel
for the compiler’s shortcomings and thus provide the motivation
for enhancing it. Once the basic compiler is mastered, the novice
implementor is better equipped for tackling more ambitious tasks.
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Abstract
Implementing computations in hardware can offer better perfor-
mance and power consumption than a software implementation,
typically at a higher development cost. Current hardware/software
co-design methodologies usually start from a pure softwaremodel
that is incrementally transformed into hardware until the required
performance is achieved. This is often a manual process which is
tedious and which makes component transformation and reusedif-
ficult. We describe a prototype compiler that compiles a functional
subset of the Scheme language into synthesizable descriptions of
dataflow parallel hardware. The compiler supports tail and non-
tail function calls and higher-order functions. Our approach makes
it possible for software developers to use a single programming
language to implement algorithms as hardware components using
standardized interfaces that reduce the need for expertisein digital
circuits. Performance results of our system on a few test programs
are given for FPGA hardware.

1. Introduction
Embedded systems combine software and hardware components.
Hardware is used for interfacing with the real world and for accel-
erating the lower-level processing tasks. Software has traditionally
been used for implementing the higher-level and more complex
processing logic of the system and when future changes in func-
tionality are expected. The partitioning of a system into its hard-
ware and software components is a delicate task which must take
into account conflicting goals including development cost,system
cost, time-to-market, production volume, processing speed, power
consumption, reliability and level of field upgradability.

Recent trends in technology are changing the trade-offs and
making hardware components cheaper to create. Reconfigurable
hardware is relatively recent and evolves rapidly, and can allow
the use of custom circuits when field upgradability is desired or
when production volume is expected to be low. Modern ASICs
and FPGAs now contain enough gates to host complex embedded
systems on a single chip, which may include tens of processors and
dedicated hardware circuits. Power consumption becomes a major
concern for portable devices. Specialized circuits, and inparticular
asynchronous and mixed synchronous/asynchronous circuits, offer
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better power usage than their equivalent software version running
on a general purpose CPU or in synchronous logic [9][21][3].

The field of hardware/software co-design [11] has produced
several tools and methodologies to assist the developer design and
partition systems into hardware and software. Many tools present
two languages to the developer, one for describing the hardware
and the other for programming the software. This widespreadap-
proach has several problems. It requires that the developerlearn
two languages and processing models. The hardware/software in-
terfaces may be complex, artificial and time consuming to develop.
Any change to the partitioning involves re-writing substantial parts
of the system. It is difficult to automate the partitioning process in
this methodology.

Our position, which is shared by other projects such as SPARK-
C [12], SpecC [8] and Handel-C [6], is that it is advantageousto
employ a single language for designing the whole system (except
perhaps the very lowest-level tasks). We believe that the partition-
ing of a system into hardware and software should be done by the
compiler with the least amount of auxiliary partitioning informa-
tion provided by the developer (e.g. command line options, prag-
mas, etc). This partitioning information allows the developer to
optimize for speed, for space, for power usage, or other criteria.
Moreover this information should be decoupled from the process-
ing logic so that components can be reused in other contexts with
different design constraints.

As a first step towards this long-term goal, we have imple-
mented a compiler for a simple but complete parallel functional
programming language which is fully synthesizable into hardware.
Although our prototype compiler does not address the issue of au-
tomatic partitioning, it shows that it is possible to compile a general
purpose programming language, and in particular function calls and
higher-order functions, into parallel hardware.

We chose a subset of Scheme [17] as the source language
for several reasons. Scheme’s small core language allowed us to
focus the development efforts on essential programming language
features. This facilitated experimentation with various hardware
specific extensions and allowed us to reuse some of the program
transformations that were developed in the context of otherScheme
compilers, in particular CPS conversion and 0-CFA analysis.

Our compiler, SHard, translates the source program into a graph
of asynchronously connected instantiations of generic “black box”
devices. Although the model could be fully synthesized withasyn-
chronous components (provided a library with adequate models)
we have validated our approach with an FPGA-based synchronous
implementation where each asynchronous element is replaced by
a synchronous Finite State Machine (FSM). Preliminary tests have
been successfully performed using clockless implementations for
some of the generic components, combined with synchronous
FSMs for the others. Off-the-shelf synthesis tools are usedto pro-
duce the circuit from the VHDL file generated by the compiler.

Throughout this project, emphasis has been put on the compi-
lation process. To that effect, minimal effort has been put on opti-
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mization and on creating efficient implementations of the generic
hardware components that the back-end instantiates. Demonstrat-
ing the feasibility of our compilation approach was the maincon-
cern. While SHard is a good proof of concept its absolute perfor-
mance remains a future goal.

In Section 2 we give a general overview of our approach. In
Section 3 the source language is described. The hardware building
blocks of the dataflow architecture are described in Section4 and
Section 5 explains the compilation process. Section 6 explores
the current memory management system and possible alternatives.
Section 7 illustrates how behavioral simulations are performed and
Section 8 outlines the current RTL implementation. Experimental
results are given in Section 9. We conclude with related and future
work in Section 10.

2. Overview
The implementation of functions is one of the main difficulties
when compiling a general programming language to hardware.In
typical software compilers a stack is used to implement function
call linkage, but in hardware the stack memory can hinder paral-
lel execution if it is centralized. The work on Actors [14] and the
Rabbit Scheme compiler [13] have shown that a tail function call is
equivalent to message passing. Tail function calls have a fairly di-
rect translation into hardware. Non-tail function calls can be trans-
lated to tail function calls which pass an additional continuation
parameter in the message. For this reason our compiler uses the
Continuation Passing Style (CPS) conversion [2] to eliminate non-
tail function calls. Each message packages the essential parts of a
computational process and can be viewed as a process token mov-
ing through a dataflow architecture. This model is inherently paral-
lel because more than one token can be flowing in the circuit. It is
also energy efficient because a component consumes power only if
it is processing a token. The main issues remaining are the repre-
sentation of function closures in hardware and the implementation
of message passing and tail calls in hardware.

Many early systems based on dataflow machines suffer from
a memory bottleneck [10]. To reduce this problem our approach
is to distribute throughout the circuit the memories which store
the function closures. A small memory is associated with each
function allocation site (lambda-expression) with free variables.
The allocation of a cell in a closure memory is performed whenever
the correspondinglambda-expression is evaluated. To avoid the
need for a full garbage collector we deallocate a closure when
it is called. Improvements on this simple but effective memory
management model are proposed in Section 6.

By using a data flow analysis the compiler can tell which func-
tion call sites may refer to the closures contained in a specific clo-
sure memory. This is useful to minimize the number of busses and
control signals between call sites and closure memories.

To give a feel for our approach we will briefly explain a small
program. Figure 1 gives a program which sorts integers using
the mergesort algorithm. The program declares an input channel
(cin) on which groups of integers are received sequentially (as
〈n, x1, x2, . . . , xn〉), and an output channel (cout) on which the
sorted integers are output. The program also declares functions to
create pairs and lists as closures (nil andcons), the mergesort al-
gorithm itself (functionssort, split, merge, andrevapp), func-
tions to read and write lists on the I/O channels (get-list and
put-list) and a “main” function (doio) which reads a group,
sorts it, outputs the result and starts over again. Note alsothat
the predefined procedureeq? can test if two closures are the same
(i.e. have the same address).

Figure 2 sketches the hardware components which are gener-
ated by the compiler to implement thesort function at line 33. The
sort function can be called from three different places (at lines57,

1. (letrec
2. ((cin (input-chan cin))
3. (cout (output-chan cout))
4. (nil (lambda (_) 0))
5. (cons (lambda (h t) (lambda (f) (f h t))))
6. (revapp (lambda (L1 L2)
7. (if (eq? nil L1)
8. L2
9. (L1 (lambda (h t)

10. (revapp t (cons h L2)))))))
11. (split (lambda (L L1 L2)
12. (if (eq? nil L)
13. (cons L1 L2)
14. (L (lambda (h t)
15. (split t (cons h L2) L1))))))
16. (merge (lambda (L1 L2 L)
17. (if (eq? nil L1)
18. (revapp L L2)
19. (if (eq? nil L2)
20. (revapp L L1)
21. (L1
22. (lambda (h1 t1)
23. (L2
24. (lambda (h2 t2)
25. (if (< h1 h2)
26. (merge t1
27. (cons h2 t2)
28. (cons h1 L))
29. (merge
30. (cons h1 t1)
31. t2
32. (cons h2 L)))))))))))
33. (sort (lambda (L)
34. (if (eq? nil L)
35. nil
36. ((split L nil nil)
37. (lambda (L1 L2)
38. (if (eq? nil L2)
39. L1
40. (par ((s1 (sort L1))
41. (s2 (sort L2)))
42. (merge s1 s2 nil))))))))
43. (get-list (lambda (n)
44. (if (= 0 n)
45. nil
46. (cons (cin)
47. (get-list (- n 1))))))
48. (put-list (lambda (L)
49. (if (eq? nil L)
50. (cout nil)
51. (L (lambda (h t)
52. (cout h)
53. (put-list t))))))
54. (doio (lambda ()
55. (let ((n (cin)))
56. (let ((L (get-list n)))
57. (put-list (sort L))
58. (doio))))))
59. (doio))

Figure 1. Mergesort program

40 and 41; “callers” 1, 2 and 3 respectively) and “merge” compo-
nents are used to route all function call requests to the function’s
body (A). The body starts with a fifo buffer (B) followed by the
implementation of the test at line 34 (“stage” and “split” compo-
nents, C). If the list is not empty, functionsplit is called (line 36)
after allocating a continuation closure for returning the result (D).
This continuation, when called, allocates another continuation (the
function at line 37) and callssplit’s result (which is a function
closure representing a pair) with it (E). Next, the test at line 38 is
implemented like the previous one (F). If needed, two processes
are forked with recursive calls tosort and their results are merged
after both complete (G) (this is achieved with thepar construct at
line 40, which is syntactically like alet but evaluates all its bind-
ing expressions in parallel).
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Figure 2. mergesort’ssort function

3. Source Language
The source language is a lexically-scoped mostly functional lan-
guage similar to Scheme [17]. It supports the following categories
of expressions:

• Integer literal
• Variable reference
• Function creation:(lambda (params) body)

• Function call
• Conditional:(if cond true-exp false-exp)

• Binding:let, letrec andpar
• Sequencing:begin
• I/O channel creation:(input-chan name) and
(output-chan name)

• Global vectors:make-vector, vector-set! andvector-ref.

Primitive functions are also provided for integer arithmetic op-
erations, comparisons on integers, bitwise operations and, for per-
formance evaluation, timing. For example, the recursive factorial
function can be defined and called as follows:

(letrec ((fact (lambda (n)
(if (< n 2)

1
(* n (fact (- n 1)))))))

(fact 8))

In our prototype, the only types of data supported are fixed
width integers, global vectors and function closures. Booleans are
represented as integers, with zero meaning false and all other values
meaning true. Closures can be used in a limited fashion to create
data structures, as in the following example:

(let ((cons (lambda (h t)
(lambda (f) (f h t))))

(car (lambda (p)
(p (lambda (h t) h)))))

(let ((pair (cons 3 4)))
(car pair)))

While this is a simple and effective way of supporting data
structures, the programmer has to adapt to this model. The function
call (cons 3 4) allocates memory for the closure containing the
two integers, but this memory is reclaimed as soon aspair is called
inside thecar function;pair cannot be called again and the value
4 is lost. The only way to fetch the content of a closure is to call it
and then recreate a similar copy using the data retrieved. Possible
improvements are discussed in Section 6.

The par binding construct is syntactically and semantically
similar to thelet construct but it indicates that the binding expres-
sions can be evaluated in parallel and that their evaluationmust be
finished before the body is evaluated. They can be seen as a calcu-
lation with a continuation that takes several return values. They can
be used for manual parallelization when automatic parallelization
(Section 5.1) is turned off or when expressions with side-effects
may run concurrently.

The I/O channel creation forms create a functional representa-
tion of named input and output channels. Input channels are func-
tions with no arguments that return the value read. Output channels
take the value to be written as an argument and always return0. The
name given as an argument toinput-chan andoutput-chan will
be used as a signal name in the top-level VHDL circuit description.
For example, the following specification creates a circuit that adds
the values read from two different input channels, writes the sum
on an output channel and starts over again:
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Figure 3. I/O example

(let ((cin1 (input-chan chan_in1))
(cin2 (input-chan chan_in2))
(cout (output-chan chan_out)))

(letrec ((doio (lambda ()
(cout (+ (cin1) (cin2)))
(doio))))

(doio)))

This example is illustrated in Figure 3 using the components
described in Section 4.

Like any other function with no free variables, channel proce-
dures can be called any number of times since no closure allocation
or deallocation is performed.

Mutable vectors are created with themake-vector primitive,
which is syntactically similar to its Scheme equivalent. Currently,
only statically allocated vectors are supported (i.e. vectors must be
created at the top-level of the program). Our memory management
model would have to be extended to support true Scheme vectors.

To simplify our explanations, we define two classes of expres-
sions.Trivial expressions are literals, lambda expressions and refer-
ences to variables.Simpleexpressions are eithertrivial expressions
or calls of primitive functions whose arguments aretrivial expres-
sions.

4. Generic Hardware Components
The dataflow circuit generated by the compiler is a directed graph
made of instantiations of the 9 generic components shown in Fig-
ure 4. The components are linked using unidirectional data busses
which are the small arrows entering and leaving the components
in the figure. Channels carry up to one message, ortoken, from
the source component to the target component. Each channel con-
tains a data bus and two wires for the synchronization protocol. The
requestwire, which carries a signal from the source to target, indi-
cates the presence of a token on the bus. Theacknowledgewire,
which carries a signal from the target to the source, indicates that
the token has been received at the target. The two signals imple-
ment a four-phase handshake protocol (i.e.↑ Req,↑ Ack, ↓ Req,↓
Ack).

The following generic components are used in the system:

(a) stage (b) fifo (c) split

(d) merge (e) closure (f) vector

(g) par (h) input (i) output

Figure 4. Generic Hardware Components

• Stage (Fig. 4(a)): Stages are used to bind new variables from
simpleexpressions. Everylet expression in which all bindings
are fromsimpleexpressions are translated into stages in hard-
ware; this is the case for alllet expressions at the end of com-
pilation. The stage component has an input channel that carries
a token with all live variables in the expression that encloses the
let. It has one output channel that sends a token with the same
information, which then goes through a combinatorial circuit
that implements all thesimpleexpressions; the stage compo-
nent is responsible for all synchronization so it must take into
account the delay of the combinatorial part. The final token is
sent to the component that implements thelet’s body with all
live variables at that point.

• Fifo (Fig. 4(b)): Fifos are used as buffers to accumulate tokens
at the beginning of functions that might be called concurrently
by several processes. Fifos are necessary in some situations to
avoid deadlocks. They are conceptually like a series ofn back-
to-back stages but are implemented using RAM blocks in order
to reduce the latency from input to output and the size of the
circuit.

• Split (Fig. 4(c)): Split components are used to implement con-
ditional (if) expressions. They have an input channel that re-
ceives a token with all live variables in the expression thaten-
closes the conditional. The test expression itself is a reference
to a boolean variable at the end of compilation so it is received
directly as a wire carrying a0 or a 1. Every token received is
routed to the appropriate component through either one of two
output channels, representing thethenandelsebranches of the
conditional expression. The appropriate branch will get a token
carrying all live variables in the corresponding expression.

• Merge (Fig. 4(d)): Merge components are used to route tokens
from a call site to the called function whenever there is more
than one possible call site for a given function. Tokens received
at the two input channels contain all the parameters of the func-
tion. In the case of a closure call, a pointer to the corresponding
closure environment is also contained in the token. An arbiter
ensures that every token received is sent to the component that
implements the function’s body, one at a time. Merge compo-
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nents are connected together in a tree whenever there is more
than two call sites for a function.

• Closure (Fig. 4(e)): Closure components are used to allocate
and read the environments associated with function closures.
They have two pairs of input and output channels, one for al-
locating and the other for reading. When a closure needs to be
allocated, a token containing all live variables in the expres-
sion that encloses the closure declaration is received. Allfree
variables in the function are saved at an unused address in a lo-
cal RAM and a token containing that address, a tag identifying
the function and all variables that are live in the declaration’s
continuation is sent to the component that implements that con-
tinuation. On a closure call, a token containing both the address
of the closure’s environment and the actual parameters is re-
ceived, the free variables are fetched from the local RAM anda
token containing the free variables and the actual parameters is
sent to the component that implements the function’s body. The
closure component’s read channel is connected to the outputof
the merge node(s) and the channel for the value read goes to
the component that implements the function body. Since each
closure has its dedicated block of RAM, the data width is ex-
actly what is needed to save all free variables and no memory is
wasted. Closure environments can be written or read in a single
operation.

• Vector (Fig. 4(f)): Vector components are used to implement
global vectors introduced through themake-vector primitive.
They have two pairs of input and output channels, one for writ-
ing and another for reading. When thevector-set! primi-
tive is called, a token is received with all live variables, an ad-
dress and data to be written at that address. The data is writ-
ten and a token with the live variables is sent as output. When
thevector-ref primitive is called, a token containing all live
variables and an address is received. Data is read from that ad-
dress and sent in an output token along with the live variables.
A block of RAM is associated with each vector and is sized
accordingly.

• Par (Fig. 4(g)): Par components are used to implementpar
binding expressions. Like the closure component, the par com-
ponent has an allocation and a reading part, respectively called
fork andjoin. When a token is received forfork, it contains all
the live variables of thepar expression. All variables that are
free in thepar’s body are saved in a local RAM, much like for a
closure environment; the corresponding address is an identifier
for thepar binding expressions’ continuation. Then, tokens are
sent simultaneously (forked) to the components that implement
the binding expressions. Each of these parallel tokens contains
the binding expression’s continuation pointer and free variables.
When a token is received forjoin, the binding expression’s re-
turn value is saved in the local RAM along with the continua-
tion’s free variables. When the last token for a given identifier
is received forjoin the return value is sent to thepar’s body
along with the other branches’ return values and the free vari-
ables saved in the local RAM for that identifier, and the memory
for that identifier is deallocated. Currently only two binding ex-
pressions are supported.

• Input (Fig. 4(h)): Input components implement all declared
input channels in the circuit. It can be viewed like a simplified
join part of a par component: it waits until it has received tokens
from both inputs before sending one as output. One of the input
tokens represents the control flow and contains all live variables
in the call to the input function. The other input token contains
the data present on the corresponding top-level signal of the
circuit. The output token contains data from both input tokens.

• Output (Fig. 4(i)): Output components implement output chan-
nels. They act like a simplifiedfork part of a par component:
whenever a token is received as input, two output tokens are
sent simultaneously as output: one to the corresponding top-
level signal of the circuit and one to the component that imple-
ments the continuation to the call to the output function.

The system has been designed so that all components can be im-
plemented either as synchronous (clocked) or asynchronouscom-
ponents. For easy integration with the other synthesis and simu-
lation tools available to us, our prototype currently uses clocked
components reacting to the rising edge of the clock.

Input and output components can be implemented to support
different kinds of synchronization. All experiments so farhave been
done using a four-phase handshake with passive inputs and active
outputs: input components wait until they receive a requestfrom the
outside world and have to acknowledge it while output components
send a request to the outside world and expect an acknowledgment.
This allows linking of separately compiled circuits by simply con-
necting their IO channels together.

5. Compilation Process
The core of the compilation process is a pipeline of the phases
described in this section. The 0-CFA is performed multiple times,
as sub-phases of parallelization and inlining, and as a mainphase
by itself.

5.1 Parallelization

The compiler can be configured to automatically parallelizethe
computation. When this option is used, the compiler looks for sets
of expressions which can be safely evaluated concurrently (side-
effect free) and binds them to variables using apar construct. This
is done only when at least two of the expressions are non-simple,
sincesimpleexpressions are evaluated concurrently anyways (they
are implemented as combinatorial circuits in a single stage) and
thepar construct produces a hardware component that implements
the fork-join mechanism, which would be useless overhead inthis
case.

This stage is implemented as four different sub-stages. First a
control flow analysis is performed on the program (see Section 5.5)
in order to determine which expressions may actually have side-
effects and which functions are recursive. Then, for all calls with
arguments that are non-simple, those arguments are replaced with
fresh variable references and the modified calls form the body of
a let that binds those variables to the original arguments. For
example,

(f (fact x) (- (fib y) 5) 3)

becomes

(let ((v_0 (fact x))
(v_1 (- (fib y) 5)))

(f v_0 v_1 3))

Next, all lets are analyzed and those for which all binding
expressions have no side-effects and are non-simpleare replaced by
pars. Finally, the transformed program is analyzed to find allpars
that may introduce an arbitrary number of tokens into the same part
of the pipeline. These are thepars for which at least two binding
expressions loop back to thepar itself (e.g. a recursive function
that calls itself twice). Any recursive function that can becalled
from the binding expressions is then tagged as “dangerous”.The
reason for this last step is that recursive functions are implemented
as pipelines that feed themselves and each of these can only hold a
given number of tokens at a given time before a deadlock occurs.
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This tagging is used later in the compilation process to insert fifo
buffers to reduce the possibility of deadlock.

5.2 CPS-Conversion

The compiler uses the CPS-Conversion to make the function call
linkage of the program explicit by transforming all function calls
into tail function calls. Functions no longer return a result; they
simply pass the result along to another function using a tailcall.
Functions receive an extra parameter, the continuation, which is
a function that represents the computation to be performed with
the result. Where the original function would normally return a
result to the caller, it now calls its continuation with thisresult as a
parameter.

Since all functions now have an extra parameter, all calls must
also be updated so that they pass a continuation as an argument.
This continuation is made of the “context” of the call site embed-
ded in a new lambda abstraction with a single parameter. The body
of the continuation is the enclosing expression of the call where the
call itself is replaced by a reference to the continuation’sparam-
eter. Syntactically the call now encloses in its new argument the
expression that used to enclose it. For example,

(letrec ((fact (lambda (x)
(if (= 0 x)

1
(* x (fact (- x 1)))))))

(+ (fact 3) 25))

becomes

(letrec ((fact (lambda (k x)
(if (= 0 x)

(k 1)
(fact (lambda (r) (k (* x r)))

(- x 1))))))
(fact (lambda (r) (+ r 25)) 3))

There are two special cases. The program itself is an expression
that returns a value so it should instead call a continuationwith this
result, but the normal conversion cannot be used in this casesince
there is no enclosing expression. The solution is to use a primitive
calledhalt that represents program termination.

Because of the parallel fork-join mechanism, we also need to
supply the parallel expressions with continuations. This is done in
a similar way using apjoin primitive which includes information
about thepar form that forked this process. This represents the fact
that parallel sub-processes forked from a process must be matched
with each other once they complete. For example,

(par ((x (f 3))
(y (f 5)))

...)

becomes

(par pid_123
((x (f (lambda (r) (pjoin pid_123 r 0)) 3))
(y (f (lambda (r) (pjoin pid_123 r 1)) 5)))

...)

pid_123 is bound by thepar at fork time and corresponds to the
newly allocated address in the local RAM.pjoin’s last parameter
(0 or 1) distinguishes the two sub-processes.

5.3 Lambda Lifting

Lambda lifting [16] is a transformation that makes the free vari-
ables of a function become explicit parameters of this function.
Using this transformation, local functions can be lifted tothe top-
level of the program. Such functions have no free-variablesand are
called combinators. For example,

(let ((x 25))
(let ((f (lambda (y) (+ x y))))

(f 12)))

becomes

(let ((x 25))
(let ((f (lambda (x2 y) (+ x2 y))))

(f x 12)))

which is equivalent to

(let ((f (lambda (x2 y) (+ x2 y))))
(let ((x 25))

(f x 12)))

Since a combinator has no free-variables, it doesn’t need tobe
aware of the environment in which it is called: all the valuesthat it
uses are explicitly passed as parameters. Combinators are closures
that hold no data and therefore, in our system, we do not assign a
closure memory to them. For example, if functionf is not lambda
lifted in the above example, it needs to remember the value ofx
between the function declaration and the function call; this would
normally translate to a memory allocation at the declaration and
a read at the call (see Section 5.6). After lambda lifting,x does
not need to be known whenf is declared since it will be explicitly
passed as parameterx2 on each call tof. The use of lambda lifting
in our compiler helps to reduce the amount of memory used in the
output circuit and to reduce latency.

Lambda lifting is not possible in all situations. For example:

(letrec ((fact (lambda (k x)
(if (= 0 x)

(k 1)
(fact (lambda (r) (k (* x r)))

(- x 1))))))
(fact (lambda (r) r) 5))

This is a CPS-converted version of the classic factorial function.
In this case, functionfact needs to pass its result to continuation
k, which can be the original continuation(lambda (r) r) or the
continuation to a recursive call(lambda (r) (k (* r x))).
The continuation to a recursive call needs to remember about
the parameters to the previous call tofact (k andx). We could
add those free variables as parameters, like(lambda (r k x)
(k (* r x))), but thenfact would need to know about the pa-
rameters to its previous call in order to be able to call its contin-
uation, thus adding parameters tofact as well. Sincefact is a
recursive function and each recursive call needs to remember the
parameters of the previous call, we would end up with a function
that needs a different number of arguments depending on the con-
text in which it is called, and this number could be arbitrarily large.
Such cases are handled by closure conversion (Section 5.6) which
identifies which closures actually contain data that needs to be al-
located. In thefact example, the allocation of the free variables
of the continuation to a recursive call (k andx) corresponds to the
allocation of a stack frame in a software program.

5.4 Inlining

Inlining is a transformation which puts a copy of a function’s
body at the function’s call site. In the circuit this corresponds
to a duplication of hardware components. Although the resulting
circuit is larger than could be, the circuit’s parallelism is increased,
which can yield faster computation. For this reason the compilation
process includes an optional inlining phase.

The only information given to this phase by the developer is the
maximum factor by which the code size should grow. Code size
and circuit size is roughly approximated by the number of nodes
in the corresponding AST. Since parallelism can only occur within
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par expressions, inlining is done only inpar binding expressions
that have been tagged as “dangerous” by the parallelizationphase
(see Section 5.1). No inlining will occur in a program that does not
exploit parallelism.

The inlining process is iterative and starts by inlining functions
smaller than a given “inlining” size in all the identified expressions.
If no function can be inlined and the desired growth factor has
not been reached, this inlining size is increased and the process
is iterated. Since inlining a function introduces new code in apar’s
binding expressions, this can offer new candidate functions for
inlining which may be much smaller than the current inliningsize.
The inlining size is therefore reset to its initial value after every
iteration in which inlining actually occurred.

At each iteration, the number of callers for each inlinable func-
tion is calculated, functions are sorted from the most called to the
least called and then treated in that order. The goal is to tryto first
duplicate components that have more chances of being a sequential
bottleneck. 0-CFA is also done at each iteration in order to be aware
of new call sites and the call sites that have vanished.

This method does not consider the fact that the size of the
resulting circuit is not directly related to the size of the AST.
In particular, the networking needed to connect calls to function
bodies may grow quadratically as functions are duplicated.This
is due to the fact that calls must be connected to every function
possibly called, and the number of call sites also grows whencode
grows. An example of this is given in Section 9.

5.5 0-CFA

The 0-CFA (Control Flow Analysis [18]) performs a combined
control flow and data flow analysis. Using the result of the 0-CFA,
the compiler builds the control flow graph of the program. This is a
graph that indicates which functions may be called at each function
call site. This graph indicates how the circuit’s components are
interconnected, with each edge corresponding to a communication
channel from the caller to the callee. When several edges point to
the same node, we know that this function needs to be precededby
a tree of merge components (e.g. part A of Figure 2).

This analysis is also used for automatic parallelization and in-
lining as explained in Sections 5.1 and 5.4, and to assign locally
unique identifiers to functions (see Section 5.7).

Abstract interpretation is used to gather the control flow infor-
mation and that information is returned as an abstract valuefor each
node in the AST. An abstract value is an upper bound of the set of
all possible values that a given expression can evaluate to.In our
case, all values other than functions are ignored and the abstract
value is just a list of functions which represents the set containing
those functions along with all non-function values.

5.6 Closure Conversion

Closure conversion is used to make explicit the fact that some
functions are actually closures that contain data (free-variables);
those are the functions that could not be made combinators by
lambda lifting (Section 5.3). This conversion introduces two new
primitives to the internal representation:%closure and%clo-ref.
The%closure primitive is used to indicate that a function actually
is a closure for which some data allocation must be made; its first
parameter is the function itself and the rest are values to besaved
in the closure memory. The%clo-ref is used within closures to
indicate references to variables saved in the closure memory; it
has two parameters: the first is a “self” parameter that indicates
the address at which the data is saved and the second one is an
offset within the data saved at that address (field number within a
record), with0 representing the function itself (not actually saved
in memory). For example,

(letrec ((fact (lambda (k x)
(if (= 0 x)

(k 1)
(fact (lambda (r) (k (* x r)))

(- x 1))))))
(fact (lambda (r) r) 5))

becomes

(letrec ((fact (lambda (k x)
(if (= 0 x)

((%clo-ref k 0) k 1)
(fact

(%closure
(lambda (self r)

((%clo-ref
(%clo-ref self 2)
0)

(%clo-ref self 2)
(* r (%clo-ref self 1))))

x
k)
(- x 1))))))

(fact (%closure (lambda (self r) r)) 5))

5.7 Finalization

The finalization stage consists of three sub-stages: a trivial opti-
mization, a “cosmetic” transformation to ease the job of theback-
end, and information gathering.

The first sub-stage merges sequences of embeddedlet expres-
sions into a singlelet, when possible. It checks for alet in the
body of another one and extracts the bindings in the embeddedlet
that do not depend on variables declared by the embeddinglet.
Those extracted bindings are moved up from the embeddedlet to
the embedding one. If the embeddedlet ends up with an empty
binding list, it is replaced by its own body as the body of the em-
beddinglet. For example,

(let ((a (+ x 7)))
(let ((b (* y 6)))

(let ((c (- a 3)))
...)))

becomes

(let ((a (+ x 7))
(b (* y 6)))

(let ((c (- a 3)))
...)))

This is done because eachlet translates directly to a pipeline
stage in hardware; instead of operations being done in sequence
in several stages, they are done concurrently in a single stage thus
reducing latency and circuit size.

The next sub-stage is used to make explicit the fact that closures
must be allocated before they are used. At this point in the compiler,
arguments to calls are all values (literals or closures) or references
to variables, so that a function call would be a simple connection
between the caller and the callee. The only exception to thisis that
some closures contain data that must be allocated and these are
represented by both a lambda identifier and an address that refers
to the closure memory. To make everything uniform, closuresthat
contain data are lifted in a newly createdlet that embeds the call.
This way, we now have a special case oflet that means “closure
allocation” and the function call becomes a single stage where all
arguments can be passed the same way. For example,

(foo 123 x (%closure (lambda (y) ...) a b))

becomes
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(let ((clo_25 (%closure (lambda (y) ...) a b)))
(foo 123 x clo_25))

so that it is clear thata andb are allocated in the closure memory
in a stage prior to the function call.

The last sub-stage of finalization is used to assign locally unique
identifiers to lambda abstractions to be used in the circuit instead
of globally unique identifiers. The reason for this is that IDs take
⌈log

2
n⌉ bits to encode, wheren can be the number of lambdas

in the whole program (global IDs), or the number of lambdas ina
specific subset (local IDs); our aim is to reduce the width of busses
carrying those IDs. Since we have previously performed a 0-CFA,
it is possible to know which lambdas may be called from a given
call site. We first make the set of all those sets of functions and then
merge the sets of functions that have elements in common until all
are disjoint. This ensures that each lambda has an ID that, while not
being necessarily unique in the program, gives enough information
to distinguish this lambda from others in all call sites where it might
be used.

5.8 Back-End

The back-end of the compiler translates the finalized Abstract Syn-
tax Tree (AST) into a description of the circuit. The description
is first output in an intermediate representation that describes the
instantiation of several simple generic components and thedata
busses used as connections between them. This intermediaterep-
resentation can be used for simulation and it is translated to VHDL
through a secondary, almost trivial back-end (see Section 8).

Data busses are of two different types:bus andjoin:

• (bus width val): describes a buswidth bits wide with an
initial value ofval.

• (join subbus1 ... subbusn): describes a bus which is
made of the concatenation of one or more other busses.

Integer literals and variable references are translated tobusses;
literals are constant busses while references are busses that get
their value from the component that binds the variable (e.g.stage).
All components that implement expressions through which some
variable is live will have distinct input and output busses to carry
its value, like if a new variable was bound at every pipeline stage.

As explained in Section 4, eachlet expression is translated to
a stage component followed by a combinatorial circuit that imple-
ments the binding expressions and the component that implements
thelet’s body. The binding of a variable that represents a closure
is translated to thealloc part of a closure component. Parallel bind-
ings are translated to par components with thefork outputs and the
join inputs connected to the binding expressions and thejoin out-
put connected to the component that implements thepar’s body.
At this point in compilation,letrec bindings contain nothing else
than function definitions so they are translated to the implementa-
tion of their body and all functions defined.

Function calls are translated to stage components where the
combinatorial circuit is used to test the tag that identifiesthe func-
tion called and route the token accordingly. The result of the 0-CFA
is used to determine which expressions call which functions. No
stage is present if only one function can be called from a given
point. Since all actual parameters aretrivial expressions at this
point in compilation, a connection from caller to callee is all that is
needed.

Conditionals are translated to split components with each output
connected to the component that implements the corresponding
expression (true-exp or false-exp). As explained in Section 4,
the condition is atrivial expression and its value is used directly to
control a multiplexer.

Lambda abstraction declarations are translated to the bus that
carries the function’s or closure’s identifying tag and address. Def-

initions are translated to the component that implements the func-
tion’s body, possibly preceded by a tree of merge nodes and/or the
readpart of a closure component. The result of the 0-CFA is used to
build the tree of merge nodes. Input and output channels are trans-
lated just like functions with an input or output component as a
body.

Primitives may be translated in different ways: arithmeticprim-
itives are translated to the equivalent combinatorial circuits while
calls to thetimer primitive – which returns the number of clock
cycles since the last circuit reset – are similar to functioncalls to
a global timer component. Other primitives are used internally by
the compiler and each is translated in its own way. For example, the
halt primitive terminates a process and the similarpjoin primi-
tive indicates that a sub-process forked by apar has completed.

The compiler also adds an input and an output channel to the
top-level circuit. The input channel carries tokens containing all
free variables in the program and is used to start a new process;
in most cases, this channel carries no data and is used only once
since concurrent processes can be created usingpar expressions.
The output channel carries tokens that contain the return value of
the process; a token is output whenever the control reaches the
halt primitive and indicates that a process has completed. Thus,
the whole circuit can be seen as a function itself.

6. Memory Management
Memory management has been made as simple as possible since
this is not our main research interest. As mentionned before, the
memory associated to a closure is freed as soon as the closureis
called. While this is enough to make our language Turing-complete,
it imposes a very particular programming style, is error prone and
makes inefficient tricks become indispensable in some situations.

The most desirable solution would, of course, be a full garbage
collector as it normally exists in Scheme. Since closures can be
stored in other closures (and this is always the case for continua-
tions), a garbage collecting hardware component would needto be
connected to all closure memories in a given system. The garbage
collector would also need to be aware of all closures contained in
tokens flowing in the system. Such a centralized component would
hinder parallel execution and is in no way trivial to implement.

A reasonable alternative to a full garbage collector is to augment
our memory management mechanism with a manual memory deal-
location mechanism. This could be done as in many languages by
using a “free” primitive. Closure memory components would need
a new pair of input/output channels to support this, which would be
connected to “free” call sites much like functions are connected to
their call sites. It would also be possible to let the programmer indi-
cate which closures are to be manually reclaimed and let the others
be reclaimed automatically as is currently the case, thus reducing
the size and latency of the resulting circuit.

Another issue is the amount of memory that is reserved for
closures. Since each closure has its own block of RAM, this block
has to be large enough to hold the largest number of closures that
can exist concurrently, lest a deadlock might occur. Our prototype
currently sets all closure memories to the same depth, whichresults
in far more RAM being generated than necessary. One solution
would be to use smaller closure memories and allow them to spill to
a global memory; they would thus become local, distributed caches.
Finding the optimal size for each local cache would be the main
goal in order to minimize concurrent requests to the main memory.
A non-trivial, multi-ported implementation of the global memory
might be necessary in order to achieve good levels of parallelism.

Finally, the current implementation of vectors creates a bottle-
neck in parallel circuits since each vector is a single component
and it cannot be duplicated like a function. A solution wouldbe to
split each vector into several independently accessible sub-vectors
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controlled by a multiplexer which would route the request tothe
appropriate sub-vector.

7. Behavioral Simulation
The intermediate representation generated by the primary back-end
is itself a Scheme program: it can be printed out in S-expression
syntax and then executed to perform a simulation. This is done by
using a simulator and behavioral descriptions of the components,
both written in Scheme and included as external modules to the
intermediate representation.

The simulator provides functions to manipulate wires and
busses and to supply call-backs for some events: a signal transi-
tion, an absolute time from the beginning of simulation or a delay
relative to the actual simulation time. In the behavioral simulator,
it is therefore possible to write “when the input signal becomes 1,
wait for 10ns and set the value of the output signal to 0” as:

(on input (lambda ()
(if (= 1 (wire-value input))

(lambda ()
(in 10 ;;time is in ns.

(lambda ()
(wire-update! output 1))))

void)))

The program generated by the back-end also includes a test
function which can be modified by hand to specify simulation
parameters (input values, duration, etc). When the programis run,
it produces output in VCD format (Value Change Dump, described
in [1]). This output indicates the initial values of all signals in the
circuit and all transitions that occurred during the simulation and
can be sent to a standard waveform viewer (e.g. GTKWave).

8. Implementation
Hardware implementations are described using the VHDL lan-
guage. All components listed in Section 4 are implemented as
VHDL entities and architectures using generic parameters for bus
widths, memory and fifo depths, etc. Most components have input
signals for the global clock and reset signals.

For example, the stage VHDL component has an input channel
and an output channel, and abus_width generic parameter to
specify the width of those channels. An internal register saves
the input data at the rising edge of the clock on a successful
handshake, and is cleared when the reset signal is asserted.Each
channel is associated with a pair of wires that carry the request and
acknowledge signals for synchronization; request signalsgo in the
same direction as the data and acknowledge signals go the opposite
way.

The top-level of the circuit is also translated from the Scheme
program described above into a VHDL entity and architecture
which instantiates all the necessary components. In addition to
components described in Section 4, trivial combinatorial compo-
nents like adders and equality testers are also used in the top-level.

The most difficult aspect of generating a VHDL circuit descrip-
tion is to handlejoin busses properly. There is no standard VHDL
construct to express that some bus is in fact just an alias forthe con-
catenation of other busses; these have to be translated to one-way
assignments, either assigning the concatenation of several busses to
a join bus or assigning a slice of ajoin to another bus. The rest
is a straightforward translation of busses and components from the
intermediate representation to VHDL, including bus renaming.

9. Results
We have tested our prototype on a number of programs to produce
dataflow machines on an FPGA. The compiler’s VHDL output

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 0  50  100  150  200  250

nb
. c

yc
le

s

list length

seq-quicksort
seq-quicksort-avg

seq-mergesort
seq-mergesort-avg

par-quicksort
par-quicksort-avg

par-mergesort
par-mergesort-avg

Figure 5. Sequential and parallel mergesort vs. quicksort, number
of cycles as a function of list length

is fed to Altera’s Quartus-II development environment. Theonly
human intervention necessary at this point is the assignment of
the circuit’s external signals to FPGA pins; other constraints can
also be given to the synthesis tool, for example to force it totry to
produce a circuit that runs at a specific clock speed.

As an example, the quicksort and mergesort algorithms have
been implemented in an Altera Stratix EP1S80 FPGA with a speed
grade of -6. This FPGA contains 80,000 configurable cells. The
list of elements is represented as a vector for quicksort andas a
chain of closures for mergesort. The resulting circuits useabout
11% and 14% of the reconfigurable logic and about 5% and 8% of
the memory available in the FPGA, respectively, for lists ofup to
256 16-bit integers and can run at clock rates above 80MHz. Also,
mergesort is an algorithm for which the automatic parallelization
stage of the compiler is useful.

Figure 5 shows the number of clock cycles required to sort lists
of different lengths using mergesort and quicksort, for sequential
and parallel versions of the algorithms. The parallel mergesort was
automatically obtained by the compiler from a program without
par expressions. Because of the vector mutations in the quicksort
algorithm, the compiler could not obtain a parallel versionautomat-
ically; it was necessary to manually insert apar expression for the
recursive calls.

Figure 6 shows average clock cycles per element and compares
sequential and parallel versions of both programs. It showsthat a
simple, sequential algorithm can gain a lot in terms of performance
by using the parallelization stage of the compiler, or through simple
modifications (changinglets topars); performance is then limited
by the amount of hardware used (e.g. components can be duplicated
to gain more parallelism).

The fact that the quicksort algorithm is slower than the merge-
sort algorithm in our tests comes mainly from an inefficient imple-
mentation of vectors. Quicksort implemented using a chain of clo-
sures is, on average, faster than mergesort for sequential execution
and about as fast for parallel execution.

Table 1 illustrates the effect of inlining (Section 5.4) on per-
formance and circuit size. The program used for this test is the
mergesort algorithm shown in Figure 1. In this program, the func-
tion which is inlined most often iscons, which has the effect of
distributing the memory used to store the list in several indepen-
dent memory blocks; with an inlining factor of 1.10, it is theonly
function that gets inlined and it is inlined five times out of atotal
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Inlining % of merge cycles to % of baseline’s
factor logic components sort 250 elts. (1.00) cycles

1.00 14 57 126,226 100.0
1.10 21 107 110,922 87.9
1.25 22 110 95,486 75.6
1.50 32 204 91,684 72.6
2.50 74 709 96,006 76.1

Table 1. Effect of inlining on mergesort

of seven call sites withinpars. The proportion of logic is given for
the Stratix EP1S80.

As mentioned in Section 5.4, the circuit size is not proportional
to the AST size. To illustrate this, the number of merge compo-
nents is given for each inlining factor. This outlines the fact that,
by duplicating code, each function is potentially called from sev-
eral more places. Area usage quickly becomes prohibitive asthe
inlining factor is increased. Also, more inlining does not always
translate to a better performance: as the tree of merge components
at each function entry gets bigger, the pipeline gets deeperand the
latency increases; there is no need to have a lot more components
than the maximum number of simultaneous tokens in the circuit.

To test the implementation of vectors we wrote a program which
interprets a machine language for a custom 16-bit processor. Vec-
tors are used to implement the RAM and the program memory.
The instruction set contains 21 simple 16-bit instructions, some of
which use a single immediate integer value. With the RAM and
program memory both at 4096 elements deep, the circuit uses only
10% of the logic and 3% of the memory in a Stratix EP1S80. Unfor-
tunately the execution speed is poor, in part because our language’s
lack of acase construct forced us to use nestedifs to decode the
instructions. It is exciting to consider that with some extensions to
our system it might be possible to generate a “Scheme machine”
processor by compiling aneval suitably modified for our system.
Moreover, a multithreaded processor could be obtained easily by
adding to the instruction set operations to fork new threads.

Tests have also been performed on the SHA-1 hashing algo-
rithm. Since this algorithm always uses a fixed amount of memory,
it has been written so that it does not use memory allocated data
structures. Instead, each function receives all the valuesit needs as
separate parameters. Input data is received in a stream froman in-
put channel and new values are read only when the circuit is ready

to process them. This has the effect of reducing latency since fewer
closures have to be allocated, but it also means that tokens,and
therefore data busses, can be very large. Closure memories for con-
tinuations also need to store more variables and the circuitends up
taking 39% of the logic and 23% of the memory in a Stratix EP1S80
device. This program highlights several situations in which simple
optimizations could be added to the compiler to reduce the size of
the circuit.

10. Conclusions
We have presented a compiler that automatically transformsa high
level functional program into a parallel dataflow hardware descrip-
tion. The compilation process, from a Scheme-like languageto
VHDL, requires no user intervention and the approach has been
validated on non-trivial algorithms. Our system handles tail and
non-tail function calls, recursive functions and higher-order func-
tions. This is done using closure memories which are distributed
throughout the circuit, eliminating bottlenecks that could hinder
parallel execution. The dataflow architecture generated issuch that
it could be implemented with power-efficient asynchronous cir-
cuits.

10.1 Related Work

Other research projects have studied the possibility of automatic
synthesis of hardware architectures using software programming
languages. Lava [4] allows the structural description of low-level
combinatorial circuits in Haskell by the use of higher-order func-
tions. It does not translate functional programs into hardware.
Handel-C [6] is a subset of the C language which can be com-
piled directly to hardware, but it lacks support for features which
are common in C, like pointers. Moreover it only supports inlined
functions (“macros” which cannot be recursive). Scheme hasalso
been applied to hardware synthesis in the context of the Scheme
Machine project at Indiana University [20][15][5]. That work also
does not support non-tail function calls and higher-order functions.

10.2 Future Work

In this work, our focus was to show that it is feasible to compile a
functional description of a computation into a parallel circuit. We
think it would be good to implement our generic hardware com-
ponents in asynchronous logic to target very low power circuits.
Asynchronous FPGAs [19] are being designed and these chips
would be the perfect targets for our approach. As mentioned pre-
viously, an exciting prospect is the application of our compilation
technique to hardware/software co-design for reconfigurable chips
containing embedded processors and to Globally Asynchronous
Locally Synchronous (GALS) architectures [7] which allow very
high speed and massively parallel execution by eliminatingthe
need for a global clock.

Several optimizations normally applied to software programs
can be added to our compiler to produce more efficient circuits.
For example, constant propagation can be used to reduce the width
of busses and the size of memories, and even eliminate some su-
perfluous closures. The simple inlining technique described in Sec-
tion 5.4 could be replaced by a more clever one or one that can take
into account the amount of logic available to implement the circuit
or the desired level of parallelism. Common subexpression elim-
ination, which compacts the circuit and reduces parallelism, may
also be interesting to explore for space constrained applications.

As explained in Section 6, several improvements could be made
to the memory management.

Our language lacks some useful constructs, such ascase ex-
pressions, dynamically allocatable vectors, and data types, which
would greatly enhance its expressiveness. A type system would
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also be useful to determine the width of busses and memories and
to perform static type checking.

References
[1] IEEE Std 1364-2001 Verilog® Hardware Description Language.

IEEE, 2001.
[2] A. W. Appel and T. Jim. Continuation-passing, closure-passing style.

In POPL ’89: Proceedings of the 16th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 293–302.
ACM Press, 1989.

[3] G. M. Birtwistle and A. Davis, editors.Asynchronous Digital Circuit
Design. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1995.

[4] P. Bjesse, K. Claessen, M. Sheeran, and S. Singh. Lava: hardware
design in Haskell. InICFP ’98: Proceedings of the third ACM
SIGPLAN international conference on Functional programming,
pages 174–184, New York, NY, USA, 1998. ACM Press.

[5] R. G. Burger. The Scheme Machine. Technical Report Technical
Report 413, Indiana University, Computer Science Department,
August 1994.

[6] Celoxica. Handel-C Language Reference Manual RM-1003-4.0.
http://www.celoxica.com, 2003.

[7] A. Chattopadhyay and Z. Zilic. GALDS: a complete framework for
designing multiclock ASICs and SoCs.IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 13(6):641–654, June 2005.

[8] D. Gajski, J. Zhu, R. Dömer, A. Gerstlauer, and S. Zhao, editors.
SpecC: Specification Language and Methodology. Springer, 2000.

[9] D. Geer. Is it time for clockless chip?Computer, pages 18–21, March
2005.

[10] C. Giraud-Carrier. A reconfigurable dataflow machine for implement-
ing functional programming languages.SIGPLAN Not., 29(9):22–28,
1994.

[11] R. Gupta and G. D. Micheli. Hardware/Software Co-Design. In IEEE
Proceedings, volume 85, pages 349–365, March 1997.

[12] S. Gupta, N. Dutt, R. Gupta, and A. Nicola. SPARK : A High-
Level Synthesis Framework For Applying Parallelizing Compiler
Transformations. InInternational Conference on VLSI Design, New
Delhi, India, January 2003.

[13] J. Guy L. Steele. Rabbit: A Compiler for Scheme. Technical report,
Cambridge, MA, USA, 1978.

[14] C. Hewitt, P. Bishop, and R. Steiger. A Universal Modular ACTOR
Formalism for Artificial Intelligence. InProc. of the 3rd International
Joint Conference on Artificial Intelligence, pages 235–245, 1973.

[15] S. D. Johnson. Formal derivation of a scheme computer. Technical
Report Technical Report 544, Indiana University Computer Science
Department, September 2000.

[16] T. Johnsson. Lambda lifting: transforming programs torecursive
equations. InFunctional programming languages and computer
architecture. Proc. of a conference (Nancy, France, Sept. 1985), New
York, NY, USA, 1985. Springer-Verlag Inc.

[17] R. Kelsey, W. Clinger, and J. Rees (eds.). Revised5 Report on the
Algorithmic Language Scheme. InHigher-Order and Symbolic
Computation, volume 11, August 1998.

[18] O. G. Shivers.Control-flow analysis of higher-order languages of
taming lambda. PhD thesis, Carnegie Mellon University, 1991.

[19] J. Teifel and R. Manohar. An Asynchronous Dataflow FPGA
Architecture. IEEE Transactions on Computers (special issue),
November 2004.

[20] M. E. Tuna, S. D. Johnson, and R. G. Burger. Continuations
in Hardware-Software Codesign. InIEEE Proceedings of the
International Conference on Computer Design, pages 264–269,
October 1994.

[21] C. Van Berkel, M. Josephs, and S. Nowick. Applications of
asynchronous circuits. InProceedings of the IEEE, volume 87,
pages 223–233, Feb. 1999.

Scheme and Functional Programming, 2006 49



50 Scheme and Functional Programming, 2006



Automatic construction of parse trees for lexemes ∗

Danny Dubé
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Abstract
Recently, Dubé and Feeley presented a technique that makes lexical
analyzers able to build parse trees for the lexemes that match regu-
lar expressions. While parse trees usually demonstrate how a word
is generated by a context-free grammar, these parse trees demon-
strate how a word is generated by a regular expression. This paper
describes the adaptation and the implementation of that technique
in a concrete lexical analyzer generator for Scheme. The adaptation
of the technique includes extending it to the rich set of operators
handled by the generator and reversing the direction of the parse
trees construction so that it corresponds to the natural right-to-
left construction of the lists in Scheme. The implementation of the
adapted technique includes modifications to both the generation-
time and the analysis-time parts of the generator. Uses of the new
addition and empirical measurements of its cost are presented. Ex-
tensions and alternatives to the technique are considered.

Keywords Lexical analysis; Parse tree; Finite-state automaton;
Lexical analyzer generator; Syntactic analysis; Compiler

1. Introduction
In the field of compilation, more precisely in the domain of syn-
tactic analysis, we are used to associate the notion of parse tree, or
derivation tree, to the notion of context-free grammars. Indeed, a
parse tree can be seen as a demonstration that a word is generated
by a grammar. It also constitutes a convenient structured represen-
tation for the word. For example, in the context of a compiler, the
word is usually a program and the parse tree (or a reshaped one)
is often the internal representation of the program. Since, in many
applications, the word is quite long and the structure imposed by
the grammar is non-trivial, it is natural to insist on building parse
trees.

However, in the related field of lexical analysis, the notion of
parse trees is virtually inexistent. Typically, the theoretical tools
that tend to be used in lexical analysis are regular expressions and
finite-state automata. Very often, the words that are manipulated are

∗ This work has been funded by the National Sciences and Engineering
Research Council of Canada.
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rather short and their structure, pretty simple. Consequently, the no-
tion of parse trees is almost never associated to the notion of lexical
analysis using regular expressions. However, we do not necessar-
ily observe such simplicity in all applications. For instance, while
numerical constants are generally considered to be simple lexical
units, in a programming language such as Scheme [9], there are
integers, rationals, reals, and complex constants, there are two no-
tations for the complex numbers (rectangular and polar), there are
different bases, and there are many kinds of prefixes and suffixes.
While writing regular expressions for these numbers is manageable
and matching sequences of characters with the regular expressions
is straightforward, extracting and interpreting the interesting parts
of a matched constant can be much more difficult and error-prone.

This observation has lead Dubé and Feeley [4] to propose a
technique to build parse trees for lexemes when they match regular
expressions. Until now, this technique had remained paper work
only as there was no implementation of it. In this work, we describe
the integration of the technique into a genuine lexical analyzer
generator, SILex [3], which is similar to the Lex tool [12, 13] except
that it is intended for the Scheme programming language [9]. In
this paper, we will often refer to the article by Dubé and Feeley and
the technique it describes as the “original paper” and the “original
technique”, respectively.

Sections 2 and 3 presents summaries of the original technique
and SILex, respectively. Section 4 continues with a few definitions.
Section 5 presents how we adapted the original technique so that it
could fit into SILex. This section is the core of the paper. Section 6
quickly describes the changes that we had to make to SILex to
add the new facility. Section 7 gives a few concrete examples
of interaction with the new implementation. The speed of parse
tree construction is evaluated in Section 8. Section 9 is a brief
discussion about related work. Section 10 mentions future work.

2. Summary of the construction of parse tree for
lexemes

Let us come back to the original technique. We just present a
summary here since all relevant (and adapted) material is presented
in details in the following sections.

The original technique aims at making lexical analyzers able to
build parse trees for the lexemes that they match. More precisely,
the goal is to make the automatically generated lexical analyzers
able to do so. There is not much point in using the technique on an-
alyzers that are written by hand. Note that the parse trees are those
for the lexemes, not those for the regular expressions that match the
latter. (Parse trees for the regular expressions themselves can be ob-
tained using conventional syntactic analysis [1].) Such a parse tree
is a demonstration of how a regular expression generates a word,
much in the same way as a (conventional) parse tree demonstrates
how a context-free grammar generates a word. Figure 1 illustrates
what the parse trees are for a word aab that is generated by both a

51



∗

left right

· b

a a

�� @@

�� @@

S

C S

A C S

a a b ε

�� @@

@@

�� @@

(aa|b)∗
S → CS | ε
C → A | b
A → aa

Figure 1. Parse trees for a word aab that is generated by a regular
expression and a context-free grammar.

regular expression and an equivalent context-free grammar. While
the parse tree on the right-hand side needs no explanation, the other
one may seem unusual. It indicates the following: the Kleene star
has been used for 2 iterations; in the first iteration, the left-hand
side alternative has been selected and, in the second one, it was the
right-hand side alternative; the sub-tree for aa is a concatenation
(depicted by the implicit · operator). Note that the left and right la-
bels are used for illustration purposes only. In general, any number
of alternatives is allowed and the labels are numbered.

One might wonder why parse trees should be built for lexemes.
Typically, compiler front-end implementors tend to restrict the lex-
ical elements to relatively simple ones (e.g. identifiers, literal char-
acter constants, etc.). Even when more “complex” elements such as
string constants are analyzed, it is relatively easy to write a decod-
ing function that extracts the desired information from the lexemes.
When some elements are genuinely more complex, their treatment
is often deferred to the syntactic analysis. However, there are cases
where the nature of the elements is truly lexical and where these are
definitely not simple. In the introduction, we mentioned the numer-
ical constants in Scheme. These are definitely lexical elements (no
white space nor comments are allowed in the middle of a constant),
yet their lexical structure is quite complex. In Section 7, we illus-
trate how one can benefit from obtaining parse trees for Scheme
numerical constants. Moreover, it is a “chicken-and-egg” kind of
issue since, by having more powerful tools to manipulate complex
lexical elements, implementors may choose to include a wider va-
riety of tasks as part of the lexical analysis phase.

The idea behind the technique described in the original paper
is pretty simple. Because the automatically generated lexical an-
alyzers are usually based on finite-state automata, the technique is
based on automata too, but with a simple extension. The augmented
automata are built using straightforward structural induction on the
regular expressions to which they correspond. The addition to the
automata consists only in putting construction commands on some
arcs of the automata. The purpose of the construction commands is
simple: let r be a regular expression, A(r), the corresponding au-
tomaton, and w, a word; if a path P traverses A(r) and causes w to
be consumed, then the sequence of construction commands found
along P forms a “recipe” that dictates how to build a parse tree t
which is a demonstration that r generates w.

The automata that are built using the original technique are
non-deterministic. It is well-known that performing lexical analy-
sis using non-deterministic finite-state automata (NFA) is generally
slower than using deterministic finite-state automata (DFA). Con-
sequently, conversion of the NFA into DFA is desirable.

The augmented NFA can indeed be converted into DFA. How-
ever, note that a path taken through a DFA while consuming some

word has little to do with the corresponding path(s) in the NFA,
because of the presence of ε-transitions and arbitrary choices fea-
tured by the latter. Since one needs the construction commands of
the NFA to build a parse tree, there must exist a mechanism that al-
lows one to recover a path through the NFA from a path through the
DFA. The technique proposes a mechanism that is implemented us-
ing three tables that preserve the connection between the DFA and
the NFA. By making a series of queries to these tables, one is able
to efficiently convert a path through the DFA into a corresponding
path through the NFA. The path through the NFA trivially can be
translated into a sequence on commands that explain how to build a
parse tree. To summarize, the process of recognizing a lexeme and
building a parse tree for it consists in identifying the lexeme using
the DFA in the usual way while taking note of the path, recover-
ing the path through the NFA, and then executing the sequence of
commands.

The technique presented in the original paper deals only with
the most basic regular operators: concatenation, union, and the
Kleene star. Two distinct representations for the parse trees are
introduced: the internal representation and the external one. The
first one manipulates the trees as data structures. The second one
manipulates them under their printed form, i.e. as words. Since
the current paper is about lexical analyzers, we only consider the
internal representation of parse trees. Finally, the original paper
presents how one can obtain the complete set of parse trees for
a word w that matches a regular expression r. Indeed, as shown
below, the parse tree needs not be unique. In fact, there can be
huge numbers (even an infinity) of parse trees, in some cases.
Consequently, sets of parse trees are always represented under an
implicit form only. We consider complete sets of parse trees to be
mainly of theoretical interest and the current paper only considers
the construction of a single parse tree for any lexeme.

3. SILex: a lexical analyzer generator for Scheme
SILex has originally been designed to be similar to the original
Lex tool for the C language. In particular, the syntax of the regular
expressions and the set of operators are the same. However, the
actions that specify how to react to the recognition of a lexeme
must be written in Scheme as expressions. In SILex, the actions
return tokens while, in Lex, the actions produce tokens using a
mixture of a returned value and side-effects. The third part of the
specification files for Lex, which contains regular C code, does not
have a counterpart in SILex. Consequently, the specification files
for SILex include the part for the definition of macros (shorthands
for regular expressions) and the part for the rules. SILex offers
various services: many lexical analyzers may be used to analyze
the same input; counters are automatically updated to indicate the
current position inside of the input; the DFA can be represented
using ordinary (compact) or portable tables, or can be directly
implemented as Scheme code.

3.1 Lexemes
We describe the set R of regular expressions supported by SILex.
All regular expressions in R are presented in Figure 2. Each kind
of regular expression is accompanied by a short description and its
language. We use Σ to denote the set of characters of the Scheme
implementation at hand (e.g. the ASCII character set). The language
of a regular expression r is denoted by L(r). In the figure, c ranges
over characters (c ∈ Σ), i and j ranges over integers (i, j ∈ IN),
spec denotes the specification of the contents of a character class,
C ranges over character classes (C ⊆ Σ), and v ranges over strings
(v ∈ Σ∗). All variables r and ri are assumed to be in R. Finally,
ρL : R× IN× (IN ∪ {∞}) → 2Σ∗ is a repetition function defined
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DESCRIPTION REGULAR EXPRESSION LANGUAGE
Ordinary character c {c}

Any character . Σ− {newline character}
Newline character \n {newline character}
Character by code \i {character of code i}
Quoted character \c {c}
Character class [spec] C ⊆ Σ
Literal string ”v” {v}

Parenthesized expression (r) L(r)
Kleene closure r∗ ρL(r, 0,∞)
Positive closure r+ ρL(r, 1,∞)

Optional expression r? ρL(r, 0, 1)
Fixed repetition r{i} ρL(r, i, i)

At-least repetition r{i, } ρL(r, i,∞)
Between repetition r{i, j} ρL(r, i, j)

Concatenation r0 . . . rn−1 L(r0) . . . L(rn−1)
Union r0 | . . . | rn−1 L(r0) ∪ . . . ∪ L(rn−1)

Figure 2. Regular expressions supported by SILex and the corresponding languages.

as:

ρL(r, b, B) =
⋃
i∈IN

b≤i≤B

(L(r))i

Many details are omitted in the presentation of R by lack of
relevance for this paper. For instance, the exact set of ordinary
characters and the syntax of the character classes are not really
interesting here. For complete information about the syntax, we
refer the reader to the documentation of SILex [3]. The important
thing to know about character classes is that an expression [spec]
matches nothing else than a single character and it does match a
character c if c ∈ C where C is the set of characters denoted by
spec.

Operators used to build up regular expressions have different
priority. We assume that the repetition operators (∗, ?, {i, }, . . . )
have higher priority than the (implicit) concatenation operator and
that the latter has higher priority than the union operator. More-
over, we expect unions (and concatenations) to account for all sub-
expressions that are united (or concatenated, respectively). In other
words, when we write a union r0∪. . .∪rn−1, none of the ri should
be a union. Likewise, when we write a concatenation r0 . . . rn−1,
none of the ri should be a concatenation (nor a union, naturally).
Repetition operators, though, can be piled up (e.g. as in expression
d?{2, 4}+).

From now on, we forget about the first 5 kinds of regular ex-
pressions. These can all be represented by totally equivalent char-
acter classes (equivalent according to their language and accord-
ing to their associated parse trees, too). For instance, expressions f
and . can be replaced by [f] and [^\n], respectively. As for the lit-
eral strings, we choose not to forget about them. Although it could
be tempting to replace them by concatenation of characters, which
would denote the same language, we refrain to do so because, as
we see later, it would change the associated parse trees. For effi-
ciency reasons, the parse trees for literal strings are different from
those for concatenations. The former are cheaper to generate than
the latter.

3.2 Incompatibilities with the original technique
The original technique for the construction of parse trees for lex-
emes cannot be integrated directly into SILex for two reasons. First,
SILex provides a larger set of operators in regular expressions than
the one presented in the original paper. Second, the original tech-
nique builds lists by adding elements to the right. This does not

correspond to the efficient and purely functional way of building
lists in Scheme. Consequently, the rules for the construction of the
NFA with commands have to be adapted to the larger set of opera-
tors and to the direction in which Scheme lists are built.

4. Definitions
There are some terms specific to the domain of lexical analysis
that need to be defined. At this point, we have already defined
regular expressions along with their language. In the context of
compiler technology, unlike in language theory, we are not only
interested in checking if a word w matches a regular expression r
(i.e. whether w ∈ L(r)), but also in the decomposition of the input
u (∈ Σ∗) into a stream of lexemes that leads to a stream of tokens.
A lexeme is a prefix w of the input u (u = wu′) that matches some
regular expression r. Based on the matching regular expression
r and the matched lexeme w, a token is produced. Examples of
tokens include: the identifier named trace, the reserved keyword
begin, the operator +, etc. Typically, the stream of tokens that is
produced by lexical analysis constitutes the input to the syntactic
analyzer. While the concept of token is variable and depends on the
application, the concept of lexeme is standard and can be defined
in terms of language theory. Usually, when a lexeme w has been
identified, i.e. when u = wu′, and that the corresponding token
has been produced, w is considered to have been consumed and the
remaining input is u′.

In the context of automatic generation of lexical analyzers, there
is typically more than one regular expression, ri, that may match
lexemes. Lexical analyzers are usually specified using a list of
rules, each rule being an association between a regular expression
ri and an action αi. An action αi is some statement or expression
in the target programming language that indicates how to produce
tokens when lexemes are found to match ri. The action normally
has access to the matching lexeme and also has the opportunity to
create some side effects such as: updating the table of symbols,
increasing counters, etc. During lexical analysis, the analyzer may
match a prefix of the input with the regular expression ri of any
(active) rule.

Lexical analyzers produced by SILex, like many other lexical
analyzers, obey some principles when trying to find and select
matches. SILex follows the maximal-munch (aka, longest-match)
tokenization principle. It means that when there is a match between
prefix w1 and regular expression ri that compete with another
match between prefix w2 and expression rj , such that |w1| > |w2|,
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T ([spec], w) =

{
{w}, if w ∈ L([spec])
∅, otherwise

T (”v”, w) =

{
{v}, if w = v
∅, otherwise

T ((r), w) = T (r, w)

T (r∗, w) = ρT (r, w, 0,∞)

T (r+, w) = ρT (r, w, 1,∞)

T (r?, w) = ρT (r, w, 0, 1)

T (r{i}, w) = ρT (r, w, i, i)

T (r{i, }, w) = ρT (r, w, i,∞)

T (r{i, j}, w) = ρT (r, w, i, j)

T (r0 . . . rn−1, w) =

{
[t0, . . . , tn−1]

∃w0 ∈ Σ∗. . . . ∃wn−1 ∈ Σ∗.
w = w0 . . . wn−1 ∧
∀0 ≤ i < n. ti ∈ T (ri, wi)

}
T (r0 | . . . | rn−1, w) = {#i : t | 0 ≤ i < n ∧ t ∈ T (ri, w)}

where:

ρT (r, w, b, B) =

 [t0, . . . , tn−1]

∃n ∈ IN. b ≤ n ≤ B ∧
∃w0 ∈ Σ∗. . . . ∃wn−1 ∈ Σ∗.
w = w0 . . . wn−1 ∧
∀0 ≤ i < n. ti ∈ T (r, wi)


Figure 3. Parse trees for a word that matches a regular expression.

then the former match is preferred. SILex also gives priority to first
rules. It means that when there is a match between prefix w and
expression ri that compete with another match between w and rj ,
such that i < j, then the former match is preferred. Note that,
although these two principles uniquely determine, for each match,
the length of the lexeme and the rule that matches, they say nothing
about the parse tree that one obtains for the lexeme. As we see
below, a single pair of a regular expression and a word may lead to
more than one parse tree. In such a case, the lexical analyzer is free
to return any of these.

5. Adapting the construction of parse trees
Before the adapted technique is presented, the notation for the parse
trees is introduced and the parse trees for a word according to
a regular expression. The following two subsections present the
finite-state automata that are at the basis of the construction of
parse trees. Finally, we consider the issue of converting the NFA
into DFA.

5.1 Syntax of the parse trees
Let us present the syntax of the parse trees. Let T be the set of all
possible parse trees. T contains basic trees, which are words, and
composite trees, which are selectors and lists. T is the smallest set
with the following properties.

∀w ∈ Σ∗. w ∈ T
∀i ∈ IN. ∀t ∈ T . #i : t ∈ T
∀n ≥ 0. ∀i ∈ IN s.t. 0 ≤ i < n. ∀ti ∈ T .

[t0, . . . , tn−1] ∈ T
Note that we do not represent parse trees graphically as is

customary in presentation of parsing technology. Instead, we use
a notation similar to a data structure (to an algebraic data type, to
be more specific) to represent them. However, the essence of both
representations is the same as the purpose of a parse tree is to serve
as an explicit demonstration that a particular word can effectively

be generated by a regular expression (or, usually, by a context-free
grammar).

In particular, let us recall that if we have a parse tree t for a
word w according to a context-free grammar, then we can find all
the characters of w, in order, at the leaves of t. We can do the same
with our parse trees associated to regular expressions. Let us define
an extraction function X : T → Σ∗ that allows us to do so.

X(w) = w

X(#i : t) = X(t)

X([t0, . . . , tn−1]) = X(t0) . . . X(tn−1)

5.2 Parse trees for lexemes
We can now describe the parse trees for a word that matches a
regular expression. Figure 3 presents the T function. T (r, w) is the
set of parse trees that show how w is generated by r. We use the
plural form “parse trees” as there may be more than one parse tree
for a single expression/word pair. Borrowing from the context-free
grammar terminology, we could say that a regular expression may
be ambiguous.

Note that, once again, we need a repetition function ρT : R ×
Σ∗ × IN × (IN ∪ {∞}) → 2T to help shorten the definitions for
the numerous repetition operators. The definition of the repetition
function can be found at the bottom of Figure 3.

The meaning of T (r′, w), for each form of r′, is explained in
the following. Some examples are given. Note that, for the sake of
brevity, we may use single-character regular expressions such as a
instead of the equivalent class variants such as [a].

• Case r′ = [spec]. The only valid parse tree, if it exists, is a
single character c. c has to be a member of the character class
specification and has to be equal to the single character in w.
Examples: T ([ab], a) = {a}; T ([ab], c) = ∅ = T ([ab], baa).
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• Case r′ = ”v”. The only valid parse tree is v and it exists if
w = v. Note that, from the point of view of the parse tree data
type, parse tree v is considered to be atomic (or basic), even
though, from the point of view of language theory, v ∈ Σ∗ may
be a composite object. Example: T (”abc”, abc) = {abc}.

• Case r′ = (r). Parentheses are there just to allow the user to
override the priority of the operators. They do not have any
effect on the parse trees the are generated.

• Cases r′ = r∗, r′ = r+, r′ = r?, r′ = r{i}, r′ =
r{i, }, and r′ = r{i, j}. The parse trees for w demon-
strate how w can be partitioned into n substrings w0, . . . ,
wn−1, where n is legal for the particular repetition operator
at hand, and how each wi can be parsed using r to form a
child parse tree ti, with the set of all the ti collected into a
list. The lists may have varying lengths but the child parse
trees they contain are all structured according to the sin-
gle regular expression r. Example: T (a{2, 3}∗, aaaaaa) =
{[[a, a], [a, a], [a, a]], [[a, a, a], [a, a, a]]}.

• Case r′ = r0 . . . rn−1. The parse trees for w demonstrate how
w can be partitioned into exactly n substrings w0, . . . , wn−1,
such that each wi is parsed according to its corresponding
child regular expression ri. In this case, the lists have constant
length but the child parse trees are structured according to vari-
ous regular expressions. Examples: T (abc, abc) = {[a, b, c]};
T (a∗ab, aaab) = {[[a, a], a, b]}.

• Case r′ = r0 | . . . | rn−1. A parse tree for w demonstrates
how w can be parsed according to one of the child regular
expressions. It indicates which of the child expressions (say ri)
matched w and it contains an appropriate child parse tree (for
w according to ri). Example: T (a∗|(aa)+|a?a?, a) = {#0 :
[a], #2 : [[a], [ ]], #2 : [[ ], [a]]}.

Function T has some interesting properties. The first one is that
parse trees exist only for words that match a regular expression;
formally, T (r, w) 6= ∅ if and only if w ∈ L(r). The second
one is that, from any parse tree for a word according to a regular
expression, we can extract the word back; formally, if t ∈ T (r, w),
then X(t) = w.

Depending on the regular expression, the “amount” of ambigu-
ity varies. The union operator tends to additively increase the num-
ber of different parse trees produced by the child expressions. On
the other hand, the concatenation operator tends to polynomially
increase the number of different parse trees. Even more extreme,
some of the repetition operators tend to increase the number expo-
nentially and even infinitely. Let us give instances of such increases.
Let the ri’s be expressions that lead to one or two parse trees for any
non-empty word and none for ε. Then r0 | . . . | rn−1, r0 . . . rn−1,
((r0)

+)∗, and ((r0)
∗)∗ produce additive, polynomial, exponential,

and infinite increases, respectively.

5.3 Strategy for the construction of parse trees
In the original paper, it is shown how the construction of parse trees
for lexemes can be automated. The technique is an extension of
Thompson’s technique to construct finite-state automata [14]. The
extension consists in adding construction commands on some of
the edges of the automata. Essentially, each time a path through an
automaton causes some word to be consumed, then the sequence of
commands found along that path forms a “recipe” for the construc-
tion of a parse tree for the word.

In general, a parse tree may be an assemblage of many sub-
trees. These sub-trees cannot all be built at once. They are created
one after the other. Consequently, the sub-trees that are already built
have to be kept somewhere until they are joined with the other sub-
trees. It was shown that a data structure as simple as a stack was
providing the appropriate facilities to remember and give back parts

of a parse tree under construction. All the parse tree construction
commands are meant to operate on a stack.

The commands used by the original technique are: “push con-
stant”, “wrap in selector”, and “extend list”. The “push constant”
command has a constant tree t as operand and performs the fol-
lowing operation: it modifies the stack it is given by pushing t.
The “wrap in selector” command has a number i as operand and
performs the following operation: it modifies the stack by first pop-
ping a tree t, by building the selector #i : t, and then by pushing
#i : t back. Finally, the “extend list” command has no operand
and performs the following operation: it modifies the stack by first
popping a tree t and then a list l, by adding t at the end of l to form
l′, and then by pushing l′ back.

As explained above, the Scheme language does feature lists
but these lists are normally (efficiently) accessed by the front and
not by the end. Strictly speaking, Scheme lists can be extended
efficiently by the end but only in a destructive manner. We prefer to
avoid going against the usual programming style used in functional
languages and choose to adapt the original technique to make it
compatible with the natural right to left construction of lists in
Scheme.

This choice to adapt the original technique to build lists from
right to left has an effect on the way automata with commands are
traversed. In the adapted technique, we have the property that, if
a path traverses an automaton forwards and consumes some word,
then the sequence of commands found on the reversed path forms
a recipe to build a parse tree for the word. Thus, the next section
presents a technique to build finite-state automata with commands
similar to that of the original paper except for the facts that we have
a larger set of regular expression operators and that the commands
are placed differently in the automata.

5.4 Automata with construction commands
We present the construction rules for the finite-state automata with
commands. The construction rules take the form of a procedure A
that takes a regular expression r and builds the automaton A(r).
A is defined by structural induction on regular expressions. The
construction rules are similar to those prescribed by Thompson [14]
but with commands added on the edges. The rules are presented in
Figures 4 and 5.

Each construction rule produces an automaton with distin-
guished entry and exit states named p and q, respectively. When
an automaton A(r) embeds another one A(r′), we depict A(r′) as
a rectangle with two states which are the entry and exit states of
A(r′). In each automaton A(r), there is no path going from q to p
using edges of A(r) only. In other words, any path from q to p, if it
exists, has to go through at least one edge added by a surrounding
automaton. The parse tree construction commands are shown using
a compact notation. A “push constant” command with operand t is
denoted by push t. A “wrap in selector” command with operand
i is denoted by sel i. An “extend list” command is (of course)
denoted by cons.

We mention, without proof, the few key properties of the au-
tomata. Let r be a regular expression and P be a path that traverses
A(r) from entry to exit. First, the sequence of commands that are
met by following P backwards causes exactly one parse tree to be
pushed. More precisely, if we take a stack σ and apply on it all the
commands that we meet by following P backwards, then the net
effect of these commands is to push exactly one parse tree t on σ.
Second, the automata are correct in the sense that if the word that
is consumed along P is w, then t ∈ T (r, w). Third, the automata
are exhaustive with respect to T in the sense that, for any r ∈ R,
w ∈ L(r), t ∈ T (r, w), and stack σ, then there exists a path P that
traverses A(r), that consumes w, and whose reversed sequence of
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A([spec]):
(where L([spec]) =

{c0, . . . , cn−1}) ����
> p �

� @
@R

c0

push c0

...@
@ �

��cn−1

push cn−1

�������
q

A(”v”): (where v = c0 . . . cn−1)

����
> p -

c0 ����
p1 -

ci
. . . -����

pn−1 -
cn−1 ����

pn -
ε

push v �������
q

A((r)) = A(r)

A(r∗) = A(r{0, })

A(r+) = A(r{1, })

A(r?) = A(r{0, 1})

A(r{i}) = A(r{i, i})

A(r{0, }): ����
> p �� @@R

ε

push [ ]

@@ -
ε

cons ��� ���
p1 A(r) q1

6 ε

cons

���ε

push [ ]

�������
q

A(r{i, }): (where i ≥ 1)

����
> p -

ε

cons ��� ���
p1 A(r) q1 - · · ·

ε

cons
- ��� ���

pi−1 A(r) qi−1

-

ε

cons

��� ���
pi A(r) qi

6 ε

cons

-
ε

push [ ] �������
q

Figure 4. Construction rules for the automata with commands (Part I).

commands causes t to be pushed on σ. These properties can be
proved straightforwardly by structural induction on R.

5.5 Using deterministic automata
For efficiency reasons, it is preferable to use a DFA instead of a
NFA. As explained above, the NFA obtained using function A may
be converted into a DFA to allow fast recognition of the lexemes
but three tables have to be built in order to be able to translate paths
through the DFA back into paths through the original NFA.

We assume the conversion of the NFA into a DFA to be a
straightforward one. We adopt the point of view that deterministic
states are sets of non-deterministic states. Then, our assumption
says that the deterministic state that is reached after consuming
some word w is exactly the set of non-deterministic states that can
be reached by consuming w.1

1 Note that this assumption precludes full minimization of the DFA. SILex
currently does not try to minimize the DFA it builds. The assumption is
sufficiently strong to ensure that paths through the NFA can be recovered

We may now introduce the three tables Acc, f , and g. Ta-
ble g indicates how to reach a state q from the non-deterministic
start state using only ε-transitions. It is defined only for the
non-deterministic states that are contained in the deterministic
start state. Table f indicates how to reach a non-deterministic
state q from some state in a deterministic state s using a path
that consumes a single character c. It is usually not defined ev-
erywhere. Table Acc indicates, for a deterministic state s, which
non-deterministic state in s accepts on behalf of the same rule as s.
It is defined only for accepting deterministic states.

Let us have a word w = c0 . . . cn−1 that is accepted by the
DFA and let PD = s0 . . . sn be the path that is taken when w
is consumed. Each si is a deterministic state, s0 is the start state,
and sn is an accepting state. Note that an accepting state does not
simply accept, but it accepts on behalf of a certain rule. In fact, an
accepting deterministic state may contain more than one accepting

but it may happen to be unnecessarily strong. More investigation should be
made to find a sufficient and necessary condition on the conversion.
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A(r{0, 0}): ����
> p -

ε

push [ ] �������
q

A(r{0, j}):
(where j ≥ 1)

����
> p �� @@R

ε

push [ ]

@@ -
ε

cons ��� ���
p1 A(r) q1 ���ε

push [ ]

�· · ·

-

ε

cons

��� ���
pk A(r) qk -

6

ε

push [ ]

�· · ·

-

ε

cons

��� ���
pj A(r) qj

ε

push [ ]

�������
q

A(r{i, j}): (where i ≥ 1)

����
> p -

ε

cons ��� ���
p1 A(r) q1 - · · · -

ε

cons ��� ���
pi A(r) qi -

ε

push [ ]

�· · ·

-

ε

cons

��� ���
pk A(r) qk -

6

ε

push [ ]

�· · ·

-

ε

cons

��� ���
pj A(r) qj

ε

push [ ]

�������
q

A(r0 . . . rn−1): (where n ≥ 2):

����
> p -

ε

cons ��� ���
p1 A(r0) q1 - · · · -

ε

cons ��� ���
pn A(rn−1) qn -

ε

push [ ] �������
q

A(r0 | . . . | rn−1):
(where n ≥ 2) ����

> p �
�

-
ε

sel 0 ��� ���
p1 A(r0) q1

@
@R

ε

...
@

@ -
ε

sel n− 1 ��� ���
pn A(rn−1) qn �

��ε �������
q

Figure 5. Construction rules for the automata with commands (Part II).

non-deterministic states, each on behalf of its corresponding rule.
In such a case, the deterministic state accepts on behalf of the
rule that has highest priority. The non-deterministic path PN that
corresponds to PD is recovered backwards portion by portion. The
idea consists in determining non-deterministic states {qi}0≤i≤n

and portions of path {Pi}0≤i≤n such that: each qi is in si; each Pi

starts at qi−1, ends at qi, and consumes ci−1, except for P0, which
starts at the non-deterministic start state, ends at q0, and consumes
ε; qn is a state that accepts on behalf of the same rule as sn.

The recovery is initialized by determining qn directly from sn

using the query Acc(sn). Next, the main part of the recovery con-
sists in an iteration, with i going from n down to 1. At step i,
given qi, one can determine portion of path Pi and intermedi-
ate non-deterministic state qi−1. Pi is obtained from the query
f(si−1, ci−1, qi). By doing so, qi−1 is also obtained as it is the
source state of Pi. As the final part of the recovery, P0 is obtained

using the query g(q0). Then path PN is simply the linkage of all
the portions together; i.e. PN = P0 · . . . · Pn.

Note that the preceding explanation contains some minor inac-
curacies. First, tables f and g do not exactly contain portions of
path but reversed ones. Indeed, recall that the NFA presented in
this paper are such that commands must be executed in the order
in which they are met when following paths backwards. Second,
there is no need to recover path PN (or its reverse) explicitly. It
is sufficient to keep references to the portions that form PN and
to later execute the commands by following the portions one af-
ter the other. Better yet, one may eagerly execute the commands
contained in each portion as the latter gets determined. This way,
it is unnecessary to remember PN nor its portions. Only the cur-
rent state of the construction stack needs to be preserved. Last, one
may observe that the sole purpose of the portions of path stored in
tables f and g is to be followed in order to recover the parse tree
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construction commands. It is possible to skip the step of converting
a portion of path into a sequence of commands by directly storing
sequences of commands in f and g. It not only saves time by avoid-
ing the conversion but also because sequences of commands can be
no longer than the paths from which they are extracted since at
most one command gets attached to each arc. One must be careful
in the case of table f because a mere sequence of commands would
not indicate which non-deterministic state is the origin of the por-
tion of path. Consequently, the latter also has to be returned by f .
To recapitulate: a query g(q) provides the sequence of commands
that would be met by following some ε-consuming path from the
non-deterministic start state to q backwards; a query f(s, c, q) pro-
vides a pair of a non-deterministic state q′ ∈ s and the sequence of
commands that would be met by following some c-consuming path
from q′ to q backwards.

Remember that some regular expressions are ambiguous. Let r
be an ambiguous expression and w a word that has at least two
parse trees. We said that, in the context of automatically generated
lexical analyzers, it is sufficient to build only one parse tree for
w. In other words, from the path PD that traverses the DFA, it is
sufficient to recover only one (PN ) of the corresponding paths that
traverse the NFA. Indeed, by the use of fixed tables f , g, and Acc,
the recovery of PN from PD and w is deterministic. Essentially, the
choices among all possible paths are indirectly made when unique
values are placed into tables entries that could have received any of
numerous valid values. Nevertheless, even if in practice, any single
lexical analyzer produces parse trees in a deterministic manner, it
remains more convenient to specify the parse tree construction as a
non-deterministic process.

6. Modifications to SILex
The addition of parse trees to SILex has little impact on the way
SILex is used. The only visible modification is the presence of an
additional variable in the scope of the actions. The name of this
variable is yyast, for Abstract Syntax Tree.2 An action may refer
to this variable as any other variable provided by SILex, such as
yytext, which contains the lexeme that has just been matched,
yyline, which contains the current line number, etc.

While the observable behavior of SILex has not changed much,
there are many changes that have been made to the implemen-
tation of SILex. The most important changes were made in the
generation-time modules. First, the original version of SILex used
to convert many regular expression operators into simpler forms in
order to handle as few native operators as possible. It was doing
so during syntactic analysis of the regular expressions. For exam-
ple, SILex eliminated some forms by converting strings like ”v”
into concatenations, by breaking complex repetition operators into
a combination of simpler ones and concatenations, and by splitting
large concatenations and unions into binary ones. While such con-
versions do not change the language generated by the expressions,
they do change the set of valid parse trees for most or all words.
The new version has to represent most syntactic forms as they ap-
pear in the specification files. Still, there are now new opportunities
to translate simple forms, such as r∗, r+, r?, and r{i}, into the
more general forms r{b, B}, which have to be supported anyway.

Second, the construction rules for the automata have been
changed to correspond to the new list of syntactic forms and to
conform to the specifications of Figures 4 and 5. Of course, the
representation of the arcs (in the NFA) had to be extended so that
commands could be attached.

2 Actually, we consider the name yyast to be rather inappropriate as the
parse trees that the new variable contains are indeed concrete syntax trees.
Still, since the version of SILex that we are working on uses that name, we
prefer to stick to the current conventions.

Third, a phase which used to clean up the NFA between the
elimination of the ε-transitions and the conversion of the NFA
into a DFA has been eliminated. It eliminated useless states and
renumbered the remaining states. The modification of the numbers
interfered with the construction of the three new tables and the
quick and dirty solution has been to completely omit the phase.
The generated analyzers would benefit from the re-introduction of
the clean-up phase and, in order to do so, some adaptation should
be made to the currently abandoned phase or to the implementation
of the table construction.

Fourth, we added the implementation of the construction and the
printing of the three tables. The construction of the tables mainly
consists in extracting reachability information from the graph of the
NFA.

The next modifications were made to the analysis-time module.
Fifth, the lexical analyzers had to be equipped with instrumentation
to record the paths that are followed in the DFA. Also, requests for
the construction of parse trees when appropriate have been added.

Sixth, we included the functions that build parse trees when they
are given a path through the DFA, the recognized lexeme, and the
three tables.

Up to this point, the modifications aimed only at providing the
parse tree facility when the tables of the DFA are represented using
the ordinary format. So, at last, we modified both the generation-
time and the analysis-time modules so that parse trees could also
be built when the DFA is represented using portable tables or
Scheme code. In the case of the portable tables, it required only the
creation of simple conversion functions to print a portable version
of tables f and g at generation time and to translate the portable
tables back into the ordinary format at analysis time. In the case of
the DFA as Scheme code, the modifications are more complex as
extra code must be emitted that takes care of the recording of the
path through the DFA and the requests for the construction of parse
trees. Note that the functions that perform the very construction of
the parse trees are the same no matter which format for the tables
of the DFA is used. It means that the construction of parse trees is
an interpretative process (based on queries to the three tables), even
when the DFA is implemented efficiently as code.

Note that, although SILex gives the impression that parse trees
are always available to actions, SILex is lazy with their construc-
tion. It builds them only for the actions that seem to access the vari-
able yyast. The path followed into the DFA is always recorded,
however. Still, SILex’s laziness substantially reduces the extra cost
caused by the addition of the parse trees as most of it comes from
the construction of trees, not the recording of paths.

The current state of the prototype is the following. The integra-
tion is complete enough to work but the code needs a serious clean-
up. The three additional tables for DFA to NFA correspondence are
much too large. The implementation of the mechanisms for path
recording and parse tree construction is not really optimized for
speed.

7. Examples of parse tree construction for
lexemes

We present a few concrete examples of the use of parse tree con-
struction using SILex. We first start by describing the Scheme rep-
resentation of the parse trees.

7.1 Representation of parse trees in Scheme
The representation of trees in T in Scheme is direct. A list tree
[t0, . . . , tn−1] becomes a Scheme list (S0 . . . Sn−1) where each
Si is the Scheme representation of ti. Next, a selector #i : t also
becomes a Scheme list (i S) where i remains the same and S cor-
responds to t. Finally, a word w may take two forms in Scheme.
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If w is a parse tree that originates from a string regular expression
”w”, then it becomes a Scheme string "w", otherwise w is neces-
sarily one-character long and it becomes a Scheme character #\w.

7.2 Simple examples
Let us consider the following short SILex specification file:

%%
a{2,4} (list ’rule1 yyast)
a{0,3} (list ’rule2 yyast)

where only some sequences of a are deemed to be legal tokens and
where the actions simply return tagged lists containing the parse
trees that are produced. If we generate a lexical analyzer from this
specification file and ask it to analyze the input aaaaa, then it will
produce the following two results before returning the end-of-file
token:

(rule1 (#\a #\a #\a #\a))
(rule2 (#\a))

Both parse trees indicate that the matched lexemes were made of
repetitions of the character a, which is consistent with the shape of
the regular expressions. Note how the first token had to be as long
as possible, following the maximal-munch tokenization principle.

Now, let us consider a more complex example. The following
specification file allows the analyzer-to-be to recognize Scheme
strings:

%%
\"([^"\\]|"\\\""|"\\\\")*\" yyast

One must not forget about the necessary quoting of special charac-
ters " and \. If we feed the analyzer generated from this specifica-
tion with the following Scheme string:

"Quote \" and \\!"

then the analyzer returns a parse tree that denotes a sequence of
three sub-trees, where the middle one is a sequence of 14 sub-
sub-trees, where each is a selector among the three basic string
elements:

(#\"
((0 #\Q) (0 #\u) (0 #\o) (0 #\t) (0 #\e)
(0 #\space) (1 "\\\"") (0 #\space)
(0 #\a) (0 #\n) (0 #\d) (0 #\space)
(2 "\\\\") (0 #\!))
#\")

These two examples may not be that convincing when it comes
to justifying the implementation of automatic construction of parse
trees for lexemes. However, the one below deals with a regular
expression that is way more complex.

7.3 Lexical analysis of Scheme numbers
Scheme provides a particularly rich variety of numbers: from inte-
gers to complex numbers. It also provides a “syntax” for the exter-
nal representation of all these kinds of numbers. An implementor
has much work to do in order to handle all the kinds of numbers. In
particular, when it comes to reading them. There are so many cases
that reading them in an ad hoc way tends to be error-prone.

Even when one automates part of the process by using an auto-
matically generated lexical analyzer to scan Scheme numbers, only
half of the problem is solved. Indeed, merely knowing that a lex-
eme is the external representation of a Scheme number does not
provide any easy way to recover the internal representation from
the lexeme. That is, it is not easy unless the lexical analyzer is able

to provide a parse tree for the lexeme. In Figure 6, we present a rel-
atively complete specification for the Scheme numbers. Note that
we restrict ourselves to numbers in base 10 only and that we do not
handle the unspecified digits denoted by #. The specification file is
mostly made of macros and there is a single rule which takes the
parse tree for the number and passes it to a helper function.

The helper function is very simple as it only has to traverse the
tree and rebuild the number. This reconstruction is made easy by
the fact that the hierarchical structure of the lexeme according to the
regular expression is clearly exposed and that any “choice” between
various possibilities is indicated by the tree. Figure 7 presents the
implementation of our helper function, which is less than one hun-
dred lines of very systematic code. The reader needs not necessarily
study it closely—the font is admittedly pretty small—as the main
point here is to show the size and the shape of the code. If we were
to complete our implementation to make it able to handle the full
syntax, it would be necessary to add many macros in the specifica-
tion file but the helper function would not be affected much.

8. Experimental results
In order to evaluate the cost of the construction of parse trees, we
ran a few experiments. The experiments consist in analyzing the
equivalent of 50 000 copies of the following 10 numbers (as if it
were a giant 500 000-line file).

32664
-32664
32664/63
+32664/63
-98327E862
+i
-453.3234e23+34.2323e1211i
+.32664i
-3266.4@63e-5
+32664/63@-7234.12312

We used three different lexical analyzers on the input. The first
one is a lexical analyzer generated by the original version of SILex.
The second one is generated by the new version of SILex and build
a parse tree for each of the recognized lexemes. The third one
is also generated using the new version of SILex but it does not
ask for the construction of the parse trees (i.e. the action does not
access yyast). This last analyzer is used to evaluate the cost of the
instrumentation added to record the path through the DFA.

The lexical analyzers have been generated by (either version of)
SILex to be as fast as possible; that is, their DFA is implemented as
Scheme code and they maintain no counters to indicate the current
position in the input. The lexical analyzers have been compiled
using Gambit-C version 3.0 with most optimizations turned on. The
resulting C files have been compiled using GCC version 3.3.5 with
the ‘-O3’ switch. The analyzers were executed on a 1400 MHz Intel
Pentium 4 processor with 512 MBytes of memory.

The execution times for the three analyzers are 15.3 seconds,
39.8 seconds, and 20.2 seconds, respectively. Clearly, building the
parse trees incurs a serious cost as the execution time almost triples.
This is not that surprising given the complexity of building a parse
tree compared to the simplicity of a mere recognition using a DFA.
However, the third measurement indicates that the added instru-
mentation causes the operations of the DFA to take significantly
longer. The increase is about by a third. While the increase is much
less than in the case of parse tree construction, it is still less accept-
able. Construction of parse trees can be seen as a sophisticated op-
eration that is relatively rarely performed. One might accept more
easily to pay for a service that he does use. However, the extra cost
due to the instrumentation is a cost without direct benefit and that

Scheme and Functional Programming, 2006 59



; Regular expression for Scheme numbers
; (base 10 only, without ’#’ digits)

digit [0-9]
digit10 {digit}
radix10 ""|#[dD]
exactness ""|#[iI]|#[eE]
sign ""|"+"|"-"
exponent_marker [eEsSfFdDlL]
suffix ""|{exponent_marker}{sign}{digit10}+
prefix10 {radix10}{exactness}|{exactness}{radix10}
uinteger10 {digit10}+
decimal10 ({uinteger10}|"."{digit10}+|{digit10}+"."{digit10}*){suffix}
ureal10 {uinteger10}|{uinteger10}/{uinteger10}|{decimal10}
real10 {sign}{ureal10}
complex10 {real10}|{real10}@{real10}|{real10}?[-+]{ureal10}?[iI]
num10 {prefix10}{complex10}
number {num10}

%%

{number} (lex-number yyast)

Figure 6. SILex specification for the essentials of the lexical structure of Scheme numbers.

; Companion code for Scheme numbers

(define lex-number
(lambda (t)
(let* ((digit

(lambda (t)
(- (char->integer t) (char->integer #\0))))

(digit10
(lambda (t)
(digit t)))

(exactness
(lambda (t)
(case (car t)

((0) (lambda (x) x))
((1) (lambda (x) (* 1.0 x)))
(else (lambda (x) (if (exact? x) x (inexact->exact x)))))))

(sign
(lambda (t)
(if (= (car t) 2)

-1
1)))

(digit10+
(lambda (t)
(let loop ((n 0) (t t))

(if (null? t)
n
(loop (+ (* 10 n) (digit10 (car t))) (cdr t))))))

(suffix
(lambda (t)
(if (= (car t) 0)

0
(let ((tt (cadr t)))
(* 1.0

(sign (list-ref tt 1))
(digit10+ (list-ref tt 2)))))))

(prefix10
(lambda (t)
(exactness (list-ref (cadr t) (- 1 (car t))))))

(uinteger10
(lambda (t)
(digit10+ t)))

(decimal10
(lambda (t)
(let* ((e2 (suffix (list-ref t 1)))

(tt (list-ref t 0))
(ttt (cadr tt)))

(case (car tt)
((0)
(* (digit10+ ttt) (expt 10 e2)))

((1)
(let ((tttt (list-ref ttt 1)))
(* (digit10+ tttt) (expt 10.0 (- e2 (length tttt))))))

(else
(let* ((tttt1 (list-ref ttt 0))

(tttt2 (list-ref ttt 2)))
(* (digit10+ (append tttt1 tttt2))

(expt 10.0 (- e2 (length tttt2))))))))))
(ureal10
(lambda (t)
(let ((tt (cadr t)))

(case (car t)
((0)
(uinteger10 tt))
((1)
(/ (uinteger10 (list-ref tt 0))

(uinteger10 (list-ref tt 2))))
(else
(decimal10 tt))))))

(real10
(lambda (t)

(* (sign (list-ref t 0)) (ureal10 (list-ref t 1)))))
(opt
(lambda (op t default)

(if (null? t)
default
(op (list-ref t 0)))))

(complex10
(lambda (t)

(let ((tt (cadr t)))
(case (car t)

((0)
(real10 tt))
((1)
(make-polar (real10 (list-ref tt 0))

(real10 (list-ref tt 2))))
(else
(make-rectangular
(opt real10 (list-ref tt 0) 0)
(* (if (char=? (list-ref tt 1) #\+) 1 -1)

(opt ureal10 (list-ref tt 2) 1))))))))
(num10
(lambda (t)

((prefix10 (list-ref t 0))
(complex10 (list-ref t 1)))))

(number
(lambda (t)

(num10 t))))
(number t))))

Figure 7. Implementation of a helper function for the lexical analysis of numbers.
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one cannot get rid of, even when parse tree construction is almost
never used.

9. Discussion
As far as we know, the original technique is the only one that makes
automatically generated lexical analyzers able to build parse trees
for lexemes using only finite-state tools and this work is the only
implementation of it.

Generated lexical analyzers always give access to the matched
lexemes. It is essential for the production of tokens in lexical anal-
ysis. To also have access to information that is automatically ex-
tracted from the lexemes is a useful feature. However, when such
a feature is provided, it is typically limited to the ability to ex-
tract sub-lexemes that correspond to tagged (e.g. using \( and \))
sub-expressions of the regular expression that matches the lexeme.
Techniquely, for efficiency reasons, it is the position and the length
of the sub-lexemes that get extracted. The IEEE standard 1003.1
describes, among other things, which sub-lexemes must be ex-
tracted [7]. Ville Laurikari presents an efficient technique to extract
sub-lexemes in a way that complies with the standard [11]. In our
opinion, extraction by tagging is too restrictive. The main problem
is that, when a tagged sub-expression lies inside of a repetition op-
erators (or inside of what is sometimes called a non-linear context)
and this sub-expression matches many different parts of a given
lexeme, only one of the sub-lexemes is reported. So extraction by
tagging starts to become ineffective exactly in the situations where
the difficulty or the sophistication of the extraction would make au-
tomated extraction most interesting.

Since the conventional way of producing parse trees consists
in using a syntactic analyzer based on context-free grammar tech-
nology, one might consider using just that to build parse trees for
his lexemes. For instance, one could identify lexemes using a DFA
and then submit the lexemes to a subordinate syntactic analyzer
to build parse trees. Alternatively, one could abandon finite-state
technology completely and directly use a scanner-less syntactic an-
alyzer. However, both options suffer from the fact that analyzers
based on context-free grammars are much slower than those based
on finite-state automata. Moreover, an ambiguous regular expres-
sion would be translated into an ambiguous context-free grammar.
Our technique handles ambiguous expressions without problem but
most parsing technology cannot handle ambiguous grammars. Of
course, there exist parsing techniques that can handle ambiguous
grammars, such as Generalized LR Parsing [10, 15], the Earley
algorithm [5], or the CYK algorithm [8, 17, 2], but these exhibit
worse than linear time complexity for most or all ambiguous gram-
mars. Finally, it is possible to translate any regular expression into
an unambiguous left- or right-linear grammar [6]. However, the re-
sulting grammar would be completely distorted and would lead to
parse trees that have no connection to the parse trees for lexemes
that we introduced here.

10. Future work
• We intend to complete the integration of automatic parse tree

construction into SILex and to clean up the whole implementa-
tion.

• Parse tree construction could be made faster. In particular, when
the DFA is represented as Scheme code, the functions that
build the trees ought to be specialized code generated from the
information contained in the three tables.

• The penalty that is strictly due to the additional instrumentation
(i.e. when no parse trees are requested) ought to be reduced. A
way to improve the situation consists in marking the determin-
istic states that may reach an accepting state that corresponds
to a rule that requests the construction of a parse tree. Then, for

states that are not marked, the instrumentation that records the
path in the DFA could be omitted.

• All tables generated by SILex ought to be compacted but the
one for f , in particular, really needs it. Recall that f takes a
three-dimensional input and returns a variable-length output (a
pair that contains a sequence of commands).

• Some or all of the following regular operators could be added to
SILex: the difference (denoted by, say, r1−r2), the complement
(r), and the intersection (r1&r2). Note that, in the case of the
complement operator, there would be no meaningful notion of
a parse tree for a lexeme that matches r. In the case of the
difference r1 − r2, the parse trees for a matching lexeme w
would be the demonstration that r1 generates w. Finally, in the
case of the intersection, for efficiency reasons, only one of the
sub-expressions should be chosen to be the one that dictates the
shape of the parse trees.

• The parse trees act as (too) detailed demonstrations. Almost
always, they will be either transformed into a more conve-
nient structure, possibly with unnecessary details dropped, or
completely consumed to become non-structural information. In
other words, they typically are transient data. Consequently, it
means that only their informational contents were important
and that they have been built as concrete data structures to no
purpose. In such a situation, deforestation techniques [16] could
be used so that the consumer of a parse tree could virtually tra-
verse it even as it is virtually built, making the actual construc-
tion unnecessary.

11. Conclusion
This paper presented the adaptation and the implementation of the
automated construction of parse tree for lexemes. The technique
that has been adapted was originally presented in 2000 by Dubé and
Feeley. It has been implemented and integrated in SILex, a lexical
analyzer generator for Scheme.

The adaptation was a simple step as it consisted only in modi-
fying the automaton construction rules of the original technique so
that the larger set of regular operators of SILex was handled and so
that the way the parse trees are built match the right-to-left direction
in which lists are built in Scheme.

The implementation was a much more complicated task. Fortu-
nately, SILex, like the original technique, is based on the construc-
tion of non-deterministic automata that get converted into deter-
ministic ones. Still, most parts of the generator had to be modified
more or less deeply and some extensions also had to be made to the
analysis-time module of the tool. Modifications have been done to
the representation of the regular expressions, to the way the non-
deterministic automata are built and represented, to the conversion
of the automata into deterministic ones, to the printing of SILex’s
tables, to the generation of Scheme code that forms parts of the lex-
ical analyzers, to the algorithm that recognize lexemes, and to the
(previously inexistent) construction of the parse trees.

The new version of SILex does work, experiments could be run,
but the implementation is still somehow disorganized. The con-
struction of parse trees is a pretty costly operation compared to the
normal functioning of a deterministic automaton-based lexical an-
alyzer and, indeed, empirical measurements show that its intensive
use roughly triples the execution time of an analyzer.
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Abstract
The case expressions of Scheme can and should be im-
plemented efficiently. A three-level dispatch performs
well, even when dispatching on symbols, and scales to
large case expressions.

Categories and Subject Descriptors D.3.4 [Program-
ming Languages]: Processors—compilers, optimiza-
tion

General Terms Algorithms, Languages, Performance

Keywords case expressions, symbols, Scheme

1. Introduction
Programming languages should be implemented not by
piling hack upon hack, but by removing the inefficien-
cies and restrictions that make additional hacks appear
necessary.

The case expressions of Scheme are a convenient
syntax for rapid selection between actions determined
by a computed value that is expected to lie within a
known finite set of symbols, numbers, characters, and
booleans [5].

Although Scheme’s case expressions are fast by
design, too many systems still implement them inef-
ficiently. These inefficient implementations have led
some programmers to write contorted and inefficient
code for case dispatch when case expressions would
have been more natural and more efficient.

In particular, some Scheme programmers believe the
evaluation of a case expression requires time propor-
tional to the number of literals mentioned in its clauses.

Proceedings of the 2006 Scheme and Functional Programming Workshop
University of Chicago Technical Report TR-2006-06

Others believe the efficiency of multi-way case dis-
patch on characters depends upon the size of the char-
acter set. Some understand that multi-way case dis-
patch on numbers and characters is efficient, but believe
that multi-way case dispatch on symbols is inherently
inefficient. These incorrect beliefs have led some pro-
grammers to eschew the use of symbols as enumerated
values, to fear Unicode, or to avoid case expressions
altogether.

The contributions of this paper are:

1. To show that Scheme’s case expressions are effi-
cient when implemented properly.

2. To describe an efficient triple-dispatch technique for
implementing general case dispatch.

The techniques used to implement fast case dispatch
in languages like Pascal, C, and Java are well-known,
so the primary focus of this paper is on more Scheme-
specific issues: fast dispatch for symbols and for dis-
patch on values of mixed types.

2. Implementation
This section describes the implementation of case
expressions in Larceny v0.92, which uses the Twobit
compiler [1, 4].

The basic idea can be seen in figure 1:

1. Dispatch on the type.

2. Use some type-specific dispatch to map the value to
the index of its associated clause.

3. Use binary search on the clause index to select the
expressions to be evaluated for that clause.

What remains to be explained are the details. Following
Orbit’s example [7], Twobit’s first pass macro-expands
case expressions into more primitive expressions, as
described in R5RS 7.3 [5].

When control optimization is enabled, Twobit’s sec-
ond pass recognizes if expressions whose test is a call
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(let ((n (cond ((char? var0)
<dispatch-on-char>)
((symbol? var0)
<dispatch-on-symbol>)
; miscellaneous constants
((eq? var0 ’#f) ...)
...
((fixnum? var0)
<dispatch-on-fixnum>)
(else 0))))

<dispatch-on-n>)

Figure 1. General form of triple dispatch

to eq?, eqv?, memq, or memv whose first argument is
a variable and whose second argument is a literal con-
stant. When such an expression is found, Twobit looks
for nested if expressions of the same form whose test
compares the same variable against one or more literal
constants. Twobit analyzes these nested if expressions
to reconstruct the equivalent of a set of case clauses,
each consisting of a set of constants paired with the ex-
pressions to be evaluated if the variable’s value is one of
those constants. This analysis removes duplicate con-
stants, so the sets of constants are disjoint.

Twobit then decides between one of two strategies:

• brute-force sequential search
• the triple dispatch of figure 1

Sequential search is used if the total number of con-
stants is less than some threshold, typically 12, for
which benchmarks have shown the triple-dispatch tech-
nique to be faster than a simple sequential search.

If Twobit decides to use triple dispatch, then it num-
bers the clauses sequentially (reserving 0 for the else
clause, if any) and generates code of the form shown in
figure 1. If there are no miscellaneous constants, then
the corresponding cond clauses will not appear. If there
are no character constants, then the character clause is
unnecessary, and similarly for the symbol and fixnum
clauses.

(A fixnum is a small exact integer. Twobit’s idea
of the fixnum range may be smaller than the fixnum
range that is actually defined by some of Larceny’s
back ends, so Twobit may misclassify a large fixnum
as a miscellaneous constant. That misclassification is
safe because the miscellaneous constants come before
the fixnum? test in figure 1.)

(lambda (x)
(case x
((#\a #\e #\i #\o #\u #\A #\E #\I #\O #\U
a e i o u)
(f-vowel x))
((#\b #\c #\d #\f #\g #\h #\j #\k #\l #\m
#\n #\p #\q #\r #\s #\t #\v #\w #\x #\y #\z
#\B #\C #\D #\F #\G #\H #\J #\K #\L #\M
#\N #\P #\Q #\R #\S #\T #\V #\W #\X #\Y #\Z
b c d f g h j k l m n p q r s t v w x y z)
(f-consonant x))
(else
(f-other x))))

Figure 2. Example: source code

The three type-specific dispatches are independent,
and can be implemented in completely different ways.

To map a fixnum to a clause index, Twobit chooses
one of these techniques:

• sequential search
• binary search
• table lookup

Sequential search is best when there are only a few
fixnum constants, with gaps between them. The cost
of a binary search depends on the number of intervals,
not on the number of constants; for example, the cost
of testing for membership in [1, 127] is the same as the
cost of testing for membership in [81, 82]. The choice
between binary search and table lookup is made on
the basis of code size: a binary search costs about 5
machine instructions per interval, while a table lookup
costs about hi − lo words, where lo and hi are the least
and greatest fixnums to be recognized. Binary search
followed by table lookup would be an excellent general
strategy, but Twobit does not yet combine binary search
with table lookup.

To map a character to a clause index, Twobit con-
verts the character to a fixnum and performs a fixnum
dispatch.

To map a symbol to a clause index, Twobit can use
either sequential search or a hash lookup. In Larceny,
every symbol’s hash code is computed when the sym-
bol is created and is stored explicitly as part of the
symbol structure, so hashing on a symbol is very fast.
Twobit uses a closed hash table, represented by a vector
of symbols (or #f) alternating with the corresponding
clause index (or 0 for the else clause). As this vector is
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(lambda (x)
(let* ((temp x)

(n (if (char? temp)
(let ((cp (char->integer:chr temp)))
(if (<:fix:fix cp 65)

0
(if (<:fix:fix cp 124)

(vector-ref:trusted
’#(1 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2

2 2 2 2 1 2 2 2 2 2 0 0 0 0 0 0
1 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2
2 2 2 2 1 2 2 2 2 2 0)

(-:idx:idx cp 65))
0)))

(if (symbol? temp)
(let ((symtable

’#(#f 0 #f 0 #f 0 #f 0 w 2 x 2 y 2 z 2
#f 0 #f 0 #f 0 #f 0 #f 0 #f 0 #f 0 #f 0
#f 0 #f 0 #f 0 #f 0 #f 0 #f 0 #f 0 #f 0
#f 0 #f 0 #f 0 #f 0 #f 0 #f 0 #f 0 #f 0
#f 0 #f 0 #f 0 #f 0 #f 0 #f 0 #f 0 #f 0
c 2 d 2 e 1 f 2 #f 0 #f 0 a 1 b 2
k 2 l 2 m 2 n 2 g 2 h 2 i 1 j 2
s 2 t 2 u 1 v 2 o 1 p 2 q 2 r 2))

(i (fixnum-arithmetic-shift-left:fix:fix
(fixnum-and:fix:fix 63 (symbol-hash:trusted temp))
1)))

(if (eq? temp (vector-ref:trusted symtable i))
(vector-ref:trusted symtable (+:idx:idx i 1))
0))

0))))
(if (<:fix:fix n 1)

(f-other x)
(if (<:fix:fix n 2)

(f-vowel x)
(f-consonant x)))))

Figure 3. Example: partially optimized intermediate code

generated, Twobit computes the maximum distance be-
tween the vector index computed from a symbol’s hash
code and the vector index at which the symbol is actu-
ally found. This bound on the closed hash search allows
Twobit to generate straight-line code, without loops.

All of the fixnum, character, symbol, and vector
operations that implement these strategies will operate
on values that are known to be of the correct type and
in range, so most of those operations will compile into
a single machine instruction.

Figures 2 and 3 show the complete code for an ar-
tificial example. (For this example, all of the symbols
are found at the vector index computed from their hash

code, so no further search is necessary. The intermedi-
ate code has been edited to improve its readability.)

Twobit’s optimization of case expressions could
have been performed by implementing case as a low-
level macro. This would be slightly less effective than
what Twobit actually does, because Twobit will op-
timize nested if expressions that are equivalent to
a case expression, even if no case expression was
present in the original source code. The macro ap-
proach may nonetheless be the easiest way to add effi-
cient case dispatch to simple compilers or interpreters.
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3. Survey
An incomplete survey of about 140,000 lines of Scheme
code distributed with Larceny v0.92 located about
330 case expressions [4]. Of the 180 that were ex-
amined in detail, the largest and most performance-
critical were found within various assemblers and
peephole optimizers, written by at least three differ-
ent programmers. The largest case expression is part
of Common Larceny’s new in-memory code generator
(for which the fashionable term would be “JIT com-
piler”), and translates symbolic names of IL instruc-
tions to the canonical strings expected by Microsoft’s
System.Reflection.Emit namespace. This case
expression contains 217 clauses with 363 symbols. The
next largest contains 17 clauses with 102 symbols. Four
case expressions contain 32 to 67 fixnum literals, and
another dozen or so contain 16 to 31 symbols.

Only seven of the 180 case expressions contain lit-
erals of mixed type. One is the 217-clause monster,
which contains 214 lists as literals in addition to its 363
symbols, but those list literals are useless and derive
from an otherwise benign bug in a local macro; the 363
symbols should have been the only literals. (Had the
list literals slowed this case dispatch, loading a source
file into Common Larceny would be even slower than
it is.) The mixed types in three other case expressions
were caused by that same bug. The three purposeful
examples of mixed-type dispatch contain 7, 10, or 11
literals, mixing symbols with booleans or fixnums, and
their performance is unimportant. Mixed-case dispatch
appears to be more common in the less performance-
critical code whose case expressions were not exam-
ined in detail.

4. Benchmarks
Source code for the benchmarks described in this sec-
tion is available online [2].

A six-part case micro-benchmark was written to
test the performance of case dispatch on fixnums and
on symbols, for case expressions with 10, 100, or 1000
clauses that match one fixnum or symbol each. Figure 4
shows the 10-clause case expression for symbols, from
which the other five parts of the micro-benchmark can
be inferred. Each of the six parts performs one million
case dispatches, so any differences in timing between
the six parts must be attributed to the number of clauses
in each case dispatch, and to the difference between
dispatching on a fixnum and dispatching on a symbol.

(define (s10 x)
(define (f x sum)
(case x
((one) (f ’two (- sum 1)))
((two) (f ’three (+ sum 2)))
((three) (f ’four (- sum 3)))
((four) (f ’five (+ sum 4)))
((five) (f ’six (- sum 5)))
((six) (f ’seven (+ sum 6)))
((seven) (f ’eight (- sum 7)))
((eight) (f ’nine (+ sum 8)))
((nine) (f ’onezero (- sum 9)))
((onezero) (f ’oneone (+ sum 10)))
(else (+ sum 9))))

(f x 0))

Figure 4. One part of the case micro-benchmarks

The monster micro-benchmark is a mixed-type
case dispatch that uses the 217-clause, 577-literal case
expression of Common Larceny v0.92 to translate one
million symbols to strings. (That many translations
might actually occur when a moderately large program
is loaded into Common Larceny.)

A set of four benchmarks was written to measure
performance of Scheme systems on components of
a realistic parsing task [2]. The parsing benchmark
reads a file of Scheme code, converts it to a string, and
then parses that string repeatedly, creating the same
data structures the read procedure would create. The
timed portion of the parsing benchmark begins af-
ter the input file has been read into a string, and does
not include any i/o. The lexing and casing bench-
marks are simplifications of the parsing benchmark,
and measure the time spent in lexical analysis and in
case dispatch, respectively. (The lexing benchmark
computes the same sequence of lexical tokens that are
computed by the parsing benchmark, but does not
perform any other parsing. The main differences be-
tween the lexing benchmark and the casing bench-
mark are that the casing benchmark does not copy
the characters of each token to a token buffer and does
not keep track of source code locations. The casing
benchmark still includes all other string operations that
are performed on the input string during lexical anal-
ysis, so it is not a pure case dispatch benchmark.) The
reading benchmark performs the same task as the
parsing benchmark, but uses the built-in read proce-
dure to read from a string port (SRFI 6 [3]). The main
purpose of the reading benchmark is to show that the
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parsing benchmark’s computer-generated lexical an-
alyzer and parser are not outrageously inefficient.

Both the state machine of the lexical analyzer and
the recursive descent parser were generated by the au-
thor’s LexGen and ParseGen, which can generate lex-
ical analyzers and parsers written in Scheme, Java,
or C [2]. This made it fairly easy to translate the
parsing benchmark into Java. As it was not obvious
whether the strings of the Scheme benchmark should
be translated into arrays of char or into instances of the
StringBuilder class, two versions of the Java code
were written; a third version, just for grins, uses the
thread-safe StringBuffer class.

The timings reported in the next section for the
casing, lexing, parsing, and reading benchmarks
were obtained by casing, lexing, parsing, or reading the
nboyer benchmark one thousand times [2].

5. Benchmark Results
Tables 1 and 2 show execution times for the bench-
marks, in seconds, as measured for several implementa-
tions on an otherwise unloaded SunBlade 1500 (64-bit,
1.5-GHz UltraSPARC IIIi). Most of the timings rep-
resent elapsed time, but a few of the slower timings
represent CPU time. For the compiled systems and the
fastest interpreters, the timings were obtained by aver-
aging at least three runs. For the slower interpreters, the
reported timing is for a single run.

For the two largest case micro-benchmarks, three
of the Scheme compilers generated C code that was too
large or complex for gcc to handle.

From table 1, it appears that compilers C and D use
sequential search for all case expressions. Compilers
B, E, and F generate efficient code when dispatching
on fixnums, but appear to use sequential search for
symbols.

Compiler A (Larceny v0.92) has the best overall per-
formance on the micro-benchmarks, and Compiler B
(Larceny v0.91) is next best. The difference between
them is that Larceny v0.92 implements case expres-
sions as described in this paper.

Table 2 shows that, for the parsing benchmark,
most of these implementations of Scheme spend roughly
half their time in case dispatch. The two that spend the
least time in case dispatch, compilers F and B, perform
well on the fixnum case micro-benchmarks and appear
to be doing well on the parsing benchmark’s charac-
ter dispatch also. Compiler C’s performance may mean

sequential search is fast enough for this benchmark, or
it may mean that compiler C recognizes case clauses
that match sets of consecutive characters (such as #\a
through #\z, #\A through #\Z, and #\0 through #\9)
and tests for them using a range check instead of testing
individually for each character.

The difference between Larceny v0.92 and v0.91
(compilers A and B) does not matter for the parsing
benchmark, because v0.91 was already generating effi-
cient code for case dispatch on characters.

6. Related Work
Compilers for mainstream languages typically imple-
ment case/switch statements using sequential search,
binary search, or jump tables [6].

A binary search usually concludes with a jump to
code for the selected case. In the subset of Scheme
that serves as Twobit’s main intermediate language,
jumps are best implemented as tail calls. Those calls
would interfere with many of Twobit’s intraprocedural
optimizations, so Twobit does not use a single-level
binary search.

Jump tables are hard to express in portable Scheme
without using case expressions, which are not part
of Twobit’s intermediate language. Adding even a re-
stricted form of case expressions to Twobit’s interme-
diate language is unattractive, because it would com-
plicate most of Twobit’s other optimizations.

Jump tables can be implemented portably using a
vector of closures, but it would cost too much to create
those closures and to store them into a vector every time
the scope containing a case expression is entered. A
vector of lambda-lifted closures could be created once
and for all, but would entail the costs of passing extra
arguments and of making an indirect jump. With either
form of jump table, calling a closure that cannot be
identified at compile time would interfere with many
of Twobit’s intraprocedural optimizations.

The Orbit compiler demonstrated that it is practical
to macro-expand case expressions into if expressions,
and for control optimization to recognize and to gener-
ate efficient code from those if expressions [7].
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case monster
10 literals 100 literals 1000 literals 577 literals

fixnum symbol fixnum symbol fixnum symbol mixed
Compiler A .04 .05 .04 .08 .11 .13 .16
Compiler B .04 .05 .07 .21 .14 3.94 3.04
Compiler C .04 .04 .18 .17 3.80 4.61 8.33
Compiler D .09 .09 .24 .22 — — 15.94
Compiler E .06 .12 .02 .50 — — 15.11
Compiler F .05 .70 .04 6.03 — — 26.95
Interpreter G 1.52 1.30 10.00 7.80 96.81 78.03 26.21
Interpreter H 1.79 1.76 10.65 10.91 115.52 119.67
Interpreter I 3.48 3.48 15.62 15.38 188.12 186.38 33.50
Interpreter J 6.00 6.33 20.99 21.63 193.17 196.21 60.26
Interpreter K 5.00 5.00 21.00 24.00 211.00 256.00 59.00
Interpreter L 5.36 5.38 29.09 28.30 280.22 289.58 147.43
Interpreter M 6.12 4.48 49.48 30.42 447.08 301.53 338.78
Interpreter N 13.82 13.88 77.68 78.18 757.16 776.75 459.51

Table 1. Timings in seconds for the case and monster micro-benchmarks

casing lexing parsing reading
HotSpot (array of char) 11.05
HotSpot (StringBuilder) 12.21
Compiler C 7.36 10.67 13.27 2.23
Compiler F 2.83 5.39 14.48 2.60
Compiler B 6.93 12.84 21.17 14.67
HotSpot (StringBuffer) 24.95
Compiler D 13.53 22.65 27.20 17.78
Compiler E 45.67 63.88 84.46 72.53
Interpreter G 79.93 108.44 128.95 13.88
Interpreter H 82.80 116.12 214.82 18.98
Interpreter I 180.64 237.37 297.96
Interpreter L 257.13 383.77 432.13
Interpreter J 436.19 566.83 645.31
Interpreter M 479.36 589.17 701.70
Interpreter K 468.00 628.00 745.00
Interpreter N 1341.93 1572.89 1793.64

Table 2. Timings in seconds for parsing and related benchmarks
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A. Notes on Benchmarking
The benchmarked systems:

HotSpot is the Java HotSpot(TM) Client VM
of Sun Microsystems (build 1.5.0 01-b08, mixed
mode, sharing).

A is Larceny v0.92.

B is Larceny v0.91.

C is Chez Scheme v6.1.

D is Gambit 4.0b17.

E is Chicken Version 1, Build 89.

F is Bigloo 2.7a.

G is MzScheme v352.

H is MzScheme v301.

I is the Larceny v0.92 interpreter.

J is the Gambit 4.0b17 interpreter.

K is the Bigloo 2.7a interpreter.

L is the MIT Scheme 7.3.1 interpreter.

M is the Scheme 48 1.3 interpreter.

N is the Chicken 1,89 interpreter.

Except for MzScheme, the interpreters were bench-
marked with no declarations and with the default
settings. The compilers and MzScheme were bench-
marked as in Chez Scheme’s (optimize-level 2):
safe code, generic arithmetic, inlining the usual proce-
dures. Specifically:
A was compiled with
(compiler-switches ’fast-safe) and
(benchmark-mode #f).
B was compiled the same as A.
C was compiled with (optimize-level 2).
D was compiled with
-prelude "(declare (extended-bindings))"
-cc-options "-O2" -dynamic.
E was compiled with -no-trace
-optimize-level 2 -block -lambda-lift.
F was compiled as a module with -O6 -copt -O2.
G was interpreted as a module.
H was interpreted the same as G.
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Abstract
The Starfire Optical Range is an Air Force Research Laboratory en-
gaged in Atmospheric Research near Albuquerque, New Mexico.
Since the late 1980’s it has developed numerous telescope systems
and auxiliary devices. Nearly all are controlled by C programs that
became difficult to manage due to the large number of configura-
tions required to support the experiments. To alleviate the problem,
Scheme has been introduced in at least six distinct ways. This paper
describes the uses of Scheme, emerging programming techniques,
and general experiences of the past several years.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming — Scheme

; D.2.3 [Programming Techniques]: Coding Tools and Tech-
niques — DrScheme, MzScheme

; J.2 [Computer Applications]: Physical Sciences and Engi-
neering — aerospace, astronomy, engineering

General Terms Algorithms, Design

Keywords embedding, scripting, extension language, motion con-
trol, servo, communication, remote development

1. Introduction
Laboratory Mission The primary mission of the Starfire Optical
Range (SOR) is to develop and demonstrate optical wavefront con-
trol technologies. In other words, it builds systems that remove the
distortion caused by air turbulence when light propagates through
the atmosphere. [1] The site also supports field experiments by oth-
ers within the research community.

Experiments are conducted on five permanent precision tele-
scope systems. Many experiments involve multiple telescopes and
all telescopes are used for multiple experiments. Some telescopes
have components that must move in concert with the main gimbals
and most have at least one tracking system. The variety of systems
is significant; the largest telescope has a 3.5 meter diameter pri-
mary mirror and weighs nearly 150 tons, while the smallest has an
aperture of about a quarter meter and weighs about one half ton.

Tracking requirements include celestial objects, artificial satel-
lites, aircraft, balloons, lunar retro-reflectors, interplanetary space-
craft, Space Shuttles returning from space, Leonids meteor trails,
terrestrial vehicles, and diagnostic sites downrange of the SOR.

Proceedings of the 2006 Scheme and Functional Programming Workshop
University of Chicago Technical Report TR-2006-06

Laboratory Environment The following lists highlight, from the
perspective of developing and operating telescope systems, the
nature of the laboratory and strategic improvements that could
increase the effectiveness of laboratory software.

• Five telescope systems are run with about a dozen computers.
• As many as three telescopes are needed for a single experiment.
• Two developers do most telescope related programming.
• About eight developers are needed to program all systems.
• Most telescopes are used for several long term experiments.
• At least several operators are needed for most experiments.
• Operators have only casual knowledge of the technology.
• Principle Investigators normally have only casual knowledge of

the software.
• New experiments sometimes require new computations and

configurations.
• Debugging is sometimes only possible during experiments.
• Subsytems need to communicate during experiments.
• Extensive legacy C software is essential to real-time operations.
• Planning requires significant computations.
• Software developers must consider safety.

At least several of us believe that software could be significantly
more effective if the following issues were addressed:

• A non-expert programmer needs to be able to maintain the com-
putational and control systems. Currently, only one developer
can maintain or improve them.

• Software is needed to reliably repeat operations as much as
several years apart. Currently, if specific operations are to be
repeated, the original crew is normally required; this is often
difficult for a variety of reasons.

• Principle Investigators need to be provided with clear scripting
interfaces for their experiment, even if they only use them to
understand and record the procedures.

• Non-expert programmers need to be able to program the cre-
ations of the expert computer engineers; most programs can
only be maintained by the original engineer.

• Maintenance and performance verification needs to be auto-
mated so that they are accomplished more often and trends can
be identified.

• Experiments need to be more automated. Most events are se-
quenced by operators pushing virtual buttons on user interfaces.

Why Scheme? We chose Scheme to address the above issues for
a number of reasons. Its elegant syntax appropriately matches the
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modest programming requirements, and macros are used to pro-
vide simpler syntaxes for scripting. S-expressions are suitable for
ethernet communications between dozens of our platforms, includ-
ing those hosting scripting environments. The same s-expressions
may be created and read by C++ and Java programs; this allows
Scheme to be used in the lab without requiring all programmers to
adopt it. Garbage collection, the absence of assignment statements,
and the ability to redefine functions while programs are running are
capabilities essential to the rapid development that is occasionally
needed while experiments are in progress.

As a Functional Programming Language, Scheme is suitable
even in scripting environments that are mainly used to sequence the
movement of equipment. Beneath the procedural scripting, func-
tional programming elegantly access values on remote systems, ap-
ply filters, and delivers the results to other remote systems. Scheme
is also appropriate for eventually extending our C language plan-
ning and scheduling software; functional programming in Scheme
could more sensibly manipulate lists which are normally built from
the results of functions related to celestial and orbital mechanics.

MzScheme, in particular, is embeddable in C and extendable by
C. Both techniques are used to access hardware. MzScheme is also
a reliable environment for subsystems that run continuously.

Aside from the useful tools that are provided, we chose PLT
Scheme because it is supported by numerous teaching aids: web tu-
torials, textbooks, and an active online forum. The efforts expressed
in this paper represent a shift in the implementation of telescope
system computers at the SOR; the changes would reverse if learn-
ing materials were not available to the programmers who choose to
see the value of Scheme.

2. Six Uses for Scheme
The SOR is an electro-optics laboratory that depends on numer-
ous devices which were nearly all programmed in C over the past
two decades; C is the natural choice because most programs re-
quire access to the hardware bus. Experiments require the specific
configuration of up to ten telescope subsystems, a problem which
becomes more difficult to manage as the laboratory grows, more
devices are built, and more experiments are attempted. To allevi-
ate these problems, extension languages have been implemented in
many of the motion control devices such as the telescope gimbals
and large optical components. These telescope gimbals consist of
precision bearing structures, accurate position transducers, and em-
bedded motors which form closed-loop servos that precisely move
the telescopes.

We are using Scheme in six different ways: embedding in
C, Scheme motion controllers, C-language gimbals servos inter-
faced with s-expression parsers, the remote command and status
paradigm for all telescope systems, scripting environments for ex-
periments, and the remote development environment for gimbals
servos. Highlights are shown in this section.

Embedding in C We embedded MzScheme in the site’s ubiqui-
tous motion control application, the Starfire Optical Range Acqui-
sition and Pointing System (SORAPS). This C application had be-
come unwieldy after numerous capabilities were gradually added,
since 1987, to accommodate all experiments conducted on the prin-
ciple telescopes. We also embedded MzScheme in several pro-
grams required for the operation of subsystems. Configuring and
controlling these programs is significantly more efficient using
Scheme because behavior can be changed without rebuilding C.

Motion Control Systems We developed Scheme motion control
systems for two optical rotators and the 3-axis secondary mirror
controller on the largest telescope. Using DrScheme, we proto-
typed these relatively low bandwidth controllers then installed the
final program on a single board computer that continuously runs

MzScheme. We could have used one of the commercial servo de-
velopment tools acquired for other projects, but they impose re-
strictions on hardware and software. MzScheme enabled us to build
unique controllers with open communications; they can be ported
to a variety of ordinary hardware capable of running MzScheme.

Interface to Servos for Large Gimbals The gimbals servos for
the three largest telescopes are C language applications linked to
the Small Fast S-expression library. [2] We extended the library to
provide rudimentary single-depth evaluation of s-expressions that
are either received via ethernet or read from a configuration file.
This approach allows the servos to be configured and accessed as
if they had Scheme embedded, maintaining consistency with the
Scheme systems yet requiring only a very light weight library.

Paradigm for Remote Commands and Status S-expressions are
the only messages used for remote commands and status of the
telescope systems. Other devices (e.g. optical image stabilizers and
telemetry servers) also communicate to the system with Scheme
commands, even if formed with a printf statement in C. The typi-
cal “bit-speak” often found in hardware interface documents is re-
placed with elegant and self-documenting s-expressions.

Scripting Environment for Experiments We use DrScheme as
a scripting environment to automate the telescope and subsystems
during experiments. The scripts consists of macros that access sup-
port functions which maintain communications with remote sys-
tems and control their activity. DrScheme enables our most com-
plex telescope experiments to be conducted using simple keywords
that may be manipulated without interrupting operations.

Remote Development Environment We wrote tools in DrScheme
for remotely running and testing the gimbals servos of the three
largest telescopes. The “viewport graphics” displayed performance
while we used the REPL and threads to move the gimbals and
optimize properties contained in the servo. After developing the
tools for a new controller for the largest telescope, we used them
to complete similar controllers on two other telescopes. Only a few
days were required for each of the second two because DrScheme
had enabled us to easily write and reuse tools specific to large
telescopes.

3. Programs and Tools
The first author wrote most of the following software, the second
author has been writing the programs for the newest subsystems
and has been configuring the diskless linux platforms that host most
of the controllers.

Major Programs The major programs are SORAPS and NMCS.
Each of five telescopes needs to be connected via ethernet to one of
many installations of SORAPS, a full featured C program that han-
dles operations, planning, and real-time computation. MzScheme
was embedded to aid configuration and communication.

NMCS is a gimbals servo written in C and linked to the Small
Fast S-Expression Library. The gimbals for the three largest tele-
scopes require a separate NMCS; each runs continuously on a sin-
gle board computer. SORAPS and NMCS are linked via ethernet
and communicate exclusively with s-expressions. The remaining
two gimbals are controlled via serial ports connected to SORAPS.

Minor Programs Embedded MzScheme programs are used to
control a secondary telescope mirror and bridge new s-expressions
to legacy subsystems that require proprietary communication for-
mats. These programs communicate to both SORAPS and the
scripting environment for purposes such as dome control, optical
configuration and alignment, and telescope focus.

Two optical rotators are controlled by programs we wrote for
MzScheme, using a few extensions to access the hardware. These

72 Scheme and Functional Programming, 2006



rotators communicate with SORAPS to report their position and
receive commands.

Applications we created in DrScheme include simulators for
gimbals, telemetry, an image-stabilizer, a rotator, and a commu-
nication bridge.

Developmental Software We developed a suite of functions and
a module to script the telescope systems for complex experiments.
We also developed servo development tools that were used to opti-
mize NMCS for each of the three telescope gimbals.

Libraries, Extensions, and Development Tools Programs that
embed MzScheme are linked to libmzgc.a and libmzscheme.a. SO-
RAPS and all of its supporting Scheme files are contained in a vol-
ume which can be mounted by any OS X platform. Because the
libraries are linked to the application, platforms can run SORAPS
even if no Scheme environments are installed.

NMCS programs are linked to libsexp.a, built from the source
files of the Small Fast S-Expressions project. Two telescopes and
one rotator are connected via serial ports implemented in a Scheme
extension that we wrote. For all of the development described in
this paper, we used DrScheme, KDevelop, and Xcode.

4. Using Scheme to Script a Telescope System
We developed Scheme functions and scripts for a long term series
of experiments that began in early 2006. The scripts are designed to
be readable by non-programmers and modifiable by personnel who
understand the operations. They serve as an executable operational
summary as well as an essential tool for operations. A principle
script is used to guarantee operations; it assumes no state and
performs all known initializations. Other scripts are used to suspend
and resume the principle script without performing initializations
that would be disruptive.

The scripts are supported by a suite of functions that commu-
nicate with the subsystems and perform experiment-specific com-
putations. A module of macros defines key-phrases that can be se-
quenced by a macro that defines each script.

4.1 The Principle Script
The system needs to point to a moving balloon-borne platform con-
taining scientific instruments. Telemetry messages are requested,
filtered, and routed to SORAPS which computes dynamic vectors
for the telescope, the dome, the elevation window contained by
the dome, and the optical rotator. All subsystems are set into mo-
tion, then the script waits until they mechanically converge on the
platform. The script also positions several mirrors in the optical
path and sets the position of the mirror used for focus. A macro,
define-sor-script, creates a script that is named with the first
parameter:

(define-sor-script find-platform
prepare-subsystem-connections
verify-subsystem-connections
prepare-soraps-for-wgs84-propagation
feed-telemetry-to-soraps
tell-subsystems-to-follow-soraps
wait-for-subsystems-to-converge)

Define-sor-script wraps the script elements in an exception
handler that will call a function that stops the system if an error
occurs. It then executes the sequence in a thread that can be killed
by other scripts, such as stop.

(define-syntax define-sor-script
(syntax-rules ()
((_ proc-name f1 ...)

(define-syntax proc-name
(syntax-id-rules
()

(_ (begin
(keep-thread
(thread
(lambda ()
(with-handlers

((exn?
(lambda (exn)

(stop-system
(exn-message exn)))))

(f1) ...
(display-final-message ’proc-name)))))

(display-initial-message ’proc-name))))))))

The module containing define-sor-script manages the thread
(saved with keep-thread) and defines functions that display ini-
tial and final messages in the REPL. The script is defined with
syntax-id-rules to enable operators to type the name, without
parentheses, to execute the script. This elementary macro threads
the sequence, stops the system when an exception occurs, and pro-
vides diagnostics messages; the script writer is merely required to
use define-sor-script.

Prepare-subsystem-connections is a macro that sets the
addresses and ports of connections to all subsystems and starts a
thread that evaluates incoming messages. It also sends a message
to a a common displayer used to show the occurrence of significant
events:

(define-syntax prepare-subsystem-connections
(syntax-id-rules
()
(_ (begin (set-senders-to-subsytems!)

(start:evaluate-network-inputs)
(send-to-displayer
"Connections were created.")))))

This macro is typical of those in the rest of the script. It contains
functions that provide utility to a script writer, and it has alterna-
tives which make it necessary; macros for simulators could have
been used instead. Some macros could have been implemented as
functions, but we wanted all elements of the scripting environment
to be executable without parentheses. This allows the script writer
to test individual macros in the REPL.

More complex scripts include search algorithms and the use of
automatic tracking systems, but we have not yet used them.

We developed this elementary environment and started using it
for all balloon experiments. However, it is merely a first attempt at
scripting, a software experiment inside of a physics experiment. We
plan to thoroughly investigate other possibilities, such as creating
specific languages for the experiments and subsystems.

4.2 Strategy
Writing scripts and their support functions “from the top, down”
biased scripts toward what users want, rather than what program-
mers want to write. To minimize the use of resources, we devel-
oped as much software as possible before requiring the operation
of any remote subsystems. Skeleton functions in each layer were
debugged with the entire program before the skeletons were “filled
in”, creating the need for another layer. The lowest layer provided
the network connections; they simulated messages from the remote
systems which were not yet available.

This minimal executable script served as executable documen-
tation suitable for preparing for the Critical Design Review. Each
network simulation also provided an operating specification for the
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development of incomplete subsystems. Eventually, we debugged
the connections, one at a time, as we replaced each simulator with
the corresponding subsystem.

We used an outliner program to specify the scripts. Simple
conditionals and looping can be represented in an outline; anything
more complicated was not considered for the scripting layer. After
many iterations, the top layer of the outlines evolved into simple
lists of procedures that were eventually implemented as macros.
The second layer was implemented as the top layer of Scheme
functions; so no conditionals or looping was required in the script.

The outline formed what is suggestive of “wish lists” in the text
How to Design Programs. [4] Functions were written to simulate
requirements of the wish lists so that a working simulation could be
completed before expensive engineering commenced. In the future,
we intend to employ such textbook ideas in documentation for
writing scripts and support functions.

We developed the software with the intent that it could be main-
tained and extended in three levels. The highest level, scripting, is
usable by anyone who has familiarity with programming. The low-
est level functions are to be maintained by the experts who cre-
ated the optical-mechanical subsystems. The middle level is for
programmers who can understand the needs of the script writers
and the operation of the systems. We expect that this strategy will
help us effectively manage the software for telescope systems and
experiments.

5. Details of Scheme Use
5.1 Embedding in C
We embedded MzScheme in C programs for three reasons. First,
it serves as the extension language for the legacy C program, SO-
RAPS. Second, it runs Scheme programs that access hardware in
C. Third, it provides a bridge between Scheme programs and pro-
prietary network libraries. Embedding Scheme, here, refers to link-
ing MzScheme with C and creating a single Scheme environment
when the C program is started. This environment contains defini-
tions of scheme primitives that access functions previously written
in C. Functions in the environment are invoked by the evaluation of
Scheme files, the evaluation of expressions received via ethernet,
or by calls from the C side of the program.

5.1.1 Extension Language for SORAPS
Embedding MzScheme in SORAPS allows other programs to con-
figure it, enables networked operation, and provides a means for
other programs to access essential calculations.

Configuring SORAPS Configuring SORAPS is a difficult prob-
lem. Individual SORAPS installations control the five largest tele-
scopes, and multiple installations may control each telescope. Also,
temporary subsystems (including telescopes) occasionally need ac-
cess to the calculations. These configurations cannot be handled
elegantly with simple configuration files partly because the tele-
scopes have different command and status requirements. Further-
more, many configuration items will likely be moved from legacy
files to an on-site database.

The differences between the telescopes are not trivial abstrac-
tion issues. The NMCS control systems are a service provided to
SORAPS via ethernet, as SORAPS initiates all transactions with
little time restriction. A commercial system behaves as a client
to SORAPS, pushing status over a serial port in a precisely syn-
chronous manner. Another commercial system is a combination of
the two. Two recently replaced systems had no communication pro-
tocol at all; they required a hardware connection to their bus. Fur-
thermore, telescope systems often have components that affect the
optical perspective of other components in the system. The Scheme

environment of SORAPS contains functions to handle these prob-
lems so that computations can be modified for affected devices, yet
SORAPS doesn’t need to be rebuilt or restarted.

Configuration, command, and status functions are contained in
Scheme files that may be manipulated in an external environment
like DrScheme. Primitives provide a means for setting properties of
the system with relatively unrestricted programs instead of fixed-
format files that were required by the original C program.

Serial ports are sometimes needed to interface dynamic equip-
ment such as gimbals controllers. Scheme programs, embedded or
independent, load a serial extension and interface functions specific
to the application. This is an advantage over earlier solutions that
depended on configuration-specific libraries; the Scheme files are
available and editable on the operations computer, only a text edi-
tor is required to change the behavior of the program significantly.

The following fragment represents the kind of function used for
configuring fundamental properties of a telescope:

(let ((id ’("3.5m Telescope" "cetus")
; long name, short name (no spaces)
)

(loc (list wgs84-semimajor-axis
wgs84-inverse-flattening-factor
;any ellipsoid may be used
34.9876543 ; deg latitude

-106.456789 ; deg longitude
1812.34 ; met height
6 ; hours local to utc in summmer
)))

(display (set-system-gimbals cetus id loc ))
(newline))

Set-system-gimbals is a primitive in C, it returns readable mes-
sages that indicate success or failure. “Wgs84...” are numbers that
are defined in Scheme, but any reference ellipsoid may be used; on
rare occasions, researchers want to use their own.

An example for configuring an evaluator of network messages:

(define eval-socket (udp-open-socket))
(define eval-the-socket

(make-function-to-eval eval-socket 4096))

Make-function-to-eval was written to support Scheme com-
munications (it is explained later.) Its product, eval-the-socket,
is either used in a thread or it can be called by scheduling functions
invoked by C. Both the behavior of the communications and their
implementation are entirely handled in Scheme, a more effective
environment than C for maintaining the communications.

Operating SORAPS We installed primitives in SORAPS to allow
the selection of computations and the control of its associated
telescopes. For telescope movement, a mode primitive is installed
to evaluate expressions like:

(do-mode telescope-index ’stop)

Changing between stop and vect makes a telescope stop or follow
vectors that are supplied by other expressions. Following is the C
function needed for the primitive.

static Scheme_Object
*do_mode( int nArgs, Scheme_Object* args[] )
{
enum { SYSTEM = 0, MODE };
char text[32] = "’’"; //For quoted symbol

int iSystem = 0;
char *pChars = 0L; // 0L will retrieve mode
const char *pMode = "error";
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if( int_from_num( &iSystem, args[ SYSTEM ] )) {
if( nArgs == 2 ) {

if( !char_ptr_from_string_or_symbol(
&pChars, args[ MODE ] ) ) {
pChars = 0L; // paranoia

} }
pMode = DoSorapsMode( iSystem, pChars );
// returns a string from legacy C

}

strcpy( &text[2], pMode );
return scheme_eval_string( text, sEnv );
// e.g. "’’stop" evals to a quoted symbol

}

The first object in args is an index to a telescope and the sec-
ond is the desired control mode: stop, vect, etc. If the second
argument is not provided, no attempt is made to change the mode.
The primitive returns the final mode, in either case, as a quoted
symbol suitable in expressions evaluated by the client. Internally,
DoSorapsMode returns a string that represents the mode contained
in the original C code. Typical primitives are more complex.

This simple primitive allows the control mode to be changed by
any embedded Scheme program or any remote program that sends
a do-mode expression. (A few more lines of code are needed to add
do-mode to Scheme and bind it to the primitive.)

Serving Calculations A telescope system may include several
subsystems that need information calculated by SORAPS. Rotators
sometimes maintain orientation in a telescope’s naturally rotating
optical path, so they typically send an expression that uses the prim-
itive path-deg; it contains arguments that specify the telescope
and the location in the optical path where the rotation is needed.
Other primitives perform time conversions or supply values such
as range to satellites. These primitives are a work in progress. As
requirements are added, primitives are written so that the capabil-
ities are available to any s-expression that any client sends; this is
more effective than writing specific messages for specific clients.

5.1.2 Bridge to Proprietary Network Libraries
Some systems are accessible only through nonstandard network
libraries, so we embedded MzScheme in C programs that access
those libraries. Primitives were then written to complete the bridge.
This gives the other Scheme applications on the network a con-
sistent way to access the bridged systems. These systems include
a telescope focus controller, a dome controller, electro-pneumatic
mirror actuators, and temperature sensors.

5.1.3 Hardware Access
We embedded MzScheme in several C programs that need to read
and write electronic hardware in servos. Hardware includes analog
output voltages, analog input voltages, parallel input ports, and
bidirectional serial ports. Simple C programs were first written
and debugged, then Scheme was embedded and furnished with
primitive access to the hardware functions. The main software was
then written in Scheme.

5.2 Motion Control Systems
We wrote servo software for a three-axis secondary mirror in
Scheme. The program runs in MzScheme embedded in a small
C program that accesses the hardware. A few primitives provide
access to the input voltages, which indicate position, and the out-
put voltages that drive the axes. Scheme reads the position voltages
of the axes, calculates command voltages based on the position and
the desired state, then sets the output voltages.

The program may access SORAPS to determine the range to
the object and the elevation angle of the telescope. These values
are used to adjust the focus and to maintain alignment between the
primary and secondary mirrors. The servos also receive commands
from user interfaces that are connected to the network.

The development process was remarkably efficient. On a suit-
able workstation, the servo program was developed remotely from
DrScheme by using sockets to access the hardware primitives (i.e.,
the input and output voltages) on the servo computer (which is in-
convenient for development.) When completed, the program was
transferred to the servo computer and run in the embedded Scheme.

We also developed two optical-mechanical rotators, both pro-
totyped in DrScheme. One interfaces custom hardware, while the
other uses a serial port to interface a commercial motor driver.

5.3 S-expression Interface to Gimbals Servos
The gimbals for each of the three largest telescopes are controlled
by a Networked Motion Control System, a C-program we devel-
oped for single board linux computers. An S-expression interface
was developed for configuration, command, and networked con-
trol. NMCS periodically reads the encoders, computes the desired
state vectors, computes the desired torques, drives the two axes,
then processes s-expressions if any arrived over ethernet. These
systems are markedly different than typical servos which are im-
plemented with real time operating systems, digital signal proces-
sors, and rigid command and status interfaces. In NMCS, we use
excess processor speed to run elegant interface software that can be
accessed with anything that can read and write text over ethernet.

5.3.1 How S-Expressions are Used
The s-expression interface is used to configure the program, accept
commands from SORAPS, and return servo status to SORAPS.
Typical configuration values are position limits, rate limits, fric-
tion coefficients, and torque constants. Commands are required to
periodically set the time, report the position of the sun, and pro-
vide state-vectors for the gimbals. A few examples demonstrate the
flexibility of using s-expressions to specify one or more axes of the
gimbals and to specify trajectories of variable order.

Commands Trajectories are specified as lists, and lists may con-
tain lists for each axis:

(do-axes 0 ’(t0 position velocity acceleration))

where 0 indicates axis-0, and the quantities represent numbers that
describe a trajectory with a reference time of t0. Multiple axes are
specified with a list of lists:

(do-axes ’((t0 p0 v0 a0)(t1 p1 v1 a1)))

where all elements (t0 etc.) represent numbers. For higher clar-
ity, it is not necessary to list zeros in trajectories of lower order;
the program integrates the available terms to calculate the position
propagated from t0. For example, the following two expressions
evaluate to the same fixed position for axis-1; the rate and acceler-
ation are assumed to be zero in the second case:

(do-axes 1 ’(12345678.01 45.0 0 0))
(do-axes 1 ’(12345678.01 45.0))

The reference time, t0, is not needed for calculating fixed posi-
tions, but it is used to validate the command by testing if the trajec-
tory time is within one second of the servo’s time.

Status Lists of variable length are used to return status values that
are ring-buffered each time the servo is serviced (typically every
20 milliseconds.) It is assumed that only one client is operating any
telescope, so the primitives only return data that was buffered since
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the previous request. This method allows the client program to ca-
sually query the servo for groups of information rather than forcing
it to accept data as it is produced. An upper limit is established for
the size of the replies in case the status was not recently requested.

For example, (get-diffs) returns a list of two lists. Each
list contains the differences between the calculated and sensed
positions for an axis. SORAPS queries about every quarter second
and receives lists of about 12 values for each axis of each diagnostic
value that was requested. These are used to compute statistics,
display diagnostics on user interfaces, and to optimize the servo.

5.3.2 How NMCS Processes S-Expressions
The Small Fast S-Expression Library (SFSExp) is used to parse the
s-expressions that NMCS receives over ethernet or reads from its
configuration file. SFSExp was developed for a high speed cluster
monitor at Los Alamos National Laboratories, so it easily handles
the relatively low speed requirements for the motion control sys-
tems at the SOR.

We originally embedded MzScheme in NMCS, but garbage
collections consumed around 10ms every 10 seconds or so; that
was too marginal for the 20ms time slices needed by the servo.
Rather than pursue a solution involving high priority interrupts or
a real time operating system, the SFSExp library was employed to
parse incoming expressions that essentially select C functions and
call them with the remaining parameters.

Form for Data Modification and/or Access The only form im-
plemented or needed in NMCS is

(list [’callback] (function1 parameter1...) ...)

where the optional callback function is intended to be defined
on the client and the parameters of the functions cannot contain
functions. All functions return s-expressions.

Functions return a value or a list; if parameters are supplied then
the function attempts to set the values before returning the result.
The gimbals have multiple axes, so lists-of-lists are converted into
C arrays for each axis.

Destination of Replies NMCS supports a single socket that eval-
uates the incoming expressions and returns the result. The above
message returns an expression that the client may evaluate:

(callback result1 ...)

The clients nearly always have a single receive thread that evaluates
these responses. In other words, NMCS allows the client to call its
own function with the results of NMCS functions. This behavior
is compatible with the communications paradigm, described else-
where in this document, that is more thoroughly implemented in
MzScheme.

Tools for the Form We developed an API in C to provide a con-
sistent way to set upper and lower limits on values and values in
arrays. It also returns errors for illegal values or bad indices, for
example. These features proved to be invaluable during the devel-
opment of the servos because nearly all of the expressions involved
passing numbers. Even these tiny subsets of language behavior are
more useful than methods typically found in engineering: passing
cryptic bits with rigid procedure calls, many without descriptive
error messages.

5.4 Paradigm for Remote Command and Status
All communications between telescopes and their subsystems are
conducted with s-expressions that can be evaluated with MzScheme
or the s-expression interface of NMCS. The outgoing expressions
produce incoming expressions that, when evaluated, cause a local
function to be called with parameters that consist of the results of

functions that were called on the remote system. This style allows
concurrent access of multiple remote systems without requiring
input decision trees or the management of multiple connections.
When a programmer is working from a REPL, the callback mecha-
nism is occasionally not used; in those cases the requesting function
sends for a list of results by using a local function that blocks until
it receives the result.

Communication takes place over UDP sockets whenever possi-
ble. Blocked TCP connections, whether due to network problems or
software, are difficult for operators to solve because they often have
no programming experience and little technical experience. A sin-
gle unresolved timeout often leads to wholesale rebooting of com-
puter systems if the connection can not be reestablished. Beginning
with the implementation of PLT Scheme, nearly all connections
are UDP, and all programs are written to be tolerant of incorrect
or missing messages. We originally intended to write error detec-
tion functions for the adopted paradigm, but all of our activity takes
place on a quality private network that is either working perfectly or
not at all. This author observes that the connection problems caused
by TCP far outweigh the packet error problems that they solve.

Typical programs use two sockets that may communicate with
all of the remote systems. One socket sends all requests and evalu-
ates any replies. The other socket evaluates any incoming requests
then sends the replies. A catch-all exception handler was imple-
mented after debugging was completed.

The functions shown below were used with version 209; slight
changes are required for later releases of PLT Scheme, mainly due
to unicode implementation.

Form for Requests Requests merely ask for a list of results of
functions called on the remote application. The message form is de-
scribed in Form for Data Modification and/or Access (for NMCS),
but is much more generally useful in Scheme environments because
no restrictions are placed on the expressions.

Send-Receive-Evaluate Requests can be sent with udp-send or
udp-send-to, then incoming replies on the same socket are dis-
covered and evaluated with a function that is either polled or looped
in a blocking thread. The polled version is used in SORAPS be-
cause it is designed to wake up, check the socket, perform tasks,
then sleep. On the other hand, scripts might use a blocking version
if an operator is using commands in a REPL. The following func-
tion is intended to be polled, while a blocking version can be made
by eliminating ‘*’ from udp-receive!*.

(define make-function-to-eval ; accept udp socket
(lambda( socket buffer-size )

(define buffer (make-string buffer-size))
(lambda()

; messages must fit in a single packet
; perhaps udp? should verify socket type
(if (udp-bound? socket)

(let ((n-rxed (call-with-values
(lambda()

(udp-receive!* socket
buffer))

(lambda(n ip port) n))))
(if n-rxed

(with-handlers((exn? exn-message))
(eval
(read
(open-input-string
(substring
buffer 0 n-rxed)))))

#f)) ; false instead of void
#f)))) ; ditto

76 Scheme and Functional Programming, 2006



Receive-Evaluate-Reply The following form evaluates any re-
quest, then sends the reply. A simpler function uses MzScheme’s
format instead of the output string, but this function was devel-
oped first and has been used for several years.

(define make-function-to-eval-then-reply
(lambda (socket buffer-size)
(define buffer (make-string buffer-size))
(lambda()

(if (udp-bound? socket)
(let-values

(((n-rxed ip port)
(udp-receive!* socket

buffer)))
(if n-rxed

(udp-send-to
socket ip port
(let ((o (open-output-string)))

(write
(with-handlers

((exn? exn-message))
(eval
(read
(open-input-string
(substring
buffer 0 n-rxed))))) o)

(get-output-string o)))
#f))

#f))))

Multiple messages may be sent over the same socket because the
replies may arrive in any order.

5.5 Scripting Environment for Experiments
DrScheme served as a scripting environment during development
and operations of an experiment that required numerous motion
control systems. This is described in Using Scheme to Script a
Telescope System.

During operations required for the experiment, we were able to
modify programs that were in use. For example, a telemetry thread
in the DrScheme environment requests data via ethernet socket,
processes the positions in the reply, then sends the results to SO-
RAPS. When marginal reception was encountered, we developed
and debugged a filter in a separate workspace. Genuine packets
were taken from the running workspace to test the filter. When the
filter was complete, we installed it and restarted the thread in a mat-
ter of seconds. Telescope operations were not interrupted.

We also over-wrote a measurement function while it was in use.
Measurements from video tracking subsystems are scaled and ro-
tated in Scheme before they are applied to SORAPS. The opera-
tion is complicated by the dynamic rotator that affects the apparent
orientation of the tracker. A new tracker and rotator had unknown
orientation, so we debugged the measurement function simply by
editing and loading a file that overwrote the previous version. In the
past, we rebuilt and restarted C code in the tracker for every itera-
tion. Using Scheme, we were able to accomplish in one hour what
previously required many.

5.6 Remote Development Environment
We used DrScheme for remote control and diagnostics while de-
veloping NMCS. Normal debugging techniques could not be used
because such programs can not be arbitrarily suspended; the gim-
bals would “run away” if a breakpoint were encountered while
torque was being applied. The environment consisted of threads
which sent simulations of essential data that is normally sent from
SORAPS. In the meantime, servo properties were changed by

sending expressions from the REPL. The “viewport graphics” in
MzScheme were used to display servo parameters while test func-
tions moved the telescope along trajectories designed to be sensi-
tive to parameters being adjusted.

We could have used one of several commercial development en-
vironments that we maintain, but they restrict both the hardware
selection and the software techniques. On the other hand, NMCS
is designed to be portable to anything that can support sockets and
run programs built from C. The commercial environments are in-
tended to run very fast, so they sacrifice software flexibility. Large
telescopes cannot benefit from such speeds, so we do not believe
performance could be gained by accepting the aforementioned re-
strictions. Furthermore, writing specific tools in DrScheme is ar-
guably as fast as learning and using the commercial tools.

Threads and REPL Tests To prevent unsupervised telescope mo-
tion and prevent expensive damage due to slewing through the sun,
three essential messages are periodically delivered to NMCS: the
time, the desired trajectories of the axes, and the position of the
sun. NMCS stops the gimbals if any of the messages are missed
for more than a specified period; it uses the information to predict
where the gimbals are going as well as the current location. Human
action (on the SORAPS GUI) is then required to restart the gimbals
to avoid an accident after a network dropout is resolved, for exam-
ple. DrScheme was used to test these behaviors as KDevelop was
used to debug NMCS.

To simulate SORAPS, three threads were started. One sent the
position of the sun every 20 seconds, another sent the time every
10 seconds, and one sent gimbals vectors every second. From the
REPL, the threads were individually suspended (while the gimbals
were running) to ensure that NMCS stopped the gimbals. They
were then restarted to ensure that NMCS did not start the gimbals
without receiving other required commands that were also tested
from the REPL.

Adjustment of Servo Properties We adjusted properties like
torque constants, friction coefficients, and coefficients for parame-
ter estimation while the telescope was following trajectories com-
manded by a thread that sent gimbals-vectors. Performance was
optimized by viewing diagnostics displayed in the viewport win-
dow. These diagnostics included position, velocity, servo error,
command difference, integrated torque, and timing errors.

Instead of creating large sets of functions and possibly GUI’s
to access them, we interactively wrote functions to change subsets
of arguments during the servo optimization activities. For example,
three acceleration constants are required by NMCS, but sometimes
only one of them is adjusted:

(define (aa1 torque-per-bit) ;; aa1: adjust axis-1
(send-to-nmcs
(format
"(list ’show (do-acceleration 1 ’(1 2046 ~s)))"
torque-per-bit)))

A receive thread evaluates the reply, causing the local function
show to be called with the results of do-acceleration when
it was called on NMCS. We intend to automate many of these
optimization procedures, so this REPL approach forms a more
appropriate foundation than a GUI.

The above expressions, especially ones that have variables, are
sometimes assembled from lists rather than using format. It is
arguably more sensible to do so, but some sort of formatting must
eventually occur before the message is sent. We tend to form the
strings as shown because they are blatantly readable.

Test Functions Test functions included sine-waves, constant rate
dithering, and “racetracks”. Trajectories were closed so that they
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could be run indefinitely. This functional method contrasts typi-
cal servo development where files are “followed” after the gim-
bals are positioned before each diagnostic run. This technique was
motivated by the use of functional programming: Commands are
created from nested calls of functions whose only root variable is
represented by a function, MzScheme’s current-milliseconds.

6. Programming Techniques
This section describes many of the reusable techniques that were
developed while working with MzScheme version 209.

6.1 Senders and Displayer
We wrote a simple displayer to show, in sequence, incoming and
outgoing messages that access remote subsystems. Make-sender
labels the diagnostics (to indicate their origin) and sends them to a
program running in a separate DrScheme workspace (i.e., another
window with a REPL.) Using a separate workspace prevents clut-
tering the operations REPL. A socket is implemented so that the
displayer may also be hosted on a separate computer.

The displayer is normally a file that evaluates the following:

(letrec
((uos (udp-open-socket))
(buffer (make-string 256))
(lupe (lambda()

(let-values
(((n ipa port)

(udp-receive! uos buffer)))
(display (substring buffer 0 n))
(newline))

(lupe))))
(udp-bind! uos #f 9999)
(lupe))

The sender to each remote system is created with the function:

(define (make-sender soc ipa port prefix)
(if (equal? prefix "")

(lambda (text)
(udp-send-to soc ipa port text))
(lambda (text)
(udp-send-to soc ipa port text)
(udp-send-to
soc "127.0.0.1" 9999
(format "~a ~a" prefix text)))))

When the sender is created, non-empty text in prefix will cause
all expressions passing through that sender to be displayed with the
contents of prefix. The scripting environment also sends received
expressions to the displayer, so that a clear ordering of messages is
indicated in the window.

6.2 Simulating Transactions
We wrote a general transaction simulator before implementing eth-
ernet communications. This simulator was used often:

(define (sim-transaction sleep-sec text)
(thread
(lambda()
(sleep sleep-sec) ; simulate round-trip
(eval
(eval (read (open-input-string text)))))))

It first sleeps to simulate the expected round-trip delay, then evalu-
ates the outgoing expression, and finally evaluates the result which
is returned from a local simulation of the remote function. For ex-
ample, the following will simulate stopping the gimbals:

(sim-transaction 1.5 "(list ’do-gimbals-mode
(do-mode corvus

’stop))")

The simulation requires a local definition (a simulation) of the
function do-mode and the definition of the telescope designator
corvus. The callback function do-gimbals-mode is at the core of
the local software that is being tested. Simulating the remote defini-
tions also guided the creation of a clear, executable specification for
the interface. For long delays, such as waiting several minutes for
a telescope to move to a new location, the reference returned from
sim-transaction was available for manipulating the thread.

6.3 Exception Handlers
We added exception handlers to the evaluator functions when we
started using the new software. During development, it was better
to let Scheme handle the exception and generate an error message.
The exception handler is mainly used to prevent programs from
halting due to misspelled or improperly formed expressions that
are generated by new clients.

6.4 Connection Protocol
The communication paradigm relies on application level error con-
trol to compensate for the lack of detection and recovery provided
by TCP-like protocols. To prevent the applications from halting, the
message evaluators are wrapped in exception handlers which return
any error message to the client. The motion control systems check
messages by content; e.g., a rate of a thousand degrees per sec-
ond is not accepted even if delivered without error. Most systems
are designed to tolerate missed messages; e.g., a second order tra-
jectory vector can be missed without noticeable errors in tracking.
The clients nearly always use the response from a server to verify
correct delivery; e.g., if a client sends a message to start a compu-
tational process in SORAPS, the response is used for verification.

We started to develop general techniques for error detection,
such as echoing requests along with the responses, but we stopped
for the lack of ways to cause or at least experience network errors.

6.5 Casual Polling of Remote Systems
Because TCP connections are avoided for practical reasons, we use
an efficient technique for for getting uninterrupted repetitive data
like telemetry. About every 8 seconds, the remote telemetry system
is sent a message that requests data for ten seconds. This keeps the
data flowing, it doesn’t require the client to terminate the messages,
yet it does not require a transaction for every message. A data
message is not repeated after an overlapping request. Generally,
the requests have the form:

(get-data ’callback-function seconds-to-send)

The server is required to send expressions of the form:

(callback-function the-data)

A related form is:

(get-data-if-available ’callback-function
within-the-next-n-seconds)

The server is required to send new data only if it is available within
the next n seconds. This can be used when a telescope system is
scanning for an object and it needs a camera to report when it
firsts detects the object. The time limit prevents the camera from
unexpectedly sending information at a much later time.

6.6 Message Timing
The arrival time of some expressions are stored in global variables.
Typical functions that use these variables determine lateness and
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provide re-triggering of events. For example, a task may keep the
latest arrival time of a message, then compare it later to determine
if a new one has arrived. Boolean techniques are not much simpler,
and they do not contain enough information to determine elapsed
time.

6.7 Making Specifications
A Scheme program needed access to a remote system written in
C++, so we agreed that it must communicate via s-expressions.
We wrote a Scheme simulation of the remote system and tested
it with the Scheme client, then gave the simulation to the C++
programmer; no other specification was required because it was a
working program written in an elegant language. We integrated and
tested the complete system in about an hour, yet most of the hour
was needed for the C++ programmer to debug socket software that
he would not have needed to write had he used Scheme.

7. General Experience
How Scheme was Adopted I (the first author) was introduced
to Scheme running on an Astronomer’s Palm Pilot. Incapable of
seeing usefulness, I dismissed Scheme until an email from the
same person contained Scheme in one Day (SIOD), a pioneering
Scheme environment. I obliged his suggestion to embed it in SO-
RAPS at the same time that we were preparing to run the largest
telescope remotely as it interacted with another telescope. Con-
currently, another colleague showed me a paper on the Small Fast
S-Expression Library because we were in search of a consistent
way for our subsystems to communicate. By then, the potential of
Scheme was obvious. I embedded MzScheme in SORAPS along
with SIOD and gradually converted the few functions accessed by
SIOD to MzScheme primitives. SIOD was finally removed, and I
began writing a full suite of MzScheme primitives.

Reliability MzScheme v209 has been running continuously on
4 subsystems which are mostly single board computers running a
diskless linux. One of them has been running for over a year, the
rest are newer. Power failures and lightning strikes make it difficult
to determine a “mean time before failure” that can be assigned
to the subsystems; they normally are interrupted by such external
events before they have a chance to fail.

The Small Fast S-expression Library has proven to be perfectly
reliable as three have been running continuously for several years,
only to be interrupted by power failures and lightning strikes. Iron-
ically, the only maintenance needed in the first few years was a
single-line fix of a memory leak caused by the first author... a leak
that couldn’t have occurred in a Scheme environment.

Language Issues Scheme statements have proven to be an effec-
tive basis for operating the systems. We have written thirty two
primitives for SORAPS and a few dozen for the gimbals servos.
Other subsystems have about a dozen. Error messages are a sig-
nificant benefit of using Scheme. When a programmer incorrectly
requests a message (especially from a REPL), an error message is
returned which often reveals the problem. Typically, a parameter is
forgotten, a Scheme error message is returned to the REPL, and the
user solves the problem by reforming the message. When the serv-
ing program is implemented with MzScheme, the error messages
are produced by the environment; the programmer is not required
to develop them.

Elementary scripts have been written and used extensively for
one experiment, they are planned for two more. Four scripts are
needed for the current experiment, about four more will be required
when all of the subsystems are complete. The scripting strategy has
been unquestionably successful, but we will not improve it until we
thoroughly study the possibilities... which include abandoning the
approach and requiring users to learn basic Scheme.

We used closures as an effective way to realize object like be-
havior. The language requirements for any of the efforts in this pa-
per are not overly complex, so adopting a much more complicated
object oriented programming environment is probably not a good
trade for the elegance of Scheme. The object system provided by
PLT Scheme was not used in any of this work, mainly because of a
lack of time to learn any of it.

Simulations We wrote simulations of nearly all subsystems;
DrScheme was used to create executables for them. The simula-
tions are used for developing scripts and to verify system operation
before an experiment session begins. The balloon experiment has
never been delayed by telescope systems because operations are
tested with appropriate simulators before the experiment begins;
electrical and mechanical problems are sometimes discovered and
fixed. For these reasons, the combination of scripting and simula-
tions are planned for all future experiments.

Foreign Function Interface vs Embedding Foreign Function In-
terfaces were not used in any of this work, mostly because the
largest efforts were concentrated on SORAPS. Its C functions are
so tightly tied to an event loop and graphical user interface that they
are not appropriate for a Scheme interface. SORAPS functions are
are being rewritten as primitives are added, so FFI’s will be even-
tually be a viable option.

8. Conclusions
Scheme has significantly improved the efficiency of the two pro-
grammers who maintain telescope systems and prepare them for
experiments. By using Scheme for configuration, communication,
control, and at least elementary scripting, we are able to maintain
the software for all systems and experiments in almost as little time
as we previously needed for each. We modify SORAPS much less
and the majority of configuration files have been eliminated be-
cause most configuration and all communication are contained in a
few files of Scheme programs. We were able to create a single vol-
ume with directories containing software for all experiments and
telescope systems; small Scheme programs load Scheme residing
in the directories needed for given experiments.

Scripting the balloon experiment was valuable for two reasons.
We successfully used the system at least once per month, yet an-
other reason is perhaps more significant: Making scripts leads to
better programs because the development process demands an ac-
curate description of the problem. We were forced to answer two
questions: What will be the sequence of events? What functions are
needed to support them? The final few scripts for our experiment
were so simple that they hardly seem worthy of discussion, but
many iterations were required because problem definition is more
difficult than many of us want to admit. This scripting effort directly
contrasts our previous programs which rely entirely on graphical
user interfaces. In those cases, we asked different questions: What
GUI features are needed for fundamental operations? How can they
be arranged so that operators can figure out how to conduct differ-
ent experiments? Developing programs using the second approach
is easier, but those programs depend on human expertise.

The s-expression communication paradigm allowed program-
mers to avoid using Scheme rather than encourage them to use it.
SORAPS services messages sent from tracking systems, video dis-
plays, and timing devices which are written in C++, Java, and pro-
prietary embedding languages. The lack of embedded Scheme in
these systems significantly reduced development efficiency because
each required the debugging of new communication software and
new parsers; neither effort would have been required had Scheme
been used. Most of our programmers (about 6) did not mind these
difficulties, so they did not choose to adopt Scheme. Perhaps this
is due to the fact that the basics of Scheme are easy to learn, then
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programmers reject Scheme without realizing how much more it
can offer.

We can gain much more utility from Scheme, even though the
basics have contributed so positively. However, deciding where to
spend development time is becoming more difficult. Significant
wisdom is needed to understand the relationships between Scheme
staples like modules, units, macros, and languages. Such knowl-
edge is essential to the development of formal laboratory tools that
could safely be used by people with diverse capabilities. An ex-
perienced computer scientist could contribute significantly to these
efforts, but personnel in laboratories like ours need to be convinced
that computer science can provide more than just programmers and
compilers.

9. Future Effort
Future effort will include developing formal language layers for the
controllers and experiments. Common functions have already been
adopted, so a few layers of modules should guarantee common
behavior.

Automatic optimization of servos and automatic calibration of
gimbals pointing are also planned. While tracking stars and satel-
lites, a Scheme program could observe control loop behavior and
pointing corrections. From these observations, it could then update
servo parameters and pointing models. These tasks are currently
done manually.
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Abstract
Static and dynamic type systems have well-known strengths and
weaknesses, and each is better suited for different programming
tasks. There have been many efforts to integrate static and dynamic
typing and thereby combine the benefits of both typing disciplines
in the same language. The flexibility of static typing can be im-
proved by adding a type Dynamic and a typecase form. The safety
and performance of dynamic typing can be improved by adding
optional type annotations or by performing type inference (as in
soft typing). However, there has been little formal work on type
systems that allow a programmer-controlled migration between dy-
namic and static typing. Thatte proposed Quasi-Static Typing, but
it does not statically catch all type errors in completely annotated
programs. Anderson and Drossopoulou defined a nominal type sys-
tem for an object-oriented language with optional type annotations.
However, developing a sound, gradual type system for functional
languages with structural types is an open problem.
In this paper we present a solution based on the intuition that the
structure of a type may be partially known/unknown at compile-
time and the job of the type system is to catch incompatibilities
between the known parts of types. We define the static and dynamic
semantics of a λ-calculus with optional type annotations and we
prove that its type system is sound with respect to the simply-typed
λ-calculus for fully-annotated terms. We prove that this calculus is
type safe and that the cost of dynamism is “pay-as-you-go”.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; F.3.3 [Logics and Mean-
ings of Programs]: Studies of Program Constructs— Type structure

General Terms Languages, Performance, Theory

Keywords static and dynamic typing, optional type annotations

1. Introduction
Static and dynamic typing have different strengths, making them
better suited for different tasks. Static typing provides early error
detection, more efficient program execution, and better documen-
tation, whereas dynamic typing enables rapid development and fast
adaptation to changing requirements.
The focus of this paper is languages that literally provide static and
dynamic typing in the same program, with the programmer control-
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ling the degree of static checking by annotating function parameters
with types, or not. We use the term gradual typing for type systems
that provide this capability. Languages that support gradual typing
to a large degree include Cecil [8], Boo [10], extensions to Visual
Basic.NET and C# proposed by Meijer and Drayton [26], and ex-
tensions to Java proposed by Gray et al. [17], and the Bigloo [6, 36]
dialect of Scheme [24]. The purpose of this paper is to provide a
type-theoretic foundation for languages such as these with gradual
typing.
There are numerous other ways to combine static and dynamic typ-
ing that fall outside the scope of gradual typing. Many dynamically
typed languages have optional type annotations that are used to im-
prove run-time performance but not to increase the amount of static
checking. Common LISP [23] and Dylan [12, 37] are examples of
such languages. Similarly, the Soft Typing of Cartwright and Fa-
gan [7] improves the performance of dynamically typed languages
but it does not statically catch type errors. At the other end of the
spectrum, statically typed languages can be made more flexible by
adding a Dynamic type and typecase form, as in the work by Abadi
et al. [1]. However, such languages do not allow for programming
in a dynamically typed style because the programmer is required to
insert coercions to and from type Dynamic.
A short example serves to demonstrate the idea of gradual typing.
Figure 1 shows a call-by-value interpreter for an applied λ-calculus
written in Scheme extended with gradual typing and algebraic data
types. The version on the left does not have type annotations, and
so the type system performs little type checking and instead many
tag-tests occur at run time.
As development progresses, the programmer adds type annotations
to the parameters of interp, as shown on the right side of Figure 1,
and the type system provides more aid in detecting errors. We use
the notation ? for the dynamic type. The type system checks that
the uses of env and e are appropriate: the case analysis on e is
fine and so is the application of assq to x and env. The recursive
calls to interp also type check and the call to apply type checks
trivially because the parameters of apply are dynamic. Note that
we are still using dynamic typing for the value domain of the object
language. To obtain a program with complete static checking, we
would introduce a datatype for the value domain and use that as the
return type of interp.

Contributions We present a formal type system that supports
gradual typing for functional languages, providing the flexibility
of dynamically typed languages when type annotations are omitted
by the programmer and providing the benefits of static checking
when function parameters are annotated. These benefits include
both safety and performance: type errors are caught at compile-time
and values may be stored in unboxed form. That is, for statically
typed portions of the program there is no need for run-time tags
and tag checking.
We introduce a calculus named λ?

→ and define its type system (Sec-
tion 2). We show that this type system, when applied to fully an-
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(define interp
(λ (env e)

(case e
[(Var ,x) (cdr (assq x env))]
[(Int ,n) n]
[(App ,f ,arg) (apply (interp env f) (interp env arg))]
[(Lam ,x ,e) (list x e env)]
[(Succ ,e) (succ (interp env e))])))

(define apply
(λ (f arg)

(case f
[(,x ,body ,env)
(interp (cons (cons x arg) env) body)]

[,other (error ”in application, expected a closure”)])))

(type expr (datatype (Var ,symbol)
(Int ,int)
(App ,expr ,expr)
(Lam ,symbol ,expr)
(Succ ,expr)))

(type envty (listof (pair symbol ?)))

(define interp
(λ ((env : envty) (e : expr))

(case e
[(Var ,x) (cdr (assq x env))]
[(Int ,n) n]
[(App ,f ,arg) (apply (interp env f) (interp env arg))]
[(Lam ,x ,e) (list x e env)]
[(Succ ,e) (succ (interp env e))])))

(define apply
(λ (f arg)

(case f
[(,x ,body ,env)
(interp (cons (cons x arg) env) body)]

[,other (error ”in application, expected a closure”)])))

Figure 1. An example of gradual typing: an interpreter with varying amounts of type annotations.

notated terms, is equivalent to that of the simply-typed lambda cal-
culus (Theorem 1). This property ensures that for fully-annotated
programs all type errors are caught at compile-time. Our type sys-
tem is the first gradual type system for structural types to have this
property. To show that our approach to gradual typing is suitable
for imperative languages, we extend λ?

→ with ML-style references
and assignment (Section 4).
We define the run-time semantics of λ?

→ via a translation to a
simply-typed calculus with explicit casts, λ〈τ〉→ , for which we de-
fine a call-by-value operational semantics (Section 5). When ap-
plied to fully-annotated terms, the translation does not insert casts
(Lemma 4), so the semantics exactly matches that of the simply-
typed λ-calculus. The translation preserves typing (Lemma 3) and
λ〈τ〉→ is type safe (Lemma 8), and therefore λ?

→ is type safe: if eval-
uation terminates, the result is either a value of the expected type
or a cast error, but never a type error (Theorem 2).
On the way to proving type safety, we prove Lemma 5 (Canonical
Forms), which is of particular interest because it shows that the
run-time cost of dynamism in λ?

→ can “pay-as-you-go”. Run-time
polymorphism is restricted to values of type ?, so for example,
a value of type int must actually be an integer, whereas a value
of type ? may contain an integer or a Boolean or anything at all.
Compilers for λ?

→ may use efficient, unboxed, representations for
values of ground and function type, achieving the performance
benefits of static typing for the parts of programs that are statically
typed.
The proofs of the lemmas and theorems in this paper were writ-
ten in the Isar proof language [28, 42] and verified by the Isabelle
proof assistant [29]. We provide proof sketches in this paper and
the full proofs are available in the companion technical report [39].
The statements of the definitions (including type systems and se-
mantics), lemmas, propositions, and theorems in this paper were
automatically generated from the Isabelle files. Free variables that
appear in these statements are universally quantified.

2. Introduction to Gradual Typing
The gradually-typed λ-calculus, λ?

→, is the simply-typed λ-calculus
extended with a type ? to represent dynamic types. We present grad-
ual typing in the setting of the simply-typed λ-calculus to reduce
unnecessary distractions. However, we intend to show how gradual

typing interacts with other common language features, and as a first
step combine gradual typing with ML-style references in Section 4.

Syntax of the Gradually-Typed Lambda Calculus e ∈ λ?
→

Variables x ∈ X
Ground Types γ ∈ G
Constants c ∈ C
Types τ ::= γ | ? | τ → τ
Expressions e ::= c | x | λx :τ. e | e e

λx. e ≡ λx :?. e

A procedure without a parameter type annotation is syntactic sugar
for a procedure with parameter type ?.
The main idea of our approach is the notion of a type whose struc-
ture may be partially known and partially unknown. The unknown
portions of a type are indicated by ?. So, for example, the type
number ∗ ? is the type of a pair whose first element is of type
number and whose second element has an unknown type. To pro-
gram in a dynamically typed style, omit type annotations on pa-
rameters; they are by default assigned the type ?. To enlist more
help from the type checker, add type annotations, possibly with ?
occurring inside the types to retain some flexibility.
The job of the static type system is to reject programs that have
inconsistencies in the known parts of types. For example, the pro-
gram

((λ (x : number) (succ x)) #t) ;; reject

should be rejected because the type of #t is not consistent with
the type of the parameter x, that is, boolean is not consistent with
number. On the other hand, the program

((λ (x) (succ x)) #t) ;; accept

should be accepted by the type system because the type of x is
considered unknown (there is no type annotation) and therefore not
within the realm of static checking. Instead, the type error will be
caught at run-time (as is typical of dynamically typed languages),
which we describe in Section 5.
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As usual things become more interesting with first class proce-
dures. Consider the following example of mapping a procedure
over a list.

map : (number→ number) ∗ number list→ number list
(map (λ (x) (succ x)) (list 1 2 3)) ;; accept

The map procedure is expecting a first argument whose type
is number→ number but the argument (λ(x) (succ x)) has type
?→ number. We would like the type system to accept this pro-
gram, so how should we define consistency for procedure types?
The intuition is that we should require the known portions of the
two types to be equal and ignore the unknown parts. There is a use-
ful analogy with the mathematics of partial functions: two partial
functions are consistent when every elements that is in the domain
of both functions is mapped to the same result. This analogy can be
made formal by considering types as trees [32].
→

dom

��

cod

&&LLLLLLLLLL →

dom

��

cod

##GGGGGGGGG

number number number ?

Trees can be represented as partial functions from paths to node
labels, where a path is a sequence of edge labels: [l1, . . . , ln]. The
above two trees are the following two partial functions f and g. We
interpret unknown portions of a type simply as places where the
partial function is undefined. So, for example, g is undefined for
the path [cod].

f([]) =→
f([dom]) = number

f([cod]) = number

g([]) =→
g([dom]) = number

The partial functions f and g are consistent because they produce
the same output for the inputs [] and [dom].
We axiomatize the consistency relation∼ on types with the follow-
ing definition.

Type Consistency τ ∼ τ

(CREFL) τ ∼ τ (CFUN)
σ1 ∼ τ1 σ2 ∼ τ2

σ1→ σ2 ∼ τ1→ τ2

(CUNR) τ ∼ ? (CUNL) ? ∼ τ

The type consistency relation is reflexive and symmetric but not
transitive (just like consistency of partial functions).

Proposition 1.

• τ ∼ τ

• If σ ∼ τ then τ ∼ σ.

• ¬ (∀ τ1 τ2 τ3. τ1 ∼ τ2 ∧ τ2 ∼ τ3 −→ τ1 ∼ τ3)

Our gradual type system is shown in Figure 2. The environment
Γ is a function from variables to optional types (bτc or ⊥). The
type system is parameterized on a signature ∆ that assigns types
to constants. The rules for variables, constants, and functions are
standard. The first rule for function application (GAPP1) handles
the case when the function type is unknown. The argument may
have any type and the resulting type of the application is unknown.
The second rule for function application (GAPP2) handles when

Figure 2. A Gradual Type System

Γ `G e : τ

(GVAR)
Γ x = bτc
Γ `G x : τ

(GCONST)
∆ c = τ

Γ `G c : τ

(GLAM)
Γ(x 7→ σ) `G e : τ

Γ `G λ x:σ. e : σ→ τ

(GAPP1)
Γ `G e1 : ? Γ `G e2 : τ2

Γ `G e1 e2 : ?

(GAPP2)

Γ `G e1 : τ → τ ′

Γ `G e2 : τ2 τ2 ∼ τ

Γ `G e1 e2 : τ ′

the function type is known and allows an argument whose type is
consistent with the function’s parameter type.

Relation to the untyped λ-calculus We would like our gradual
type system to accept all terms of the untyped λ-calculus (all unan-
notated terms), but it is not possible to simultaneously achieve this
and provide type safety for fully-annotated terms. For example,
suppose there is a constant succ with type number→ number. The
term (succ ”hi”) has no type annotations but it is also fully anno-
tated because there are no function parameters to annotate. The type
system must either accept or reject this program. We choose to re-
ject. Of course, if succ were given the type ?→ ? then (succ ”hi”)
would be accepted. In any event, our gradual type system provides
the same expressiveness as the untyped λ-calculus. The following
translation converts any λ-term into an observationally equivalent
well-typed term of λ?

→.

JcK = c

JxK = x

Jλx.eK = λx.JeK
Je1 e2K = ((λx.x)Je1K)Je2K

Relation to the simply-typed λ-calculus Let λ→ denote the terms
of the simply-typed λ-calculus and let Γ `→ e : τ stand for the
standard typing judgment of the simply-typed λ-calculus. For terms
in λ→ our gradual type system is equivalent to simple typing.

Theorem 1 (Equivalence to simple typing for fully-annotated
terms). If e ∈ λ→ then ∅ `G e : τ = ∅ `→ e : τ.

Proof Sketch. The rules for our gradual type system are the same
as for the STLC if one removes the rules that mention ?. The
type compatibility relation collapses to type equality once all rules
involving ? are removed.

A direct consequence of this equivalence is that our gradual type
system catches the same static errors as the type system for λ→.

Corollary 1 (Full static error detection for fully-annotated terms).
If e ∈ λ→ and @ τ. ∅ `→ e : τ then @ τ ′. ∅ `G e : τ ′. (This is just the
contrapositive of soundness.)
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Before describing the run-time semantics of λ?
→ we compare our

type system for λ?
→ with an alternative design based on subtyping.

3. Comparison with Quasi-Static Typing
Our first attempt to define a gradual type system was based on
Thatte’s quasi-static types [40]. Thatte uses a standard subtyping
relation <: with a top type Ω to represent the dynamic type. As be-
fore, the meta-variable γ ranges over ground types such as number
and boolean.

Subtyping rules. τ <: τ ′

γ <: γ τ <: Ω

σ1 <: τ1 τ2 <: σ2

τ1 → τ2 <: σ1 → σ2

The quasi-static type system includes the usual subsumption rule.

QSUB
Γ ` e : τ τ <: σ

Γ ` e : σ

Subsumption allows programs such as the following to type check
by allowing implicit up-casts. The value #t of type boolean is up-
cast to Ω, the type of the parameter x.

((λ (x) ...) #t) ;; ok, boolean <: Ω

However, the subsumption rule will not allow the following pro-
gram to type check. The addition operator expects type number but
gets an argument of type Ω.

(λ (x) (succ x))

Thatte’s solution for this is to also allow an implicit down-cast in
the (QAPP2) rule for function application.

(QAPP2)
Γ ` e1 : σ → σ′ Γ ` e2 : τ σ <: τ

Γ ` (e1 e2) : σ′

Unfortunately, the subsumption rule combined with (QAPP2) al-
lows too many programs to type check for our taste. For example,
we can build a typing derivation for the following program, even
though it was rejected by our gradual type system.

((λ (x : number) (succ x)) #t)

The subsumption rule allows #t to be implicitly cast to Ω and then
the above rule for application implicitly casts Ω down to number.
To catch errors such as these, Thatte added a second phase to the
type system called plausibility checking. This phase rewrites the
program by collapsing sequences of up-casts and down-casts and
signals an error if it encounters a pair of casts that together amount
to a “stupid cast”[22], that is, casts that always fail because the
target is incompatible with the subject.
Figure 3 shows Thatte’s Quasi-Static type system. The judgment
Γ ` e ⇒ e′ : τ inserts up-casts and down-casts and the judgment
e  e′ collapses sequences of casts and performs plausibility
checking. The type system is parameterized on the function ∆
mapping constants to types. The environment Γ is a function from
variables to optional types (bτc or ⊥).
Subsumption rules are slippery, and even with the plausibility
checks the type system fails to catch many errors. For example,
there is still a derivation for the program

((λ (x : number) (succ x)) #t)

The reason is that both the operator and operand may be implicitly
up-cast to Ω. The rule (QAPP1) then down-casts the operator to
Ω → Ω. Plausibility checking succeeds because there is a greatest

Figure 3. Thatte’s Quasi-Static Typing.

Γ ` e⇒ e′ : τ

(QVAR)
Γ x = bτc

Γ ` x⇒ x : τ

(QCONST) ∆ c = τ
Γ ` c⇒ c : τ

(QLAM)
Γ, x : τ ` e⇒ e′ : σ

Γ ` (λx :τ. e)⇒ (λx :τ. e′) : τ → σ

(QSUB) Γ ` e⇒ e′ : τ τ <: σ

Γ ` e⇒ e′ ↑στ : σ

(QAPP1)

Γ ` e1 ⇒ e′1 : Ω
Γ ` e2 ⇒ e′2 : τ

Γ ` (e1 e2)⇒ ((e′1 ↓Ωτ→Ω) e′2) : Ω

(QAPP2)

Γ ` e1 ⇒ e′1 : σ → σ′

Γ ` e2 ⇒ e′2 : τ σ <: τ

Γ ` (e1 e2)⇒ (e′1 (e′2 ↓τσ)) : σ′

e e′

e ↓ττ e e ↑ττ e

e ↓τσ↓σµ e ↓τµ e ↑σµ↑τσ e ↑τµ

µ = τ u ν

e ↑στ ↓σν e ↓τµ↑νµ
6 ∃µ.µ = τ u ν

e ↑στ ↓σν wrong

lower bound of number→ number and Ω → Ω, which is Ω →
number. So the quasi-static system fails to statically catch the type
error.
As noted by Oliart [30], Thatte’s quasi-static type system does not
correspond to his type checking algorithm (Theorem 7 of [40] is in-
correct). Thatte’s type checking algorithm does not suffer from the
above problems because the algorithm does not use the subsump-
tion rule and instead performs all casting at the application rule,
disallowing up-casts to Ω followed by arbitrary down-casts. Oliart
defined a simple syntax-directed type system that is equivalent to
Thatte’s algorithm, but did not state or prove any of its properties.
We initially set out to prove type safety for Oliart’s subtype-based
type system, but then realized that the consistency relation provides
a much simpler characterization of when implicit casts should be
allowed.
At first glance it may seem odd to use a symmetric relation such
as consistency instead of an anti-symmetric relation such as sub-
typing. There is an anti-symmetric relation that is closely related to
consistency, the usual partial ordering relation for partial functions:
f v g if the graph of f is a subset of the graph of g. (Note that the
direction is flipped from that of the subtyping relation <:, where
greater means less information.) A cast from τ to σ, where σ v τ ,
always succeeds at run-time as we are just hiding type information
by replacing parts of a type with ?. On the other hand, a cast from
σ to τ may fail because the run-time type of the value may not be
consistent with τ . The main difference between v and <: is that
v is covariant for the domain of a procedure type, whereas <: is
contra-variant for the domain of a procedure type.
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Figure 4. Type Rules for References

Γ `G e : τ

(GREF)
Γ `G e : τ

Γ `G ref e : ref τ

(GDEREF1)
Γ `G e : ?
Γ `G !e : ?

(GDEREF2)
Γ `G e : ref τ

Γ `G !e : τ

(GASSIGN1)
Γ `G e1 : ? Γ `G e2 : τ

Γ `G e1← e2 : ref τ

(GASSIGN2)
Γ `G e1 : ref τ Γ `G e2 : σ σ ∼ τ

Γ `G e1← e2 : ref τ

4. Gradual Typing and References
It is often challenging to integrate type system extensions with
imperative features such as references with assignment. In this
section we extend the calculus to include ML-style references. The
following grammar shows the additions to the syntax.

Adding references to λ?
→

Types τ ::= . . . | ref τ
Expressions e ::= . . . | ref e | !e | e← e

The form ref e creates a reference cell and initializes it with
the value that results from evaluating expression e. The derefer-
ence form !e evaluates e to the address of a location in memory
(hopefully) and returns the value stored there. The assignment form
e ← e stores the value form the right-hand side expression in the
location given by the left-hand side expression.
Figure 4 shows the gradual typing rules for these three new con-
structs. In the (GASSIGN2) we allow the type of the right-hand
side to differ from the type in the left-hand’s reference, but require
the types to be compatible. This is similar to the (GAPP2) rule for
function application.
We do not change the definition of the consistency relation, which
means that references types are invariant with respect to consis-
tency. The reflexive axiom τ ∼ τ implies that ref τ ∼ ref τ .
The situation is analogous to that of the combination of references
with subtyping [32]: allowing variance under reference types com-
promises type safety. The following program demonstrates how a
covariant rule for reference types would allow type errors to go un-
caught by the type system.

let r1 = ref (λ y. y) in
let r2 : ref ? = r1 in

r2 ← 1;
!r1 2

The reference r1 is initialized with a function, and then r2 is aliased
to r1, using the covariance to allow the change in type to ref ?. We
can then write an integer into the cell pointed to by r2 (and by r1).
The subsequent attempt to apply the contents of r1 as if it were a
function fails at runtime.

5. Run-time semantics
We define the semantics for λ?

→ in two steps. We first define a cast
insertion translation from λ?

→ to an intermediate language with
explicit casts which we call λ〈τ〉→ . We then define a call-by-value
operational semantics for λ〈τ〉→ . The explicit casts have the syntactic
form 〈τ〉e where τ is the target type. When e evaluates to v, the cast
will check that the type of v is consistent with τ and then produce a
value based on v that has the type τ . If the type of v is inconsistent
with τ , the cast produces a CastError. The intuition behind this
kind of cast is that it reinterprets a value to have a different type
either by adding or removing type information.
The syntax of λ〈τ〉→ extends that of λ?

→ by adding a cast expression.

Syntax of the intermediate language. e ∈ λ〈τ〉→

Expressions e ::= . . . | 〈τ〉e

5.1 Translation to λ〈τ〉→ .

The cast insertion judgment, defined in Figure 5, has the form Γ `
e⇒ e′ : τ and mimics the structure of our gradual typing judgment
of Figure 2. It is trivial to show that these two judgments accept
the same set of terms. We presented the gradual typing judgment
separately to provide an uncluttered specification of well-typed
terms. In Figure 5, the rules for variables, constants, and functions
are straightforward. The first rule for application (CAPP1) handles
the case when the function has type ? and inserts a cast to τ2 → ?
where τ2 is the argument’s type. The second rule for application
(CAPP2) handles the case when the function’s type is known and
the argument type differs from the parameter type, but is consistent.
In this case the argument is cast to the parameter type τ . We could
have instead cast the function; the choice was arbitrary. The third
rule for application (CAPP3) handles the case when the function
type is known and the argument’s type is identical to the parameter
type. No casts are needed in this case. The rules for reference
assignment are similar to the rules for application. However, for
CASSIGN2 the choice to cast the argument and not the reference
is because we need references to be invariant to preserve type
soundness.
Next we define a type system for the intermediate language λ〈τ〉→ .
The typing judgment has the form Γ|Σ ` e : τ . The Σ is a store
typing: it assigns types to memory locations. The type system,
defined in Figure 6, extends the STLC with a rule for explicit
casts. The rule (TCAST) requires the expression e to have a type
consistent with the target type τ .
The inversion lemmas for λ〈τ〉→ are straightforward.

Lemma 1 (Inversion on typing rules.).

1. If Γ | Σ ` x : τ then Γ x = bτc.
2. If Γ | Σ ` c : τ then ∆ c = τ.

3. If Γ | Σ ` λ x:σ. e : τ then ∃ τ ′. τ = σ→ τ ′.

4. If Γ | Σ ` e1 e2 : τ ′ then ∃ τ. Γ | Σ ` e1 : τ → τ ′∧ Γ | Σ ` e2 : τ.

5. If Γ | Σ ` 〈σ〉 e : τ then ∃ τ ′. Γ | Σ ` e : τ ′∧ σ = τ ∧ τ ′∼ σ.

6. If Γ | Σ ` ref e : ref τ then Γ | Σ ` e : τ.

7. If Γ | Σ ` !e : τ then Γ | Σ ` e : ref τ.

8. If Γ | Σ ` e1← e2 : ref τ then Γ | Σ ` e1 : ref τ ∧ Γ | Σ ` e2 : τ.
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Figure 5. Cast Insertion

Γ ` e⇒ e′ : τ

(CVAR)
Γ x = bτc

Γ ` x⇒ x : τ

(CCONST)
∆ c = τ

Γ ` c⇒ c : τ

(CLAM)
Γ(x 7→ σ) ` e⇒ e ′ : τ

Γ ` λ x:σ. e⇒ λ x:σ. e ′ : σ→ τ

(CAPP1)
Γ ` e1⇒ e ′1 : ? Γ ` e2⇒ e ′2 : τ2

Γ ` e1 e2⇒ (〈τ2→ ?〉 e ′1) e ′2 : ?

(CAPP2)

Γ ` e1⇒ e ′1 : τ → τ ′

Γ ` e2⇒ e ′2 : τ2 τ2 6= τ τ2 ∼ τ

Γ ` e1 e2⇒ e ′1 (〈τ〉 e ′2) : τ ′

(CAPP3)

Γ ` e1⇒ e ′1 : τ → τ ′

Γ ` e2⇒ e ′2 : τ

Γ ` e1 e2⇒ e ′1 e ′2 : τ ′

(CREF)
Γ ` e⇒ e ′ : τ

Γ ` ref e⇒ ref e ′ : ref τ

(CDEREF1)
Γ ` e⇒ e ′ : ?

Γ ` !e⇒ !(〈ref ?〉 e ′) : ?

(CDEREF2)
Γ ` e⇒ e ′ : ref τ

Γ ` !e⇒ !e ′ : τ

(CASSIGN1)
Γ ` e1⇒ e ′1 : ? Γ ` e2⇒ e ′2 : τ2

Γ ` e1← e2⇒ (〈ref τ2〉 e ′1)← e ′2 : ref τ2

(CASSIGN2)

Γ ` e1⇒ e ′1 : ref τ
Γ ` e2⇒ e ′2 : σ σ 6= τ σ ∼ τ

Γ ` e1← e2⇒ e ′1← (〈τ〉 e ′2) : ref τ

(CASSIGN3)
Γ ` e1⇒ e ′1 : ref τ Γ ` e2⇒ e ′2 : τ

Γ ` e1← e2⇒ e ′1← e ′2 : ref τ

Proof Sketch. They are proved by case analysis on the type rules.

The type system for λ〈τ〉→ is deterministic: it assigns a unique type
to an expression given a fixed environment.

Lemma 2 (Unique typing). If Γ | Σ ` e : τ and Γ | Σ ` e : τ ′ then
τ = τ ′.

Proof Sketch. The proof is by induction on the typing derivation
and uses the inversion lemmas.

The cast insertion translation, if successful, produces well-typed
terms of λ〈τ〉→ .

Lemma 3. If Γ ` e⇒ e ′ : τ then Γ | ∅ ` e ′ : τ.

Figure 6. Type system for the intermediate language λ〈τ〉→

Γ|Σ ` e : τ

(TVAR)
Γ x = bτc

Γ | Σ ` x : τ

(TCONST)
∆ c = τ

Γ | Σ ` c : τ

(TLAM)
Γ(x 7→ σ) | Σ ` e : τ

Γ | Σ ` λ x:σ. e : σ→ τ

(TAPP)
Γ | Σ ` e1 : τ → τ ′ Γ | Σ ` e2 : τ

Γ | Σ ` e1 e2 : τ ′

(TCAST)
Γ | Σ ` e : σ σ ∼ τ

Γ | Σ ` 〈τ〉 e : τ

(TREF)
Γ | Σ ` e : τ

Γ | Σ ` ref e : ref τ

(TDEREF)
Γ | Σ ` e : ref τ

Γ | Σ ` !e : τ

(TASSIGN)
Γ | Σ ` e1 : ref τ Γ | Σ ` e2 : τ

Γ | Σ ` e1← e2 : ref τ

(TLOC)
Σ l = bτc

Γ | Σ ` l : ref τ

Proof Sketch. The proof is by induction on the cast insertion deriva-
tion.

When applied to terms of λ→, the translation is the identity func-
tion, i.e., no casts are inserted. 1

Lemma 4. If ∅ ` e⇒ e ′ : τ and e ∈ λ→ then e = e ′.

Proof Sketch. The proof is by induction on the cast insertion deriva-
tion.

When applied to terms of the untyped λ-calculus, the translation in-
serts just those casts necessary to prevent type errors from occuring
at run-time, such as applying a non-function.

5.2 Run-time semantics of λ〈τ〉→ .

The following grammar describes the results of evaluation: the re-
sult is either a value or an error, where values are either a simple
value (variables, constants, functions, and locations) or a simple
value enclosed in a single cast, which serves as a syntacical repre-
sentation of boxed values.

1 This lemma is for closed terms (this missing Γ means an empty envi-
ronment). A similar lemma is true of open terms, but we do not need the
lemma for open terms and the statement is more complicated because there
are conditions on the environment.
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Values, Errors, and Results

Locations l ∈ L
Simple Values s ∈ S ::= x | c | λx : τ.e | l
Values v ∈ V ::= s | 〈?〉s
Errors ε ::= CastError | TypeError | KillError
Results r ::= v | ε

It is useful to distinguish two different kinds of run-time type
errors. In weakly typed languages, type errors result in undefined
behavior, such as causing a segmentation fault or allowing a hacker
to create a buffer overflow. We model this kind of type error with
TypeError. In strongly-typed dynamic languages, there may still
be type errors, but they are caught by the run-time system and do
not cause undefined behavior. They typically cause the program to
terminate or else raise an exception. We model this kind of type
error with CastError. The KillError is a technicality pertaining to
the type safety proof that allows us to prove a form of “progress”
in the setting of a big-step semantics.
We define simple function values (SimpleFunVal) to contain lambda
abstractions and functional constants (such as succ), and function
values (FunVal) include simple function values and simple function
values cast to ?.

As mentioned in Section 1, the Canonical Forms Lemma is of
particular interest due to its implications for performance. When
an expression has either ground or function type (not ?) the kind
of resulting value is fixed, and a compiler may use an efficient
unboxed representation. For example, if an expression has type
int, then it will evaluate to a value of type int (by the forthcoming
Soundness Lemma 8) and then the Canonical Forms Lemma tells
us that the value must be an integer.

Lemma 5 (Canonical Forms).

• If ∅ | Σ ` v : int and v ∈ V then ∃ n. v = n.

• If ∅ | Σ ` v : bool and v ∈ V then ∃ b. v = b.

• If ∅ | Σ ` v : ? and v ∈ V then ∃ v ′. v = 〈?〉 v ′∧ v ′∈ S.

• If ∅ | Σ ` v : τ → τ ′ and v ∈ V then v ∈ SimpleFunVal.

• If ∅ | Σ ` v : ref τ and v ∈ V then ∃ l. v = l ∧ Σ l = bτc.

Proof Sketch. They are proved using the inversion lemmas and case
analysis on values.

We define the run-time semantics for λ〈τ〉→ in big-step style with
substitution and not environments. Substitution, written [x := e]e,
is formalized in the style of Curry [3], where bound variables are α-
renamed during substitution to avoid the capture of free variables.
The evaluation judgment has the form e ↪→n r, where e evaluates
to the result r with a derivation depth of n. The derivation depth is
used to force termination so that derivations can be constructed for
otherwise non-terminating programs [11]. The n-depth evaluation
allows Lemma 8 (Soundness) to distinguish between terminating
and non-terminating programs. We will say more about this when
we get to Lemma 8.

The evaluation rules, shown in Figures 7 and 8, are the standard
call-by-value rules for the λ-calculus [33] with additional rules for
casts and a special termination rule. We parameterize the seman-
tics over the function δ which defines the behavior of functional
constants and is used in rule (EDELTA). The helper function unbox
removes an enclosing cast from a value, if there is one.

unbox s = s
unbox (〈τ〉 s) = s

The evaluation rules treat the cast expression like a boxed, or
tagged, value. It is straightforward to define a lower-level semantics
that explicitly tags every value with its type (the full type, not just
the top level constructor) and then uses these type representations
instead of the typing judgment ∅ | ∅ ` unbox v : τ , as in the rule
(ECSTG).
There is a separate cast rule for each kind of target type. The
rule (ECSTG) handles the case of casting to a ground type. The
cast is removed provided the run-time type exactly matches the
target type. The rule (ECSTF) handles the case of casting to a
function type. If the run-time type is consistent with the target
type, the cast is removed and the inner value is wrapped inside a
new function that inserts casts to produce a well-typed value of
the appropriate type. This rule is inspired by the work on semantic
casts [13, 14, 15], though the rule may look slightly different
because the casts used in this paper are annotated with the target
type only and not also with the source type. The rule (ECSTR)
handles the case of casting to a reference type. The run-time type
must exactly match the target type. The rule (ECSTU) handles the
case of casting to ? and ensures that nested casts are collapsed to a
single cast. The rule (ECSTE) handles the case when the run-time
type is not consistent with the target type and produces a CastError.
Because the target types of casts are static, the cast form could be
replaced by a cast for each type, acting as injection to ? and projec-
tion to ground and function types. However, this would complicate
the rules, especially the rule for casting to a function type.
The rule (EKILL) terminates evaluation when the derivation depth
counter reaches zero.

5.3 Examples

Consider once again the following program and assume the succ
constant has the type number→ number.

((λ (x) (succ x)) #t)

The cast insertion judgement transforms this term into the follow-
ing term.

((λ (x : ?) (succ 〈number〉x)) 〈?〉#t)

Evaluation then proceeds, applying the function to its argument,
substituting 〈?〉#t for x.

(succ 〈number〉〈?〉#t)

The type of #t is boolean, which is not consistent with number, so
the rule (ECSTE) applies and the result is a cast error.

CastError

Next, we look at an example that uses first-class functions.

((λ (f : ?→ number) (f 1))
(λ (x : number) (succ x)))

Cast insertion results in the following program.

((λ (f : ?→ number) (f 〈?〉1))
〈?→ number〉(λ (x : number) (succ x)))

We apply the cast to the function, creating a wrapper function.

((λ (f : ?→ number) (f 〈?〉1))
(λ (z : ?) 〈number〉((λ (x : number) (succ x)) 〈number〉z)))

Function application results in the following
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Figure 7. Evaluation

e|µ ↪→n r|µ
Casting

(ECSTG)
e | µ ↪→n v | µ ′ ∅ | Σ ` unbox v : γ

〈γ〉 e | µ ↪→n+1 unbox v | µ ′

(ECSTF)

e | µ ↪→n v | µ ′ ∅ | Σ ` unbox v : τ → τ ′

τ → τ ′∼ σ→ σ ′ z = maxv v + 1
〈σ→ σ ′〉 e | µ ↪→n+1 λ z:σ. (〈σ ′〉 (unbox v (〈τ〉 z))) | µ ′

(ECSTR)
e | µ ↪→n v | µ ′ ∅ | Σ ` unbox v : ref τ

〈ref τ〉 e | µ ↪→n+1 unbox v | µ ′

(ECSTU)
e | µ ↪→n v | µ ′

〈?〉 e | µ ↪→n+1 〈?〉 unbox v | µ ′

Functions and constants

(ELAM)
0 < n

λ x:τ . e | µ ↪→n λ x:τ . e | µ

(EAPP)

e1 | µ1 ↪→n λ x:τ . e3 | µ2

e2 | µ2 ↪→n v2 | µ3

[x:=v2]e3 | µ3 ↪→n v3 | µ4

e1 e2 | µ1 ↪→n+1 v3 | µ4

(ECONST)
0 < n

c | µ ↪→n c | µ

(EDELTA)
e1 | µ1 ↪→n c1 | µ2 e2 | µ2 ↪→n c2 | µ3

e1 e2 | µ1 ↪→n+1 δ c1 c2 | µ3

References

(EREF)
e | µ ↪→n v | µ ′ l /∈ dom µ ′

ref e | µ ↪→n+1 l | µ ′(l 7→ v)

(EDEREF)
e | µ ↪→n l | µ ′ µ ′ l = bvc

!e | µ ↪→n+1 v | µ ′

(EASSIGN)
e1 | µ1 ↪→n l | µ2 e2 | µ2 ↪→n v | µ3

e1← e2 | µ1 ↪→n+1 l | µ3(l 7→ v)

(ELOC)
0 < n

l | µ ↪→n l | µ

Figure 8. Evaluation (Errors)

(ECSTE)

e | µ ↪→n v | µ ′

∅ | Σ ` unbox v : σ (σ, τ) /∈ op ∼
〈τ〉 e | µ ↪→n+1 CastError | µ ′

(EKILL) e | µ ↪→0 KillError | µ

(EVART)
0 < n

x | µ ↪→n TypeError | µ

(EAPPT)
e1 | µ ↪→n v1 | µ ′ v1 /∈ FunVal

e1 e2 | µ ↪→n+1 TypeError | µ ′

(ECSTP)
e | µ ↪→n ε | µ ′

〈τ〉 e | µ ↪→n+1 ε | µ ′

(EAPPP1)
e1 | µ ↪→n ε | µ ′

e1 e2 | µ ↪→n+1 ε | µ ′

(EAPPP2)

e1 | µ1 ↪→n v1 | µ2

v1 ∈ FunVal e2 | µ2 ↪→n ε | µ3

e1 e2 | µ1 ↪→n+1 ε | µ3

(EAPPP3)

e1 | µ1 ↪→n λ x:τ . e3 | µ2

e2 | µ2 ↪→n v2 | µ3

[x:=v2]e3 | µ3 ↪→n ε | µ4

e1 e2 | µ1 ↪→n+1 ε | µ4

(EREFP)
e | µ ↪→n ε | µ ′

ref e | µ ↪→n+1 ε | µ ′

(EDEREFP)
e | µ ↪→n ε | µ ′

!e | µ ↪→n+1 ε | µ ′

(EASSIGNP1)
e1 | µ ↪→n ε | µ ′

e1← e2 | µ ↪→n+1 ε | µ ′

(EASSIGNP2)
e1 | µ1 ↪→n l | µ2 e2 | µ2 ↪→n ε | µ3

e1← e2 | µ1 ↪→n+1 ε | µ3

(EDEREFT)
e | µ ↪→n v | µ ′ @ l. v = l
!e | µ ↪→n+1 TypeError | µ ′

(EASSIGNT)
e1 | µ ↪→n v | µ ′ @ l. v = l

e1← e2 | µ ↪→n+1 TypeError | µ ′
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((λ (z : ?) 〈number〉((λ (x : number) (succ x)) 〈number〉z)) 〈?〉1)

and then another function application gives us

〈number〉((λ (x : number) (succ x)) 〈number〉〈?〉1)

We then apply the cast rule for ground types (ECSTG).

〈number〉((λ (x : number) (succ x)) 1)

followed by another function application:

〈number〉(succ 1)

Then by (EDELTA) we have

〈number〉2

and by (ECSTG) we finally have the result

2

5.4 Type Safety

Towards proving type safety we prove the usual lemmas. First,
environment expansion and contraction does not change typing
derivations. Also, changing the store typing environment does not
change the typing derivations as long as the new store typing agrees
with the old one. The function Vars returns the free and bound
variables of an expression.

Lemma 6 (Environment Expansion and Contraction).

• If Γ | Σ ` e : τ and x /∈ Vars e then Γ(x 7→ σ) | Σ ` e : τ.

• If Γ(y 7→ ν) | Σ ` e : τ and y /∈ Vars e then Γ | Σ ` e : τ.

• If Γ | Σ ` e : τ and
V

l. If l ∈ dom Σ then Σ ′ l = Σ l. then Γ |Σ ′

` e : τ.

Proof Sketch. These properties are proved by induction on the typ-
ing derivation.

Also, substitution does not change the type of an expression.

Lemma 7 (Substitution preserves typing). If Γ(x 7→ σ) | Σ ` e : τ
and Γ | Σ ` e ′ : σ then Γ | Σ ` [x:=e ′]e : τ.

Proof Sketch. The proof is by strong induction on the size of the
expression e, using the inversion and environment expansion lem-
mas.

Definition 1. The store typing judgment, written Γ|Σ |= µ, holds
when the domains of Σ and µ are equal and when for every location
l in the domain of Σ there exists a type τ such that Γ|Σ ` µ(l) : τ .

Next we prove that n-depth evaluation for the intermediate lan-
guage λ〈τ〉→ is sound. Informally, this lemma says that evaluation
produces either a value of the appropriate type, a cast error, or
KillError (because evaluation is cut short), but never a type er-
ror. The placement of e | µ ↪→n r | µ ′ in the conclusion of the
lemma proves that our evaluation rules are complete, analogous to
a progress lemma for small-step semantics. This placement would
normally be a naive mistake because not all programs terminate.
However, by using n-depth evaluation, we can construct a judg-
ment regardless of whether the program is non-terminating because
evaluation is always cut short if the derivation depth exceeds n.
But does this lemma handle all terminating programs? The lemma
is (implicitly) universally quantified over the evaluation depth n.
For every program that terminates there is a depth that will allow
it to terminate, and this lemma will hold for that depth. Thus, this
lemma applies to all terminating programs and does not apply to

non-terminating program, as we intend. We learned of this tech-
nique from Ernst, Ostermann, and Cook [11], but its origins go
back at least to Volpano and Smith [41].

Lemma 8 (Soundness of evaluation). If ∅ | Σ ` e : τ ∧ ∅ | Σ |= µ

then ∃ r µ ′Σ ′. e | µ ↪→n r | µ ′∧ ∅ | Σ ′ |= µ ′ ∧ (∀ l. l ∈ dom Σ −→ Σ ′

l = Σ l) ∧ ((∃ v. r = v ∧ v ∈ V ∧ ∅ | Σ ′ ` v : τ) ∨ r = CastError ∨ r =
KillError).

Proof. The proof is by strong induction on the evaluation depth.
We then perform case analysis on the final step of the typing
judgment. The case for function application uses the substitution
lemma and the case for casts uses environment expansion. The
cases for references and assign use the lemma for changing the
store typing. The inversion lemmas are used throughout.

Theorem 2 (Type safety). If ∅ ` e⇒ e ′ : τ then ∃ r µ Σ. e ′ | ∅ ↪→n
r | µ ∧ ((∃ v. r = v ∧ v ∈ V ∧ ∅ | Σ ` v : τ) ∨ r = CastError ∨ r =

KillError).

Proof. Apply Lemma 3 and then Lemma 8.

6. Relation to Dynamic of Abadi et al.
We defined the semantics for λ?

→ with a translation to λ〈τ〉→ , a lan-
guage with explicit casts. Perhaps a more obvious choice for in-
termediate language would be the pre-existing language of explicit
casts of Abadi et. all [1]. However, there does not seem to be a
straightforward translation from λ〈τ〉→ to their language. Consider
the evaluation rule (ECSTF) and how that functionality might be
implemented in terms of typecase. The parameter z must be cast
to τ , which is not known statically but only dynamically. To im-
plement this cast we would need to dispatch based on τ , perhaps
with a typecase. However, typecase must be applied to a value,
and there is no way for us to obtain a value of type τ from a value
of type τ → τ ′. Quoting from [1]:

Neither tostring nor typetostring quite does its job: for
example, when tostring gets to a function, it stops without
giving any more information about the function. It can do
no better, given the mechanisms we have described, since
there is no effective way to get from a function value to an
element of its domain or codomain.

Of course, if their language were to be extended with a construct for
performing case analysis on types, such as the typerec of Harper
and Morrisett [19], it would be straightforward to implement the
appropriate casting behavior.

7. Related Work
Several programming languages provide gradual typing to some
degree, such as Cecil [8], Boo [10], extensions to Visual Basic.NET
and C# proposed by Meijer and Drayton [26], extensions to Java
proposed by Gray et al. [17], and the Bigloo [6, 36] dialect of
Scheme [24]. This paper formalizes a type system that provides
a theoretical foundation for these languages.
Common LISP [23] and Dylan [12, 37] include optional type an-
notations, but the annotations are not used for type checking, they
are used to improve performance.
Cartwright and Fagan’s Soft Typing [7] improves the performance
of dynamically typed languages by inferring types and removing
the associated run-time dispatching. They do not focus on statically
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catching type errors, as we do here, and do not study a source
language with optional type annotations.
Anderson and Drossopoulou formalize BabyJ [2], an object-
oriented language inspired by JavaScript. BabyJ has a nominal
type system, so types are class names and the permissive type ∗.
In the type rules for BabyJ, whenever equality on types would nor-
mally be used, they instead use the relation τ1 ≈ τ2 which holds
whenever τ1 and τ2 are the same name, or when at least one of
them is the permissive type ∗. Our unknown type ? is similar to
the permissive type ∗, however, the setting of our work is a struc-
tural type system and our type compatibility relation ∼ takes into
account function types.
Riely and Hennessy [35] define a partial type system for Dπ,
a distributed π-calculus. Their system allows some locations to
be untyped and assigns such locations the type lbad. Their type
system, like Quasi-Static Typing, relies on subtyping, however they
treat lbad as “bottom”, which allows objects of type lbad to be
implicitly coercible to any other type.
Gradual typing is syntactically similar to type inferencing [9, 21,
27]: both approaches allow type annotations to be omitted. How-
ever, with type inference, the type system tries to reconstruct what
the type annotations should be, and if it cannot, rejects the program.
In contrast, a gradual type system accepts that it does not know cer-
tain types and inserts run-time casts.
Henglein [20] presents a translation from untyped λ-terms to a co-
ercion calculus with explicit casts. These casts make explicit the
tagging, untagging, and tag-checking operations that occur during
the execution of a language with latent (dynamic) typing. Hen-
glein’s coercion calculus seems to be closely related to our λ〈τ〉→ but
we have not yet formalized the relation. Henglein does not study a
source language with partially typed terms with a static type sys-
tem, as we do here. Instead, his source language is a dynamically
typed language.
Bracha [4] defines optional type systems as type systems that do not
affect the semantics of the language and where type annotations are
optional. Bracha cites Strongtalk [5] as an example of an optional
type system, however, that work does not define a formal type
system or describe how omitted type annotations are treated.
Ou et. all. [31] define a language that combines standard static
typing with more powerful dependent typing. Implicit coercions
are allowed to and from dependent types and run-time checks are
inserted. This combination of a weaker and a stronger type system
is analogous to the combination of dynamic typing and static typing
presented in this paper.
Flanagan [15] introduces Hybrid Type Checking, which combines
standard static typing with refinement types, where the refinements
may express arbitrary predicates. The type system tries to satisfy
the predicates using automated theorem proving, but when no con-
clusive answer is given, the system inserts run-time checks. This
work is also analogous to ours in that it combines a weaker and
stronger type system, allowing implicit coercions between the two
systems and inserting run-time checks. One notable difference be-
tween our system and Flanagan’s is that his is based on subtyping
whereas ours is based on the consistency relation.
Gronski, Knowles, Tomb, Freund, and Flanagan [18] developed the
Sage language which provides Hybrid Type Checking and also a
Dynamic type with implicit (run-time checked) down-casts. Sur-
prisingly, the Sage type system does not allow implicit down-casts
from Dynamic, whereas the Sage type checking (and compilation)
algorithm does allow implicit down-casts. It may be that the given
type system was intended to characterize the output of compilation
(though it is missing a rule for cast), but then a type system for
the source language remains to be defined. The Sage technical re-

port [18] does not include a result such as Theorem 1 of this paper
to show that the type system catches all type errors for fully anno-
tated programs, which is a tricky property to achieve in the presence
of a Dynamic type with implicit down-casts.
There are many interesting issues regarding efficient representa-
tions for values in a language that mixes static and dynamic typing.
The issues are the same as for parametric polymorphism (dynamic
typing is just a different kind of polymorphism). Leroy [25] dis-
cusses the use of mixing boxed and unboxed representations and
such an approach is also possible for our gradual type system.
Shao [38] further improves on Leroy’s mixed approach by showing
how it can be combined with the type-passing approach of Harper
and Morrisett [19] and thereby provide support for recursive and
mutable types.

8. Conclusion
The debate between dynamic and static typing has continued for
several decades, with good reason. There are convincing arguments
for both sides. Dynamic typing is better suited than static for proto-
typing, scripting, and gluing components, whereas static typing is
better suited for algorithms, data-structures, and systems program-
ming. It is common practice for programmers to start development
of a program in a dynamic language and then translate to a static
language midway through development. However, static and dy-
namic languages are often radically different, making this transla-
tion difficult and error prone. Ideally, migrating between dynamic
to static could take place gradually and while staying within the
same language.
In this paper we present the formal definition of the language λ?

→,
including its static and dynamic semantics. This language captures
the key ingredients for implementing gradual typing in functional
languages. The language λ?

→ provides the flexibility of dynami-
cally typed languages when type annotations are omitted by the
programmer and provides the benefits of static checking when all
function parameters are annotated, including the safety guarantees
(Theorem 1) and the time and space efficiency (Lemma 5). Further-
more, the cost of dynamism is “pay-as-you-go”, so partially anno-
tated programs enjoy the benefits of static typing to the degree that
they are annotated. We prove type safety for λ?

→ (Theorem 2); the
type system prevents type violations from occurring at run-time,
either by catching the errors statically or by catching them dynam-
ically with a cast exception. The type system and run-time seman-
tics of λ?

→ is relatively straightforward, so it is suitable for practical
languages.
As future work, we intend to investigate the interaction between our
gradual type system and types such as lists, arrays, algebraic data
types, and implicit coercions between types, such as the types in
Scheme’s numerical tower. We also plan to investigate the interac-
tion between gradual typing and parametric polymorphism [16, 34]
and Hindley-Milner inference [9, 21, 27]. We have implemented
and tested an interpreter for the λ?

→ calculus. As future work
we intend to incorporate gradual typing as presented here into a
mainstream dynamically typed programming language and per-
form studies to evaluate whether gradual typing can benefit pro-
grammer productivity.
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Abstract
Software systems typically contain large APIs that are in-
formally specified and hence easily misused. This paper
presents the Sage programming language, which is designed
to enforce precise interface specifications in a flexible man-
ner. The Sage type system uses a synthesis of the type
Dynamic, first-class types, and arbitrary refinement types.
Since type checking for this expressive language is not stat-
ically decidable, Sage uses hybrid type checking, which ex-
tends static type checking with dynamic contract checking,
automatic theorem proving, and a database of refuted sub-
type judgments.

1. Introduction
Constructing a large, reliable software system is extremely
challenging, due to the difficulty of understanding the sys-
tem in its entirety. A necessary strategy for controlling this
conceptual complexity is to divide the system into modules
that communicate via clearly specified interfaces.

The precision of these interface specifications may natu-
rally and appropriately evolve during the course of software
development. To illustrate this potential variation, consider
the following specifications for the argument to a function
invertMatrix:

1. The argument can be any (dynamically-typed) value.

2. The argument must be an array of arrays of numbers.

3. The argument must be a matrix, that is, a rectangular
(non-ragged) array of arrays of numbers.

4. The argument must be a square matrix.

5. The argument must be a square matrix that satisfies the
predicate isInvertible.

All of these specifications are valid constraints on the ar-
gument to invertMatrix, although some are obviously more
precise than others. Different specifications may be appro-
priate at different stages of the development process. Simpler
specifications facilitate rapid prototyping, whereas more pre-
cise specifications provide more correctness guarantees and
better documentation.

Traditional statically-typed languages, such as Java, C#,
and ML, primarily support the second of these specifica-
tions. Dynamically-typed languages such as Scheme primar-
ily support the first specification. Contracts [32, 13, 26,
21, 24, 28, 37, 25, 12, 8] provide a means to document
and enforce all of these specifications, but violations are
only detected dynamically, resulting in incomplete and late
(possibly post-deployment) detection of defects. This paper
presents the Sage programming language and type system,
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which is designed to support and enforce a wide range of
specification methodologies. Sage verifies correctness prop-
erties and detects defects via static checking wherever pos-
sible. However, Sage can also enforce specifications dynam-
ically, when necessary.

On a technical level, the Sage type system can be viewed
as a synthesis of three concepts: the type Dynamic; arbitrary
refinement types; and first-class types. These features add
expressive power in three orthogonal directions, yet they
all cooperate neatly within Sage’s hybrid static/dynamic
checking framework.

Type Dynamic. The type Dynamic [23, 1, 39] enables Sage
to support dynamically-typed programming. Dynamic is a
supertype of all types; any value can be upcast to type
Dynamic, and a value of declared type Dynamic can be
implicitly downcast (via a run-time check) to a more precise
type. Such downcasts are implicitly inserted when necessary,
such as when the operation add1 (which expects an Int)
is applied to a variable of type Dynamic. Thus, declaring
variables to have type Dynamic (which is the default if
type annotations are omitted) leads to a dynamically-typed,
Scheme-like style of programming.

These dynamically-typed programs can later be anno-
tated with traditional type specifications like Int and Bool.
One nice aspect of our system is that the programmer need
not fully annotate the program with types in order to reap
some benefit. Types enable Sage to check more properties
statically, but it is still able to fall back to dynamic checking
whenever the type Dynamic is encountered.

Refinement Types. For increased precision, Sage also
supports refinement types. For example, the following code
snippet defines the type of integers in the range from lo
(inclusive) to hi (exclusive):

{ x:Int | lo <= x && x < hi }
Sage extends prior work on decidable refinement types [44,
43, 18, 30, 35] to support arbitrary executable refinement
predicates — any boolean expression can be used as a
refinement predicate.

First-Class Types. Finally, Sage elevates types to be
first-class values, in the tradition of Pure Type Systems [5].
Thus, types can be returned from functions, which permits
function abstractions to abstract over types as well as terms.
For example, the following function Range takes two integers
and returns the type of integers within that range:

let Range (lo:Int) (hi:Int) : *
= { x:Int | lo <= x && x < hi };

Here, * is the type of types and indicates that Range returns
a type. Similarly, we can pass types to functions, as in the
following polymorphic identity function:
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let id (T:*) (x:T) : T = x;

The traditional limitation of both first-class types and
unrestricted refinement types is that they are not stati-
cally decidable. Sage circumvents this difficulty by replacing
static type checking with hybrid type checking [14]. Sage
checks correctness properties and detects defects statically,
whenever possible. However, it resorts to dynamic checking
for particularly complicated specifications. The overall re-
sult is that precise specifications can be enforced, with most
errors detected at compile time, and violations of some com-
plicated specifications detected at run time.

1.1 Hybrid Type Checking

We briefly illustrate the key idea of hybrid type checking by
considering the function application

(factorial t)

Suppose factorial has type Pos → Pos, where Pos =
{x : Int | x > 0} is the type of positive integers, and that
t has some type T . If the type checker can prove (or refute)
that T <: Pos, then this application is well-typed (or ill-
typed, respectively). However, if T is a complex refinement
type or a complex type-producing computation, the Sage
compiler may be unable to either prove or refute that T <:
Pos because subtyping is undecidable.

In this situation, statically accepting the application may
result in the specification of factorial being violated at run
time, which is clearly unacceptable. Alternatively, statically
rejecting such programs would cause the compiler to reject
some well-typed programs, as in the Cayenne compiler [4].
Our previous experience with ESC/Java [17] indicates that
this is too brittle in practice.

One solution to this dilemma is to require that the
programmer provide a proof that T <: Pos (see e.g. [7, 36,
10]). While this approach is promising for critical software,
it may be somewhat heavyweight for widespread use.

Instead, Sage enforces the specification of factorial
dynamically, by inserting the following type cast to ensure
at run time that the result of t is a positive integer:

factorial (〈Pos〉 t)

This approach works regardless of whether T is the type
Dynamic, a complex refinement type, or a complex type-
producing computation.

Hybrid combinations of static and dynamic checking are
not new. For example, many existing language implementa-
tions enforce type safety for arrays using both static type
checks and dynamic bounds checks. Hybrid type check-
ing extends this approach to enforce user-defined specifi-
cations. Hybrid type checking also extends ideas from soft
typing [29, 42, 3], to detect type errors at compile time, in
the spirit of static type systems.

Prior work explored hybrid type checking in an idealized
setting, that of the simply-typed lambda-calculus with re-
finements only on the base types Int and Bool [14]. This
paper adapts hybrid type checking to the more technically
challenging domain of a rich language that includes all of
the features described above. We also provide an implemen-
tation and experimental validation of this approach.

1.2 The Sage Compilation Algorithm

The overall architecture of the Sage compiler is shown in
Figure 1. A key component of the Sage compiler is its sub-
type algorithm, which attempts to prove or disprove a sub-
type relationship S <: T (in the context of an environment

Figure 1: Sage Architecture
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E). To obtain adequate precision, the subtype algorithm in-
corporates the following two modules:

Theorem Prover. Testing subtyping between refinement
types reduces to testing implication between refinement
predicates. In order to reason about these predicates, the
subtype algorithm translates each implication between Sage
predicates into a validity test of a logical formula, which
can be passed to an automated theorem prover (currently
Simplify [11]).

Counter-Example Database. If a compiler-inserted
cast from type S to type T fails at run time, Sage stores in
a counter-example database the fact that S is not a subtype
of T . The subtype algorithm consults this database during
compilation and will subsequently reject any program that
relies on S being a subtype of T . Thus, dynamic type errors
actually improve the ability of the Sage compiler to detect
type errors statically.

Moreover, when a compiler-inserted cast fails, Sage will
report a list of previously-compiled programs that contain
the same (or a sufficiently similar) cast, since these pro-
grams may also fail at run time. Thus, the counter-example
database functions somewhat like a regression test suite, in
that it can detect errors in previously compiled programs.

Over time, we predict that the database will grow to be
a valuable repository of common but invalid subtype rela-
tionships, leading to further improvements in the checker’s
precision and less reliance on compiler-inserted casts.

The combination of these features yields a subtype al-
gorithm that is quite precise — the number of compiler-
inserted casts is very small or zero on all of our benchmarks.
Dynamic checks are only necessary for a few particularly
complicated cases.

1.3 Contributions

The primary contributions of this paper are as follows:

• We present the Sage programming language, which sup-
ports flexible specifications in a syntactically lightweight
manner by combining arbitrary refinement types with
first-class types and the type Dynamic.
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• We present a hybrid type checking algorithm for Sage
that circumvents the decidability limitations of this ex-
pressive type language. This type checker accepts all (ar-
bitrarily complicated) well-typed programs, and enforces
all interface specifications, either statically or dynam-
ically. The checker integrates compile-time evaluation,
theorem proving, and a database of failed type casts.

• We provide experimental results for a prototype imple-
mentation of Sage. These results show that Sage verifies
the vast majority of specifications in our benchmark pro-
grams statically.

The following section illustrates the Sage language through
a series of examples. Sections 3 and 4 define the syntax,
semantics, and type system for Sage. Section 5 presents
a hybrid compilation algorithm for the language. Sections 6
and 7 describe our implementation and experimental results.
Sections 8 and 9 discuss related work and future plans.

2. Motivating Examples
We introduce Sage through several examples illustrating
key features of the language, including refinement types, de-
pendent function types, datatypes, and recursive types. We
focus primarily on programs with fairly complete specifica-
tions to highlight these features. Programs could rely more
on the type Dynamic than these, albeit with fewer static
guarantees.

2.1 Binary Search Trees

We begin with the commonly-studied example of binary
search trees, whose Sage implementation is shown in Fig-
ure 2. The variable Range is of type Int → Int → *, where
* is the type of types. Given two integers lo and hi, the ap-
plication Range lo hi returns the following refinement type
describing integers in the range [lo, hi):

{x:Int | lo <= x && x < hi }
A binary search tree (BST lo hi) is an ordered tree

containing integers in the range [lo, hi). A tree may either
be Empty, or a Node containing an integer v ∈ [lo, hi) and
two subtrees containing integers in the ranges [lo, v) and
[v, hi), respectively. Thus, the type of binary search trees
explicates the requirement that these trees must be ordered.

The function search takes as arguments two integers lo
and hi, a binary search tree of type (BST lo hi), and an
integer x in the range [lo, hi). Note that Sage supports
dependent function types, and so the type of the third
argument to search can depend on the values of the first
and second arguments. The function search then checks if
x is in the tree. The function insert takes similar arguments
and extends the given tree with the integer x.

The Sage compiler uses an automatic theorem prover
to statically verify that the specified ordering invariants
on binary search trees are satisfied by these two functions.
Thus, no run-time checking is required for this example.

The precise type specifications enable Sage to detect
various common programming errors. For example, suppose
we inadvertently used the wrong conditional test:

24: if x <= v

For this (incorrect and ill-typed) program, the Sage com-
piler will report that the specification for insert is violated
by the first recursive call:

line 25: x does not have type (Range lo v)

Figure 2: Binary Search Trees

1: let Range (lo:Int) (hi:Int) : * =
2: {x:Int | lo <= x && x < hi };
3:
4: datatype BST (lo:Int) (hi:Int) =
5: Empty
6: | Node of (v:Range lo hi)*(BST lo v)*(BST v hi);
7:
8: let rec search (lo:Int) (hi:Int) (t:BST lo hi)
9: (x:Range lo hi) : Bool =

10: case t of
11: Empty -> false
12: | Node v l r ->
13: if x = v then true
14: else if x < v
15: then search lo v l x
16: else search v hi r x;
17:
18: let rec insert (lo:Int) (hi:Int) (t:BST lo hi)
19: (x:Range lo hi) : (BST lo hi) =
20: case t of
21: Empty ->
22: Node lo hi x (Empty lo x) (Empty x hi)
23: | Node v l r ->
24: if x < v
25: then Node lo hi v (insert lo v l x) r
26: else Node lo hi v l (insert v hi r x);

Similarly, if one of the arguments to the constructor Node is
incorrect, e.g.:

26: else Node lo hi v r (insert v hi r x);

the Sage compiler will report the type error:

line 26: r does not have type (BST lo v)

Notably, a traditional type system that does not support
precise specifications would not detect either of these errors.

Using this BST implementation, constructing trees with
specific constraints is straightforward (and verifiable). For
example, the following code constructs a tree containing only
positive numbers:

let PosBST : * = BST 1 MAXINT;
let nil : PosBST = Empty 1 MAXINT;
let add (t:PosBST) (x:Range 1 MAXINT) : PosBST =

insert 1 MAXINT t x;
let find (t:PosBST) (x:Range 1 MAXINT) : Bool =

search 1 MAXINT t x;

let t : PosBST = add (add (add nil 1) 3) 5;

Note that this fully-typed BST implementation inter-
operates with dynamically-typed client code:

let t : Dynamic = (add nil 1) in find t 5;

2.2 Regular Expressions

We now consider a more complicated specification. Figure 3
declares the Regexp data type and the function match,
which determines if a string matches a regular expression.
The Regexp datatype includes constructors to match any
single letter (Alpha) or any single letter or digit (AlphaNum),
as well as usual the Kleene closure, concatenation, and
choice operators. As an example, the regular expression
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Figure 3: Regular Expressions and Names

datatype Regexp =
Alpha

| AlphaNum
| Kleene of Regexp
| Concat of Regexp * Regexp
| Or of Regexp * Regexp
| Empty;

let match (r:Regexp) (s:String) : Bool = ...

let Name = {s:String | match (Kleene AlphaNum) s};

“[a-zA-Z0-9]*” would be represented in our datatype as
(Kleene AlphaNum).

The code then uses match to define the type Name, which
refines the type String to allow only alphanumeric strings.
We use the type Name to enforce an important, security-
related interface specification for the following function
authenticate. This function performs authentication by
querying a SQL database (where ‘^’ denotes string concate-
nation):

let authenticate (user:Name) (pass:Name) : Bool =
let query : String =

("SELECT count(*) FROM client WHERE name =" ^
user ^ " and pwd=" ^ pass) in

executeSQLquery(query) > 0;

This code is prone to security attacks if given specially-
crafted non-alphanumeric strings. For example, calling

authenticate "admin --" ""

breaks the authentication mechanism because “--” starts
a comment in SQL and consequently “comments out” the
password part of the query. To prohibit this vulnerability,
the type:

authenticate : Name → Name → Bool

specifies that authenticate should be applied only to al-
phanumeric strings.

Next, consider the following user-interface code:

let username : String = readString() in
let password : String = readString() in
authenticate username password;

This code is ill-typed, since it passes arbitrary user input of
type String to authenticate. However, proving that this
code is ill-typed is quite difficult, since it depends on complex
reasoning showing that the user-defined function match is
not a tautology, and hence that not all Strings are Names.

In fact, Sage cannot statically verify or refute this code.
Instead, it inserts the following casts at the call site to
enforce the specification for authenticate dynamically:

authenticate (〈Name〉 username) (〈Name〉 password);

At run time, these casts check that username and password
are alphanumeric strings satisfying the predicate match
(Kleene AlphaNum). If the username “admin --” is ever
entered, the cast (〈Name〉 username) will fail and halt pro-
gram execution.

2.3 Counter-Example Database

Somewhat surprisingly, a dynamic cast failure actually
strengthens Sage’s ability to detect type errors statically. In

particular, the string “admin --” is a witness proving that
not all Strings are Names, i.e., E 6` String <: Name (where
E is the typing environment for the call to authenticate).
Rather than discarding this information, and potentially ob-
serving the same error on later runs or in different programs,
such refuted subtype relationships are stored in a database.
If the above code is later re-compiled, the Sage compiler
will discover upon consulting this database that String is
not a subtype of Name, and it will statically reject the call
to authenticate as ill-typed.

Additionally, the database stores a list of other programs
previously compiled under the assumption that String may
be a subtype of Name. These programs may also fail at run
time and Sage will also report that they must be recompiled
or modified to be accepted by the more-informed checker. It
remains to be seen how to best incorporate this feature into
a development process.

2.4 Printf

As a final example, we examine the printf function. The
number and type of the expected arguments to printf de-
pends in subtle ways on the format string (the first argu-
ment). In Sage, we can assign to printf the precise type:

printf : (format:String) -> (Printf Args format)

where the user-defined function

Printf Args : String -> *

returns the printf argument types for the given format
string. For example, (Printf Args "%d%d") evaluates to the
type Int → Int → Unit. Calls to printf are assigned
precise types, such as:

printf "%d%d" : Int -> Int -> Unit

since this term has type (Printf Args "%d%d"), which in
turn evaluates to Int→ Int→ Unit.

Thus, the Sage language is sufficiently expressive to need
no special support for accommodating printf and catching
errors in printf clients statically. In contrast, other lan-
guage implementations require special rules in the compiler
or run time to ensure the type safety of calls to printf. For
example, Scheme [40] and GHC [19, 38] leave all type check-
ing of arguments to the run time. OCaml [27], on the other
hand, performs static checking, but it requires the format
string to be constant.

Sage can statically check many uses of printf with
non-constant format strings, as illustrated by the following
example:

let repeat (s:String) (n:Int) : String =
if (n = 0) then "" else (s ^ (repeat s (n-1)));

// checked statically:
printf (repeat "%d" 2) 1 2;

The Sage compiler infers that printf (repeat "%d" 2)
has type Printf Args (repeat "%d" 2), which evaluates
(at compile-time) to Int → Int → Unit, and hence this
call is well-typed. Conversely, the compiler would statically
reject the following ill-typed call:

// compile-time error:
printf (repeat "%d" 2) 1 false;

For efficiency, and to avoid non-termination, the compiler
performs only a bounded number of evaluation steps before
resorting to dynamic checking. Thus, the following call re-
quires a run-time check:
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Figure 4: Syntax, Constants, and Shorthands

Syntax:

s, t, S, T ::= Terms:
x variable
c constant
let x = t : S in t binding
λx :S. t abstraction
t t application
x :S → T function type

Constants:

* : *
Unit : *
Bool : *
Int : *

Dynamic : *
Refine : X :*→ (X → Bool) → *

unit : Unit
true : {b :Bool | b}
false : {b :Bool | not b}
not : b :Bool→ {b′ :Bool | b′ = not b}

n : {m :Int |m = n}
+ : n :Int→ m :Int→ {z :Int | z = n + m}
= : x :Dynamic→ y :Dynamic

→ {b :Bool | b = (x = y)}

if : X :*→ p :Bool
→ ({d :Unit | p} → X)
→ ({d :Unit | not p} → X)
→ X

fix : X :*→ (X → X) → X
cast : X :*→ Dynamic→ X

Shorthands:

S → T = x :S → T x 6∈ FV (T )
〈T 〉 = cast T

{x :T | t} = Refine T (λx :T. t)
ifT t1 then t2 else t3 =

if T t1 (λx :{d :Unit | t}. t2) (λx :{d :Unit | not t}. t3)

// run-time error:
printf (repeat "%d" 20) 1 2 ... 19 false;

As expected, the inserted dynamic cast catches the error.
Our current Sage implementation is not yet able to

statically verify that the implementation of printf matches
its specification (format :String→ (Printf Args format)).
As a result, the compiler inserts a single dynamic type cast
into the printf implementation. This example illustrates
the flexibility of hybrid checking — the printf specification
is enforced dynamically on the printf implementation, but
also enforced (primarily) statically on client code. We revisit
this example in Section 5.3 to illustrate Sage’s compilation
algorithm.

3. Language
3.1 Syntax and Informal Semantics

Sage programs are desugared into a small core language,
whose syntax and semantics are described in this section.

Since types are first class, Sage merges the syntactic cat-
egories of terms and types [5]. The syntax of the resulting
type/term language is summarized in Figure 4. We use the
following naming convention to distinguish the intended use
of meta-variables: x, y, z range over regular program vari-
ables; X, Y , Z range over type variables; s, t range over
regular program terms; and S, T range over types.

The core Sage language includes variables, constants,
functions, function applications, and let expressions. The
language also includes dependent function types, for which
we use Cayenne’s [4] syntax x : S → T (in preference over
the equivalent notation Πx : S. T ). Here, S specifies the
function’s domain, and the formal parameter x can occur
free in the range type T . We use the shorthand S → T
when x does not occur free in T .

The Sage type system assigns a type to each well-formed
term. Since each type is simply a particular kind of term,
it is also assigned a type, specifically the type “*”, which
is the type of types [9]. Thus, Int, Bool, and Unit all have
type *. Also, * itself has type *.

The unification of types and terms allows us to pass types
to and from functions. For example, the following function
UnaryOp is a type operator that, given a type such as Int,
returns the type of functions from Int to Int.

UnaryOp
def
= λX :*. (X → X)

Type-valued arguments also support the definition of poly-
morphic functions, such as applyTwice, where the applica-
tion applyTwice Int add1 returns a function that adds two
to any integer. Thus, polymorphic instantiation is explicit in
Sage.

applyTwice
def
= λX :*. λf : (UnaryOp X). λx :X. f(f(x))

The constant Refine enables precise refinements of ex-
isting types. Suppose f : T → Bool is some arbitrary pred-
icate over type T . Then the type Refine T f denotes
the refinement of T containing all values of type T that
satisfy the predicate f . Following Ou et al. [35], we use
the shorthand {x :T | t} to abbreviate Refine T (λx :T. t).
Thus, {x :Int |x ≥ 0} denotes the type of natural numbers.

We use refinement types to assign precise types to con-
stants. For example, as shown in Figure 4, an integer n has
the precise type {m :Int |m = n} denoting the singleton set
{n}. Similarly, the type of the operation + specifies that its
result is the sum of its arguments:

n :Int→ m :Int→ {z :Int | z = n + m}
The apparent circularity where the type of + is defined
in terms of + itself does not cause any difficulties in our
technical development, since the semantics of refinement
types is defined in terms of the operational semantics.

The type of the primitive if is also described via refine-
ments. In particular, the “then” parameter to if is a thunk
of type ({d :Unit | p} → X). That thunk can be invoked only
if the domain {d :Unit | p} is inhabited, i.e., only if the test
expression p evaluates to true. Thus the type of if precisely
specifies its behavior.

The constant fix enables the definition of recursive func-
tions and recursive types. For example, the type of integer
lists is defined via the least fixpoint operation:

fix * (λL :*. Sum Unit (Pair Int L))

which (roughly speaking) returns a type L satisfying the
equation:

L = Sum Unit (Pair Int L)
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Figure 5: Evaluation Rules

Evaluation s −→ t

E [s] −→ E [t] if s −→ t [E-Compat]

(λx :S. t) v −→ t[x := v] [E-App]
let x = v : S in t −→ t[x := v] [E-Let]

not true −→ false [E-Not1]
not false −→ true [E-Not2]

ifT true v1 v2 −→ v1 unit [E-If1]
ifT false v1 v2 −→ v2 unit [E-If2]

+ n1 n2 −→ n n = (n1 + n2) [E-Add]
= v1 v2 −→ c c = (v1 ≡ v2) [E-Eq]

〈Bool〉 true −→ true [E-Cast-Bool1]
〈Bool〉 false −→ false [E-Cast-Bool2]
〈Unit〉 unit −→ unit [E-Cast-Unit]

〈Int〉 n −→ n [E-Cast-Int]
〈Dynamic〉 v −→ v [E-Cast-Dyn]

〈x :S → T 〉 v −→ [E-Cast-Fn]
λx :S. 〈T 〉 (v (〈D〉 x))

where D = domain(v)

〈Refine T f〉 v −→ 〈T 〉 v [E-Refine]
if f (〈T 〉 v) −→∗ true

〈*〉 v −→ v [E-Cast-Type]
if v ∈ {Int, Bool, Unit, Dynamic, x :S → T, fix * f}

S[fix U v] −→ S[v (fix U v)] [E-Fix]

E ::= • | E t | v E Evaluation Contexts
S ::= • v | 〈•〉 v Strict Contexts

u, v, U, V ::= Values
λx :S. t abstraction
x :S → T function type
c constant
c v1 . . . vn constant, 0 < n < arity(c)
Refine U v refinement
fix U v recursive type

(Here, Sum and Pair are the usual type constructors for sums
and pairs, respectively.)

The Sage language includes two constants that are cru-
cial for enabling hybrid type checking: Dynamic and cast.
The type constant Dynamic [1, 39] can be thought of as the
most general type. Every value has type Dynamic, and casts
can be used to convert values from type Dynamic to other
types (and of course such downcasts may fail if applied to
inappropriate values).

The constant cast performs dynamic checks or coercions
between types. It takes as arguments a type T and a value
(of type Dynamic), and it attempts to cast that value to type
T . We use the shorthand 〈T 〉 t to abbreviate cast T t. Thus,
for example, the expression

〈{x :Int |x ≥ 0}〉 y

casts the integer y to the refinement type of natural num-
bers, and fails if y is negative.

3.2 Operational Semantics

We formalize the execution behavior of Sage programs with
the small-step operational semantics shown in Figure 5.
Evaluation is performed inside evaluation contexts E . Ap-
plication, let expressions, and the basic integer and boolean
operations behave as expected. Rule [E-Eq] uses syntactic
equality (≡) to test equivalence of all values, including func-
tion values1.

The most interesting reduction rules are those for casts
〈T 〉 v. Casts to one of the base types Bool, Unit, or Int
succeed if the value v is of the appropriate type. Casts to
type Dynamic always succeed.

Casts to function and refinement types are more complex.
First, the following partial function domain returns the
domain of a function value, and is defined by:

domain : Value → Term
domain(λx :T. t) = T

domain(fix (x :T → T ′) v) = T
domain(c v1 . . . vi−1) = type of ith argument to c

The rule [E-Cast-Fn] casts a function v to type x : S → T
by creating a new function:

λx :S. 〈T 〉 (v (〈D〉 x))

where D = domain(v) is the domain type of the function
v. This new function takes a value x of type S, casts it to
D, applies the given function v, and casts the result to the
desired result type T . Thus, casting a function to a different
function type will always succeed, since the domain and
range values are checked lazily, in a manner reminiscent of
higher-order contracts [13].

For a cast to a refinement type, 〈Refine T f〉 v, the
rule [E-Refine] first casts v to type T via the cast 〈T 〉 v and
then checks if the predicate f holds on this value. If it does,
the cast succeeds and returns 〈T 〉 v.

Casts to type * succeed only for special values of type *,
via the rule [E-Cast-Type].

The operation fix is used to define recursive functions
and types, which are considered values, and hence fix U v is
also a value. However, when this construct fix U v appears
in a strict position (i.e., in a function position or in a
cast), the rule [E-fix] performs one step of unrolling to yield
v (fix U v).

4. Type System
The Sage type system is defined via the type rules and
judgments shown in Figure 6. Typing is performed in an
environment E that binds variables to types and, in some
cases, to values. We assume that variables are bound at most
once in an environment and, as usual, we apply implicit α-
renaming of bound variables to maintain this assumption
and to ensure that substitutions are capture-avoiding.

The Sage type system guarantees progress (i.e., that
well-typed programs can only get stuck due to failed casts)
and preservation (i.e., that evaluation of a term preserves
its type). The proofs appear in a companion report [22].

The main typing judgment

E ` t : T

1 A semantic notion of equality for primitive types could provide
additional flexibility, although such a notion would clearly be
undecidable for higher-order types. In practice, syntactic equality
has been sufficient.
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Figure 6: Type Rules

E ::= Environments:
∅ empty environment
E, x : T environment extension
E, x = v : T environment term extension

Type rules E ` t : T

E ` c : ty(c)
[T-Const]

(x : T ) ∈ E or (x = v : T ) ∈ E

E ` x : {y :T | y = x} [T-Var]

E ` S : * E, x : S ` t : T

E ` (λx :S. t) : (x :S → T )
[T-Fun]

E ` S : * E, x : S ` T : *

E ` (x :S → T ) : *
[T-Arrow]

E ` t1 : (x :S → T ) E ` t2 : S

E ` t1 t2 : T [x := t2]
[T-App]

E ` v : S E, (x = v : S) ` t : T

E ` let x = v : S in t : T [x := v]
[T-Let]

E ` t : S E ` S <: T

E ` t : T
[T-Sub]

assigns type T to term t in the environment E. In the rule
[T-Const], the auxiliary function ty returns the type of the
constant c, as defined in Figure 4. The rule [T-Var] for a
variable x extracts the type T of x from the environment,
and assigns to x the singleton refinement type {y :T | y = x}.
For a function λx :S. t, the rule [T-Fun] infers the type T of
t in an extended environment and returns the dependent
function type x :S → T , where x may occur free in T . The
type x :S → T is itself a term, which is assigned type * by
rule [T-Arrow], provided that both S and T have type * in
appropriate environments.

The rule [T-App] for an application (t1 t2) first checks
that t1 has a function type x : S → T and that t2 is in the
domain of t1. The result type is T with all occurrences of
the formal parameter x replaced by the actual parameter t2.

The type rule [T-Let] for let x = v : S in t first checks
that the type of the bound value v is S. Then t is typed in
an environment that contains both the type and the value of
x. These precise bindings are used in the subtype judgment,
as described below. Subtyping is allowed at any point in a
typing derivation via the rule [T-Sub].

The subtype judgment

E ` S <: T

states that S is a subtype of T in the environment E, and it
is defined as the greatest solution to the collection of subtype
rules in Figure 7. The rules [S-Refl] and [S-Dyn] allow every
type to be a subtype both of itself and of the type Dynamic.
The rule [S-Fun] for function types checks the usual con-
travariant/covariant subtype requirements on function do-

Figure 7: Subtype Rules

Subtype rules E ` S <: T

E ` T <: T
[S-Refl]

E ` T <: Dynamic
[S-Dyn]

E ` T1 <: S1 E, x : T1 ` S2 <: T2

E ` (x :S1 → S2) <: (x :T1 → T2)
[S-Fun]

E, F [x := v] ` S[x := v] <: T [x := v]

E, x = v : U, F ` S <: T
[S-Var]

s −→ s′ E ` C[s′] <: T

E ` C[s] <: T
[S-Eval-L]

t −→ t′ E ` S <: C[t′]

E ` S <: C[t]
[S-Eval-R]

E ` S <: T

E ` (Refine S f) <: T
[S-Ref-L]

E ` S <: T E, x : S |= f x

E ` S <: (Refine T f)
[S-Ref-R]

mains and codomains. The rule [S-Var] hygienically replaces
a variable with the value to which it is bound.

The remaining rules are less conventional. Rules [S-Eval-L]
and [S-Eval-R] state that the subtype relation is closed un-
der evaluation of terms in arbitrary positions. In these rules,
C denotes an arbitrary context:

C ::= • | C t | t C | λx :C. t | λx :T. C
| let x = C : S in t | let x = t : C in t
| let x = t : S in C

The rule [S-Ref-L] states that, if S is a subtype of T ,
then any refinement of S is also a subtype of T . When S
is a subtype of T , the rule [S-Ref-R] invokes the theorem
proving judgment E |= f x, discussed below, to determine
if f x is valid for all values x of type S. If so, then S is a
subtype of Refine T f .

Our type system is parameterized with respect to the
theorem proving judgment

E |= t

which defines the validity of term t in an environment E.
We specify the interface between the type system and the
theorem prover via the following axioms (akin to those found
in [35]), which are sufficient to prove soundness of the type
system. In the following, all environments are assumed to
be well-formed [22].

1. Faithfulness: If t −→∗ true then E |= t. If t −→∗ false
then E 6|= t.

2. Hypothesis: If (x : {y :S | t}) ∈ E then E |= t[y := x].

3. Weakening: If E, G |= t then E, F, G |= t.

4. Substitution: If E, (x : S), F |= t and E ` s : S then
E, F [x := s] |= t[x := s].
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5. Exact Substitution: E, (x = v : S), F |= t if and only if
E, F [x := v] |= t[x := v].

6. Preservation: If s −→∗ t, then E |= C[s] if and only if
E |= C[t].

7. Narrowing: If E, (x : T ), F |= t and E ` S <: T then
E, (x : S), F |= t.

An alternative to these axioms is to define the validity
judgment E |= t directly. In such an approach, we could say
that a term t is valid if, for all closing substitutions σ that
map the names in E to terms consistent with their types,
the term σ(t) evaluates to true:

∀σ if σ is consistent with E
then σ(t) −→∗ true

E |= t
[Validity]

This approach has several drawbacks. First, the rule makes
the type system less flexible with regard to the underlying
logic. More importantly, however, the rule creates a cyclic
dependency between validity and the typing of terms in σ.
Thus, consistency of the resulting system is non-obvious and
remains an open question. For these reasons, we stick to the
original axiomatization of theorem proving.

A consequence of the Faithfulness axiom is that the
validity judgment is undecidable. In addition, the subtype
judgment may require an unbounded amount of compile-
time evaluation. These decidability limitations motivate the
development of the hybrid type checking techniques of the
following section.

5. Hybrid Type Compilation
The Sage hybrid type checking (or compilation) algorithm
shown in Figure 8 type checks programs and simultaneously
inserts dynamic casts. These casts compensate for inevitable
limitations in the Sage subtype algorithm, which is a con-
servative approximation of the subtype relation.

5.1 Algorithmic Subtyping

For any subtype query E ` S <: T , the algorithmic subtyp-
ing judgment E `a

alg S <: T returns a result a ∈ {
√

,×, ?}
depending on whether the algorithm succeeds in proving (

√
)

or refuting (×) the subtype query, or whether it cannot de-
cide the query (?). Our algorithm conservatively approxi-
mates the subtype specification in Figure 6. However, spe-
cial care must be taken in the treatment of Dynamic. Since
we would like values of type Dynamic to be implicitly cast to
other types, such as Int, the subtype algorithm should con-
clude E `?

alg Dynamic <: Int (forcing a cast from Dynamic
to Int), even though clearly E 6` Dynamic <: Int. We thus
formalize our requirements for the subtype algorithm as the
following lemma.

Lemma 1 (Algorithmic Subtyping).

1. If E `
√

alg S <: T then E ` S <: T .

2. If E `×alg T1 <: T2 then ∀F, S1, S2 that are obtained from
E, T1, T2 by replacing the type Dynamic by any type, we
have that F 6` S1 <: S2.

Clearly, a näıve subtype algorithm could always return
the result “?” and thus trivially satisfy these requirements,
but more precise results enable Sage to verify more proper-
ties and to detect more errors at compile time.

This specification of the subtype algorithm is sufficient
for describing the compilation process, and we defer pre-
senting the full details of the algorithm until Section 6.

Figure 8: Compilation Rules

Compilation rules E ` s ↪→ t : T

(x : T ) ∈ E or (x = t : T ) ∈ E

E ` x ↪→ x : {y :T | y = x} [C-Var]

E ` c ↪→ c : ty(c)
[C-Const]

E ` S ↪→ S′ ↓ * E, x : S′ ` t ↪→ t′ : T

E ` (λx :S. t) ↪→ (λx :S′. t′) : (x :S′ → T )
[C-Fun]

E ` S ↪→ S′ ↓ * E, x : S′ ` T ↪→ T ′ ↓ *

E ` (x :S → T ) ↪→ (x :S′ → T ′) : *
[C-Arrow]

E ` t1 ↪→ t′1 : U unrefine(U) = x :S → T
E ` t2 ↪→ t′2 ↓ S

E ` t1 t2 ↪→ t′1 t′2 : T [x := t′2]
[C-App1]

E ` t1 ↪→ t′1 ↓ (Dynamic→ Dynamic)
E ` t2 ↪→ t′2 ↓ Dynamic

E ` t1 t2 ↪→ t′1 t′2 : Dynamic
[C-App2]

E ` S ↪→ S′ ↓ * E ` v ↪→ v′ ↓ S′

E, (x = v′ : S′) ` t ↪→ t′ : T T ′ = T [x := v′]
E ` let x = v : S in t

↪→ let x = v′ : S′ in t′ : T ′

[C-Let]

Compilation and checking rules E ` s ↪→ t ↓ T

E ` t ↪→ t′ : S E `
√

alg S <: T

E ` t ↪→ t′ ↓ T
[CC-Ok]

E ` t ↪→ t′ : S E `?
alg S <: T

E ` t ↪→ (〈T 〉 t′) ↓ T
[CC-Chk]

Algorithmic subtyping E `a
alg S <: T

separate algorithm

5.2 Checking and Compilation

The compilation judgment

E ` s ↪→ t : T

compiles the source term s, in environment E, to a compiled
term t (possibly with additional casts), where T is the type
of t. The compilation and checking judgment

E ` s ↪→ t ↓ T

is similar, except that it takes as an input the desired type
T and ensures that t has type T .

Many of the compilation rules are similar to the corre-
sponding type rules, e.g., [C-Var] and [C-Const]. The rule
[C-Fun] compiles a function λx :S. t by compiling S to some
type S′ of type * and then compiling t (in the extended en-
vironment E, x : S′) to a term t′ of type T . The rule returns
the compiled function λx :S′. t′ of type x :S′ → T . The rule
[C-Arrow] compiles a function type by compiling the two
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component types and checking that they both have type *.
The rule [C-Let] compiles the term let x = v : S in t by re-
cursively compiling v, S and t in appropriate environments.

The rules for function application are more interesting.
The rule [C-App1] compiles an application t1 t2 by compiling
the function t1 to some term t′1 of some type U . The type
U may be a function type embedded inside refinements. In
order to extract the actual type of the parameter to the
function, we use unrefine to remove any outer refinements
of U before checking the type of the argument t2 against the
expected type. Formally, unrefine is defined as follows:

unrefine : Term → Term
unrefine(x :S → T ) = x :S → T

unrefine(Refine T f) = unrefine(T )
unrefine(S) = unrefine(S′) if S −→ S′

The last clause permits S to be simplified via evaluation
while removing outer refinements. Given the expressiveness
of the type system, this evaluation may not converge within
a given time bound. Hence, to ensure that our compiler
accepts all (arbitrarily complicated) well-typed programs,
the rule [C-App2] provides a backup compilation strategy for
applications that requires less static analysis, but performs
more dynamic checking. This rule checks that the function
expression has the most general function type Dynamic →
Dynamic, and correspondingly coerces t2 to type Dynamic,
resulting in an application with type Dynamic.

The rules defining the compilation and checking judg-
ment

E ` s ↪→ t ↓ T

illustrate the key ideas of hybrid type checking. The rules
[CC-Ok] and [CC-Chk] compile the given term and check
that the compiled term has the expected type T via the
algorithmic subtyping judgment

E `a
alg S <: T.

If this judgment succeeds (a =
√

), then [CC-OK] returns
the compiled term. If the subtyping judgment is undecided
(a = ?), then [CC-Chk] encloses the compiled term in the
cast 〈T 〉 to preserve dynamic type safety.

The compilation rules guarantee that a compiled program
is well-typed [22], and thus compiled programs only go
wrong due to failed casts. In addition, this property permits
type-directed optimizations on compiled code.

5.3 Example

To illustrate how Sage verifies specifications statically when
possible, but dynamically when necessary, we consider the
compilation of the following term:

t
def
= printf "%d" 4

For this term, the rule [C-App1] will first compile the subex-
pression (printf "%d") via the following compilation judg-
ment (based on the type of printf from Section 2.4):

∅ ` (printf "%d") ↪→ (printf "%d") : (Printf Args "%d")

The rule [C-App1] then calls the function unrefine to eval-
uate (Printf Args "%d") to the normal form Int → Unit.
Since 4 has type Int, the term t is therefore accepted as is;
no casts are needed.

However, the computation for (Printf Args "%d") may
not terminate within a preset time limit. In this case, the
compiler uses the rule [C-App2] to compile t into the code:

(〈Dynamic→ Dynamic〉 (printf "%d")) 4

At run time, (printf "%d") will evaluate to some function
(λx :Int. t′) that expects an Int, yielding the application:

(〈Dynamic→ Dynamic〉 (λx :Int. t′)) 4

The rule [E-Cast-Fn] then reduces this term to:

(λx :Dynamic. 〈Dynamic〉 ((λx :Int. t′) (〈Int〉 x))) 4

where the nested cast 〈Int〉 x dynamically ensures that the
next argument to printf must be an integer.

6. Implementation
Our prototype Sage implementation consists of roughly
5,000 lines of OCaml code. The run time implements the
semantics from Section 3, with one extension for supporting
the counter-example database when casts fail. Specifically,
suppose the compiler inserts the cast (〈T 〉 t) because it
cannot prove or refute some subtype test E ` S <: T . If that
cast fails, the run time inserts an entry into the database
asserting that E 6` S <: T .

Function casts must be treated with care to ensure blame
is assigned appropriately upon failure [13]. In particular,
if a cast inserted during the lazy evaluation of a function
cast fails, an entry for the original, top-level function cast
is inserted into the database rather than for the “smaller”
cast on the argument or return value.

The Sage subtype algorithm computes the greatest fixed
point of the algorithmic rules in Figure 9. These rules return
3-valued results which are combined with the 3-valued con-
junction operator ⊗:

⊗
√

? ×√ √
? ×

? ? ? ×
× × × ×

The algorithm attempts to apply the rules in the order
in which they are presented in the figure. If no rule applies,
the algorithm returns E `?

alg S <: T . Most of the rules
are straightforward, and we focus primarily on the most
interesting rules:

[AS-Db]: Before applying any other rules, the algorithm
attempts to refute that E ` S <: T by querying the
database of previously refuted subtype relationships. The
judgment E `×db S <: T indicates that the database in-
cludes an entry stating that S is not a subtype of T in
an environment E′, where E and E′ are compatible in
the sense that they include the same bindings for the free
variables in S and T . This compatibility requirement en-
sures that we only re-use a refutation in a typing context
in which it is meaningful.

[AS-Eval-L] and [AS-Eval-R]: These two rules evaluate the
terms representing types. The algorithm only applies these
two rules a bounded number of times before timing out
and forcing the algorithm to use a different rule or return
“?”. This prevents non-terminating computation as well
as infinite unrolling of recursive types.

[AS-Dyn-L] and [AS-Dyn-R]: These rules ensure that any
type can be considered a subtype of Dynamic and that
converting from Dynamic to any type requires an explicit
coercion.

[AS-Ref-R]: This rule for checking whether S is a subtype
of a specific refinement type relies on a theorem-proving
algorithm, E |=a

alg t, for checking validity. This algorithm
is an approximation of some validity judgment E |= t sat-
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Figure 9: Subtyping Algorithm

Algorithmic subtyping rules E `a
alg S <: T

E `×db S <: T

E `×alg S <: T
[AS-Db]

E `
√

alg T <: T
[AS-Refl]

E `a
alg T1 <: S1

E, x : T1 `b
alg S2 <: T2 c = a⊗ b

E `c
alg (x :S1 → S2) <: (x :T1 → T2)

[AS-Fun]

E `?
alg Dynamic <: T

[AS-Dyn-L]

E `
√

alg S <: Dynamic
[AS-Dyn-R]

E `a
alg S <: T a ∈ {

√
, ?}

E `a
alg (Refine S f) <: T

[AS-Ref-L]

E `a
alg S <: T E, x : S |=b

alg f x c = a⊗ b

E `c
alg S <: (Refine T f)

[AS-Ref-R]

E, F [x := v] `a
alg S[x := v] <: T [x := v]

E, x = v : u, F `a
alg S <: T

[AS-Var]

s −→ s′ E `a
alg D[s′] <: T

E `a
alg D[s] <: T

[AS-Eval-L]

t −→ t′ E `a
alg S <: D2[t

′]

E `a
alg S <: D2[t]

[AS-Eval-R]

D ::= • | N D where N is a normal form

Algorithmic theorem proving E |=a
alg t

separate algorithm

Counter-example database E `×db S <: T

database of previously failed casts

isfying the axioms in Section 4. As with subtyping, the
result a ∈ {

√
, ?,×} indicates whether or not the theorem

prover could prove or refute the validity of t. The algorith-
mic theorem proving judgment must be conservative with
respect to the logic it is approximating, as captured in the
following requirement:

Requirement 2 (Algorithmic Theorem Proving).

1. If E |=
√

alg t then E |= t.

2. If E |=×
alg t then ∀E′, t′ obtained from E and t by

replacing the type Dynamic by any type, we have that
E′ 6|= t′.

Our current implementation of this theorem-proving
algorithm translates the query E |=a

alg t into input for
the Simplify theorem prover [11]. For example, the query

x : {x :Int |x ≥ 0} |=a
alg x + x ≥ 0

is translated into the Simplify query:

(IMPLIES (>= x 0) (>= (+ x x) 0))

for which Simplify returns Valid. Given the incomplete-
ness of Simplify (and other theorem provers), care must
be taken in how the Simplify results are interpreted. For
example, on the translated version of the query

x : Int |=a
alg x ∗ x ≥ 0

Simplify returns Invalid, because it is incomplete for
arbitrary multiplication. In this case, the Sage theorem
prover returns the result “?” to indicate that the validity
of the query is unknown. We currently assume that the
theorem prover is complete for linear integer arithmetic.
Simplify has very effective heuristics for integer arithmetic,
but does not fully satisfy this specification; we plan to
replace it with an alternative prover that is complete for
this domain.

Assuming that E |=a
alg t satisfies Requirement 2 and that

E `×db S <: T only if E 6` S <: T (meaning that the
database only contains invalid subtype tests), it is straight-
forward to show that the subtype algorithm E `a

alg S <: T
satisfies Lemma 1.

7. Experimental Results
We evaluated the Sage language and implementation us-
ing the benchmarks listed in Figure 10. The program
arith.sage defines and uses a number of mathematical
functions, such as min, abs, and mod, where refinement
types provide precise specifications. The programs bst.sage
and heap.sage implement and use binary search trees and
heaps, and the program polylist.sage defines and ma-
nipulates polymorphic lists. The types of these data struc-
tures ensure that every operation preserves key invariants.
The program stlc.sage implements a type checker and
evaluator for the simply-typed lambda calculus (STLC),
where Sage types specify that evaluating an STLC-term
preserves its STLC-type. We also include the sorting al-
gorithm mergesort.sage, as well as the regexp.sage and
printf.sage examples discussed earlier.

Figure 10 characterizes the performance of the subtype
algorithm on these benchmarks. We consider two configu-
rations of this algorithm, both with and without the the-
orem prover. For each configuration, the figure shows the
number of subtyping judgments proved (denoted by

√
), re-

futed (denoted by ×), and left undecided (denoted by ?).
The benchmarks are all well-typed, so no subtype queries
are refuted. Note that the theorem prover enables Sage
to decide many more subtype queries. In particular, many
of the benchmarks include complex refinement types that
use integer arithmetic to specify ordering and structure in-
variants; theorem proving is particularly helpful in verifying
these benchmarks.

Our subtyping algorithm performs quite well and verifies
a large majority of subtype tests performed by the compiler.
Only a small number of undecided queries result in casts.
For example, in regexp.sage, Sage cannot statically verify
subtyping relations involving regular expressions (they are
checked dynamically) but it statically verifies all other sub-
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Figure 10: Subtyping Algorithm Statistics

Lines Without Prover With Prover
Benchmark of code

√
? ×

√
? ×

arith.sage 45 132 13 0 145 0 0
bst.sage 62 344 28 0 372 0 0
heap.sage 69 322 34 0 356 0 0
mergesort.sage 80 437 31 0 468 0 0
polylist.sage 397 2338 5 0 2343 0 0
printf.sage 228 321 1 0 321 1 0
regexp.sage 113 391 2 0 391 2 0
stlc.sage 227 677 11 0 677 11 0
Total 1221 4962 125 0 5073 14 0

type judgments. Some complicated tests in stlc.sage and
printf.sage must also be checked dynamically.

Despite the use of a theorem prover, compilation times for
these benchmarks is quite manageable. On a 3GHz Pentium
4 Xeon processor running Linux 2.6.14, compilation required
fewer than 10 seconds for each of the benchmarks, except
for polylist.sage which took approximately 18 seconds.
We also measured the number of evaluation steps required
during each subtype test. We found that 83% of the subtype
tests required no evaluation, 91% required five or fewer
steps, and only a handful of the the tests in our benchmarks
required more than 50 evaluation steps.

8. Related Work
The enforcement of complex program specifications, or con-
tracts, is the subject of a large body of prior work [32, 13,
26, 21, 24, 28, 37, 25, 12, 8]. Since these contracts are typ-
ically not expressible in classical type systems, they have
previously been relegated to dynamic checking, as in, for
example, Eiffel [32]. Eiffel’s expressive contract language is
strictly separated from its type system. Hybrid type check-
ing extends contracts with the ability to check many prop-
erties at compile time. Meunier et al have also investigated
statically verifying contracts via set-based analysis [31].

The static checking tool ESC/Java [17] supports expres-
sive JML specifications [26]. However, ESC/Java’s error
messages may be caused either by incorrect programs or
by limitations in its own analysis, and thus it may give false
alarms on correct (but perhaps complicated) programs. In
contrast, hybrid type checking only produces error messages
for provably ill-typed programs.

The Spec# programming system extends C# with ex-
pressive specifications [6], including preconditions, postcon-
ditions, and non-null annotations. Specifications are en-
forced dynamically, and can be also checked statically via
a separate tool. The system is somewhat less tightly inte-
grated than in Sage. For example, successful static veri-
fication does not automatically remove the corresponding
dynamic checks.

Recent work on advanced type systems has influenced our
choice of how to express program invariants. In particular,
Freeman and Pfenning [18] extended ML with another form
of refinement types. They work focuses on providing both
decidable type checking and type inference, instead of on
supporting arbitrary refinement predicates.

Xi and Pfenning have explored applications of dependent
types in Dependent ML [44, 43]. Decidability of type check-
ing is preserved by appropriately restricting which terms can
appear in types. Despite these restrictions, a number of in-
teresting examples can be expressed in Dependent ML. Our
system of dependent types extends theirs with arbitrary exe-

cutable refinement predicates, and the hybrid type checking
infrastructure is designed to cope with the resulting unde-
cidability. In a complementary approach, Chen and Xi [10]
address decidability limitations by providing a mechanism
through which the programmer can provide proofs of subtle
properties in the source code.

Recently, Ou, Tan, Mandelbaum, and Walker developed
a dependent type system that leverages dynamic checks [35]
in a way similar to Sage. Unlike Sage, their system is decid-
able, and they leverage dynamic checks to reduce the need
for precise type annotations in explicitly labeled regions of
programs. They consider mutable data, which we intend to
add to Sage in the future. We are exploring other language
features, such as objects [16], as well.

Barendregt introduced the unification of types and terms,
which allows types to be flexibly expressed as complex
expressions, while simplifying the underlying theory [5]. The
language Cayenne adopts this approach and copes with
the resulting undecidability of type checking by allowing a
maximum number of steps, somewhat like a timeout, before
reporting to the user that typing has failed [4]. Hybrid type
checking differs in that instead of rejecting subtly well-typed
programs outright, it provisionally accepts them and then
performs dynamic checking where necessary.

Other authors have considered pragmatic combinations
of both static and dynamic checking. Abadi, Cardelli, Pierce
and Plotkin [1] extended a static type system with a type
Dynamic that could be explicitly cast to and from any other
type (with appropriate run-time checks). Henglein charac-
terized the completion process of inserting the necessary
coercions, and presented a rewriting system for generating
minimal completions [23]. Thatte developed a similar system
in which the necessary casts are implicit [39]. For Scheme,
soft type systems [29, 42, 3, 15] prevent some basic type er-
rors statically, while checking other properties at run time.

The limitations of purely-static and purely-dynamic ap-
proaches have also motivated other work on hybrid analyses.
For example, CCured [33] is a sophisticated hybrid analysis
for preventing the ubiquitous array bounds violations in the
C programming language. Unlike our proposed approach, it
does not detect errors statically. Instead, the static analysis
is used to optimize the run-time analysis. Specialized hybrid
analyses have been proposed for other problems as well, such
as data race condition checking [41, 34, 2].

9. Conclusions and Future Work
Program specifications are essential for modular develop-
ment of reliable software. Sage uses a synthesis of first-
class types, Dynamic, and refinement types to enforce precise
specifications in a flexible manner. Our hybrid checking al-
gorithm extends traditional type checking with a theorem
prover, a database of counter-examples, and the ability to
insert dynamic checks when necessary. Experimental results
show that Sage can verify many correctness properties at
compile time. We believe that Sage illustrates a promising
approach for reliable software development.

A number of opportunities remain for future work. The
benefits of the refuted subtype database can clearly be
amplified by maintaining a single repository for all local
and non-local users of Sage. We also plan to integrate
randomized or directed [20] testing to refute additional
validity queries, thereby detecting more errors at compile
time. Since precise type inference for Sage is undecidable,
we plan to develop hybrid algorithms that infer precise types
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for most type variables, and that may occasionally infer the
looser type Dynamic in particularly complicated situations.

Acknowledgments: We thank Robby Findler and Bo
Adler for useful feedback on this work.

References
[1] M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin. Dynamic

typing in a statically-typed language. In Symposium on
Principles of Programming Languages, pages 213–227, 1989.

[2] R. Agarwal and S. D. Stoller. Type inference for parame-
terized race-free Java. In Conference on Verification, Model
Checking, and Abstract Interpretation, pages 149–160, 2004.

[3] A. Aiken, E. L. Wimmers, and T. K. Lakshman. Soft typing
with conditional types. In Symposium on Principles of
Programming Languages, pages 163–173, 1994.

[4] L. Augustsson. Cayenne — a language with dependent types.
In International Conference on Functional Programming,
pages 239–250, 1998.

[5] H. Barendregt. Introduction to generalized type systems.
Journal of Functional Programming, 1(2):125–154, 1991.

[6] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec#
programming system: An overview. In Construction and
Analysis of Safe, Secure, and Interoperable Smart Devices:
International Workshop, pages 49–69, 2005.
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Abstract
We present an implementation of miniKanren, an embed-
ding of logic programming in R5RS Scheme that comprises
three logic operators. We describe these operators, and use
them to define plus o, a relation that adds two numbers. We
then define plus ∗o, which adds zero or more numbers; plus ∗o

takes exactly two arguments, the first of which is a list of
numbers to be added or a logical variable representing such
a list. We call such a relation pseudo-variadic. Combining
Scheme’s var-args facility with pseudo-variadic helper rela-
tions leads to variadic relations, which take a variable num-
ber of arguments. We focus on pseudo-variadic relations,
which we demonstrate are more flexible than their variadic
equivalents.

We show how to define plus ∗o in terms of plus o using
foldr o and foldl o, higher-order relational abstractions de-
rived from Haskell’s foldr and foldl functions. These higher-
order abstractions demonstrate the benefit of embedding re-
lational operators in a functional language. We define many
other pseudo-variadic relations using foldr o and foldl o, con-
sider the limitations of these abstractions, and explore their
effect on the divergence behavior of the relations they define.
We also consider double-pseudo-variadic relations, a gener-
alization of pseudo-variadic relations that take as their first
argument a list of lists or a logical variable representing a
list of lists.

Categories and Subject Descriptors D.1.6 [Program-
ming Techniques]: Logic Programming; D.1.1 [Program-
ming Techniques]: Applicative (Functional) Programming

General Terms Languages

Keywords miniKanren, variadic, pseudo-variadic, double-
pseudo-variadic, Scheme, logic programming, relations

1. Introduction
Scheme’s var-args mechanism makes it easy to define vari-
adic functions, which take a variable number of arguments.
miniKanren, an embedding of logic programming in Scheme,
makes it easy to define variadic relations using that same

Proceedings of the 2006 Scheme and Functional Programming Workshop
University of Chicago Technical Report TR-2006-06

mechanism. A variadic relation takes a variable number of
arguments, but can be defined in terms of a pseudo-variadic
helper relation that takes only two arguments, the first of
which must be a list. A fresh (uninstantiated) logical vari-
able passed as the first argument to a pseudo-variadic re-
lation represents arbitrarily many arguments in the equiva-
lent variadic relation—because of this flexibility, we focus on
pseudo-variadic relations instead of their variadic brethren.

Certain variadic functions can be defined in terms of bi-
nary functions using the foldr or foldl abstractions [8]; cer-
tain variadic relations can be defined in terms of ternary
relations using foldr o or foldl o, the relational equivalents
of foldr and foldl , respectively. foldr o, foldl o, and other
miniKanren relations can be derived from their correspond-
ing function definitions—we have omitted these derivations,
most of which are trivial. The ease with which we can define
higher-order relational abstractions such as foldr o demon-
strates the benefits of using Scheme as the host language for
miniKanren.

We also consider double-pseudo-variadic relations, which
are a generalization of pseudo-variadic relations. A double-
pseudo-variadic relation takes two arguments, the first of
which is either a list of lists or a logical variable repre-
senting a list of lists. (Unless we explicitly state that a
variable is a lexical variable, it is assumed to be a logical
variable.) As with pseudo-variadic relations, certain double-
pseudo-variadic relations can be defined using higher-order
relational abstractions.

miniKanren is a descendant of the language presented
in The Reasoned Schemer [6], which was itself inspired by
Prolog. Not surprisingly, the techniques we present will be
familiar to most experienced Prolog programmers.

This paper has four additional sections and an ap-
pendix. Section 2 gives a brief overview of miniKanren, and
presents a simple unary arithmetic system in miniKanren
using Peano numerals; these arithmetic relations are used
in several of the examples. Readers unfamiliar with logic
programming should carefully study this material and the
miniKanren implementation in the appendix before reading
section 3. (For a gentle introduction to logic programming,
we recommend Clocksin [3].) Section 3 is the heart of the
paper; it introduces pseudo-variadic relations, and shows
how some pseudo-variadic relations can be defined using the
foldr o or foldl o relational abstractions. Section 4 discusses
double-pseudo-variadic relations and the foldr ∗o and foldl ∗o

relational abstractions. In section 5 we conclude. The ap-
pendix presents an R5RS-compliant [9] implementation of
miniKanren.
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2. miniKanren Overview
This section is divided into two parts. Part one introduces
the three miniKanren operators and demonstrates their be-
havior. Part two defines several arithmetic relations that are
used in later examples, and allows the reader to become fa-
miliar with fixed-arity relations before considering the more
complicated pseudo-variadic relations.

Our code uses the following typographic conventions.
Lexical variables are in italic, forms are in boldface, and
quoted symbols are in sans serif. Quotes, quasiquotes, and
unquotes are suppressed, and quoted or quasiquoted lists
appear with bold parentheses—for example (()) and ((x � x))
are entered as ’() and ‘(x . ,x), respectively. By our con-
vention, names of relations end with a superscript o—for
example plus o, which is entered as pluso. miniKanren’s
relational operators do not follow this convention: ≡ (en-
tered as ==), conde (entered as conde), and fresh. Simi-
larly, (run5 (q) body) and (run∗ (q) body) are entered as
(run 5 (q) body) and (run #f (q) body), respectively.

2.1 Introduction to miniKanren

miniKanren, like Schelog [15], is an embedding of logic
programming in Scheme. miniKanren extends Scheme with
three operators: ≡, conde, and fresh. There is also run,
which serves as an interface between Scheme and miniKan-
ren, and whose value is a list.

fresh, which syntactically looks like lambda, introduces
new variables into its scope; ≡ unifies two values. Thus

(fresh (x y z ) (≡ x z ) (≡ 3 y))

would associate x with z and y with 3. This, however, is not
a legal miniKanren program—we must wrap a run around
the entire expression.

(run1 (q) (fresh (x y z ) (≡ x z ) (≡ 3 y))) ⇒ (( 0))

The value returned is a list containing the single value 0 ;
we say that 0 is the reified value of the fresh variable q . q
also remains fresh in

(run1 (q) (fresh (x y) (≡ x q) (≡ 3 y))) ⇒ (( 0))

We can get back other values, of course.

(run1 (y)
(fresh (x z )

(≡ x z )
(≡ 3 y)))

(run1 (q)
(fresh (x z )

(≡ x z )
(≡ 3 z )
(≡ q x )))

(run1 (y)
(fresh (x y)

(≡ 4 x )
(≡ x y))

(≡ 3 y))

Each of these examples returns ((3)); in the rightmost exam-
ple, the y introduced by fresh is different from the y intro-
duced by run. run can also return the empty list, indicating
that there are no values.

(run1 (x ) (≡ 4 3)) ⇒ (())

We use conde to get several values—syntactically, conde

looks like cond but without ⇒ or else. For example,

(run2 (q)
(fresh (x y z )

(conde

((≡ ((x y z x)) q))
((≡ ((z y x z)) q))))) ⇒

(((( 0 1 2 0)) (( 0 1 2 0))))

Although the two conde-clauses are different, the values
returned are identical. This is because distinct reified fresh
variables are assigned distinct numbers, increasing from left
to right—the numbering starts over again from zero within
each value, which is why the reified value of x is 0 in the
first value but 2 in the second value.

Here is a simpler example using conde.

(run5 (q)
(fresh (x y z )

(conde

((≡ a x ) (≡ 1 y) (≡ d z ))
((≡ 2 y) (≡ b x ) (≡ e z ))
((≡ f z ) (≡ c x ) (≡ 3 y)))

(≡ ((x y z)) q))) ⇒
((((a 1 d)) ((b 2 e)) ((c 3 f))))

The superscript 5 denotes the maximum length of the re-
sultant list. If the superscript ∗ is used, then there is no
maximum imposed. This can easily lead to infinite loops:

(run∗ (q)
(let loop ()

(conde

((≡ #f q))
((≡ #t q))
((loop)))))

Had the ∗ been replaced by a non-negative integer n, then
a list of n alternating #f’s and #t’s would be returned. The
conde succeeds while associating q with #f, which accounts
for the first value. When getting the second value, the second
conde-clause is tried, and the association made between q
and #f is forgotten—we say that q has been refreshed. In the
third conde-clause, q is refreshed once again.

We now look at several interesting examples that rely on
any o.

(define any o

(lambda (g)
(conde

(g)
((any o g)))))

any o tries g an unbounded number of times.
Here is the first example using any o.

(run∗ (q)
(conde

((any o (≡ #f q)))
((≡ #t q))))

This example does not terminate, because the call to any o

succeeds an unbounded number of times. If ∗ is replaced by
5, then instead we get ((#t #f #f #f #f)). (The user should not
be concerned with the order in which values are returned.)

Now consider

(run10 (q)
(any o

(conde

((≡ 1 q))
((≡ 2 q))
((≡ 3 q))))) ⇒

((1 2 3 1 2 3 1 2 3 1))

Here the values 1, 2, and 3 are interleaved; our use of any o

ensures that this sequence will be repeated indefinitely.
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Here is always o,

(define always o (any o (≡ #f #f)))

along with two run expressions that use it.

(run1 (x )
(≡ #t x )
always o

(≡ #f x ))

(run5 (x )
(conde

((≡ #t x ))
((≡ #f x )))

always o

(≡ #f x ))

The left-hand expression diverges—this is because always o

succeeds an unbounded number of times, and because
(≡ #f x ) fails each of those times.

The right-hand expression returns a list of five #f’s. This
is because both conde-clauses are tried, and both succeed.
However, only the second conde-clause contributes to the
values returned in this example. Nothing changes if we swap
the two conde-clauses. If we change the last expression to
(≡ #t x ), we instead get a list of five #t’s.

Even if some conde-clauses loop indefinitely, other
conde-clauses can contribute to the values returned by a
run expression. (We are not concerned with Scheme expres-
sions looping indefinitely, however.) For example,

(run3 (q)
(let ((never o (any o (≡ #f #t))))

(conde

((≡ 1 q))
(never o)
((conde

((≡ 2 q))
(never o)
((≡ 3 q)))))))

returns ((1 2 3)); replacing run3 with run4 causes divergence,
however, since there are only three values, and since never o

loops indefinitely.

2.2 Peano Arithmetic

The arithmetic examples in this paper use Peano represen-
tation of numbers (technically, Peano numerals). The ad-
vantage of this representation is that we can use ≡ both to
construct and to match against numbers.

The Peano representation of zero is z, while the immedi-
ate successor to a Peano number n is represented as ((s n)).
For example, one is the immediate successor of zero—the
Peano representation of one is therefore ((s z)). Two is the
immediate successor of one, so the Peano representation of
two is ((s ((s z)))).

Typographically, we indicate a Peano number using cor-
ner brackets—for example, p3q for ((s ((s ((s z)))))). We repre-
sent ((s x)) as px+1q, ((s ((s x)))) as px+2q, and so forth, where
x is a variable or a reified variable (that is, a symbol).

Here is plus o, which adds two Peano numbers.

(define plus o

(lambda (n m sum)
(conde

((≡ p0q n) (≡ m sum))
((fresh (x y)

(≡ px+1q n)
(≡ py+1q sum)
(plus o x m y))))))

plus o allows us to find all pairs of numbers that sum to six.

(run∗ (q)
(fresh (n m)

(plus o n m p6q)
(≡ ((n m)) q))) ⇒

((((p0q p6q))
((p1q p5q))
((p2q p4q))
((p3q p3q))
((p4q p2q))
((p5q p1q))
((p6q p0q))))

Let us define minus o using plus o, and use it to find ten
pairs of numbers whose difference is six.

(define minus o

(lambda (n m k)
(plus o m k n)))

(run10 (q)
(fresh (n m)

(minus o n m p6q)
(≡ ((n m)) q))) ⇒

((((p6q p0q))
((p7q p1q))
((p8q p2q))
((p9q p3q))
((p10q p4q))
((p11q p5q))
((p12q p6q))
((p13q p7q))
((p14q p8q))
((p15q p9q))))

We have chosen to have subtraction of a larger number
from a smaller number fail, rather than be zero.

(run∗ (q) (minus o p5q p6q q)) ⇒ (())

We will also need even o and positive o in several examples
below.

(define even o

(lambda (n)
(conde

((≡ p0q n))
((fresh (m)

(≡ pm+2q n)
(even o m))))))

(define positive o

(lambda (n)
(fresh (m)

(≡ pm+1q n))))

even o and positive o ensure that their arguments repre-
sent even and positive Peano numbers, respectively.

(run4 (q) (even o q)) ⇒ ((p0q p2q p4q p6q))

(run∗ (q) (positive o q)) ⇒ ((p 0+1q))

The value p 0+1q shows that n + 1 is positive for every
number n.
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3. Pseudo-Variadic Relations
Just as a Scheme function can be variadic, so can a miniKan-
ren relation. For example, it is possible to define a variadic
version of plus o using Scheme’s var-args feature. We must
distinguish between the arguments whose values are to be
added and the single argument representing the sum of those
values. The simplest solution is to make the first argument
represent the sum.

(define variadic-plus ∗o

(lambda (out . in∗)
(plus ∗o in∗ out)))

(define plus ∗o

(lambda (in∗ out)
(conde

((≡ (()) in∗) (≡ p0q out))
((fresh (a d res)

(≡ ((a � d)) in∗)
(plus o a res out)
(plus ∗o d res))))))

Here we use variadic-plus ∗o to find the sum of three, four,
and two:

(run∗ (q) (variadic-plus ∗o q p3q p4q p2q)) ⇒ ((p9q))

Let us find the number that, when added to four, one, and
two, produces nine.

(run∗ (q) (variadic-plus ∗o p9q p4q q p1q p2q)) ⇒ ((p2q))

variadic-plus ∗o is not as general as it could be, however.
We cannot, for example, use variadic-plus ∗o to find all
sequences of numbers that sum to five. This is because in∗

must be an actual list, and cannot be a variable representing
a list. The solution is simple—just use plus ∗o in place of
variadic-plus ∗o.

plus ∗o, which does not use Scheme’s var-args functional-
ity, takes exactly two arguments. The first argument must be
a list of numbers, or a variable representing a list of numbers.
The second argument represents the sum of the numbers in
the first argument, and can be either a number or a variable
representing a number.

Variadic relations, such as variadic-plus ∗o, are defined us-
ing pseudo-variadic helper relations, such as plus ∗o. Hence-
forth, we focus exclusively on the more flexible pseudo-
variadic relations, keeping in mind that each pseudo-variadic
relation can be paired with a variadic relation.

To add three, four, and two using plus ∗o, we write

(run∗ (q) (plus ∗o ((p3q p4q p2q)) q)) ⇒ ((p9q))

Here is another way to add three, four, and two.

(run1 (q)
(fresh (x y z )

(plus ∗o x q)
(≡ ((p3q � y)) x )
(≡ ((p4q � z)) y)
(≡ ((p2q � (()))) z ))) ⇒ ((p9q))

Instead of passing a fully instantiated list of numbers as
the first argument to plus ∗o, we pass the fresh variable x—
only afterwards do we instantiate x . Each call to ≡ further
constrains the possible values of x , and consequently con-
strains the possible values of q . This technique of constrain-
ing the first argument to a pseudo-variadic relation through
repeated calls to ≡ is similar to the partial application of a

curried function—the plus ∗o relation can be considered both
curried and (pseudo) variadic.

Replacing run1 with run2 causes the expression to di-
verge. This is because there is no second value to be found.
Although (plus ∗o x q) succeeds an unbounded number of
times, after each success one of the calls to ≡ fails, result-
ing in infinitely many failures without a single success, and
therefore divergence. If the call to plus ∗o is made after the
calls to ≡, the expression terminates even when using run∗.

(run∗ (q)
(fresh (x y z )

(≡ ((p2q � (()))) z )
(≡ ((p3q � y)) x )
(≡ ((p4q � z)) y)
(plus ∗o x q))) ⇒ ((p9q))

We have also reordered the calls to ≡ to illustrate that
the list associated with x need not be extended in left-
to-right order—this reordering does not affect the behavior
of the expression. The three calls to ≡ fully instantiate x ;
instead, we could have associated z with a pair whose cdr is
a fresh variable, thereby leaving the variable x only partially
instantiated. By the end of section 3, the reader should be
able to predict the effect of this change on the behavior of
the run∗ expression.

Here is a simpler example—we prove there is no sequence
of numbers that begins with five whose sum is three.

(run∗ (q) (plus ∗o ((p5q � q)) p3q)) ⇒ (())

Returning to the problem that led us to use plus ∗o, we
generate lists of numbers whose sum is five.

(run10 (q) (plus ∗o q p5q)) ⇒
((((p5q))
((p5q p0q))
((p5q p0q p0q))
((p0q p5q))
((p1q p4q))
((p2q p3q))
((p3q p2q))
((p4q p1q))
((p5q p0q p0q p0q))
((p5q p0q p0q p0q p0q))))

There are infinitely many values, since a list can contain
arbitrarily many zeros. We will consider the problem of
generating all lists of positive numbers whose sum is five,
but first we introduce a convenient abstraction for defining
pseudo-variadic relations.

3.1 The foldr o Abstraction

We can define certain pseudo-variadic relations using the
foldr o relational abstraction. foldr o is derived from foldr , a
standard abstraction for defining variadic functions in terms
of binary ones [8].

(define foldr
(lambda (f )

(lambda (base-value)
(letrec ((foldr (lambda (in∗)

(cond
((null? in∗) base-value)
(else (f (car in∗)

(foldr (cdr in∗))))))))
foldr))))

108 Scheme and Functional Programming, 2006



Here we use foldr o to define plusr ∗o, which behaves like
plus ∗o. (For another approach to higher order relations such
as foldr o, see Naish [13] and O’Keefe [14].)

(define foldr o

(lambda (rel o)
(lambda (base-value)

(letrec ((foldr o (lambda (in∗ out)
(conde

((≡ (()) in∗) (≡ base-value out))
((fresh (a d res)

(≡ ((a � d)) in∗)
(rel o a res out)
(foldr o d res)))))))

foldr o))))

(define plusr ∗o ((foldr o plus o) p0q))

The first argument to foldr must be a binary function,
whereas the first argument to foldr o must be a ternary
relation. The values of rel o and base-value do not change
in the recursive call to foldr o—this allows us to pass in
rel o and base-value before passing in in∗ and out . We make
a distinction between the rel o and base-value arguments:
although base-value might be a variable, the value of rel o

must be a miniKanren relation, and therefore a Scheme
function.

We use positive-plusr ∗o to ensure that we add only posi-
tive numbers.

(define positive-plusr ∗o

((foldr o (lambda (a res out)
(fresh ()

(positive o a)
(plus o a res out))))

p0q))

Finally, we have the sixteen lists of positive numbers whose
sum is five.

(run∗ (q) (positive-plusr ∗o q p5q)) ⇒
((((p5q))
((p1q p4q))
((p2q p3q))
((p1q p1q p3q))
((p3q p2q))
((p1q p2q p2q))
((p4q p1q))
((p2q p1q p2q))
((p1q p3q p1q))
((p1q p1q p1q p2q))
((p2q p2q p1q))
((p3q p1q p1q))
((p1q p1q p2q p1q))
((p1q p2q p1q p1q))
((p2q p1q p1q p1q))
((p1q p1q p1q p1q p1q))))

Let us consider another pseudo-variadic relation; positive-
even-plusr ∗o succeeds if its first argument represents a list
of positive numbers whose sum is even.

(define positive-even-plusr ∗o

(lambda (in∗ out)
(fresh ()

(even o out)
(positive-plusr ∗o in∗ out))))

Here are the first ten values returned by positive-even-
plusr ∗o.

(run10 (q)
(fresh (x y)

(≡ ((x y)) q)
(positive-even-plusr ∗o x y))) ⇒

(((((()) p0q))
((((p2q)) p2q))
((((p1q p1q)) p2q))
((((p4q)) p4q))
((((p1q p3q)) p4q))
((((p2q p2q)) p4q))
((((p3q p1q)) p4q))
((((p1q p1q p2q)) p4q))
((((p1q p2q p1q)) p4q))
((((p2q p1q p1q)) p4q))))

Replacing run10 with run∗ causes divergence, since there
are infinitely many values.

Let us consider another pseudo-variadic relation defined
using foldr o. Here is append o, which appends two lists, and
its pseudo-variadic variant appendr ∗o.

(define append o

(lambda (l s out)
(conde

((≡ (()) l) (≡ s out))
((fresh (a d res)

(≡ ((a � d)) l)
(≡ ((a � res)) out)
(append o d s res))))))

(define appendr ∗o ((foldr o append o) (())))

Here are four examples of appendr ∗o. In the first example,
we use appendr ∗o simply to append two lists.

(run∗ (q) (appendr ∗o ((((a b c)) ((d e)))) q)) ⇒ ((((a b c d e))))

In the second example we infer for which value of q the
list ((a b c d � q)) is equal to the concatenation of the lists
((a b c)), ((d e)), and ((f g)).

(run∗ (q) (appendr ∗o ((((a b c)) ((d e)) ((f g)))) ((a b c d � q))))
⇒ ((((e f g))))

The third example is more interesting—the contents of
the second of three lists being appended can be inferred
from the second argument to appendr ∗o.

(run∗ (q) (appendr ∗o ((((a b c)) q ((g h)))) ((a b c d e f g h))))
⇒ ((((d e f))))

The final example shows a few of the lists of lists whose
contents, when appended, are ((2 3 d e)).

(run10 (q) (appendr ∗o ((((a b)) ((c)) ((1)) � q)) ((a b c 1 2 3 d e))))
⇒

((((((2 3 d e))))
((((2 3 d e)) (())))
((((2 3 d e)) (()) (())))
(((()) ((2 3 d e))))
((((2)) ((3 d e))))
((((2 3)) ((d e))))
((((2 3 d)) ((e))))
((((2 3 d e)) (()) (()) (())))
((((2 3 d e)) (()) (()) (()) (())))
(((()) ((2 3 d e)) (())))))
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Replacing run10 with run∗ causes the last expression to di-
verge, since there are infinitely many values that contain the
empty list—by using pair-appendr ∗o instead of appendr ∗o,
we filter out these values.

(define pair o

(lambda (p)
(fresh (a d)

(≡ ((a � d)) p))))

(define pair-appendr ∗o

((foldr o (lambda (a res out)
(fresh ()

(pair o a)
(append o a res out))))

(())))

Now let us re-evaluate the previous example.

(run∗ (q)
(pair-appendr ∗o ((((a b)) ((c)) ((1)) � q)) ((a b c 1 2 3 d e)))) ⇒

((((((2 3 d e))))
((((2)) ((3 d e))))
((((2 3)) ((d e))))
((((2 3 d)) ((e))))
((((2)) ((3)) ((d e))))
((((2)) ((3 d)) ((e))))
((((2 3)) ((d)) ((e))))
((((2)) ((3)) ((d)) ((e))))))

These eight values are the only ones that do not include the
empty list.

3.2 The foldl o Abstraction

Previously we defined pseudo-variadic relations with the
foldr o relational abstraction. We can also define certain
pseudo-variadic relations using the foldl o relational abstrac-
tion, which is derived from the standard foldl function; like
foldr , foldl is used to define variadic functions in terms of
binary ones.

(define foldl
(lambda (f )

(letrec
((foldl

(lambda (acc)
(lambda (in∗)

(cond
((null? in∗) acc)
(else ((foldl (f acc (car in∗)))

(cdr in∗))))))))
foldl)))

Here we use foldl o to define plusl ∗o and appendl ∗o, which
are similar to plusr ∗o and appendr ∗o, respectively.

(define foldl o

(lambda (rel o)
(letrec

((foldl o (lambda (acc)
(lambda (in∗ out)

(conde

((≡ (()) in∗) (≡ acc out))
((fresh (a d res)

(≡ ((a � d)) in∗)
(rel o acc a res)
((foldl o res) d out))))))))

foldl o)))

(define plusl ∗o ((foldl o plus o) p0q))

(define appendl ∗o ((foldl o append o) (())))

As we did with foldr o, we separate the rel o and acc argu-
ments from the in∗ and out arguments.

We have defined pseudo-variadic versions of plus o using
both foldr o and foldl o; these definitions differ in their diver-
gence behavior. Consider this example, which uses plusr ∗o.

(run1 (q) (plusr ∗o ((p4q q p3q)) p5q)) ⇒ (())

Replacing plusr ∗o with plusl ∗o causes the expression to
diverge. foldl o passes the fresh variable res as the third
argument to the ternary relation, while foldr o instead passes
the out variable, which in this example is fully instantiated.
This accounts for the difference in divergence behavior—the
relation called by foldr o has additional information that can
lead to termination.

It is possible to use foldl o to define positive-plusl ∗o,
positive-even-plusl ∗o, and pair-appendl ∗o. Some pseudo-
variadic relations can be defined using foldl o, but not foldr o.
For example, here is subsetl o, which generates subsets of a
given set (where sets are represented as lists).

(define ess o

(lambda (in∗ x out)
(conde

((≡ (()) in∗) (≡ ((((x)))) out))

((fresh (a d â d̂)
(≡ ((a � d)) in∗)
(conde

((≡ ((â � d)) out) (≡ ((x � a)) â))

((≡ ((a � d̂)) out) (ess o d x d̂))))))))

(define subsetl o ((foldl o ess o) (())))

Here we use subsetl o to find all the subsets of the set
containing a, b, and c.

(run∗ (q) (subsetl o ((a b c)) q)) ⇒
((((((c b a)))) ((((b a)) ((c)))) ((((c a)) ((b)))) ((((a)) ((c b)))) ((((a)) ((b)) ((c))))))

It is possible to infer the original set from which a given
subset has been generated.

(run1 (q) (subsetl o q ((((a d)) ((c)) ((b)))))) ⇒ ((((d c b a))))

Replacing run1 with run2 yields two values: ((d c b a)) and
((d c a b)). Unfortunately, these values are duplicates—they
represent the same set. It is possible to eliminate these dupli-
cate sets (for example, by using Prolog III-style disequality
constraints [4]), but the techniques involved are not directly
related to pseudo-variadic relations.

Here is partition-suml o, whose definition is very similar
to that of subsetl o. Like subsetl o, partition-suml o cannot be
defined using foldr o.

(define pes o

(lambda (in∗ x out)
(conde

((≡ (()) in∗) (≡ ((x)) out))

((fresh (a d â d̂)
(≡ ((a � d)) in∗)
(conde

((≡ ((â � d)) out) (plus o x a â))

((≡ ((a � d̂)) out) (pes o d x d̂))))))))

(define partition-suml o ((foldl o pes o) (())))
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partition-suml o partitions a set of numbers, and returns
another set containing the sums of the numbers in the
various partitions. (This problem was posed in a July 5, 2006
post on the comp.lang.scheme newsgroup [5]). An example
helps clarify the problem.

(run∗ (q) (partition-suml o ((p1q p2q p5q p9q)) q)) ⇒
((((p8q p9q))
((p3q p5q p9q))
((p17q))
((p12q p5q))
((p3q p14q))
((p10q p2q p5q))
((p1q p2q p5q p9q))
((p6q p2q p9q))
((p1q p11q p5q))
((p1q p7q p9q))
((p1q p2q p14q))
((p15q p2q))
((p6q p11q))
((p10q p7q))
((p1q p16q))))

Consider the value ((p15q p2q)). We obtain the p15q by adding
p1q, p5q, and p9q, while the p2q is left unchanged.

We can infer the original set of numbers, given a specific
final value.

(run10 (q) (partition-suml o q ((p3q)))) ⇒
((((p3q))
((p3q p0q))
((p2q p1q))
((p3q p0q p0q))
((p1q p2q))
((p2q p0q p1q))
((p3q p0q p0q p0q))
((p2q p1q p0q))
((p0q p3q))
((p1q p0q p2q))))

There are infinitely many values containing zero—one way
of eliminating these values is to use positive-partition-suml o.

(define positive-pes o

(lambda (in∗ x out)
(fresh ()

(positive o x )
(conde

((≡ (()) in∗) (≡ ((x)) out))

((fresh (a d â d̂)
(≡ ((a � d)) in∗)
(conde

((≡ ((â � d)) out) (plus o x a â))

((≡ ((a � d̂)) out) (positive-pes o d x d̂)))))))))

(define positive-partition-suml o ((foldl o positive-pes o) (())))

(run4 (q) (positive-partition-suml o q ((p3q)))) ⇒
((((p3q))
((p2q p1q))
((p1q p2q))
((p1q p1q p1q))))

We have eliminated values containing zeros, but we still
are left with duplicate values—worse, the last value is not
even a set. As before, we could use disequality constraints or

other techniques to remove these undesired values. Regard-
less of whether we use these techniques, the previous run
expression will diverge if we replace run4 with run5; this
divergence is due to our use of foldl o.

3.3 When foldr o and foldl o do not work

Consider minusr ∗o, which is a pseudo-variadic minus o de-
fined using plusr ∗o. Unlike the pseudo-variadic addition rela-
tions, minusr ∗o fails when in∗ is the empty list. Also, when
in∗ contains only a single number, that number must be
zero. This is because the negation of any positive number is
negative, and because Peano numbers only represent non-
negative integers. These special cases prevent us from defin-
ing minusr ∗o using foldr o or foldl o.

(define minusr ∗o

(lambda (in∗ out)
(conde

((≡ ((p0q)) in∗) (≡ p0q out))
((fresh (a d res)

(≡ ((a � d)) in∗)
(pair o d)
(minus o a res out)
(plusr ∗o d res))))))

Here we use minusr ∗o to generate lists of numbers that,
when subtracted from seven, yield three.

(run14 (q) (minusr ∗o ((p7q � q)) p3q)) ⇒
((((p4q))
((p4q p0q))
((p4q p0q p0q))
((p0q p4q))
((p1q p3q))
((p2q p2q))
((p3q p1q))
((p4q p0q p0q p0q))
((p4q p0q p0q p0q p0q))
((p0q p4q p0q))
((p1q p3q p0q))
((p2q p2q p0q))
((p3q p1q p0q))
((p4q p0q p0q p0q p0q p0q))))

The values containing zero are not very interesting—let
us filter out those values by using positive-minusr ∗o.

(define positive-minusr ∗o

(lambda (in∗ out)
(fresh (a d res)

(≡ ((a � d)) in∗)
(positive o a)
(minus o a res out)
(positive-plusr ∗o d res))))

Now we can use run∗ instead of run14, since there are
only finitely many values.

(run∗ (q) (positive-minusr ∗o ((p7q � q)) p3q)) ⇒
((((p4q))
((p1q p3q))
((p2q p2q))
((p3q p1q))
((p1q p1q p2q))
((p1q p2q p1q))
((p2q p1q p1q))
((p1q p1q p1q p1q))))
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As might be expected, we could use plusl ∗o to define the
relations minusl ∗o and positive-minusl ∗o.

Here is positive ∗o, another pseudo-variadic relation that
cannot be defined using foldr o or foldl o; this is because
positive ∗o takes only one argument.

(define positive ∗o

(lambda (in∗)
(conde

((≡ (()) in∗))
((fresh (a d)

(≡ ((a � d)) in∗)
(positive o a)
(positive ∗o d))))))

(run5 (q) (positive ∗o q)) ⇒
(((())
((p 0+1q))
((p 0+1q p 1+1q))
((p 0+1q p 1+1q p 2+1q))
((p 0+1q p 1+1q p 2+1q p 3+1q))))

4. Double-Pseudo-Variadic Relations
A pseudo-variadic relation takes a list, or a variable repre-
senting a list, as its first argument; a double-pseudo-variadic
relation takes a list of lists, or a variable representing a list of
lists, as its first argument. Let us define plusr ∗∗o, the double-
pseudo-variadic version of plusr ∗o. We define plusr ∗∗o using
the foldr ∗o relational abstraction.

(define foldr ∗o

(lambda (rel o)
(lambda (base-value)

(letrec ((foldr ∗o (lambda (in∗∗ out)
(conde

((≡ (()) in∗∗) (≡ base-value out))
((fresh (dd)

(≡ (((()) � dd)) in∗∗)
(foldr ∗o dd out)))

((fresh (a d dd res)
(≡ ((((a � d)) � dd)) in∗∗)
(rel o a res out)
(foldr ∗o ((d � dd)) res)))))))

foldr ∗o))))

(define plusr ∗∗o ((foldr ∗o plus o) p0q))

As with plusr ∗o, we can use plusr ∗∗o to add three, four,
and two.

(run∗ (q) (plusr ∗∗o ((((p3q p4q p2q)))) q)) ⇒ ((p9q))

plusr ∗∗o allows us to add three, four, and two in more
than one way, by partitioning the list of numbers to be added
into various sublists, which can include the empty list.

(run∗ (q) (plusr ∗∗o (((()) ((p3q p4q)) (()) ((p2q)))) q)) ⇒ ((p9q))

In the previous section we used plusr ∗o to generate lists of
numbers whose sum is five; here we use plusr ∗∗o to generate
lists of numbers whose sum is three.

(run10 (q) (plusr ∗∗o ((q)) p3q)) ⇒
((((p3q))
((p3q p0q))
((p3q p0q p0q))
((p0q p3q))

((p1q p2q))
((p2q p1q))
((p3q p0q p0q p0q))
((p3q p0q p0q p0q p0q))
((p0q p3q p0q))
((p1q p2q p0q))))

There are infinitely many such lists, since each list can
contain an arbitrary number of zeros.

As we did with plusr ∗o, let us use plusr ∗∗o to prove that
there is no sequence of numbers that begins with five whose
sum is three.

(run1 (q) (plusr ∗∗o ((((p5q)) q)) p3q)) ⇒ (())

This expression terminates because plusr ∗∗o calls
(plus o p5q res p3q), which immediately fails.

Swapping the positions of the fresh variable q and the
list containing five yields the expression

(run1 (q) (plusr ∗∗o ((q ((p5q)))) p3q))

which diverges. q represents a list of numbers—since each
list can contain arbitrarily many zeros, there are infinitely
many such lists whose sum is less than or equal to three.
For each such list, plusr ∗∗o sums the numbers in the list,
and then adds five to that sum; this fails, of course, since
the new sum is greater than three. Since there are infinitely
many lists, and therefore infinitely many failures without a
single success, the expression diverges.

If we were to restrict q to a list of positive numbers, the
previous expression would terminate.

(define positive-plusr ∗∗o

((foldr ∗o (lambda (a res out)
(fresh ()

(positive o a)
(plus o a res out))))

p0q))

(run1 (q) (positive-plusr ∗∗o ((q ((p5q)))) p3q)) ⇒ (())

We can now generate all the lists of positive numbers
whose sum is three.

(run∗ (q) (positive-plusr ∗∗o ((q)) p3q)) ⇒
((((p3q))
((p2q p1q))
((p1q p2q))
((p1q p1q p1q))))

The following expression returns all lists of positive num-
bers containing five that sum to eight.

(run∗ (q)
(fresh (x y)

(positive-plusr ∗∗o ((x ((p5q)) y)) p8q)
(appendr ∗o ((x ((p5q)) y)) q))) ⇒

((((p5q p3q))
((p5q p2q p1q))
((p5q p1q p2q))
((p5q p1q p1q p1q))
((p1q p5q p2q))
((p1q p5q p1q p1q))
((p2q p5q p1q))
((p1q p1q p5q p1q))
((p3q p5q))
((p1q p2q p5q))
((p2q p1q p5q))
((p1q p1q p1q p5q))))
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Here is a more complicated example—we want to find all
lists of numbers that sum to twenty-five and satisfy certain
additional constraints. The list must begin with a list w of
positive numbers, followed by the number three, followed by
any single positive number x , the number four, a list y of
positive numbers, the number five, and a list z of positive
numbers.

(run∗ (q)
(fresh (w x y z in∗∗)

(≡ ((w ((p3q x p4q)) y ((p5q)) z)) in∗∗)
(positive-plusr ∗∗o in∗∗ p25q)
(appendr ∗o in∗∗ q)))

Here is a list of the first four values.

((((p3q p1q p4q p5q p12q))
((p3q p1q p4q p5q p1q p11q))
((p3q p1q p4q p5q p2q p10q))
((p3q p2q p4q p5q p11q))))

For the curious, the 7,806th value is

((p1q p3q p1q p4q p5q p11q))

and the 4,844th value is

((p3q p1q p4q p1q p5q p9q p2q))

foldr ∗o is not the only double-pseudo-variadic relational
abstraction; here is foldl ∗o, which we use to define plusl ∗∗o

and positive-plusl ∗∗o.

(define foldl ∗o

(lambda (rel o)
(letrec

((foldl ∗o (lambda (acc)
(lambda (in∗∗ out)

(conde

((≡ (()) in∗∗) (≡ acc out))
((fresh (dd)

(≡ (((()) � dd)) in∗∗)
((foldl ∗o acc) dd out)))

((fresh (a d dd res)
(≡ ((((a � d)) � dd)) in∗∗)
(rel o acc a res)
((foldl ∗o res) ((d � dd)) out))))))))

foldl ∗o)))

(define plusl ∗∗o ((foldl ∗o plus o) p0q))

(define positive-plusl ∗∗o

((foldl ∗o (lambda (acc a res)
(fresh ()

(positive o a)
(plus o acc a res))))

p0q))

Let us revisit an example demonstrating positive-plusr ∗∗o;
we replace positive-plusr ∗∗o with positive-plusl ∗∗o, and run∗

with run4.

(run4 (q) (positive-plusl ∗∗o ((q)) p3q)) ⇒

((((p3q))
((p1q p2q))
((p2q p1q))
((p1q p1q p1q))))

We get back the same values as before, although in a dif-
ferent order. If we replace run4 with run5, however, the
expression diverges. This should not be surprising, since we
have already seen a similar difference in divergence behavior
between plusr ∗o and plusl ∗o.

Finally, let us consider a double-pseudo-variadic relation
that cannot be defined using foldr ∗o or foldl ∗o. Here is
minusr ∗∗o, the generalization of minusr ∗o.

(define minusr ∗∗o

(lambda (in∗∗ out)
(fresh (in∗)

(appendr ∗o in∗∗ in∗)
(minusr ∗o in∗ out))))

The definition is made simple by the call to appendr ∗o—why
do we not use this technique when defining other double-
pseudo-variadic relations? Because the call to appendr ∗o can
succeed an unbounded number of times when in∗∗ is fresh or
partially instantiated, which can easily lead to divergence:

(run1 (q) (minusr ∗∗o ((((p3q)) q)) p5q))

diverges because the call to appendr ∗o keeps succeeding, and
because after each success the call to minusr ∗o fails.

Of course not every use of minusr ∗∗o results in diver-
gence. Let us find ten lists of numbers that contain seven
and whose difference is three.

(run10 (q)
(fresh (x y)

(≡ ((x ((p7q)) y)) q)
(minusr ∗∗o q p3q))) ⇒

(((((()) ((p7q)) ((p4q))))
(((()) ((p7q)) ((p0q p4q))))
(((()) ((p7q)) ((p1q p3q))))
(((()) ((p7q)) ((p2q p2q))))
(((()) ((p7q)) ((p4q p0q))))
(((()) ((p7q)) ((p3q p1q))))
(((()) ((p7q)) ((p0q p0q p4q))))
(((()) ((p7q)) ((p0q p1q p3q))))
(((()) ((p7q)) ((p0q p2q p2q))))
(((()) ((p7q)) ((p0q p4q p0q))))))

These values give the impression that x is always asso-
ciated with the empty list, which is not true. For exam-
ple, when we replace run10 with run70, then the twenty-
third and seventieth values are ((((p10q)) ((p7q)) (()))) and
((((p11q)) ((p7q)) ((p1q)))), respectively.

Let us exclude values in which sublists contain zeros, and
display the concatenation of the sublists to make the results
more readable.

(run10 (q)
(fresh (x y in∗∗)

(≡ ((x ((p7q)) y)) in∗∗)
(minusr ∗∗o in∗∗ p3q)
(appendr ∗o in∗∗ q)
(positive ∗o q))) ⇒

((((p7q p4q))
((p7q p1q p3q))
((p7q p2q p2q))
((p7q p3q p1q))
((p7q p1q p1q p2q))
((p7q p1q p2q p1q))
((p7q p2q p1q p1q))
((p10q p7q))
((p7q p1q p1q p1q p1q))
((p11q p7q p1q))))
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Of course there are still infinitely many values, even after
filtering out lists containing zeros.

Finally, let us replace the second argument to minusr ∗∗o

with a fresh variable.

(run10 (q)
(fresh (x y in∗ in∗∗ out)

(≡ ((in∗ out)) q)
(≡ ((x ((p7q)) y)) in∗∗)
(minusr ∗∗o in∗∗ out)
(appendr ∗o in∗∗ in∗)
(positive ∗o in∗))) ⇒

((((((p7q p1q)) p6q))
((((p7q p2q)) p5q))
((((p7q p3q)) p4q))
((((p7q p4q)) p3q))
((((p7q p5q)) p2q))
((((p7q p6q)) p1q))
((((p7q p7q)) p0q))
((((p7q p1q p1q)) p5q))
((((p7q p1q p2q)) p4q))
((((p7q p2q p1q)) p4q))))

When we replace run10 with run30, the thirtieth value is

((((p 0+7q p7q)) 0))

This value shows that (n + 7)− 7 = n for every n.

5. Conclusions
We have seen how to define both variadic and pseudo-
variadic relations in miniKanren, an embedding of logic
programming in Scheme. A variadic relation is defined using
Scheme’s var-args facility, and can take a variable number of
arguments. A pseudo-variadic relation takes two arguments,
the first of which is a list or a variable representing a list; the
ability to pass a fresh variable as the first argument makes
a pseudo-variadic relation more flexible than its variadic
equivalent.

Just as certain variadic Scheme functions can be defined
using the foldr or foldl abstractions, certain pseudo-variadic
relations can be defined using the foldr o or foldl o relational
abstractions. For example, pseudo-variadic versions of plus o

that add arbitrarily many numbers can be defined using
either relational abstraction. Another example is subsetl o,
which is defined using foldl o but cannot be redefined us-
ing foldr o. Even those pseudo-variadic relations that can be
defined using both relational abstractions may exhibit differ-
ent divergence behavior when using one abstraction instead
of the other. And some pseudo-variadic relations, such as
minusr ∗o, cannot be defined using either foldr o or foldl o.

We have also seen how to define double-pseudo-variadic
relations, which are a generalization of pseudo-variadic re-
lations. A double-pseudo-variadic relation takes two argu-
ments, the first of which is either a list of lists or a variable
representing a list of lists. As with pseudo-variadic relations,
certain double-pseudo-variadic relations can be defined us-
ing relational abstractions—for example, plusr ∗∗o is defined
using foldr ∗o.

The benefits of using Scheme as the host language for
miniKanren are demonstrated by the ease with which we can
define higher-order relational abstractions such as foldr ∗o.
We hope the examples we have presented inspire the reader
to experiment with miniKanren, and to experience the fun
of combining relational programming with Scheme.
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A. miniKanren Implementation
miniKanren evolved from Kanren [1]; its implementation
comprises three kinds of operators: functions such as unify
and reify, which take substitutions explicitly; goal construc-
tors ≡, conde, and fresh, which take substitutions implic-
itly; and the interface operator run. We represent substitu-
tions as association lists associating variables with values.

unify is based on the triangular model of substitutions
(See Baader and Snyder [2], for example.). Vectors should
not occur in arguments passed to unify, since we represent
variables as vectors.

(define unify
(lambda (u v s)

(let ((u (walk u s))
(v (walk v s)))

(cond
((eq? u v) s)
((var? u)
(cond

((var? v) (ext-s u v s))
(else (ext-s

√
u v s))))

((var? v) (ext-s
√

v u s))
((and (pair? u) (pair? v))
(let ((s (unify (car u) (car v) s)))

(and s (unify (cdr u) (cdr v) s))))
((equal? u v) s)
(else #f)))))

(define walk
(lambda (v s)

(cond
((var? v)
(let ((a (assq v s)))

(cond
(a (walk (cdr a) s))
(else v))))

(else v))))

(define ext-s
√

(lambda (x v s)
(cond

((occurs
√

x v s) #f)
(else (ext-s x v s)))))

(define occurs
√

(lambda (x v s)
(let ((v (walk v s)))

(cond
((var? v) (eq? v x ))
((pair? v)
(or (occurs

√
x (car v) s) (occurs

√
x (cdr v) s)))

(else #f)))))

(define ext-s
(lambda (x v s)

(cons ((x � v)) s)))

(define empty-s (()))

(define var vector)

(define var? vector?)

reify takes a substitution and an arbitrary value, per-
haps containing variables. reify first uses walk∗ to apply the
substitution to a value and then methodically replaces any
variables with reified names.

(define reify
(letrec

((reify-s
(lambda (v s)

(let ((v (walk v s)))
(cond

((var? v) (ext-s v (reify-name (length s)) s))
((pair? v) (reify-s (cdr v) (reify-s (car v) s)))
(else s))))))

(lambda (v s)
(let ((v (walk∗ v s)))

(walk∗ v (reify-s v empty-s))))))

(define walk∗

(lambda (w s)
(let ((v (walk w s)))

(cond
((var? v) v)
((pair? v) (cons (walk∗ (car v) s) (walk∗ (cdr v) s)))
(else v)))))

(define reify-name
(lambda (n)

(string�symbol
(string-append " " "." (number�string n)))))

A goal g is a function that maps a substitution s to an
ordered sequence of zero or more values—these values are
almost always substitutions. (For clarity, we notate lambda
as λG when creating such a function g .) Because the sequence
of values may be infinite, we represent it not as a list but as
a special kind of stream, a∞ .

Such streams contain either zero, one, or more values
[10, 16]. We use (mzero) to represent the empty stream of
values. If a is a value, then (unit a) represents the stream
containing just a. To represent a non-empty stream we use
(choice a f ), where a is the first value in the stream, and
where f is a function of zero arguments. (For clarity, we
notate lambda as λF when creating such a function f .) In-
voking the function f produces the remainder of the stream.
(unit a) can be represented as (choice a (λF () (mzero))),
but the unit constructor avoids the cost of building and
taking apart pairs and invoking functions, since many goals
return only singleton streams. To represent an incomplete
stream, we create an f using (inc e), where e is an expres-
sion that evaluates to an a∞ .

(define-syntax mzero
(syntax-rules ()

(( ) #f)))

(define-syntax unit
(syntax-rules ()

(( a) a)))

(define-syntax choice
(syntax-rules ()

(( a f ) (cons a f ))))

(define-syntax inc
(syntax-rules ()

(( e) (λF () e))))
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To ensure that streams produced by these four a∞ con-
structors can be distinguished, we assume that a singleton
a∞ is never #f, a function, or a pair whose cdr is a function.
To discriminate among these four cases, we define case∞ .

(define-syntax case∞

(syntax-rules ()

(( e on-zero ((â) on-one) ((a f ) on-choice) ((f̂) on-inc))
(let ((a∞ e))

(cond
((not a∞) on-zero)

((procedure? a∞) (let ((f̂ a∞)) on-inc))
((and (pair? a∞) (procedure? (cdr a∞)))
(let ((a (car a∞)) (f (cdr a∞))) on-choice))

(else (let ((â a∞)) on-one)))))))

The simplest goal constructor is ≡, which returns either a
singleton stream or an empty stream, depending on whether
the arguments unify with the implicit substitution. As with
the other goal constructors, ≡ always expands to a goal,
even if an argument diverges. We avoid the use of unit and
mzero in the definition of ≡, since unify returns either a
substitution (a singleton stream) or #f (our representation
of the empty stream).

(define-syntax ≡
(syntax-rules ()

(( u v)
(λG (s)

(unify u v s)))))

conde is a goal constructor that combines successive
conde-clauses using mplus∗. To avoid unwanted diver-
gence, we treat the conde-clauses as a single inc stream.
Also, we use the same implicit substitution for each conde-
clause. mplus∗ relies on mplus, which takes an a∞ and an
f and combines them (a kind of append). Using inc, how-
ever, allows an argument to become a stream, thus leading
to a relative fairness because all of the stream values will be
interleaved.

(define-syntax conde

(syntax-rules ()
(( (g0 g . . . ) (g1 ĝ . . . ) . . . )
(λG (s)

(inc
(mplus∗

(bind∗ (g0 s) g . . . )
(bind∗ (g1 s) ĝ . . . ) . . . ))))))

(define-syntax mplus∗

(syntax-rules ()
(( e) e)
(( e0 e . . . ) (mplus e0 (λF () (mplus∗ e . . . ))))))

(define mplus
(lambda (a∞ f )

(case∞ a∞

(f )
((a) (choice a f ))

((a f̂) (choice a (λF () (mplus (f̂) f ))))

((f̂) (inc (mplus (f ) f̂))))))

If the body of conde were just the mplus∗ expression, then
the inc clauses of mplus, bind, and take would never be
reached, and there would be no interleaving of values.

fresh is a goal constructor that first lexically binds its
variables (created by var) and then, using bind∗, combines
successive goals. bind∗ is short-circuiting: since the empty
stream (mzero) is represented by #f, any failed goal causes
bind∗ to immediately return #f. bind∗ relies on bind [11, 17],
which applies the goal g to each element in a∞ . These a∞ ’s
are then merged together with mplus yielding an a∞ . (bind
is similar to Lisp’s mapcan, with the arguments reversed.)

(define-syntax fresh
(syntax-rules ()

(( (x . . . ) g0 g . . . )
(λG (s)

(let ((x (var x)) . . . )
(bind∗ (g0 s) g . . . ))))))

(define-syntax bind∗

(syntax-rules ()
(( e) e)
(( e g0 g . . . )
(let ((a∞ e))

(and a∞ (bind∗ (bind a∞ g0) g . . . ))))))

(define bind
(lambda (a∞ g)

(case∞ a∞

(mzero)
((a) (g a))
((a f ) (mplus (g a) (λF () (bind (f ) g))))
((f ) (inc (bind (f ) g))))))

To minimize heap allocation we create a single λG closure
for each goal constructor, and we define bind∗ and mplus∗

to manage sequences, not lists, of goal-like expressions.
run, and therefore take, converts an f to a list. We wrap

the result of (reify x s) in a list so that the case∞ in take can
distinguish a singleton a∞ from the other three a∞ types.
We could simplify run by using var to create the fresh
variable x , but we prefer that fresh be the only operator
that calls var.

(define-syntax run
(syntax-rules ()

(( n (x ) g0 g . . . )
(take n

(λF ()
(let ((ĝ (fresh (x )

(λG (s)
(bind∗ (g0 s) g . . .

(λG (s)
(list (reify x s))))))))

(ĝ empty-s)))))))

(define take
(lambda (n f )

(if (and n (zero? n))
(())
(case∞ (f )

(())
((a) a)
((a f ) (cons (car a) (take (and n (− n 1)) f )))
((f ) (take n f ))))))

If the first argument to take is #f, we get the behavior of
run∗. It is trivial to write a read-eval-print loop that uses
the run∗ interface by redefining take.

116 Scheme and Functional Programming, 2006



This ends the implementation of the subset of miniKan-
ren used in this paper. Below we define the three addi-
tional goal constructors that complete the entire embedding:
conda and condu, which can be used to prune the search
tree of a program, and project, which can be used to access
the values of variables.

conda and condu correspond to the committed-choice
of Mercury, and are used in place of Prolog’s cut [7, 12].
Unlike conde, only one conda-clause or condu-clause can
return an a∞ : the first clause whose first goal succeeds. With
conda, the entire stream returned by the first goal is passed
to bind∗ (see picka). With condu, a singleton stream is
passed to bind∗—this stream contains the first value of the
stream returned by the first goal (see picku). The examples
from chapter 10 of The Reasoned Schemer [6] demonstrate
how conda and condu can be useful and the pitfalls that
await the unsuspecting reader.

(define-syntax conda

(syntax-rules ()
(( (g0 g . . . ) (g1 ĝ . . . ) . . . )
(λG (s)

(if ∗ (picka (g0 s) g . . . ) (picka (g1 s) ĝ . . . ) . . . )))))

(define-syntax condu

(syntax-rules ()
(( (g0 g . . . ) (g1 ĝ . . . ) . . . )
(λG (s)

(if ∗ (picku (g0 s) g . . . ) (picku (g1 s) ĝ . . . ) . . . )))))

(define-syntax if ∗

(syntax-rules ()
(( ) (mzero))
(( (pick e g . . . ) b . . . )
(let loop ((a∞ e))

(case∞ a∞

(if ∗ b . . . )
((a) (bind∗ a∞ g . . . ))
((a f ) (bind∗ (pick a a∞) g . . . ))
((f ) (inc (loop (f )))))))))

(define-syntax picka

(syntax-rules ()
(( a a∞) a∞)))

(define-syntax picku

(syntax-rules ()
(( a a∞) (unit a))))

project applies the implicit substitution to zero or more
lexical variables, rebinds those variables to the values re-
turned, and then evaluates the goal expressions in its body.
The body of a project typically includes at least one begin
expression—any expression is a goal expression if its value
is a miniKanren goal. project has many uses, such as dis-
playing the values associated with variables when tracing a
program.

(define-syntax project
(syntax-rules ()

(( (x . . . ) g0 g . . . )
(λG (s)

(let ((x (walk∗ x s)) . . . )
(bind∗ (g0 s) g . . . ))))))

Scheme and Functional Programming, 2006 117



118 Scheme and Functional Programming, 2006



A Self-Hosting Evaluator using HOAS
A Scheme Pearl

Eli Barzilay
Northeastern University

eli@barzilay.org

Abstract

We demonstrate a tiny, yet non-trivial evaluator that is powerful
enough to run practical code, including itself. This is made possible
using a Higher-Order Abstract Syntax (HOAS) representation —
a technique that has become popular in syntax-related research
during the past decade. With a HOAS encoding, we use functions
to encode binders in syntax values, leading to an advantages of
reflecting binders rather than re-implementing them.

In Scheme, hygienic macros cover problems that are associated
with binders in an elegant way, but only when extending the lan-
guage, i.e., when we work at the meta-level. In contrast, HOAS is a
useful object-level technique, used when we need to represent syn-
tax values that contain bindings — and this is achieved in a way
that is simple, robust, and efficient. We gradually develop the code,
explaining the technique and its benefits, while playing with the
evaluator.

1. Introduction

Higher-Order Abstract Syntax (HOAS) is a technique for repre-
senting syntax with bindings using functions. This is a form of re-
flection in the sense that binders in the object level are represented
using binders in the meta level. The result is simple (no need for so-
phisticated substitution mechanisms), robust (the meta-level is our
language, which better implement scope correctly), and efficient
(as it is part of the core implementation).

HOAS has been in use for a while now [13], a good overview is
given by Hofmann [9], and in [1, Section 4.7]. However, it is more
popular in the strictly typed world than it is in Scheme. In part,
this may be due to Scheme’s hygienic macro facility, which allows
hooking new kinds of syntactic constructs into the language in a
way that respects lexical scope. Using a high level macro system
means that Schemers rarely need to represent syntax directly —
instead, they work at the meta-level, extending the language itself.
This is unfortunate, as HOAS can be a useful tool for syntax-related
work. Furthermore, it is possible to formalize HOAS in a way
that is more natural in a dynamically-typed language than it is in

Proceedings of the 2006 Scheme and Functional Programming Workshop
University of Chicago Technical Report TR-2006-06

statically-typed ones, which corresponds to a HOAS formalization
in Nuprl [3] that builds on the predicative nature of its type theory
[2, 1, 12].

The purpose of this Scheme pearl is to demonstrate the use of
HOAS in Scheme, with the goal of making this technique more
accessible to Schemers1. As demonstrated below, using macros in
Scheme facilitates the use of HOAS, as there is no need for an ex-
ternal tool for translating concrete syntax into HOAS representa-
tions. In itself, HOAS is a representation tool for object-level val-
ues, not for meta-level work where bindings are directly accessible
in some way. It is, however, used in some meta-linguistic systems
for implementing syntactic tools2. For example, it could be used as
the underlying term representation in a language-manipulating tool
like PLT’s Reduction Semantics [11].

2. A Toy Evaluator

The presentation begins with a simple evaluator. Our goal is to
evaluate a Lambda-Calculus-like language using reductions, so we
need a representation for lambda abstractions and applications. To
make this example more practical, we also throw in a conditional
if special form, make it handle multiple arguments, and use call-
by-value. A common evaluator sketch for such a language is3:

(define (ev expr)
(cond [(not (pair? expr)) expr]

[(eq? ’if (car expr))
(ev (if (ev (cadr expr)) (caddr expr) (cadddr expr)))]

[else (ev (let ([f (ev (car expr))])
(substitute (body-of f)

(args-of f)
(map ev (cdr expr)))))]))

where an application is always assumed to have an abstraction in
its head position, and the args-of and body-of functions pull out
the corresponding parts. As expected, the main issue here is imple-
menting a proper substitution function. Common approaches in-
clude using symbols and renaming when needed, or using symbols
‘enriched’ with lexical binding information (‘colors’).

1 The presentation is loosely based on a comp.lang.scheme post from Octo-
ber 2002.
2 It might be possible that HOAS can be used for implementing a low-
level macro facility that the high-level hygienic macro system builds on.
HOAS should not be confused with current low-level syntactic systems like
syntactic closures or syntax-case.
3 Note that details like error checking are omitted, and that we use atomic
Scheme values such as booleans and numbers to represent themselves.
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On the other hand, we can use a higher-order abstract syntax
representation for our language, which will make things easier to
handle than raw S-expressions. For this, we represent an abstraction
using a Scheme function, and bound occurrences are represented as
bound occurrences in the Scheme code. For example,

(lambda (x y) (if x x y))
is represented by

(lambda (x y) (list ’if x x y))
— and substitution is free as it is achieved by applying the Scheme
function.

3. Creating HOAS Representations

Given that our representation of lambda abstractions uses Scheme
lambda expressions, we need some facility to create such represen-
tation while avoiding the possible confusion when using lambda
for different purposes. The common approach for creating such rep-
resentations is to use a preprocessor that translates concrete syntax
into a HOAS value. In Scheme, this is easily achieved by a macro
that transforms its body to the corresponding representation:

;; Translates simple terms into a HOAS representation
;; values, which are:
;; Term = atom ; literals
;; | (list ’if Term Term Term) ; conditionals
;; | (Term ... -> Term) ; abstractions
;; | (list Term ...) ; applications
(define-syntax Q

(syntax-rules (lambda if)
[(Q (lambda args b)) (lambda args (Q b))]
[(Q (if x y z)) (list ’if (Q x) (Q y) (Q z))]
[(Q (f x ...)) (list (Q f) (Q x) ...)]
[(Q x) x]))

A few interaction examples can help clarify the nature of these
values:

> (Q 1)
1
> (Q (+ 1 2))
(#<primitive:+> 1 2)
> (Q (if 1 2 3))
(if 1 2 3)
> (Q (lambda (x) (+ x 1)))
#<procedure>

The last one is important — the lambda expression is represented
by a Scheme procedure, which, when applied, returns the result of
substituting values for bound identifiers:

> (define foo (Q (lambda (x) (+ x 1))))
> (foo 2)
(#<primitive:+> 2 1)

Using the representations that the ‘quoting’ macro Q creates, a
complete substitution-based evaluator is easily written:

;; ev : Term -> Val
;; evaluate an input term into a Scheme value
(define (ev expr)

(cond [(not (pair? expr)) expr]
[(eq? ’if (car expr))
(ev (if (ev (cadr expr)) (caddr expr) (cadddr expr)))]

[else (ev (apply (ev (car expr))
(map ev (cdr expr))))]))

Note that the underlined apply expression invokes the Scheme
procedure which performs the substitution that is needed for the
beta-reduction: it is a ‘Term→Term’ function. The result of this

application expression is therefore a piece of (post-substitution)
syntax that requires further evaluation.

In addition, this is a simple substitution-based evaluator —
no environments, identifier lookups, or mutation. Scheme values
are used as self-evaluating literals (some achieved by a Scheme
identifier reference), including Scheme procedures that are exposed
as primitive values. Specifically, the last cond clause is used for
both primitive function applications and beta reductions — this
leads to certain limitations and possible errors, so it is fixed below.

It is easy to confuse the current representation as a trick; after
all, we represent abstractions using Scheme abstractions, and beta-
reduce using Scheme applications — sounds like we end up with a
simple meta-circular Scheme evaluator that inherits Scheme’s fea-
tures. This is not the case, however: Scheme applications achieves
nothing more than substitution. To demonstrate this, the evaluator
can easily be changed to use a lazy evaluation regimen if it avoids
evaluating abstraction arguments. This requires a distinction be-
tween strict and non-strict positions. For simplicity, we only distin-
guish primitive functions (all arguments are strict) and abstractions
(no arguments are strict) using MzScheme’s primitive?4 predi-
cate:

;; ev* : Term -> Val
;; evaluate an input term into a Scheme value, lazy version
(define (ev* expr)

(cond [(not (pair? expr)) expr]
[(eq? ’if (car expr))
(ev* ((if (ev* (cadr expr)) caddr cadddr) expr))]

[else (ev* (let ([f (ev* (car expr))])
(apply f (if (primitive? f)

(map ev* (cdr expr))
(cdr expr)))))]))

And the result is a lazy language, where we can even use the call-
by-name fixpoint combinator:

> (ev (Q ((lambda (x y z) (if x y z))
#t (display "true\n") (display "false\n"))))

true
false
> (ev* (Q ((lambda (x y z) (if x y z))

#t (display "true\n") (display "false\n"))))
true
> (ev* (Q (((lambda (f)

((lambda (x) (f (x x)))
(lambda (x) (f (x x)))))

(lambda (fact)
(lambda (n)

(if (zero? n) 1 (* n (fact (- n 1)))))))
5)))
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4. Advantages of the HOAS Representation

At this point we can see the advantages of the HOAS representa-
tion. These are all due to the fact that the Scheme binding mecha-
nism is reflected rather than re-implemented.

Free substitution: since we use Scheme functions, the Scheme
implementation provides us with free substitution — we get
a substituting evaluator, without the hassle of implementing
substitution.

Robust: dealing with the subtleties of identifier scope (substitu-
tion, alpha renaming, etc) is usually an error-prone yet critical
element in code that deals with syntax. In our evaluator, we

4 A predicate that identifies primitive built-in procedures.
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need not worry about these issues, since it reflects the mecha-
nism that already exists in the implementation we use.

Efficient: the representation lends itself to efficient substitution
for two reasons. First, function calls are an essential part of
functional languages that must be very efficient; a feature that
our substitution inherits. Second, if we incrementally substitute
some syntax value with multiple binding levels, then the substi-
tutions are not carried out immediately but pushed to substitu-
tion cache contexts (=environments), which are the implemen-
tation’s efficient representation of closures.

Good integration: representing concrete syntax with Scheme S-
expressions is superior to the flat string representations that is
found in other languages because the structure of the syntax is
reflected in syntax values (values are “pre-parsed” into trees). In
a similar way, HOAS adds yet another dimension to the repre-
sentation — scope is an inherent part of representations (lexical
scopes are already identified and turned to closures). We there-
fore enjoy all functionality that is related to scope in our imple-
mentation. For example, the unbound identifiers are caught by
the implementation, analysis tools such as DrScheme’s “Check
Syntax” [6] work for bindings in the representation, macros can
be used, etc.

These advantages, however, do not come without a price. More
on this below.

5. Improving the Code

So far, the evaluator is simple, but the code is somewhat messy:
lambda abstractions and primitive procedures are conflated, lists
are used both as values and as syntax representations. Furthermore,
the evaluator is not as complete as it needs to be to host itself. We
begin by improving the code, and in the following section we will
extend it so it can run itself.

We begin by introducing a new type for our syntax objects, and
use this type to create tagged values for lambda abstractions and
applications:

;; A type for syntax representation values
;; Term = atom ; literals
;; | (term ’if Term Term Term) ; conditionals
;; | (term ’lam (Term ... -> Term)) ; abstractions
;; | (term ’app Term ...) ; applications
(define-struct term (tag exprs) #f)
(define (term tag . args) (make-term tag args))

;; Translates simple terms into a HOAS representation
(define-syntax Q

(syntax-rules (lambda if)
[(Q (lambda args b)) (term ’lam (lambda args (Q b)))]
[(Q (if x y z)) (term ’if (Q x) (Q y) (Q z))]
[(Q (f x ...)) (term ’app (Q f) (Q x) ...)]
[(Q x) x]))

ev is then adapted to process values of this type.

;; ev : Term -> Val
;; evaluate an input term into a Scheme value
(define (ev expr)

(if (term? expr)
(let ([subs (term-exprs expr)])

(case (term-tag expr)
[(lam) expr]
[(if) (ev ((if (ev (car subs)) cadr caddr) subs))]
[(app) (let ([f (ev (car subs))]

[args (map ev (cdr subs))])
(cond [(and (term? f) (eq? ’lam (term-tag f)))

(ev (apply (car (term-exprs f)) args))]

[(procedure? f)
(apply f args)]

[else (error ’ev "bad procedure")]))]
[else (error ’ev "bad tag")]))

expr))

We can now test this evaluation procedure:

> (ev (Q (lambda (x) (+ x 1))))
#3(struct:term lam (#<procedure>))
> (ev (Q ((lambda (x) (+ x 1)) 2)))
3
> (define plus1 (Q (lambda (x) (+ x 1))))
> (ev (Q (plus1 2)))
3

As the previous version, this evaluator does not maintain its own
environment, instead, it uses the Scheme environment (in coopera-
tion with the quotation macro that leaves bindings untouched). This
is used as a definition mechanism that is demonstrated in the last
example — but we have to be careful to use such values only in
a syntax-representation context. Because the representation is us-
ing Scheme closures, we can use recursive Scheme definitions to
achieve recursion in our interpreted language:

> (define fact
(Q (lambda (n)

(if (zero? n) 1 (* n (fact (- n 1)))))))
> (ev (Q (fact 30)))
265252859812191058636308480000000

Again, making this evaluator lazy is easy: we only need to avoid
evaluating the arguments on beta reductions. In fact, we can go
further and ‘compile’ lambda expressions into Scheme closures
that will do the reduction and use ev* to continue evaluating the
result. To deal with strict primitives properly, we evaluate them to
a wrapper function that evaluates its inputs5:

;; ev* : Term -> Val
;; evaluate an input term into a Scheme value,
;; this version is lazy, and ‘compiles’ closures to Scheme procedures
(define (ev* expr)

(cond
[(term? expr)
(let ([subs (term-exprs expr)])

(case (term-tag expr)
[(lam) (lambda args (ev* (apply (car subs) args)))]
[(if) (ev* ((if (ev* (car subs)) cadr caddr) subs))]
[(app) (apply (ev* (car subs)) (cdr subs))]
[else (error ’ev "bad tag")]))]

[(primitive? expr)
(lambda args (apply expr (map ev* args)))]

[else expr]))

On first look, this change seems a bit dangerous — not only is a
lambda expression represented as a Scheme closure, evaluating
it returns a Scheme closure. In fact, this approach works as the
types demonstrate: the function that is part of the representation is
‘Term→Term’, whereas the ‘compiled’ closure is a ‘Term→Val’
function. Note also that Scheme primitives act as primitives of the
interpreted language (‘Val→Val’), and the evaluator wraps them
as a ‘Term→Val’ function that allows uniform treatment of both
cases in applications.

Here are a few examples to compare with the previous evaluator:

5 Ideally, any procedure that is not the result of evaluating a lambda expres-
sion should be wrapped. In MzScheme it is possible to tag some closures
using applicable structs, but in this paper the code is kept short.
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> (ev* (Q (lambda (x) (+ x 1))))
#<procedure>
> (ev* (Q ((lambda (x) (+ x 1)) 2)))
3
> (ev* (Q ((lambda (x y) (+ x 1)) 2 (/ 2 0))))
3
> ((ev* (Q (lambda (x) (+ x 1))))

(Q 2))
3

In the last example, the ‘Term→Val’ procedure that is the result
of evaluating the first part is directly applied on (Q 2) (a syntax)
which is essentially how the outermost application of the second
example is handled. This application jumps back into the evaluator
and continues the computation.

Using the Scheme toplevel for definitions, we can define and
use a lazy fixpoint combinator:

> (define Y
(ev* (Q (lambda (f)

((lambda (x) (f (x x)))
(lambda (x) (f (x x))))))))

> (define fact0
(ev* (Q (lambda (fact)

(lambda (n)
(if (zero? n) 1 (* n (fact (- n 1)))))))))

> (ev* (Q (Y fact0)))
#<procedure>> (ev* (Q ((Y fact0) 30)))
265252859812191058636308480000000

Finally, as an interesting by-product of this namespace sharing, we
can even use the call-by-name fixpoint combinator with Scheme
code, as long as we use ev* to translate the function into a Scheme
function:

> ((Y (lambda (fact)
(lambda (n)

(let ([fact (ev* fact)])
(if (zero? n) 1 (* n (fact (- n 1))))))))

30)
265252859812191058636308480000000

6. Making ev Self-Hosting

In preparation for making our evaluator self-hosting, we need to
deal with representations of all forms that are used in its definition.
Again, to make things simple, we avoid adding new core forms —
instead, we translate the various forms to ones that the evaluator
already knows how to deal with. We will use ‘nested’ instantiations
of our evaluator, which will require nested use of the Q quotation
form — this is a minor complication that could be solved using
macro-CPS [8, 10], but in MzScheme [7] it is easier to write a
syntax-case-based macro, which uses a simple loop for nested
occurrences of Q. The new (and final) definition is in Figure 1. On
first look it seems complex, but it is merely translating additional
forms into known ones, and propagates the transformation into the
delay special form (which will be needed shortly).

The lazy evaluator is slightly modified: call-by-name is too slow
to be usable when nesting multiple evaluators, so we change it to
use call-by-need instead. For this, we make it create ev* promises
for function arguments, and automatically force promise values
so they are equivalent to plain values. We also need to treat the
term constructor as a primitive (otherwise it will contain promises
instead of values). The definition follows.

;; ev* : Term -> Val
;; evaluate an input term into a Scheme value, uses call-by-need

(define (ev* expr)
(cond

[(term? expr)
(let ([subs (term-exprs expr)])

(case (term-tag expr)
[(lam) (lambda args

(ev* (apply (car subs)
(map (lambda (a) (delay (ev* a)))

args))))]
[(if) (ev* ((if (ev* (car subs)) cadr caddr) subs))]
[(app) (apply (ev* (car subs)) (cdr subs))]
[else (error ’ev "bad tag")]))]

[(promise? expr) (ev* (force expr))]
[(primitive*? expr)
(lambda args (apply expr (map ev* args)))]

[else expr]))

(define (primitive*? x)
(or (primitive? x) (eq? x term)))

And with this change we are finally ready to run the evaluator code
in itself.

7. Bootstrapping the Evaluator

First, we use the strict evaluator to evaluate a nested copy of itself.
In this definition, ev is the same as the strict version above, and its
code is used with no change.

(define ev1
(ev* (Q (Y (lambda (ev)

(lambda (expr)
(cond

[(term? expr)
(let ([subs (term-exprs expr)])

(case (term-tag expr)
[(lam) (lambda args

(ev (apply (car subs) args)))]
[(if) (ev ((if (ev (car subs))

cadr caddr)
subs))]

[(app) (apply (ev (car subs))
(map ev (cdr subs)))]

[else (error ’ev1 "bad tag")]))]
[else expr])))))))

We can verify that this evaluator works as expected:

> (ev (Q (ev1 (Q (+ 1 2)))))
3
> (ev (Q (ev1 (Q ((lambda (x) (+ x 2)) 1)))))
3

We can continue this and implement a third evaluator in ev1 —
using the same definition once again. The result is again working
fine.

> (define ev2
(ev (Q (ev1 (Q (lambda (expr)

;; Same code as ev1, substituting ‘ev2’ for ‘ev1’
))))))

> (ev (Q (ev1 (Q (ev2 (Q (+ 1 2)))))))
3
> (ev (Q (ev1 (Q (ev2 (Q ((lambda (x) (+ x 2)) 1)))))))
3

It is interesting to compare the performance of the three eval-
uators. We do this by defining a Fibonacci function in each of the
three levels and in Scheme:

(define fib
(lambda (n)

(if (<= n 1) n (+ (fib (- n 1)) (fib (- n 2))))))
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;; Translates terms into a HOAS representation
(define-syntax (Q s)

(let transform ([s s])
(syntax-case s (Q quote lambda if let and or cond case else delay)

[(Q (Q x)) ; transform once, then reprocess:
(with-syntax ([1st-pass (transform (syntax (Q x)))])

(syntax (Q 1st-pass)))]
[(Q (quote x)) (syntax ’x)]
[(Q (lambda args b)) (syntax (term ’lam (lambda args (Q b))))]
[(Q (if x y z)) (syntax (term ’if (Q x) (Q y) (Q z)))]
[(Q (let ([x v] ...) b)) (syntax (Q ((lambda (x ...) b) v ...)))]
[(Q (and)) (syntax #t)]
[(Q (and x)) (syntax x)]
[(Q (and x y ...)) (syntax (Q (if x (and y ...) #f)))]
[(Q (or)) (syntax #f)]
[(Q (or x)) (syntax x)]
[(Q (or x y ...)) (syntax (Q (let ([x* x]) (if x* x* (or y ...)))))]
[(Q (cond)) (syntax ’unspecified)]
[(Q (cond [else b])) (syntax (Q b))]
[(Q (cond [test b] clause ...))

(syntax (Q (if test b (cond clause ...))))]
[(Q (case v)) (syntax ’unspecified)]
[(Q (case v [else b])) (syntax (Q b))]
[(Q (case v [(tag) b] clause ...)) ; (naive translation)

(syntax (Q (if (eqv? v ’tag) b (case v clause ...))))]
[(Q (delay x)) (syntax (delay (Q x)))]
[(Q (f x ...)) (syntax (term ’app (Q f) (Q x) ...))]
[(Q x) (syntax x)])))

Figure 1. Full quotation code

(define fib0
(ev (Q (lambda (n) ...))))

(define fib1
(ev (Q (ev1 (Q (lambda (n) ...))))))

(define fib2
(ev (Q (ev1 (Q (ev2 (Q (lambda (n) ...))))))))

Measuring their run-time shows the expected blowup with each
layer of representation, and that even at three levels of nesting it
is still usable.

> (time (fib 18))
cpu time: 1 real time: 1 gc time: 0
2584
> (time (ev (Q (fib0 18))))
cpu time: 105 real time: 133 gc time: 65
2584
> (time (ev (Q (ev1 (Q (fib1 18))))))
cpu time: 618 real time: 637 gc time: 394
2584
> (time (ev (Q (ev1 (Q (ev2 (Q (fib2 18))))))))
cpu time: 3951 real time: 4131 gc time: 2612
2584

To make things more interesting, we can try variations on this
theme. For example, we can nest a strict evaluator in the lazy one,
and use the Y combinator to get recursion:

(define ev*1
(ev* (Q (Y (lambda (ev)

(lambda (expr)
(cond

[(term? expr)
(let ([subs (term-exprs expr)])

(case (term-tag expr)
[(lam) (lambda args

(ev (apply (car subs) args)))]
[(if) (ev ((if (ev (car subs))

cadr caddr)
subs))]

[(app) (apply (ev (car subs))
(map ev (cdr subs)))]

[else (error ’ev*1 "bad tag")]))]
[else expr])))))))

The definition of this evaluator is not really strict. In fact, it does
not enforce any evaluation strategy — it just inherits it from the
language it is implemented in. In this case, this definition is running
in ev*’s lazy context, which makes the resulting language lazy as
well:

> (ev* (Q (ev*1 (Q (+ 1 2)))))
3
> (ev* (Q (ev*1 (Q ((lambda (x y) y) (+ 1 "2") 333)))))
333

Again, we can repeat this definition to get a third level, then mea-
sure the performance of the three levels using fib definitions:

> (time (ev* (Q (fib*0 18))))
cpu time: 198 real time: 227 gc time: 129
2584
> (time (ev* (Q (ev*1 (Q (fib*1 18))))))
cpu time: 575 real time: 589 gc time: 357
2584
> (time (ev* (Q (ev*1 (Q (ev*2 (Q (fib*2 18))))))))
cpu time: 1186 real time: 1266 gc time: 780
2584

It is interesting to note that the blowup factor is much smaller than
in the ev case. The conclusion is still the same: each evaluator
layer increases run-time, but the blowup is small enough to still
be practical. (E.g., it is a feasible strategy for implementing DSLs.)

8. HOAS Disadvantages

As mentioned above, HOAS does not come without a price. The
two major problems with HOAS representations are well-known:

Exotic terms: we have seen that the functions that are used in
HOAS representations are syntactic ‘Term→Term’ transform-
ers. However, not all of these functions are proper representa-
tions — some are not a quotation of any concrete syntax. For
example, we can manually construct the following term, which
does hold a ‘Term→Term’ function:
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(term ’lam

(lambda (x)

(if (equal? x (Q 1)) (Q 2) (Q 3))))

but it is not a valid representation — there is no lambda term
that has this as its quotation. Briefly, the problem is that the
function is trying to inspect its values (it would have been a
valid representation had the whole if expression been quoted).
This means that we should not allow arbitrary functions into
the representation; indeed, major research efforts went into
formalizing types in various ways from permutations-based
approaches [15, 16, 17], to modal logic [4, 5] and category
theory [14]. In [1], another formalism is presented which is
of particular interest in the context of Scheme. It relies on a
predicative logic system, which corresponds to certain dynamic
run-time checks that can exclude formation of exotic terms.
This formalism is extended in [12].

Induction: another common problem is that the representation
contains functions (which puts a function type in a negative po-
sition), and therefore does not easily lend itself to induction.
Several solutions for this problem exist. As previously demon-
strated [1], these functions behave in a way that makes them
directly correspond to concrete syntax. In Scheme, the quota-
tion macro can add the missing information — add the syntactic
information that contains enough hints to recover the structure
(but see [1] for why this is not straightforward).

As a side note, it is clear that using HOAS is very different in
its nature than using high-level Scheme macros. Instead of plain
pattern matching and template filling, we need to know and encode
the exact lexical structure of any binding form that we wish to
encode. Clearly, the code that is presented here is simplified as
it has just one binding form, but we would face such problems if
we would represent more binding constructs like let, let* and
letrec. This is not necessarily a negative feature, since lexical
scope needs to be specified in any case.

9. Conclusion

We have presented code that uses HOAS techniques in Scheme.
The technique is powerful enough to make it possible to write a
small evaluator that can evaluate itself, and — as we have shown
— be powerful enough to model different evaluation approaches.
In addition to being robust, the encoding is efficient enough to be
practical even at three levels of nested evaluators, or when using
lazy semantics. HOAS is therefore a useful tool in the Scheme
world in addition to the usual host of meta-level syntactic tools.

We plan on further work in this area, specifically, it is possible
that using a HOAS representation for PLT’s Reduction Semantics
[11] tool will result in a speed boost, and a cleaner solution to its
custom substitution specification language. Given that we’re using
Scheme bindings to represent bindings may make it possible to
use HOAS-based techniques combined with Scheme macros. For
example, we can represent a language in Scheme using Scheme
binders, allowing it to be extended via Scheme macros in a way
that still respects Scheme’s lexical scope rules.
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Abstract
Termite Scheme is a variant of Scheme intended for distributed
computing. It offers a simple and powerful concurrency model,
inspired by the Erlang programming language, which is based on a
message-passing model of concurrency.

Our system is well suited for building custom protocols and ab-
stractions for distributed computation. Its open network model al-
lows for the building of non-centralized distributed applications.
The possibility of failure is reflected in the model, and ways to
handle failure are available in the language. We exploit the exis-
tence of first class continuations in order to allow the expression of
high-level concepts such as process migration.

We describe the Termite model and its implications, how it com-
pares to Erlang, and describe sample applications built with Ter-
mite. We conclude with a discussion of the current implementation
and its performance.

General Terms Distributed computing in Scheme

Keywords Distributed computing, Scheme, Lisp, Erlang, Contin-
uations

1. Introduction
There is a great need for the development of widely distributed ap-
plications. These applications are found under various forms: stock
exchange, databases, email, web pages, newsgroups, chat rooms,
games, telephony, file swapping, etc. All distributed applications
share the property of consisting of a set of processes executing
concurrently on different computers and communicating in order
to exchange data and coordinate their activities. The possibility of
failure is an unavoidable reality in this setting due to the unreliabil-
ity of networks and computer hardware.

Building a distributed application is a daunting task. It requires
delicate low-level programming to connect to remote hosts, send
them messages and receive messages from them, while properly
catching the various possible failures. Then it requires tedious
encoding and decoding of data to send them on the wire. And
finally it requires designing and implementing on top of it its own
application-level protocol, complete with the interactions between
the high-level protocol and the low-level failures. Lots and lots of
bug opportunities and security holes in perspective.
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Termite aims to make this much easier by doing all the low-level
work for you and by leveraging Scheme’s powerful abstraction
tools to make it possible to concentrate just on the part of the design
of the high-level protocol which is specific to your application.

More specifically, instead of having to repeat all this work every
time, Termite offers a simple yet high-level concurrency model
on which reliable distributed applications can be built. As such it
provides functionality which is often called middleware. As macros
abstract over syntax, closures abstract over data, and continuations
abstract over control, the concurrency model of Termite aims to
provide the capability of abstracting over distributed computations.

The Termite language itself, like Scheme, was kept as powerful
and simple as possible (but no simpler), to provide simple orthog-
onal building blocks that we can then combine in powerful ways.
Compared to Erlang, the main additions are two building blocks:
macros and continuations, which can of course be sent in messages
like any other first class object, enabling such operations as task
migration and dynamic code update.

An important objective was that it should be flexible enough to
allow the programmer to easily build and experiment with libraries
providing higher-level distribution primitives and frameworks, so
that we can share and reuse more of the design and implementation
between applications. Another important objective was that the
basic concurrency model should have sufficiently clean semantic
properties to make it possible to write simple yet robust code on
top of it. Only by attaining those two objectives can we hope
to build higher layers of abstractions that are themselves clean,
maintainable, and reliable.

Sections 2 and 3 present the core concepts of the Termite model,
and the various aspects that are a consequence of that model.
Section 4 describes the language, followed by extended examples
in Sec. 5. Finally, Section 6 presents the current implementation
with some performance measurements.

2. Termite’s Programming Model
The foremost design philosophy of the Scheme [14] language is the
definition of a small, coherent core which is as general and power-
ful as possible. This justifies the presence of first class closures and
continuations in the language: these features are able to abstract
data and control, respectively. In designing Termite, we extended
this philosophy to concurrency and distribution features. The model
must be simple and extensible, allowing the programmer to build
his own concurrency abstractions.

Distributed computations consist of multiple concurrent pro-
grams running in usually physically separate spaces and involving
data transfer through a potentially unreliable network. In order to
model this reality, the concurrency model used in Termite views
the computation as a set of isolated sequential processes which are
uniquely identifiable across the distributed system. They commu-
nicate with each other by exchanging messages. Failure is reflected
in Termite by the uncertainty associated with the transmission of
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a message: there is no guarantee that a message sent will ever be
delivered.

The core features of Termite’s model are: isolated sequential
processes, message passing, and failure.

2.1 Isolated sequential processes

Termite processes are lightweight. There could be hundreds of
thousands of them in a running system. Since they are an important
abstraction in the language, the programmer should not consider
their creation as costly. She should use them freely to model the
problems at hand.

A Termite process executes in the context of anode. Nodes are
identified with anode identifierthat contains information to locate
a node physically and connect to it (see Sec. 3.4 for details). The
procedurespawn creates and starts a new process on the node of
the parent process.

Termite processes are identified withprocess identifiersor pids.
Pidsareuniversally unique. We make the distinction here between
globally unique, which means unique at the node level, anduni-
versally unique, which means unique at the whole distributed net-
work level. Apid is therefore a reference to a process and contains
enough information to determine the node on which the process is
located. It is important to note that there is no guarantee that apid
refers to a process that is reachable or still alive.

Termite enforces strong isolation between each of the processes:
it is impossible for a process to directly access the memory space of
another process. This is meant to model the reality of a physically
distributed system, and has the advantage of avoiding the prob-
lems relative to sharing memory space between processes. This also
avoids having to care about mutual exclusion at the language level.
There is no need for mutexes and condition variables. Another con-
sequence of that model is that there is no need for a distributed
garbage collector, since there cannot be any foreign reference be-
tween two nodes’s memory spaces. On the other hand, a live pro-
cess might become unreachable, causing a resource leak: this part
of the resource management needs to be done manually.

2.2 Sending and receiving messages

Processes interact by exchanging messages. Each process has a
single mailbox in which Termite stores messages in the order in
which it receives them. This helps keep the model simple since it
saves us from introducing concepts like mailboxes or ports.

In Termite, a message can be any serializable first class value.
It can be an atomic value such as a number or a symbol, or a
compound value such as a list, record, or continuation, as long as it
contains only serializable values.

The message sending operation is asynchronous. When a pro-
cess sends a message, this is done without the process blocking.

The message retrieval operation is synchronous. A process at-
tempting to retrieve a message from its mailbox will block if no
message is available.

Here is an example showing the basic operations used in Ter-
mite: A processA spawns a new processB; The processB sends a
message toA; The processA waits until it receives it.

(let ((me (self)))
(spawn
(lambda ()
(! me "Hello, world!"))))

(?) =⇒ "Hello, world!"

The procedureself returns thepid of the current process. The
procedure! is thesend messageoperation, while the procedure?
is theretrieve the next mailbox messageoperation.

2.3 Failure

The unreliability of the physical, “real world” aspects of a dis-
tributed computation makes it necessary for that computation to
pay close attention to the possibility of failure. A computation run
on a single computer with no exterior communication generally
does not have to care whether the computer crashes. This is not
the case in a distributed setting, where some parts of the computa-
tion might go on even in the presence of hardware failure or if the
network connection goes down. In order to model failure, sending
a message in Termite is an unreliable operation. More specifically,
the semantics of the language do not specify how much time a mes-
sage will take to reach its destination and it may even never reach
it, e.g. because of some hardware failure or excessive load some-
where along the way. Joe Armstrong has called thissend and pray
semantics[2].

Since the transmission of a message is unreliable, it is generally
necessary for the application to use a protocol withacknowledg-
mentsto check that the destination has received the message . The
burden of implementing such a protocol is left to the application
because there are several ways to do it, each with an impact on the
way the application is organized. If no acknowledgment is received
within a certain time frame, then the application will take some
action to recover from the failure. In Termite the mechanism for
handling the waiting period is to have an optional timeout for the
amount of time to wait for messages. This is a basic mechanism on
which we can build higher level failure handling.

3. Peripheral Aspects
Some other Termite features are also notable. While they are not
core features, they come naturally when considering the basic
model. The most interesting of those derived features are serializa-
tion, how to deal with mutation, exception handling and the naming
of computers and establishing network connections to them.

3.1 Serialization

There should be no restrictions on the type of data that can consti-
tute a message. Therefore, it is important that the runtime system
of the language supports serialization of every first class value in
the language, including closures and continuations.

But this is not always possible. Some first class values in
Scheme are hard to serialize meaningfully, like ports and references
to physical devices. It will not be possible to serialize a closure or
a continuation if it has a direct reference to one of these objects in
their environment.

To avoid having references to non-serializable objects in the en-
vironment, we buildproxiesto those objects by using processes,
so that the serialization of such an object will be just a pid. There-
fore, Termite uses processes to represent ports (like open files) or
references to physical devices (like the mouse and keyboard).

Abstracting non-serializable objects as processes has two other
benefits. First, it enables the creation of interesting abstractions.
For example, a click of the mouse will send a message to some
“mouse listener”, sending a message to the process proxying the
standard output will print it, etc. Secondly, this allows us to access
non-movable resources transparently through the network.

3.2 Explicit mutation

To keep the semantics clean and simplify the implementation, mu-
tation of variables and data structures is not available. This allows
the implementation of message-passing within a given computer
without having to copy the content of the message.

For this reason, Termite forbids explicit mutation in the sys-
tem (as with the special formset! and proceduresset-car!,
vector-set!, etc.) This is not as big a limitation as it seems at

126 Scheme and Functional Programming, 2006



first. It is still possible to replace or simulate mutation using pro-
cesses. We just need to abstract state using messages and suspended
processes. This is a reasonable approach because processes are
lightweight. An example of a mutable data structure implemented
using a process is given in Section 4.6.

3.3 Exception handling

A Termite exception can be any first class value. It can beraisedby
an explicit operation, or it can be the result of a software error (like
division by zero or a type error).

Exceptions are dealt with by installing dynamically scoped han-
dlers. Any exception raised during execution will invoke the han-
dler with the exception as a parameter. The handler can either
choose to manage that exceptional condition and resume execution
or to raise it again. If it raises the exception again, it will invoke the
nearest encapsulating handler. Otherwise, the point at which exe-
cution resumes depends on the handler: anexception-handlerwill
resume execution at the point the exception was raised, whereas an
exception-catcherwill resume execution at the point that the han-
dler was installed.

If an exception propagates to the outer scope of the process (i.e.
an uncaught exception), the process dies. In order to know who to
notify of such a circumstance, each process has what we calllinks
to other processes. When a process dies and it islinkedto other pro-
cesses, Termite propagates the exception to those processes. Links
between processes are directed. A process which has an outbound
link to another process will send any uncaught exception to the
other process. Note that exception propagation, like all communi-
cation, is unreliable. The implementation will make an extra effort
when delivering an exception since that kind of message may be
more important for the correct execution of the application.

Receiving an exception causes it to be raised in the receiving
process at the moment of the nextmessage retrieveoperation by
that process.

Links can be established in both directions between two pro-
cesses. In that situation the link is said to bebidirectional. The
direction of the link should reflect the relation between the two
processes. In a supervisor-worker relation, we will use a bidirec-
tional link since both the supervisor and the worker need to learn
about the death of the other (the supervisor so it may restart the
worker, the worker so it can stop executing). In a monitor-worker
relation where the monitor is an exterior observer to the worker, we
will use an outbound link from the worker since the death of the
monitor should not affect the worker.

3.4 Connecting nodes

Termite processes execute on nodes. Nodes connect to each other
when needed in order to exchange messages. The current practice
in Termite is to uniquely identify nodes by binding them to an IP
address and a TCP port number. Node references contain exactly
that information and therefore it is possible to reach a node from
the information contained in the reference. Those references are
built using themake-node procedure.

Termite’s distributed system model is said to beopen: nodes
can be added or removed from a distributed computation at any
time. Just like it is possible to spawn a process on the current
node, it is possible to spawn a process on a remote node by using
theremote-spawn procedure. This is one of the key features that
enable distribution.

The concept of global environment as it exists in Scheme is
tied to a node. A variable referring to the global environment will
resolve to the value tied to that variable on the node on which the
process is currently executing.

3.5 Tags

A process may make multiple concurrent requests to another pro-
cess. Also, replies to requests may come out of order (and even
from a completely different process, e.g. if the request was for-
warded). In those cases, it can be difficult to sort out which re-
ply corresponds to which request. For this purpose, Termite has a
universally unique reference data type calledtag. When needed,
the programmer can then uniquely mark each new request with a
new tag, and copy the tag into the replies, to unequivocally indi-
cate which reply corresponds to which request. Note that this can
be necessary even when there is apparently only one request pend-
ing, since the process may receive a spurious delayed reply to some
earlier request which had timed out.

4. The Termite Language
This section introduces the Termite language through examples.
For the sake of simplicity those examples assume that messages
will always be delivered (no failure) and always in the same order
that they were sent.

The fundamental operations of Termite are:

(spawn fun ): create a process runningfunand return itspid.

(! pid msg ): send messagemsgto processpid.

(? [timeout [default ]]): fetch a message from the mailbox.

4.1 Making a “server” process

In the following code, we create a process calledpong-server.
This process will reply with the symbolpong to any message that
is a list of the form(pid ping) wherepid refers to the originating
process. The Termite procedureself returns thepid of the current
process.

(define pong-server
(spawn
(lambda ()
(let loop ()
(let ((msg (?)))
(if (and (list? msg)

(= (length msg) 2)
(pid? (car msg))
(eq? (cadr msg) ’ping))

(let ((from (car msg)))
(! from ’pong)
(loop))

(loop)))))))

(! pong-server (list (self) ’ping))

(?) =⇒ pong

4.2 Selective message retrieval

While the ? procedure retrieves the next available message in
the process’ mailbox, sometimes it can be useful to be able to
choose the message to retrieve based on a certain criteria. The
selective message retrieval procedure is(?? pred [timeout
[default ]]). It retrieves the first message in the mailbox which
satisfies the predicatepred. If none of the messages in the mailbox
satisfy pred, then it waits until one arrives that does or until the
timeout is hit.

Here is an example of the?? procedure in use:

(! (self) 1)
(! (self) 2)
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(! (self) 3)

(?) =⇒ 1
(?? odd?) =⇒ 3
(?) =⇒ 2

4.3 Pattern matching

The previouspong-server example showed that ensuring that a
message is well-formed and extracting relevant information from it
can be quite tedious. Since those are frequent operations, Termite
offers an ML-style pattern matching facility.

Pattern matching is implemented as a special form calledrecv,
conceptually built on top of the?? procedure. It has two simulta-
neous roles: selective message retrieval and data destructuring. The
following code implements the same functionality as the previous
pong serverbut usingrecv:

(define better-pong-server
(spawn
(lambda ()
(let loop ()
(recv
((from ’ping) ; pattern to match
(where (pid? from)) ; constraint
(! from ’pong))) ; action

(loop)))))

The use ofrecv here only has one clause, with the pattern
(from ’ping) and an additional side condition (also calledwhere
clause) (pid? from). The pattern constrains the message to be
a list of two elements where the first can be anything (ignoring
for now the subsequent side condition) and will be bound to the
variablefrom, while the second has to be the symbolping. There
can of course be several clauses, in which case the first message
that matches one of the clauses will be processed.

4.4 Using timeouts

Timeouts are the fundamental way to deal with unreliable message
delivery. The operations for receiving messages (ie.?, ??) can
optionally specify the maximum amount of time to wait for the
reception of a message as well as a default value to return if this
timeout is reached. If no timeout is specified, the operation will wait
forever. If no default value is specified, thetimeout symbol will
be raised as an exception. Therecv special form can also specify
such a timeout, with anafter clause which will be selected after
no message matched any of the other clauses for the given amount
of time.

(! some-server (list (self) ’request argument))

(? 10) ; waits for a maximum of 10 seconds
;; or, equivalently:
(recv
(x x)
(after 10 (raise ’timeout)))

4.5 Remote procedure call

The procedurespawn takes a thunk as parameter, creates a process
which evaluates this thunk, and returns thepid of this newly created
process. Here is an example of an RPC server to which uniquely
identified requests are sent. In this case a synchronous call to the
server is used:

(define rpc-server
(spawn
(lambda ()
(let loop ()
(recv
((from tag (’add a b))
(! from (list tag (+ a b)))))

(loop)))))

(let ((tag (make-tag)))
(! rpc-server (list (self)

tag
(list ’add 21 21)))

(recv
;; note the reference to tag in
;; the current lexical scope
((,tag reply) reply))) =⇒ 42

The pattern of implementing a synchronous call by creating a
tag and then waiting for the corresponding reply by testing for tag
equality is frequent. This pattern is abstracted by the procedure!?.
The following call is equivalent to the lastlet expression in the
previous code:

(!? rpc-server (list ’add 21 21))

Note that the procedure!? can take optionaltimeoutanddefault
arguments like the message retrieving procedures.

4.6 Mutable data structure

While Termite’s native data structures are immutable, it is still
possible to implement mutable data structures using processes to
represent state. Here is an example of the implementation of a
mutable cell:

(define (make-cell content)
(spawn
(lambda ()
(let loop ((content content))
(recv
((from tag ’ref)
(! from (list tag content))
(loop content))

((’set! content)
(loop content)))))))

(define (cell-ref cell)
(!? cell ’ref))

(define (cell-set! cell value)
(! cell (list ’set! value)))

4.7 Dealing with exceptional conditions

Explicitly signaling an exceptional condition (such as an error) is
done using theraise procedure. Exception handling is done us-
ing one of the two procedureswith-exception-catcher and
with-exception-handler, which install a dynamically scoped
exception handler (the first argument) for the duration of the evalu-
ation of the body (the other arguments).

After invoking the handler on an exception, the procedure
with-exception-catcher will resume execution at the point
where the handler was installed.with-exception-handler, the
alternative procedure, will resume execution at the point where
the exception was raised. The following example illustrates this
difference:
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(list
(with-exception-catcher
(lambda (exception) exception)
(lambda ()
(raise 42) ; this will not return
123)) =⇒ (42)

(list
(with-exception-handler
(lambda (exception) exception)
(lambda ()
(raise 42) ; control will resume here
123)) =⇒ (123)

The procedurespawn-link creates a new process, just like
spawn, but this new process is bidirectionally linked with the cur-
rent process. The following example shows how an exception can
propagate through a link between two processes:

(catch
(lambda (exception) #t)
(spawn (lambda () (raise ’error)))
(? 1 ’ok)
#f) =⇒ #f

(catch
(lambda (exception) #t)
(spawn-link (lambda () (raise ’error)))
(? 1 ’ok)
#f) =⇒ #t

4.8 Remotely spawning a process

The function to create a process on another node isremote-spawn.
Here is an example of its use:

(define node (make-node "example.com" 3000))

(let ((me (self)))
(remote-spawn node
(lambda ()
(! me ’boo)))) =⇒ a-pid

(?) =⇒ boo

Note that it is also possible to establish links to remote pro-
cesses. Theremote-spawn-link procedure atomically spawns
and links the remote process:

(define node (make-node "example.com" 3000))

(catch
(lambda (exception) exception)
(let ((me (self)))
(remote-spawn-link node
(lambda ()
(raise ’error))))

(? 2 ’ok)) =⇒ error

4.9 Abstractions built using continuations

Interesting abstractions can be defined usingcall/cc. In this sec-
tion we give as an example process migration, process cloning, and
dynamic code update.

Process migrationis the act of moving a computation from
one node to another. The presence of serializable continuations in
Termite makes it easy. Of the various possible forms of process

migration, two are shown here. The simplest form of migration,
called heremigrate-task, is to move a process to another node,
abandoning messages in its mailbox and current links behind. For
that we capture the continuation of the current process, start a new
process on a remote node which invokes this continuation, and then
terminate the current process:

(define (migrate-task node)
(call/cc
(lambda (k)
(remote-spawn node (lambda () (k #t)))
(halt!))))

A different kind of migration (migrate/proxy), which might
be more appropriate in some situations, will take care to leave a
process behind (aproxy) which will forward messages sent to it
to the new location. In this case, instead of stopping the original
process we make it execute an endless loop which forwards to the
new process every message received:

(define (migrate/proxy node)
(define (proxy pid)
(let loop ()
(! pid (?))
(loop)))

(call/cc
(lambda (k)
(proxy
(remote-spawn-link
node
(lambda () (k #t)))))))

Process cloningis simply creating a new process from an exist-
ing process with the same state and the same behavior. Here is an
example of a process which will reply to aclone message with a
thunk that makes any process become a “clone” of that process:

(define original
(spawn
(lambda ()
(let loop ()
(recv
((from tag ’clone)
(call/cc
(lambda (clone)
(! from (list tag (lambda ()

(clone #t))))))))
(loop)))))

(define clone (spawn (!? original ’clone)))

Updating code dynamically in a running system can be very
desirable, especially with long-running computations or in high-
availability environments. Here is an example of such a dynamic
code update:

(define server
(spawn
(lambda ()
(let loop ()
(recv
((’update k)
(k #t))

((from tag ’ping)
(! from (list tag ’gnop)))) ; bug

(loop)))))
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(define new-server
(spawn
(lambda ()
(let loop ()
(recv
((’update k)
(k #t))

((from tag ’clone)
(call/cc
(lambda (k)
(! from (list tag k)))))

((from tag ’ping)
(! from (list tag ’pong)))) ; fixed

(loop)))))

(!? server ’ping) =⇒ gnop

(! server (list ’update (!? new-server ’clone)))

(!? server ’ping) =⇒ pong

Note that this allows us to build a new version of a running
process, test and debug it separately and when it is ready replace
the running process with the new one. Of course this necessitates
cooperation from the process whose code we want to replace (it
must understand theupdate message).

5. Examples
One of the goals of Termite is to be a good framework to experi-
ment with abstractions of patterns of concurrency and distributed
protocols. In this section we present three examples: first a simple
load-balancing facility, then a technique to abstract concurrency in
the design of a server and finally a way to transparently “robustify”
a process.

5.1 Load Balancing

This first example is a simple implementation of a load-balancing
facility. It is built from two components: the first is ameter supervi-
sor. It is a process which supervises workers (calledmetersin this
case) on each node of a cluster in order to collect load information.
The second component is the work dispatcher: it receives a closure
to evaluate, then dispatches that closure for evaluation to the node
with the lowest current load.

Meters are very simple processes. They do nothing but send the
load of the current node to their supervisor every second:

(define (start-meter supervisor)
(let loop ()
(! supervisor

(list ’load-report
(self)
(local-loadavg)))

(recv (after 1 ’ok)) ; pause for a second
(loop)))

The supervisor creates a dictionary to store current load infor-
mation for each meter it knows about. It listens for the update mes-
sages and replies to requests for the node in the cluster with the
lowest current load and to requests for the average load of all the
nodes. Here is a simplified version of the supervisor:

(define (meter-supervisor meter-list)
(let loop ((meters (make-dict)))

(recv
((’load-report from load)
(loop (dict-set meters from load)))
((from tag ’minimum-load)
(let ((min (find-min (dict->list meters))))
(! from (list tag (pid-node (car min)))))

(loop dict))
((from tag ’average-load)
(! from (list tag

(list-average
(map cdr

(dict->list meters)))))
(loop dict)))))

(define (minimum-load supervisor)
(!? supervisor ’minimum-load))

(define (average-load supervisor)
(!? supervisor ’average-load))

And here is how we may start such a supervisor:

(define (start-meter-supervisor)
(spawn
(lambda ()
(let ((supervisor (self)))
(meter-supervisor
(map
(lambda (node)
(spawn
(migrate node)
(start-meter supervisor)))

*node-list*))))))

Now that we can establish what is the current load on nodes in
a cluster, we can implement load balancing. Thework dispatching
serverreceives a thunk, and migrates its execution to the currently
least loaded node of the cluster. Here is such a server:

(define (start-work-dispatcher load-server)
(spawn
(lambda ()
(let loop ()
(recv
((from tag (’dispatch thunk))
(let ((min-loaded-node

(minimum-load load-server)))
(spawn
(lambda ()
(migrate min-loaded-node)
(! from (list tag (thunk))))))))

(loop)))))

(define (dispatch dispatcher thunk)
(!? dispatcher (list ’dispatch thunk)))

It is then possible to use the proceduredispatch to request
execution of a thunk on the most lightly loaded node in a cluster.

5.2 Abstracting Concurrency

Since building distributed applications is a complex task, it is par-
ticularly beneficial to abstract common patterns of concurrency. An
example of such a pattern is a server process in a client-server or-
ganization. We use Erlang’s concept of behaviors to do that: behav-
iors are implementations of particular patterns of concurrent inter-
action.
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The behavior given as example in this section is derived from
thegeneric serverbehavior. A generic server is a process that can
be started, stopped and restarted, and answers RPC-like requests.

The behavior contains all the code that is necessary to handle the
message sending and retrieving necessary in the implementation of
a server. The behavior is only the generic framework. To create a
server we need to parameterize the behavior using aplugin that
describes the server we want to create. A plugin contains closures
(often calledcallbacks) that the generic code calls when certain
events occur in the server.

A plugin only contains sequential code. All the code having
to deal with concurrency and passing messages is in the generic
server’s code. When invoking a callback, the current server state
is given as an argument. The reply of the callback contains the
potentially modified server code.

A generic server plugin contains four closures. The first is for
server initialization, called when creating the server. The second is
for procedure calls to the server: the closure dispatches on the term
received in order to execute the function call. Procedure calls to the
server are synchronous. The third closure is forcasts, which are
asynchronous messages sent to the server in order to do manage-
ment tasks (like restarting or stopping the server). The fourth and
last closure is called when terminating the server.

Here is an example of a generic server plugin implementing a
key/value server:

(define key/value-generic-server-plugin
(make-generic-server-plugin
(lambda () ; INIT
(print "Key-Value server starting")
(make-dict))

(lambda (term from state) ; CALL
(match term
((’store key val)
(dict-set! state key val)
(list ’reply ’ok state))

((’lookup key)
(list ’reply (dict-ref state key) state))))

(lambda (term state) ; CAST
(match term
(’stop (list ’stop ’normal state))))

(lambda (reason state) ; TERMINATE
(print "Key-Value server terminating"))))

It is then possible to access the functionality of the server by
using the generic server interface:

(define (kv:start)
(generic-server-start-link
key/value-generic-server-plugin))

(define (kv:stop server)
(generic-server-cast server ’stop))

(define (kv:store server key val)
(generic-server-call server (list ’store key val)))

(define (kv:lookup server key)
(generic-server-call server (list ’lookup key)))

Using such concurrency abstractions helps in building reliable
software, because the software development process is less error-
prone. We reduce complexity at the cost of flexibility.

5.3 Fault Tolerance

Promoting the writing of simple code is only a first step in order
to allow the development of robust applications. We also need to
be able to handle system failures and software errors. Supervisors
are another kind of behavior in the Erlang language, but we use
a slightly different implementation from Erlang’s. Asupervisor
process is responsible for supervising the correct execution of a
worker process. If there is a failure in the worker, the supervisor
restarts it if necessary.

Here is an example of use of such a supervisor:

(define (start-pong-server)
(let loop ()
(recv
((from tag ’crash)
(! from (list tag (/ 1 0))))
((from tag ’ping)
(! from (list tag ’pong))))

(loop)))

(define robust-pong-server
(spawn-thunk-supervised start-pong-server))

(define (ping server)
(!? server ’ping 1 ’timeout))

(define (crash server)
(!? server ’crash 1 ’crashed))

(define (kill server)
(! server ’shutdown))

(print (ping robust-pong-server))
(print (crash robust-pong-server))
(print (ping robust-pong-server))
(kill robust-pong-server)

This generates the following trace (note that the messages pre-
fixed withinfo: are debugging messages from the supervisor) :

(info: starting up supervised process)
pong
(info: process failed)
(info: restarting...)
(info: starting up supervised process)
crashed
pong
(info: had to terminate the process)
(info: halting supervisor)

The call tospawn-thunk-supervised return thepid of the
supervisor, but any message sent to the supervisor is sent to the
worker. The supervisor is then mostly transparent: interacting pro-
cesses do not necessarily know that it is there.

There is one special message which the supervisors intercepts,
and that consists of the single symbolshutdown. Sending that
message to the supervisor makes it invoke ashutdown procedure
that requests the process to end its execution, or terminate it if it
does not collaborate. In the previous trace, the “had to terminate the
process” message indicates that the process did not acknowledge
the request to end its execution and was forcefully terminated.

A supervisor can be parameterized to set the acceptable restart
frequency tolerable for a process. A process failing more often than
a certain limit is shut down. It is also possible to specify the delay
that the supervisor will wait for when sending a shutdown request
to the worker.
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The abstraction shown in this section is useful to construct a
fault-tolerant server. A more general abstraction would be able to
supervise multiple processes at the same time, with a policy deter-
mining the relation between those supervised processes (should the
supervisor restart them all when a single process fails or just the
failed process, etc.).

5.4 Other Applications

As part of Termite’s development, we implemented two non-trivial
distributed applications with Termite.Dynamiteis a framework for
developing dynamic AJAX-like web user-interfaces. We used Ter-
mite processes to implement the web-server side logic, and we
can manipulate user-interface components directly from the server-
side (for example through therepl). Schackis an interactive mul-
tiplayer game using Dynamite for its GUI. Players and monsters
move around in a virtual world, they can pick up objects, use them,
etc. The rooms of the world, the players and monsters are all im-
plemented using Termite processes which interact.

6. The Termite Implementation
The Termite system was implemented on top of the Gambit-C
Scheme system [6]. Two features of Gambit-C were particularly
helpful for implementing the system: lightweight threads and ob-
ject serialization.

Gambit-C supports lightweight prioritized threads as specified
by SRFI 18 [7] and SRFI 21 [8]. Each thread descriptor contains the
thread’s continuation in the same linked frame representation used
by first class continuations produced bycall/cc. Threads are sus-
pended by capturing the current continuation and storing it in the
thread descriptor. The space usage for a thread is thus dependent
on the depth of its continuation and the objects it references at that
particular point in the computation. The space efficiency compares
well with the traditional implementation of threads which preallo-
cates a block of memory to store the stack, especially in the context
of a large number of small threads. On a 32 bit machine the to-
tal heap space occupied by a trivial suspended thread is roughly
650 bytes. A single shared heap is used by all the threads for all
allocations including continuations (see [9] for details). Because
the thread scheduler uses scalable data structures (red-black trees)
to represent priority queues of runnable, suspended and sleeping
threads, and threads take little space, it is possible to manage mil-
lions of threads on ordinary hardware. This contributes to make the
Termite model practically insensitive to the number of threads in-
volved.

Gambit-C supports serialization for an interesting subset of ob-
jects including closures and continuations but not ports, threads
and foreign data. The serialization format preserves sharing, so
even data with cycles can be serialized. We can freely mix inter-
preted code and compiled code in a given program. The Scheme
interpreter, which is written in Scheme, is in fact compiled code
in the Gambit-C runtime system. Interpreted code is represented
with common Scheme objects (vectors, closures created by com-
piled code, symbols, etc.). Closures use a flat representation, i.e.
a closure is a specially tagged vector containing the free variables
and a pointer to the entry point in the compiled code. Continuation
frames use a similar representation, i.e. a specially tagged vector
containing the continuation’s free variables, which include a ref-
erence to the parent continuation frame, and a pointer to the re-
turn point in the compiled code. When Scheme code is compiled
with Gambit-C’sblock option, which signals that procedures de-
fined at top-level are never redefined, entry points and return points
are identified using the name of the procedure that contains them
and the integer index of the control point within that procedure. Se-
rialization of closures and continuations created by compiled code
is thus possible as long as they do not refer to non-serializable ob-

jects and the block option is used. However, the Scheme program
performing the deserialization must have the same compiled code,
either statically linked or dynamically loaded. Because the Scheme
interpreter in the Gambit-C runtime is compiled with the block op-
tion, we can always serialize closures and continuations created by
interpreted code and we can deserialize them in programs using the
same version of Gambit-C. The serialization format is machine in-
dependent (endianness, machine word size, instruction set, memory
layout, etc.) and can thus be deserialized on any machine. Continu-
ation serialization allows the implementation of process migration
with call/cc.

For the first prototype of Termite we used the Gambit-C system
as-is. During the development process various performance prob-
lems were identified. This prompted some changes to Gambit-C
which are now integrated in the official release:

• Mailboxes: Each Gambit-C thread has a mailbox. Predefined
procedures are available to probe the messages in the mailbox
and extract messages from the mailbox. The operation to ad-
vance the probe to the next message optionally takes a timeout.
This is useful for implementing Termite’s time limited receive
operations.

• Thread subtyping: There is adefine-type-of-thread spe-
cial form to define subtypes of the builtin thread type. This is
useful to attach thread local information to the thread, in partic-
ular the process links.

• Serialization: Originally serialization used a textual format
compatible with the standard datum syntax but extended to all
types and with the SRFI 38 [5] notation for representing cy-
cles. We added hash tables to greatly improve the speed of the
algorithm for detecting shared data. We improved the compact-
ness of the serialized objects by using a binary format. Finally,
we parameterized the serialization and deserialization proce-
dures (object->u8vector andu8vector->object) with an
optional conversion procedure applied to each subobject visited
during serialization or constructed during deserialization. This
allows the program to define serialization and deserialization
methods for objects such as ports and threads which would oth-
erwise not be serializable.

• Integration into the Gambit-C runtime : To correctly imple-
ment tail-calls in C, Gambit-C uses computed gotos for intra-
module calls but trampolines to jump from one compilation unit
to another. Because the Gambit-C runtime and the user pro-
gram are distributed over several modules, there is a relatively
high cost for calling procedures in the runtime system from the
user program. When the Termite runtime system is in a mod-
ule of its own, calls to some Termite procedures must cross two
module boundaries (user program to Termite runtime, and Ter-
mite runtime to Gambit-C runtime). For this reason, integrating
the Termite runtime in the thread module of the Gambit-C run-
time enhances execution speed (this is done simply by adding
(include "termite.scm") at the end of the thread module).

7. Experimental Results
In order to evaluate the performance of Termite, we ran some
benchmark programs using Termite version 0.9. When possible,
we compared the two systems by executing the equivalent Erlang
program using Erlang/OTP version R11B-0, compiled with SMP
support disabled. Moreover, we also rewrote some of the bench-
marks directly in Gambit-C Scheme and executed them with ver-
sion 4.0 beta 18 to evaluate the overhead introduced by Termite.
In all cases we compiled the code, and no optimization flags were
given to the compilers. We used the compiler GCC version 4.0.2
to compile Gambit-C, and we specified the configuration option “–
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enable-single-host” for the compilation. We ran all the benchmarks
on a GNU/Linux machine with a 1 GHz AMD Athlon 64, 2GB
RAM and a 100Mb/s Ethernet, running kernel version 2.6.10.

7.1 Basic benchmarks

Simple benchmarks were run to compare the general performance
of the systems on code which does not require concurrency and
distribution. The benchmarks evaluate basic features like the cost
of function calls and memory allocation.

The following benchmarks were used:

• The recursive Fibonacci and Takeuchi functions, to estimate the
cost of function calls and integer arithmetic,

• Naive list reversal, to strain memory allocation and garbage
collection,

• Sorting a list of random integers using thequicksortalgorithm,
• String matching using the Smith Waterman algorithm.

The results of those benchmarks are given in Figure 1. They
show that Termite is generally 2 to 3.5 times faster than Er-
lang/OTP. The only exception is fornrev which is half the speed
of Erlang/OTP due to the overhead of Gambit-C’s interrupt polling
approach.

Erlang Termite
Test (s) (s)

fib (34) 1.83 0.50
tak (27, 18, 9) 1.00 0.46
nrev (5000) 0.29 0.53

qsort (250000) 1.40 0.56
smith (600) 0.46 0.16

Figure 1. Basic benchmarks.

7.2 Benchmarks for concurrency primitives

We wrote some benchmarks to evaluate the relative performance
of Gambit-C, Termite, and Erlang for primitive concurrency oper-
ations, that is process creation and exchange of messages.

The first two benchmarks stress a single feature. The first
(spawn) creates a large number of processes. The first process cre-
ates the second and terminates, the second creates the third and
terminates, and so on. The last process created terminates the pro-
gram. The time for creating a single process is reported. In the
second benchmark (send), a process repeatedly sends a message to
itself and retrieves it. The time needed for a single message send
and retrieval is reported. The results are given in Figure 2. Note that
neither program causes any process to block. We see that Gambit-C
and Termite are roughly twice the speed of Erlang/OTP for process
creation, and roughly 3 times slower than Erlang/OTP for message
passing. Termite is somewhat slower than Gambit-C because of
the overhead of calling the Gambit-C concurrency primitives from
the Termite concurrency primitives, and because Termite processes
contain extra information (list of linked processes).

Erlang Gambit Termite
Test (µs) (µs) (µs)

spawn 1.57 0.63 0.91
send 0.08 0.22 0.27

Figure 2. Benchmarks for concurrency primitives.

The third benchmark (ring) creates a ring of250 thousand
processes on a single node. Each process receives an integer and

then sends this integer minus one to the next process in the ring.
When the number received is0, the process terminates its execution
after sending0 to the next process. This program is run twice with
a different initial number (K). Each process will block a total
of ⌈K/250000⌉ + 1 times (once forK = 0 and 5 times for
K = 1000000).

With K = 0 it is mainly the ring creation and destruction time
which is measured. WithK = 1000000, message passing and pro-
cess suspension take on increased importance. The results of this
benchmark are given in Figure 3. Performance is given in microsec-
onds per process. A lower number means better performance.

Erlang Gambit Termite
K (µs) (µs) (µs)
0 6.64 4.56 7.84

1000000 7.32 14.36 15.48

Figure 3. Performance for ring of 250000 processes

We can see that all three systems have similar performance for
process creation; Gambit-C is slightly faster than Erlang and Ter-
mite is slightly slower. The performance penalty for Termite rela-
tively to Gambit-C is due in part to the extra information Termite
processes must maintain (like a list of links) and the extra test on
message sends to determine whether they are intended for a local or
a remote process. Erlang shows the best performance when there is
more communication between processes and process suspension.

7.3 Benchmarks for distributed applications

7.3.1 “Ping-Pong” exchanges

This benchmark measures the time necessary to send a message
between two processes exchangingping-pongmessages. The pro-
gram is run in three different situations: when the two processes are
running on the same node, when the processes are running on dif-
ferent nodes located on the same computer and when the processes
are running on different nodes located on two computers commu-
nicating across a local area network. In each situation, we vary the
volume of the messages sent between the processes by using lists
of small integers of various lengths. The measure of performance is
the time necessary to send and receive a single message. The lower
the value, the better the performance.

Erlang Gambit Termite
List length (µs) (µs) (µs)

0 0.20 0.67 0.75
10 0.31 0.67 0.75
20 0.42 0.67 0.74
50 0.73 0.68 0.75
100 1.15 0.66 0.74
200 1.91 0.67 0.75
500 4.40 0.67 0.75
1000 8.73 0.67 0.75

Figure 4. Local ping-pong: Measure of time necessary to send
and receive a message of variable length between two processes
running on the same node.

The local ping-pongbenchmark results in Figure 4 illustrate an
interesting point: when the volume of messages grows, the perfor-
mance of the Erlang system diminishes, while the performance of
Termite stays practically the same. This is due to the fact that the
Erlang runtime uses a separate heap per process, while the Gambit-
C runtime uses a shared heap approach.
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Erlang Termite
List length (µs) (µs)

0 53 145
10 52 153
20 52 167
50 54 203
100 55 286
200 62 403
500 104 993
1000 177 2364

Figure 5. Inter-node ping-pong: Measure of time necessary to
send and receive a message of variable length between two pro-
cesses running on two different nodes on the same computer.

The inter-node ping-pongbenchmark exercises particularly the
serialization code, and the results in Figure 5 show clearly that
Erlang’s serialization is significantly more efficient than Termite’s.
This is expected since serialization is a relatively new feature in
Gambit-C that has not yet been optimized. Future work should
improve this aspect.

Erlang Termite
List length (µs) (µs)

0 501 317
10 602 337
20 123 364
50 102 437
100 126 612
200 176 939
500 471 1992
1000 698 3623

Figure 6. Remote ping-pong: Measure of time necessary to send
and receive a message of variable length between two processes
running on two different computers communicating through the
network.

Finally, theremote ping-pongbenchmark additionally exercises
the performance of the network communication code. The results
are given in Figure 6. The difference with the previous program
shows that Erlang’s networking code is also more efficient than
Termite’s by a factor of about 2.5 for large messages. This appears
to be due to more optimized networking code as well as a more
efficient representation on the wire, which comes back to the rela-
tive youth of the serialization code. The measurements with Erlang
show an anomalous slowdown for small messages which we have
not been able to explain. Our best guess is that Nagle’s algorithm
gets in the way, whereas Termite does not suffer from it because it
explicitly disables it.

7.3.2 Process migration

We only executed this benchmark with Termite, since Erlang does
not support the required functionality. This program was run in
three different configurations: when the process migrates on the
same node, when the process migrates between two nodes running
on the same computer, and when the process migrates between two
nodes running on two different computers communicating through
a network. The results are given in Figure 7. Performance is given
in number of microseconds necessary for the migration. A lower
value means better performance.

The results show that the main cost of a migration is in the
serialization and transmission of the continuation. Comparatively,

Termite
Migration (µs)

Within a node 4
Between two local nodes 560

Between two remote nodes 1000

Figure 7. Time required to migrate a process.

capturing a continuation and spawning a new process to invoke it
is almost free.

8. Related Work
TheActors model is a general model of concurrency that has been
developed by Hewitt, Baker and Agha [13, 12, 1]. It specifies a
concurrency model where independent actors concurrently execute
code and exchange messages. Message delivery is guaranteed in the
model. Termite might be considered as an “impure” actor language,
because it does not adhere to the strict “everything is an actor”
model since only processes are actors. It also diverges from that
model by the unreliability of the message transmission operation.

Erlang [3, 2] is a distributed programming system that has had a
significant influence on this work. Erlang was developed in the con-
text of building telephony applications, which are inherently con-
current. The idea of multiple lightweight isolated processes with
unreliable asynchronous message transmission and controlled error
propagation has been demonstrated in the context of Erlang to be
useful and efficient. Erlang is a dynamically-typed semi-functional
language similar to Scheme in many regards. Those characteristics
have motivated the idea of integrating Erlang’s concurrency ideas
to a Lisp-like language. Termite notably adds to Erlang first class
continuations and macros. It also features directed links between
processes, while Erlang’s links are always bidirectionals.

Kali [4] is a distributed implementation of Scheme. It allows
the migration of higher-order objects between computers in a dis-
tributed setting. It uses a shared-memory model and requires a dis-
tributed garbage collector. It works using a centralized model where
a node is supervising the others, while Termite has a peer-to-peer
model. Kali does not feature a way to deal with network failure,
while that is a fundamental aspect of Termite. It implements ef-
ficient communication by keeping a cache of objects and lazily
transmitting closure code, which are techniques a Termite imple-
mentation might benefit from.

The Tube [11] demonstrates a technique to build a distributed
programming system on top of an existing Scheme implementation.
The goal is to have a way to build a distributed programming
environment without changing the underlying system. It relies on
the “code as data” property of Scheme and on a custom interpreter
able to save state to code represented as S-expressions in order to
implement code migration. It is intended to be a minimal addition
to Scheme that enables distributed programming. Unlike Termite,
it neither features lightweight isolated process nor considers the
problems associated with failures.

Dreme [10] is a distributed programming system intended for
open distributed systems. Objects are mobile in the network. It uses
a shared memory model and implements a fault-tolerant distributed
garbage collector. It differs from Termite in that it sends objects to
remote processes by reference unless they are explicitly migrated.
Those references are resolved transparently across the network, but
the cost of operations can be hidden, while in Termite costly opera-
tions are explicit. The system also features a User Interface toolkit
that helps the programmer to visualize distributed computation.
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9. Conclusion
Termite has shown to be an appropriate and interesting language
and system to implement distributed applications. Its core model
is simple yet allows for the abstraction of patterns of distributed
computation.

We built the current implementation on top of the Gambit-C
Scheme system. While this has the benefit of giving a lot of free-
dom and flexibility during the exploration phase, it would be inter-
esting to build from scratch a system with the features described in
this paper. Such a system would have to take into consideration the
frequent need for serialization, try to have processes as lightweight
and efficient as possible, look into optimizations at the level of what
needs to be transferred between nodes, etc. Apart from the opti-
mizations it would also benefit from an environment where a more
direct user interaction with the system would be possible. We in-
tend to take on those problems in future research while pursuing
the ideas laid in this paper.
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Abstract
Recent research has demonstrated that continuations provide a
clean basis to describe interactive Web programs. This account,
however, provides only a limited description of state, which is es-
sential to Web applications. This state is affected by the numerous
control operators (known as navigation buttons) in Web browsers,
which make Web applications behave in unexpected and even erro-
neous ways.

We describe these subtleties as discovered in the context of
working Web applications. Based on this analysis we present lin-
guistic extensions that accurately capture state in the context of the
Web, presenting a novel form of dynamic scope. We support this
investigation with a formal semantics and a discussion of appli-
cations. The results of this paper have already been successfully
applied to working applications.

1. Introduction
The Web has become one of the most effective media for software
deployment. Users no longer need to download large run-time sys-
tems, and developers are free to use their choice of programming
language(s). Web browsers have grown in sophistication, enabling
the construction of interfaces that increasingly rival desktop appli-
cations. The ability to centralize data improves access and reliabil-
ity. Finally, individual users no longer need to install or upgrade
software, since this can be done centrally and seamlessly on the
server, realizing a vision of always up-to-date software.

Set against these benefits, Web application developers must con-
front several problems. One of the most bothersome is the impact of
the stateless Web protocol on the structure of the source program.
The protocol forces developers to employ a form of continuation-
passing style, where the continuation represents the computation
that would otherwise be lost when the server terminates servlet ex-
ecution at each interaction point. Recent research demonstrates that
using continuations in the source reinstates the structure of the pro-
gram [13, 14, 16, 22].

Another source of difficulty is the Web browser itself. Browsers
permit users to perform actions such as cloning windows or click-
ing the Back button. These are effectively (extra-linguistic) con-
trol operators, because they have an effect on the program’s con-
trol flow. The interaction between these and state in the program
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can have sufficiently unexpected consequences that it induces er-
rors even in major commercial Web sites [18]. The use of continu-
ations does not eliminate these problems because continuations do
not close over the values of mutable state.

One solution to this latter problem would be to disallow mu-
tation entirely. Web applications do, however, contain stateful
elements—e.g., the content of a shopping cart—that must persist
over the course of a browsing session. To describe these succinctly
and modularly (i.e., without transforming the entire program into a
particular idiomatic style), it is natural to use mutation. It is there-
fore essential to have mutable server-side state that accounts for
user interactions.

In this paper, we present a notion of state that is appropriate for
interactive Web applications. The described cells are mutable, and
follow a peculiar scoping property: rather than being scoped over
the syntactic tree of expressions, they are scoped over a dynamic
tree of Web interactions. To motivate the need for this notion of
state, we first illustrate the kinds of interactions that stateful code
must support (Sec. 2). We then informally explain why traditional
state mechanisms (that are, faultily, used in some existing Web ap-
plications) fail to demonstrate these requirements (Sec. 3) and then
introduce our notion of state (Sec. 4) with a semantics (Sec. 5). We
also briefly discuss applications (Sec. 6) and performance (Sec. 7)
from deployed applications.

2. Motivation
The PLT Scheme Web server [14], a modern Web server imple-
mented entirely in Scheme, is a test-bed for experimenting with
continuation-based Web programming. The server runs numerous
working Web applications. One of the most prominent is CON-
TINUE [15, 17], which manages the paper submission and review
phases of academic conferences. CONTINUE has been used by sev-
eral conferences including Compiler Construction, the Computer
Security Foundations Workshop, the ACM Symposium on Princi-
ples of Programming Languages, the International Symposium on
Software Testing and Analysis, the ACM Symposium on Software
Visualization, and others.

CONTINUE employs a sortable list display component. This
component is used in multiple places, such as the display of the list
of the papers submitted to the conference. The component has the
following behaviors: the sort strategy may be reversed (i.e., it may
be shown in descending or ascending order); when the user presses
the Back button after changing the sort, the user sees the list sorted
as it was prior to the change; the user may clone the window and
explore the list with different sorts in different browser windows,
without the sort used in one window interfering with the sort used
in another; and, when the user returns to the list after a detour into
some other part of the application, the list remains sorted in the
same way as it was prior to the detour, while its content reflects
changes to the state (e.g., it includes newly-submitted papers).
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Figure 1. A diagram of an interaction with CONTINUE

Let us consider a sequence of interactions with the list of papers,
and examine how we would expect this component to behave.
Fig. 1 presents the outcome of these interactions. We use these
interactions as our primary example throughout the paper, so it is
important for the reader to study this scenario. Links in the pages
that are produced by user actions are represented as links in the tree
structure of the diagram. Because these actions produce multiple
browser windows, the diagram has three columns, one for each
browser window. Because these actions have a temporal ordering,
the diagram has eight rows, one for each time step.

In this diagram, the user’s browser windows are labeled X, Y,
and Z. The diagram uses icons to represent the content of pages.
A window with horizontal stripes represents a list sorted by author,
while one with vertical stripes represents a list sorted by title. The
color-inverted versions of these windows represent the same sort
but in the reverse order. The ‘A’ icon represents the site adminis-
tration page.

In Fig. 1, each node represents the page associated with a URL
the user visits. A node, i, is the child of another node, j, when the

page of j contains the URL of the page of i in a link or the action
attribute of a form, and the user followed the link or submitted the
form. Each edge is labeled with the action the user performed. The
numbers on the edges indicate the temporal order of the actions.

When reading this diagram, it is important to recall that some
user actions are not seen by the server. For example, action 4 creates
a new window and then follows a link. The server is not notified of
the cloning, so it only sees a request for the administrative section;
presenting the generated content in window Y is the browser’s
responsibility.

This diagram contains some interesting interactions that high-
light the requirements on the list component. First, the user clones
the browser windows, which tests the facility to keep a separate and
independent sort state for each browser window. This is equivalent
to ensuring that the Back and Refresh buttons work correctly [20].
Second, the sort state is not lost when the user goes to a different
part of the site (e.g., the Admin section in action 4) and then returns
(action 6) to the list.

The placement of node H in Fig. 1 needs particular explanation.
The edge leading to this node (7) is labeled with a Refresh action.
Many users expect Refresh to “re-display the current page”, though
they implicitly expect to see updates to the underlying state (e.g.,
refreshing a list of email messages should display new messages
received since the page was last generated). Even some browsers
assume this, effectively refreshing the page when a user requests
to save or print it. Under this understanding, the action 7 would
simply redisplay node D.

In reality, however, the browser (if it has not cached the page)
sends an HTTP request for the currently displayed URL. This re-
quest is indistinguishable from the first request on the URL, modulo
timestamps, causing program execution from the previous interac-
tion point.1 Therefore, when the user performs action 7, the server
does not receive a “redisplay” request; it instead receives a request
for the content pointed to by the ‘Reverse Sort’ link. The server du-
tifully handles this request in the same way it handled the request
corresponding to action 3, in this example displaying a new page
that happens to look the same, modulo new papers.

Now that we have established an understanding of the desired
interaction semantics of our component, we will describe the prob-
lem, introduce the solution context and then describe the solution.

3. Problem Statement and Failed Approaches
We have seen a set of requirements on the list component that
have to do with the proper maintenance of state in the presence of
user interactions (as shown in Fig. 1).These requirements reflect the
intended state of the component, i.e., the current sort state: ordering
(ascending vs. descending) and strategy (by-author vs. by-title).

We observe that values that describe the display of each page
are defined by the sequence of user actions that lead to it from
the root. For example, node G represents a list sorted by author in
reverse ordering, because action 2 initializes the sort state to “sort
by author”, action 3 reverses the sort, and actions 4 and 6 do not
change the sort state. To understand that the same holds true of node
H , recall the true meaning of Refresh discussed earlier.

These observations indicate that there is a form of state whose
modifications should be confined to the subtree rooted at the point
of the modification. For example, action 4’s effect is contained in
the subtree rooted at node E; therefore, action 5 and node F are
unaffected by action 4, because neither is in the subtree rooted at
E. The challenge is to implement such state in an application.

1 This execution can produce a drastically different outcome that would not
be recognized as the “same” page, or at the very least can cause re-execution
of operations that change the state: this is why, on some Web sites, printing
or saving a receipt can cause billing to take place a second time.
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Context
To discuss the various types of state that are available for our use,
we present our work in the context of the PLT Scheme Web server.
This server exposes all the underlying state mechanisms of Scheme,
and should thus provide a common foundation for discussing their
merits.

The PLT Scheme Web server [14] enables a direct style of Web
application development that past research has found beneficial.
This past research [13, 14, 16, 22] has observed that Web pro-
grams written atop the Web’s CGI protocol have a form akin to
continuation-passing style (CPS). A system can eliminate this bur-
den for programmers by automatically capturing the continuation
at interaction points, and resuming this captured continuation on
requests.

The PLT Scheme Web server endows servlet authors with a key
primitive, send/suspend. This primitive captures the current con-
tinuation, binds it to a URL, invokes an HTML response generation
function with that URL to generate a page containing the URL, sends
this page to the user, and then effectively suspends the application
waiting for a user interaction via this URL. This interaction is han-
dled by the server extracting and invoking the continuation corre-
sponding to the URL, resuming the computation. Thus, each user
interaction corresponds to the invocation of some URL, and there-
fore the invocation of a continuation.

We will define and implement the desired state mechanism in
this context.

Failed Implementation Approaches
We first show, informally, that using the existing mechanisms of
the language will not work. We then use this to motivate our new
solution.

Studying the sequence of interactions, it is unsurprising that
a purely functional approach fails to properly capture the desired
semantics. Concretely, the state of the component cannot be stored
as an immutable lexical binding; if it is, on return from the detour
into the administrative section, the sort state reverts to the default.
This is shown in Fig. 2, with the error circled in the outcome of
action 7. The only alternative is to use store-passing style (SPS).
Since this transformation is as invasive as CPS, a transformation
that the continuation-based methodology specifically aims to avoid,
we do not consider this an effective option.2 (In Sec. 6.1 we explain
why this is a practical, not ideological, concern.)

The most natural form of state is a mutable reference (called a
box in Scheme), which is tantamount to using an entry in a database
or other persistent store. This type of state fails because there is a
single box for the entire interaction but, because modifications are
not limited to a single subtree, different explorations can interfere
with one another (a problem that is manifest in practice on numer-
ous commercial Web sites [18]). Concretely, as Fig. 3 shows, the
outcome of actions 6 and 7 would be wrong.

Since the two previous forms of state are not sensitive to con-
tinuations, it is tempting to use a form of state that is sensitive to
continuations, namely fluid-let.3 An identifier bound by fluid-let
is bound for the dynamic extent of the evaluation of the body of the
fluid-let. (Recall that this includes the invocation of continuations
captured within this dynamic extent.)

2 It is important to note that the administrative section implementation is
just one example of where SPS would be used; SPS, like CPS, is a global
transformation that would change our entire program.
3 PLT Scheme [9] contains a feature called a parameter. A parameter is like
a fluidly-bound identifier, except that it is also sensitive to threads. However,
this distinction is not germane to our discussion, and in fact, parameters fail
to satisfy us for the same reasons as fluid-let.

Figure 2. The interaction when lexical bindings are used for the
sort state without SPS, where the error is circled

Figure 3. The interaction when a box is used for the sort state,
where errors are circled

Fluidly-bound identifiers might seem to be a natural way of
expressing state in Web applications, because they behave as if
they are “closed” over continuations. Since, however, fluidly-bound
identifiers are bound in a dynamic extent, any changes to their
bindings are lost when the sub-computation wherein they are bound
finishes. For instance, a state change in the administrative section
would be lost when computation returns out of the extent of that
section (here, after action 6). The only alternative is to keep that
dynamic extent alive, which would require the entire computation
to be written in terms of tail-calls: in other words, by conversion
into continuation-passing.
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4. Solution
The failed attempts above provide an intuition for why existing
approaches to scope and state are insufficient. They fail because
the scope in which certain state modifications are visible does not
match the scope defined by the semantics of the list component.

4.1 Interaction-Safe State
We define a state mechanism called Web cells to meet the state man-
agement demands of the list component and similar applications.

An abstraction of Fig. 1 is used to define the semantics of cells.
This abstraction is called an interaction tree. This tree represents
the essential structure of Web interactions and the resolved values
of Web cells in the program at each page, and takes into account
the subtleties of Refresh, etc. The nodes of this tree are called
frames. Frames have one incoming edge. This edge represents the
Web interaction that led to the page the frame represents.

Cells are bound in frames. The value of a cell in a frame is
defined as either (a) the value of a binding for the cell in the frame;
or (b) the value in the frame’s parent. This definition allows cell
bindings to shadow earlier bindings.

Evaluation of cell operations is defined relative to an evaluation
context and a frame, called the current frame. The continuations
captured by our Web server are designed to close over the current
frame—which, in turn, closes over its parent frame, and so on up to
the root—in the interaction tree. When a continuation is invoked, it
reinstates its current frame (and hence the sequence of frames) so
that Web cell lookup obtains the correct values.

Fig. 4 shows the interaction tree after the interactions described
by Fig. 1. The actions that modify the sort state create a cell
binding in the current frame. For example, when the user logs in
to CONTINUE in action 2, the application stores the sort state in
frame C with its default value author; and, during action 3, sort
is bound to rev(author) in frame D. In action 6, the value of sort
is rev(author), because this is the binding in frame D, which is
the closest frame to G with a binding for sort.

The semantics of Web cells is explicitly similar to the semantics
of fluid-let, except that we have separated the notion of evaluation
context and the context of binding. Recall that with fluid-let, a
dynamic binding is in effect for the evaluation of a specific sub-
expression. With Web cells, bindings affect evaluations where the
current frame is a child of the binding frame.

4.2 Implementation
To implement the above informal semantics, we must describe how
frames can be associated with Web interactions in a continuation-
based server, so that the relation among frames models the interac-
tion tree accurately. We describe this in the context of our canonical
implementation.

Each frame, i.e., node, in the interaction tree is reached by a
single action. We regard this single action to be the creator of the
frame. When the action creates the frame, the frame’s parent is
the current frame of the action’s evaluation. Each invocation of the
continuation must create a new frame to ensure the proper behav-
ior with regards to Refresh, as discussed in Sec. 2. Furthermore,
each action corresponds to an invocation of a continuation. In our
implementation, we must ensure that we distinguish between con-
tinuation capture and invocation. Therefore, we must change the
operation that captures continuations for URLs, send/suspend, to
create a frame when the continuation is invoked. We will describe
how this is done below after we introduce the Web cell primitives.

We summarize the Web cell primitives:

• (push-frame!)
Constructs an empty frame, with the current frame as its parent,
and sets the new frame as the current frame.

Figure 4. A diagram of an interaction with CONTINUE, labeled
with cells

• (make-cell initial-value)
Constructs and returns an opaque Web cell with some initial
value, storing it in the current frame.

• (cell-ref cell)
Yields the value associated with the cell by locating the nearest
enclosing frame that has a binding for the given cell.

• (cell-shadow cell new-value)
Creates a binding for the cell in the current frame associating
the new value with the cell.

We now re-write send/suspend to perform the frame creation
accurately. The definition is given in Fig. 5.

To show the other primitives in context, we present an example
in Fig. 6. Rather than the list example, which is complicated and
requires considerable domain-specific code, we present a simple
counter. In this code, the boxed identifier is the interaction-safe
Web cell. (The code uses the quasiquote mechanism of Scheme to
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(define (send/suspend response-generator)
(begin0
(let/cc k
(define k-url (save-continuation! k))
(define response (response-generator k-url))
(send response)
(suspend))

(push-frame!)))

Figure 5. A send/suspend that utilizes push-frame!

(define the-counter (make-cell 0))

(define (counter)
(define request
(send/suspend
(λ (k-url)
‘(html

(h2 ,(number→string (cell-ref the-counter )))
(form ((action ,k-url))
(input ((type "submit") (name "A") (value "Add1")))
(input ((type "submit") (name "E") (value "Exit"))))))))

(let ((bindings (request-bindings request)))
(cond
((exists-binding? ’A bindings)
(cell-shadow
the-counter
(add1 (cell-ref the-counter )))

(counter))
((exists-binding? ’E bindings)
’exit))))

(define (main-page)
(send/suspend
(λ (k-url)
‘(html (h2 "Main Page")

(a ((href ,k-url))
"View Counter"))))

(counter)
(main-page))

Figure 6. A Web counter that uses Web cells

represent HTML as an S-expression, and a library function, exists-
binding?, to check which button the user chose.)

We present interactions with the counter application imple-
mented by the example code in Fig. 6 through the interaction tree
diagram in Fig. 7. Like Fig. 1, the links are labeled with the action
the user performs. The content of each node represents the value
of the counter displayed on the corresponding page. These interac-
tions are specifically chosen to construct a tree that is structurally
close to Fig. 1. Therefore, this small example shows the essence of
the flow of values in the example from Sec. 2.

The next section formalizes this intuitive presentation of the
Web cell primitives.

5. Semantics
The operational semantics, λFS , is defined by a context-sensitive
rewriting system in the spirit of Felleisen and Hieb [7], and is a
variant of the λ-calculus with call/cc [6] that has been enhanced

Figure 7. An interaction with the counter (Fig. 6), structurally
identical to the CONTINUE interaction

with terms for representing cells and frames. Evaluation contexts
are represented by the nonterminal E and allow evaluations from
left-to-right in applications, including in the arguments to the built-
in cell manipulation terms.

The semantics makes use of the observation that the only opera-
tions on the interaction tree are leaf-to-root lookup and leaf-append.
Therefore the semantics, and eventually the implementation, only
has to model the current path as a stack of frames. Lookup corre-
sponds to walking this stack, while adding a new node corresponds
to pushing a frame onto the stack.

The syntax is given in Fig. 8. The semantics makes use of the
domains defined by Fig. 9 for representing stores, frames, and the
frame stack. The semantics is defined by the evaluation context
grammar and relations in Fig. 10 and the reduction steps in Fig. 11.

The semantics uses short-hand for representing the frame stack
in the store. Each frame, φ, resides in the store, and φ[n 7→ l]
represents modification of the store location. The frame stack is
represented by the parent pointers in each frame. When a new frame
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· ; · ; · :: Store × Frame Stack × Expression −→ Store × Frame Stack × Expression

µ ; Φ ; E[((λ (x1 . . . xn) e) v1 . . . vn)] −→ µ ; Φ ; E[e[x1/v1, . . . , xn/vn]]

µ ; Φ ; E[(call/cc e)] −→ µ ; Φ ; E[(e (λ (x) (abort Φ E[x])))]

µ ; Φ ; E[(abort Φ′ e)] −→ µ ; Φ′ ; e

µ ; Φ ; E[(push-frame!)] −→ µ ; (∅, Φ) ; E[(λ (x) x)]

µ ; (φ, Φ) ; E[(make-cell v)] −→ µ[l 7→ v] ; (φ[n 7→ l], Φ) ; E[(cell n)]

where n and l are fresh

µ ; Φ ; E[(cell-ref (cell n))] −→ µ ; Φ ; E[`(µ, Φ, n)]

µ ; (φ, Φ) ; E[(cell-shadow (cell n) v)] −→ µ[l 7→ v] ; (φ[n 7→ l], Φ) ; E[(cell n)]

where l is fresh

Figure 11. The reduction steps of λFS

v ::= (λ (x . . . ) e) (abstractions)

| c
c ::= (cell n) (cells)

where n is an integer

e ::= v (values)

| x (identifiers)

| (e e . . . ) (applications)

| (call/cc e) (continuation captures)

| (abort Φ e) (program abortion)

where Φ is a frame stack (Fig. 9)

| (push-frame!) (frame creation)

| (make-cell e) (cell creation)

| (cell-ref e e) (cell reference)

| (cell-shadow e e) (cell shadowing)

Figure 8. Syntax of λFS

is created, it is placed in the store with its parent as the old frame
stack top.

The semantics is relatively simple. The cell and frame oper-
ations are quite transparent. We have included call/cc/frame (in
Fig. 10) as an abbreviation, rather than a reduction step, to keep the
semantics uncluttered. If we were to encode it as a reduction step,
that step would be:

µ ; Φ ; E[(call/cc/frame e)] −→
µ ; Φ ; E[e (λ (x) (abort Φ E[(seqn (push-frame!) x)]))]

The order of frame creation in call/cc/frame is important. The
implementation must ensure that each invocation of a continuation
has a unique frame, and therefore a Refresh does not share the same
frame as the initial request. The following faulty reduction step fails
to ensure that each invocation has a unique frame:

µ ; Φ ; E[(call/cc/frame e)] −→
µ ; Φ ; E[e (λ (x) (abort (<new-frame>, Φ) E[x]))]

where <new-frame> is a frame constructed at capture time.

Stores
µ :: Store

µ ::= ∅ (empty store)

| µ[l 7→ v] (location binding)

Frames
φ :: Frame

φ ::= ∅ (empty frame)

| φ[x 7→ l] (cell identifier binding)

Frame Stack
Φ :: Frame Stack

Φ ::= ∅ (empty frame stack)

| φ, Φ (frame entry)

Figure 9. The semantic domains of λFS

In this erroneous reduction, the new frame is created when the
continuation is created, rather than each time it is invoked. Observe
that the correct reduction preserves the invariant that each frame has
a unique incoming edge in the interaction tree, which this reduction
violates.

6. Applications
Web cells answer a pressing need of stateful Web components: they
enable (a) defining stateful objects that (b) behave safely in the face
of Web interactions while (c) not demanding a strong invariant of
global program structure. Other techniques fail one or more of these
criteria: most traditional scoping mechanisms fail (b) (as we have
discussed in Sec. 4), while store-passing clearly violates (c).

Before we created Web cells, numerous PLT Scheme Web server
applications—including ones written by the present authors—used
to employ fluid-let; based on the analysis described in this paper,
we have been able to demonstrate genuine errors in these applica-
tions. As a result, PLT Scheme Web server users have adopted Web
cells in numerous applications, e.g., a server for managing faculty
job applications, a homework turn-in application, a BibTeX front-
end, a personal weblog manager, and, of course, CONTINUE itself.
We present three more uses of Web cells below.
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Semantics

eval(e) holds iff

∅ ; (∅, ∅) ; e −→∗ µ ; Φ ; v

for some µ, Φ, and v

Evaluation Contexts
E ::= []

| (v . . . E e . . . )

| (make-cell E)

| (cell-ref E)

| (cell-shadow E e)

| (cell-shadow v E)

Cell Lookup
` :: Store × Frame Stack × Location → Value

`(µ, (φ, Φ), x) →v iff x 7→ l ∈ φ

and l 7→ v ∈ µ

`(µ, (φ, Φ), x) → `(µ, Φ, x) iff x 7→ l /∈ φ

Abbreviations
(let (x e1) e2) ≡ ((λ (x) e2) e1)

(seqn e1 e2) ≡ (let (x c2) c1) where x /∈ c2

(call/cc/frame e) ≡ (let (c e) (call/cc
(λ (v) (seqn (push-frame!) (c v)))))

Figure 10. The semantics of λFS

6.1 Components for Web Applications
Informally, a component is an abstraction that can be linked into
any application that satisfies the component’s published interface.
Many of the tasks that Web applications perform—such as data
gathering, processing, and presentation—are repetitive and styl-
ized, and can therefore benefit from a library of reusable code.

To maximize the number of applications in which the compo-
nent can be used, its interface should demand as little as possible
about the enclosing context. In particular, a component that de-
mands that the rest of the application be written in store-passing
or a similar application-wide pattern is placing an onerous inter-
face on the encapsulating application and will therefore see very lit-
tle reuse. Stateful components should, therefore, encapsulate their
state as much as possible.

We have built numerous Web components, including:

• list, whose state is the sort strategy and filter set.
• table, which renders a list component as a table split across

pages, whose state is an instance of the list component, the
number of list entries to display per page, and the currently
displayed page.

• slideshow, whose state includes the current screen, the pre-
ferred image scale, the file format, etc.

Of the applications described above, every single one had some
form of the list component, and a majority also had an instance
of table—all implemented in an ad hoc and buggy manner. Many
of these implementations were written using fluid-let and did not
exhibit the correct behavior. All now use the library component
instead.

6.2 Continuation Management
While Web applications should enable users to employ their
browser’s operations, sometimes an old continuation must expire,
especially after completing a transaction. For example, once a user
has been billed for the items in a shopping cart, they should not
be allowed to use the Back button to change their item selection.
Therefore, applications need the ability to manage their continua-
tions.

The PLT Scheme Web server attempts to resolve this necessity
by offering an operation that expires all old continuation URLs [14].
This strategy is, however, too aggressive. In the shopping cart ex-
ample, for instance, only those continuations that refer to non-
empty shopping carts need to be revoked: the application can be
programmed to create a new shopping cart on adding the first item.
In general, applications need greater control over their continua-
tions to express fine-grained, application-specific resource manage-
ment.

The interaction tree and frame stack associated with each Web
continuation provide a useful mechanism to express fine-grained
policies. The key feature that is missing from the existing contin-
uation management primitives is the ability to distinguish contin-
uations and selectively destroy them. The current frame stack of a
continuation is one useful way to distinguish continuations. Thus,
we extend the continuation management interface to accept a pred-
icate on frame stacks. This predicate is used on the frame stack as-
sociated with each continuation to decide whether the continuation
should be destroyed. For example, in Fig. 4 action 6’s continuation
could be destroyed based on the Web cell bindings of frame E,
such as a hypothetical Web cell storing the identity of the logged-in
user.

An application can create a predicate that identifies frames
whose destruction corresponds to the above policy regarding shop-
ping carts and purchase. First, the application must create a cell
for the shopping cart session. It must then create a new session, A,
when the cart goes from empty to non-empty. Then it must remove
the session A when the cart becomes empty again and cause contin-
uation destruction if the cart became empty because of a purchase.
The predicate will signal destruction for continuations whose frame
stack’s first binding for the shopping cart session was bound to A.
This particular style of continuation management enforces the pol-
icy that once a transaction has been committed, it cannot be modi-
fied via the Back button.

As another example, consider selective removal of continua-
tions corresponding to non-idempotent requests. These requests are
especially problematic in the presence of reload operations, which
implicitly occur in some browsers when the user tries to save or
print. We can create a cell that labels continuations and a pred-
icate that signals the destruction of those that cannot be safely
reloaded. This is a more robust solution to this problem than the
Post-Redirect-Get pattern used in Web applications, as we dis-
cuss in Sec. 8.3, because it prevents the action from ever being
repeated. Thus this infrastructure lets Web application develop-
ers give users maximal browsing flexibility while implementing
application-specific notions of safety.

6.3 Sessions and Sub-Sessions
A session is a common Web application abstraction. It typically
refers to all interactions with an application at a particular computer
over a given amount of time starting at the time of login. In the
Web cells framework, a session can be defined as the subtree
rooted at the frame corresponding to the Logged In page. This
definition naturally extends to any number of application-specific
sub-session concepts. For example, in CONTINUE it is possible for
the administrator to assume the identity of another user. This action
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logically creates a sub-session of the session started by the initial
login action.

The essential code that implements this use case is below:

(define-struct session (user))
(define current-session (make-cell #f))
(define (current-user)

(session-user (cell-ref current-session)))
(define (login-as user)

(cell-shadow current-session (make-session user)))
(define (add-review paper review-text)

(associate-review-with-paper
paper
(current-user)
review-text))

We now explain each step:

• When the user first logs in, the current-session cell, whose
initial value is false, is shadowed by the login-as function.

• A new session is created and shadows the old current-session
cell, when the administrator assumes the identity of another
user via the login-as function.

• The current-user procedure is called whenever the current user
is needed, such as by the add-review function. This ensures that
the user is tracked by the current session, rather than any local
variables.

With this strategy, an administrator can open a new window and
assume the identity of a user, while continuing to use their main
window for administrative actions. In doing so, the administrator
need not worry about leakage of privilege through their identity,
since Web cells provide a confinement of that identity in each
subtree.

7. Performance
Frames and Web cells leave no significant time footprint. Their
primary cost is space. The size of a frame is modest: the smallest
frame consumes a mere 266 bytes (on x86 Linux). This number
is dwarfed by the size of continuations, of which the smallest is
twenty-five times larger. The size of the smallest frame is relevant
because it represents the overhead of each frame and the cost to
applications that do not use frames. CONTINUE has been used
with and without frames in conferences of various sizes without
noticeable performance changes in either case.

In practice, however, the space consumed depends entirely on
the user’s behavior and the structure of the Web application. Two
factors are necessary for Web cells to adversely affect memory con-
sumption: (1) users Refreshing URLs numerous times, and (2) the
Refreshed pages not allowing further interaction (i.e., not gener-
ating additional continuations). We find that in most PLT Scheme
Web server applications, most pages enable further interaction, and
thus capture additional continuations. As a result, the space for con-
tinuations almost always thoroughly dominates that for frames.

8. Related Work
8.1 State and Scope
Recent research has discussed thread-local storage in the Java [26]
and Scheme [9, 11] communities. In particular, Queinnec [22]
deals with this form of scope in the context of a multi-threaded
continuation-based Web server. However, in the face of continua-
tions, thread-local store is equivalent to continuation-safe dynamic
binders, i.e., parameters [9, 11]. For our purposes, these are the
same as fluid-let, which we have argued does not solve our prob-
lem. Even so, there is much similarity between the semantics of
these two types of state.

Web cells and fluid-let both install and modify bindings on a
stack that represents a node-to-root path in a tree: Frame stacks rep-
resent paths in the interaction tree, while fluid-let is defined based
on program stacks and the dynamic call tree. Operationally, this
means that the dynamic call tree is automatically constructed for
the programmer (by fluid-let) while frame stacks are constructed
manually (by push-frame!), although the PLT Scheme Web server
does this automatically on behalf of the programmer by burying
a push-frame! inside the implementation of send/suspend. Both
deal with the complication of interweaving of computation: Web
continuations may be invoked any number of times and in any
order, while programs with continuations may be written to have
a complicated control structure with a similar property. However,
to reiterate, fluid-let can only help us intuitively understand Web
cells, as the two trees are inherently different.

Lee and Friedman [19] introduced quasi-static scope, a new
form of scope that has been developed into a system for modular
components, such as PLT Scheme Units [8]. This variant of scope is
not applicable to our problem, as our composition is over instances
of continuation invocation, rather than statically defined (but dy-
namically composed) software components.

First-class environments [12] are a Lisp extension where the
evaluation scope of a program is explicitly controlled by the de-
veloper. This work does not allow programs to refer to their own
environment in a first-class way; instead, it only allows programs
to construct environments and run other programs in them. There-
fore, it is not possible to express the way make-cell introduces a
binding in whatever environment is currently active. Furthermore,
this work does not define a semantics of continuations. These limi-
tations are understandable, as first-class environments were created
in the context of Symmetric Lisp as a safe way to express parallel
computation. However, it may be interesting to attempt to apply our
solution to a framework with environments are first-class and try to
understand what extensions of such an environment are necessary
to accommodate Web cells.

Olin Shivers presents BDR-scope [24] as a variant of dynamic
scope defined over a finite static control-flow graph. BDR-scope
differs in a fundamental way from our solution, because λFS al-
lows a variant of dynamic scope defined over a potentially infinite
dynamic control-flow tree. However, it may be possible to use Shiv-
ers’s scope given an alternative representation of Web applications
and an analysis that constructed the static control-flow graph rep-
resenting the possible dynamic control-flows in a Web application
by recognizing that recursive calls in the program represent cycles
in the control-flow graph. Thus, although not directly applicable,
BDR-scope may inspire future research.

Tolmach’s Debugger for Standard ML [30] supports a time-
travel debugging mechanism that internally uses continuations of
earlier points in program executions. These continuations are cap-
tured along with the store at the earlier point in the execution. When
the debugger “travels back in time”, the store locations are un-
wound to their earlier values. Similarly, when the debugger “travels
back to the future”, the store is modified appropriately. The essen-
tial difference between this functionality and Web cells is that the
debugger unwinds all store locations used by the program without
exception, while in our context the programmer determines which
values to unroll by specifying them as Web cells.

Most modern databases support nested transactions that limit
the scope of effects on the database state until the transactions are
committed. Therefore, code that uses a database operates with a
constrained view of the database state when transactions are em-
ployed. A single Web cell representing the current transaction on
the database and a database with entries for each cell models the
shadowing behavior of those cells. This modeling is accomplished
by creating a new transaction, A, after each new frame is created
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and shadowing the current-transaction cell to A. Cell shad-
owing is possible by modifying the database state. This modifica-
tion is considered shadowing, because it is only seen by transaction
descended from the current transaction, i.e., frames that are descen-
dents of the current frame. The transactions created in this model-
ing are never finalized. It may be interesting future work to study
the meaning of and conditions for finalization and what features
this implies for the Web cells model.

8.2 Web Frameworks
Other Web application frameworks provide similar features to the
PLT Scheme Web server, but they often pursue other goals and
therefore do not discuss or resolve the problems discussed in this
paper.

Ruby on Rails [23] is a Web application framework for Ruby
that provides a Model-View-Controller architecture. Rails applica-
tions are inherently defined over an Object-Relational mapping to
some database. The effect of this design is that all state is shared
globally or by some application-specific definition of a ‘session’.
Therefore, Rails cannot support the state management that Web
cells offer, nor can it support many other features provided by con-
tinuations.

Seaside [5] is a Smalltalk-based Web development framework
with continuation support. Seaside contains a very robust system
for employing multiple components on a single page and sup-
ports a variant of Web cells by annotating object fields as being
“backtrack-able.” However, they do not offer a formal, or intuitive,
account of the style of state we offer, and therefore do not offer
comparable principles of Web application construction.

Furthermore, Seaside has other limitations relative to the PLT
Scheme Web server. A single component cannot interrupt the com-
putation to send a page to the user without passing control to an-
other component using the call method, thereby precluding modal
interfaces (such as alerts and prompts). The continuation URLs are
not accessible to the program, inhibiting useful reusable compo-
nents like an email address verifier [17]. Furthermore, Seaside’s
request-processing system requires a component to specify all sub-
components it might render ahead of time, decreasing the conve-
nience of modularity.

Many Web frameworks are similar to Ruby on Rails, for exam-
ple Struts [27], Mason [21] and Zope [28]; or, they pursue different
goals than the PLT Scheme Web server and Seaside. MAWL [1],
<bigwig> [2], and JWIG [4] support validation and program
analysis features, such as sub-page caching and form input val-
idation, but do not support the Back button or browser window
cloning; and WASH/CGI [29] performs HTML validation, offers
Back button support, and has sophisticated form field type check-
ing and inference, but does not discuss the problems of this paper.
WASH/CGI use of monadic style allows the use of store-passing
style for the expression of the programs discussed in this paper.
However, we have specifically tried to avoid the use of SPS, so this
solution is not applicable to our context.

Java servlets [25] are an incremental improvement on CGI
scripts that generally perform better. They provide a session model
of Web applications and do not provide a mechanism for repre-
senting state with environment semantics, which precludes the rep-
resentation of Web cells. Thus they do not offer a solution to the
problem discussed in this paper.

8.3 Continuation Management
In Sec. 6.2, we discussed how Web cells can be used to orga-
nize continuation management as a solution to the problem of se-
lectively disabling old URLs. A sub-problem of this has been ad-
dressed by work targeted at preventing the duplication of non-
idempotent requests.

The Post-Redirect-Get pattern [10] is one strategy that is com-
monly used in many different development environments.4 With
this pattern, URLs that represent non-idempotent requests corre-
spond to actions that generate an HTTP Redirect response, rather
than an HTML page. This response redirects the browser to an idem-
potent URL. This strategy exploits the peculiar behavior of many
browsers whereby URLs that correspond to Redirect responses are
not installed in the History, and are therefore not available via the
Back button. However, nothing prevents these URLs from being ex-
posed via network dumps, network latency, or alternative browsers.
In fact, this does occur in many commercial applications, forcing
developers to employ a combination of HTML and JAVASCRIPT to
avoid errors associated with network latency. Therefore, a continua-
tion management strategy that can actually disable non-idempotent
URLs provides a more robust, linguistic solution.

Another solution [22] to this problem relies on one-shot con-
tinuations [3]. These continuations detect when they are invoked a
second time and produce a suitable error. This is easily expressed
by the following abstraction:

(define send/suspend/once
(λ (response-generator)
(define called? (box #f))
(define result (send/suspend response-generator))
(if (unbox called?)

(error ’send/suspend/once “Multiple invocations.”)
(begin (set-box! called? #t)

result))))

However, this strategy cannot be used to implement the shopping
cart example without severe transformation of the source program
to propagate the called? binding to each code fragment that binds
URLs. In contrast, our solution requires no transformations of the
source, nor does it require any features of Web cells in addition to
those presented.

9. Conclusion
We have demonstrated that the connection between continuations
and Web computation in the presence of state is subtler than previ-
ous research suggests. In particular, a naı̈ve approach inhibits the
creation of applications with desirable interactive behavior. Our
work explains the problem and provides a solution. We have im-
plemented this solution and deployed it in several applications that
are in extensive daily use.

Our result offers several directions for future work. First, we
would like to construct an analysis to avoid the cost of unused
frames in our implementation, similar to tail-call optimization,
which avoids the cost of redundant stack frames. Second, we would
like to extend our existing model checker [20] to be able to handle
the subtleties introduced by this type of state management. Third,
we would like to use the semantics to formally compare the expres-
sive power of Web cells with the other primitives we have discussed
in the paper. It appears that we can provide a typed account of Web
cells by exploiting those for mutable references, but we have not
confirmed this. Finally, we can presumably recast the result in this
paper as a monad of the appropriate form.
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Abstract
I present an implementation of Scheme embedded within a Web
browser for wireless terminals. Based on a port of TinyScheme in-
tegrated with RocketBrowser, an XHTML-MP browser running on
Qualcomm BREW-enabled handsets. In addition to a comparison
of the resulting script capabilities, I present the changes required to
bring TinyScheme to Qualcomm BREW, including adding support
for BREW components as TinyScheme data types. The resulting
application supports the same kinds of dynamic client-side scripted
behavior as a traditional Javascript-enabled Web browser in envi-
ronments too memory constrained for a Javascript implementation.

Keywords Scheme, Web, JavaScript, AJAX, mobile computing,
Qualcomm BREW

1. Introduction
In the last twenty-four months, many commercial sites have de-
ployed highly interactive Web applications leveraging the flexibil-
ity of XHTML[1], JavaScript[2], and XML[3]-based Web services.
Popular sites including Google Maps[4] have both inspired Web
developers and heightened consumer expectations of Web sites.
This approach has significantly decreased the apparent latency of
many Web applications, enhancing the user experience for all. At
the same time, wide-area wireless carriers have deployed third-
generation wireless networks with performance roughly equiva-
lent to commercial broadband to the home solutions, resulting in a
marked increase by consumers in the use of wireless terminals for
Web access. Moreover, in an attempt to recoup network costs and
increase the average revenue per subscriber (ARPU), many wire-
less carriers have deployed network-based programming environ-
ments such as Qualcomm BREW[5] that enables third-party devel-
opers to create and market applications that run on subscriber termi-
nals. These applications run the gamut from entertainment (news,
sports, and games) to personalization applications that permit con-
sumers to customize the look and feel of their terminal as they
purchase screen backgrounds, ring tones, and even whole handset
themes that re-skin the handset’s user interface.

While custom applications for these handsets can be built en-
tirely using the native platform in C or C++, many developers have
opted for hybrid native/Web-based solutions, in which interactive
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content is presented in a variety of ways using both native user in-
terface controls and XHTML rendered using either the device’s na-
tive Web browser or a custom part of the application capable of dis-
playing XHTML. Rocket Mobile’s RocketBrowser, an XHTML-
MP[6] capable Web browser written in C for mobile handsets run-
ning Qualcomm BREW, is an example of this approach. This appli-
cation provides a framework for building Web-enabled applications
that run on wireless terminals, permitting application developers to
introduce new tags and Web protocols that trigger native operations
(compiled into the application as C functions) as well as mix the
viewing of Web pages with native interfaces built using Qualcomm
BREW interfaces in C. Complex applications with client-server in-
teractions can be built quickly using RocketBrowser as a starting
point, mixing traditional browser activities (say, permitting you to
browse a catalog of personalization assets such as ring tones or
screen backgrounds for your terminal) with activities that require
support from the platform APIs (such as purchasing and installing
desired media).

While flexible—developers can freely mix the browser and tra-
ditional application metaphors—this approach has some serious
limitations. Notably, software behaviors must be implemented in
C or C++ and compiled into the application; there is no facility
for downloading additional application components. The impact of
this limitation is amplified by the typical deployment scenario, in
which a developer signs the application package, a third party cer-
tifies the application for quality and network interoperability, adds
their signature cryptographically, and only then can the application
be released to wireless operators for distribution. Once released, the
application cannot be changed without passing through this entire
cycle again, making offering new program features to consumers
is a costly and time-consuming process. This approach also suffers
the usual limitations of solutions written in C or other low-level
languages, including the need to compile code for execution, the
need for explicit memory management, and the lack of support for
higher-order functions.

One way to ameliorate these problems is to introduce a client-
side scripting solution such as JavaScript or its kin ECMAScript[7].
A scripting language such as JavaScript has the obvious advantages
of rapid-high level development on the client, permitting develop-
ers to focus on the problems at hand in the content environment
rather than the mechanics of extending the Web browser’s imple-
mentation. Scripting also permits downloading patches or addi-
tional application components; portions of the application written
as scripts interpreted on the client side can be updated in a net-
worked application. Oddly, although this presents obvious weak-
nesses in the certification requirements set by most wireless opera-
tors, most carriers today permit scripted behavior in certified appli-
cations, provided that the documentation accompanying the appli-
cation provided at the time of certification provides ample explana-
tion of what behavior may be changed through script execution dur-
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ing application operation.1 As a result, the addition of a client-side
script engine can help reduce the time-to-market for new features
such as user interface enhancements.

However, while JavaScript is the de facto standard for client-
side scripting in Web applications on the desktop it’s not with-
out drawbacks in mobile computing. Notably, the footprint of a
JavaScript implementation is actually quite large; as I discuss on
page 152 in section 5, the SpiderMonkey JavaScript runtime from
the Mozilla foundation is nearly twice the size of the solution I de-
scribe here on the debugging target and significantly more complex
to port and maintain. While writing a simpler JavaScript implemen-
tation is possible, doing so was not desirable in the scope of our
work; the time and scope of the project preferred porting an exist-
ing code base to re-implementing in whole or part an existing solu-
tion. This was true even at the expense of compatibility, because the
resulting application is used by only a handful of resources internal
to our firm to create end-user prototypes and applications, not the
general public.

Because of these considerations—code complexity, static mem-
ory use, and time alloted for the project—when faced the need
for client-side scripting in RocketBrowser to support asynchronous
transactions made popular by sites using JavaScript, I decided that
embedding an implementation of Scheme[8] within the application
would be an appropriate choice.

This paper describes the application of Scheme to client-side
scripting within a a mobile Web browser application and shows
current and future applications of the technology in commercial ap-
plications. In the following section, “Preliminaries”, I first present
some previous work in this area that strongly influenced my ap-
proach. I describe the work required to integrate Scheme in our ap-
plication, RocketBrowser, in the subsequent section “Implementa-
tion”. Because there’s more to shipping an application than just pro-
viding a platform, the section “Examples” shows two ways we’re
currently using Scheme within the resulting application at Rocket
Mobile. I summarize the memory footprint of the resulting appli-
cation in the section “Results”, and then close the paper by de-
scribing what we’ve learned in the process of using Scheme for our
client-side scripts in the section titled “Future Work”. Finally, an
appendix provides some additional detail regarding the work in-
volved in bringing a Scheme interpreter to the Qualcomm BREW
platform.

2. Preliminaries
Both client-side scripting in Web applications and Scheme appli-
cations to Web programming have a distinguished history for so
young an application of computing as the Web. Understanding this
history provides a crucial understanding of my motivation in select-
ing Scheme as a client-side language for our browser products.

2.1 Client-Side Scripts in Web Browsing
Client-side scripting in Web browser applications is not new; the
initial JavaScript implementation by Brendan Eich was provided as
part of Netscape 2.0 in 1995. Scripts in Web content are introduced
using the <script> tag, which treats its content as XML CDATA,
permitting scripts to consist of un-escaped character data, like so:

<html>
<body>
<script language="javascript">
document.write(’<p>Hello world.</p>’)

1 Most operator’s guidelines are vague in this regard. The position of the
operator is that under no circumstances may an application interfere with
a wireless terminal’s use as a telephone; consequently, assurances that
scripted behavior cannot interfere with telephony operations often appears
ample for certification.

</script>
</body>

</html>

Using a a client-side scripting language such as JavaScript or
ECMAScript, content developers can write scripts that:

• Access the content of the document. JavaScript provide access
to a document’s contents via the model constructed by the Web
browser of the document, called the Document Object Model
(DOM)[9]. The DOM provides mechanisms for accessing doc-
ument objects by an optional name or unique ID as well as by
an object’s position within the document (e.g., ”the third para-
graph”).

• Define functions. Scripts can define functions that can be in-
voked by other scripts on the same page either as parts of com-
putation or in response to user action.

• Interact with the user interface. XHTML provides attributes
to many tags, including the <body> tag, that permit content
developers to specify a script the browser should execute when
a particular user action occurs. For example, developers can use
the onmouseover attribute to trigger a script when you move
the mouse cursor over the contents of a specific tag.

• Obtain content over the network. On most newer browsers,
scripts can use the browser’s network stack via an object
such as XMLHTTPRequest[11] or the Microsoft ActiveX object
XMLHTTP[12]. Using one of these interfaces a script can create
a Web query, make the request over the network, and have the
browser invoke a callback when the query is completed.2

As these points show, the flexibility of today’s Web browser appli-
cations is not simply the outcome of JavaScript the language, but
rather the relationship between the scripting run-time, the ability
of scripts to access the DOM and user events, and the ability of
scripts to obtain data from servers on the network. The union of
these characteristics enables the development of asynchronous net-
worked applications residing entirely within a set of pages being
viewed by a Web browser, a strategy popularly known as Asyn-
chronous JavaScript and XML[10] (AJAX).

2.2 Scheme and the Web
Scheme plays an important part of many Web applications, from
providing scripting for servers[14] such as Apache[14] to providing
servers written in Scheme providing entire Web applications, such
as the PLT Web server[15] within PLT Scheme. Much has been
made in both the Lisp and Scheme communities about the relation-
ship between XML and S-expressions; recent work on SXML[16]
demonstrates the advantages of working with XML within a func-
tional paradigm. At the level of this work, those resources did not
significantly affect how I went about integrating a Scheme inter-
preter with the RocketBrowser, but rather helped build Scheme’s
credibility as the choice for this problem. As I suggest later on
page 153 in section 6, SXML holds great promise in using a
Scheme-enabled Web browser as the starting point for building ap-
plications that use either XML Remote Procedure Call[17] (XML-
RPC) or Simple Object Access Protocol[18] (SOAP) to interact
with Web services.

3. Implementation
I selected the TinyScheme[19] for its size, portability, and unen-
cumbered license agreement. This choice turned out to be a good

2 These objects do far more than broker HTTP[13] requests for scripts.
As their name suggests, they also provide XML handling capabilities,
including parsing XML in the resulting response.

148 Scheme and Functional Programming, 2006



one; initial porting took only a few days of part-time work, and
packaging both the interpreter and foreign function interfaces to
the interpreter for access to handset and browser capabilities was
straightforward.

TinyScheme is a mostly R5RS[8] compliant interpreter that has
support for basic types (integers, reals, strings, symbols, pairs, and
so on) as well as vectors and property lists. It also provides a simple
yet elegant foreign function interface (FFI) that lets C code create
and access objects within the C runtime as well as interface with
native C code. Consisting of a little over 4500 lines of C using only
a handful of standard library functions, TinyScheme was an ideal
choice.

Once TinyScheme was running on the wireless terminal, I in-
tegrated the TinyScheme implementation with our RocketBrowser
application. This work involved adding support for the <script>
tag as well as attributes to several other tags (such as <body> and
<input>) to permit connecting user events with Scheme functions.
This involved changes to the browser’s event handler and rendering
engine, as well as the implementation of several foreign functions
that permit scripts in Scheme to access the contents of the docu-
ment and request content from the browser’s network and cache
layers.

3.1 Bringing Scheme to the Wireless Terminal
From a programmer’s standpoint, today’s wireless terminals run-
ning platforms such as Qualcomm BREW are quite similar to tra-
ditional desktop and server operating systems, despite the con-
strained memory and processing power. There were, however, some
changes to make to TinyScheme before it could run on the wireless
terminal:

• Elimination of all mutable global variables to enable the appli-
cation to execute without a read-write segment when built using
the ARM ADS compiler for Qualcomm BREW.

• Implementation of all references to standard C library func-
tions, typically re-implemented as wrappers around existing
Qualcomm BREW functions that play the role of standard C
library functions.

• Initialization of the Scheme opcode table of function pointers
at run time, rather than compile time to support the relocatable
code model required by Qualcomm BREW.

• Introduction of a BREW-compatible floating point library to
replace the standard C floating point library provided by ARM
Ltd.

• Modification of the TinyScheme FFI mechanism to pass an ar-
bitrary pointer to an address in the C heap to permit implemen-
tation of foreign functions that required context data without
further changes to the TinyScheme interpreter itself.

• Addition of the TinyScheme type foreign_data to permit
passing references to pointers on the C heap from the FFI layer
into Scheme and back again.

• Encapsulation as a Qualcomm BREW extension. TinyScheme
and its foreign function interface are packaged as Qualcomm
BREW extensions, stand-alone components that are referenced
by other applications through the wireless terminal’s module
loader and application manager.

• Capping the amount of time the interpreter spends running a
script to avoid a rogue script from locking up the handset.

Readers interested in understanding these changes in more detail
may consult the appendix on page 154.

3.2 Integrating Scheme with the Web Browser
The RocketBrowser application is built as a monolithic C applica-
tion that uses several BREW interfaces—structures similar to Win-
dows Component Object Model[24] (COM) components—as well
as lightweight C structures with fixed function pointers to imple-
ment a specific interface we refer to as glyphs. Each RocketBrowser
glyph carries data about a particular part of the Web document such
as its position on the drawing canvas and what to draw as well as
an interface to common operations including allocation, event han-
dling, drawing, and destruction. This is in sharp contrast to many
desktop browsers, which use a DOM to represent a document’s
structure. These two differences: the use of C-based component in-
terfaces and the lack of a true DOM affected the overall approach
for both porting TinyScheme and integrating the interpreter with
the browser.

To permit Scheme scripts to interface with the browser through
the FFI, I wanted to expose a BREW interface to the browser that
would allow scripts to invoke browser functions. To do this, I chose
to extend TinyScheme’s types to add an additional Scheme type
that could encapsulate a C structure such as a BREW interface
on the C heap. I added a new union type to the structure that
represents a cell on the heap, and provided a means by which
foreign functions could create instances of this type. Instances of
the new foreign_data type contain not just a pointer to an address
in the application’s C heap, but an integer application developers
can use to denote the object’s type and a function pointer to a
finalizer invoked by the TinyScheme runtime when the garbage
collector reclaims the cell containing the reference. This new type
lets developers building foreign functions pass C pointers directly
to and from the Scheme world, making both the Scheme and C
code that interface with the browser clearer than referring to glyphs
via other mechanisms such as unique identifiers. One such object
that can be passed is a BREW interface; its corresponding BREW
class id (assigned by Qualcomm) provides its type identifier, and an
optional destructor handles reclaiming the object when the Scheme
runtime collects the cell containing the instance. Moreover the
combination of a user-definable type marker and finalizer function
makes the mechanism suitable for sharing a wide variety of objects
with a modicum of type safety for foreign function implementers.3

One challenge (which I was aware of from the beginning of the
project) was the lack of a true DOM within the browser; this was
in fact one of the reasons why JavaScript was a less-suitable candi-
date for a client-side scripting engine, as it requires a fully-featured
DOM for best results. As the notion of a glyph encapsulates visible
content such as a string or image, there is only a vague one-to-one
correspondence between glyphs and tags, let alone glyphs and ob-
jects in the DOM. As such, the glyph list maintained by the browser
is a flat representation of the document suited for low memory con-
sumption and fast drawing sorted by relative position on a docu-
ment canvas, and does not provide the hierarchical view of the doc-
ument content required by a true DOM. Rather than implement the
entire DOM atop the browser’s list of glyphs, the resulting inter-
face supports only access to named glyphs that correspond to spe-
cific XHTML tags such as <input>, <img>, and <div>. To obtain
a reference to a named glyph in the current document, I introduce
the foreign function document-at, which scans the list of glyphs
and returns the first glyph found with the indicated name.

In addition to being able to access a specific piece of the DOM,
developers must also be able to get and mutate key properties of
any named glyph: the text contents of text glyphs such as those
corresponding to the <div> tag, and the src attribute of glyphs

3 Unfortunately, as seen in the Appendix, the resulting type checking system
relies on developers writing and using functions that provide type-safe casts,
a mechanism scarcely better than no type checking at all in some settings.
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such as image glyphs corresponding to the <img> tag. (As I discuss
in section 6 on page 153, later extension of this work should provide
access to other glyph properties as well.) I defined foreign functions
to obtain and set each of these values:

• The glyph-src function takes a glyph and returns the URL
specified in the indicated glyph’s src attribute.

• The glyph-value function takes a glyph and returns the value
of the glyph, either its contents for glyphs such as those corre-
sponding to <div> or the user-entered value for glyphs corre-
sponding to <input> or <textarea>.

• The set!glyph-src function takes a glyph and new URL and
replaces the src attribute with the provided URL. After the
interpreter finishes executing the current script, the browser will
obtain the content at the new URL and re-render the page.

• The set!glyph-value function takes a glyph and string, and
replaces the text of the indicated glyph with the new string.
After the interpreter finishes executing the current script, the
browser will re-render the page with the glyph’s new contents.

These functions, along with document-at, play the role provided
by the JavaScript DOM interface within our Scheme environment.

Finally, I defined the foreign function browser-get to support
asynchronous access to Web resources from scripts on a browser
page. This function takes two arguments: a string containing a
URL and a function. browser-get asynchronously obtains the re-
source at the given URL and invokes the given function with the
obtained resource. This provides the same functionality as Java-
Script’s XMLHTTPRequest object to perform HTTP transactions.

4. Scheme in Client Content
Implementing a client-side scripting language for RocketBrowser
was more than an exercise; I intended it to provide greater flexibil-
ity for application and content developers leveraging the platform
when building commercial applications. As the examples in this
section demonstrates, the results are not only practical but often
more concise expressions of client behavior as well.

4.1 Responding to User Events
An immediate use we had for client-side scripting was to create a
page where an image would change depending on which link on
the page had focus. In JavaScript, this script changes the image
displayed when the mouse is over a specific link:

<html>
<head>
<script language="javascript">
function change(img_name,img_src) {

document[img_name].src=img_src;
}

</script>
</head>
<body>
<center>

<img id="watcher" src="0.jpg"
height="60" width="80"/>

</center>
<br/>
<table>

<tr>
<td>
<A HREF="1.html">
onmouseover="change(’watcher’,’1.jpg’)"
onmouseout="change(’watcher’,’0.jpg’)">

1

</a>
</td>
<td>

<A HREF="2.html">
onmouseover="change(’watcher’,’2.jpg’)"
onmouseout="change(’watcher’,’0.jpg’)">

2
</a>

</td>
<td>

<A HREF="3.html">
onmouseover="change(’watcher’,’3.jpg’)"
onmouseout="change(’watcher’,’0.jpg’)">

3
</a>

</td>
<td>

<A HREF="4.html">
onmouseover="change(’watcher’,’4.jpg’)"
onmouseout="change(’watcher’,’0.jpg’)">

4
</a>

</td>
</tr>

</table>
</body>
</html>

This code is straightforward. A simple function change, taking
the name of an <img> tag and a new URL simply sets the URL of
the named image to the new URL; this causes the browser to reload
and redisplay the image. Then, for each of the selectable links, the
XHTML invokes this function with the appropriate image when
the mouse is over the link via the onmouseover and onmouseout
attributes.

In the Scheme-enabled browser, I can write:

<html>
<head>
<script language="scheme">
(define resourceid-offsets ’(0 1 2 3 4))
(define focus-urls

(list->vector
(map

(lambda(x)
(string-append (number->string x) ".jpg"))

resourceid-offsets)))

(define on-focus-change
(glyph-set!-src (document-at "watcher")
(vector-ref focus-urls browser-get-focus)))

</script>
</head>
<body onfocuschange="
(on-focus-change browser-get-focusindex)">

<center>
<img id="watcher" src="0.jpg"

height="60" width="80"/>
</center>
<table>
<tr>
<td><a href="1.html">1</a></td>
<td><a href="2.html">2</a></td>
<td><a href="3.html">3</a></td>
<td><a href="4.html">4</a></td>

</table>
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</body>
</html>

There are substantial differences here, although the implementation
is conceptually the same. The key difference imposing a different
approach is a hardware constraint that drives the browser’s capabil-
ities: most wireless terminals lack pointing devices, substituting in-
stead a four-way navigational pad. Thus, there’s no notion of mouse
events; instead, the browser provides onfocuschange to indicate
when focus has changed from one glyph to the next. A side effect
of not having a pointing device is that for any page with at least one
selectable item, one item will always have focus; the navigation pad
moves focus between selectable items, and a separate key actually
performs the selection action (analogous to the mouse button on a
PC).

The XHTML opens with a brief set of definitions to establish
a vector of URLs, each corresponding to a specific image to be
shown when you navigate to a link on the page. This provides a
way for content developers to quickly change the images shown on
the page by simply updating the list at the start of the script.

The script handling the focus change, on-focus-change,
performs the same action as its JavaScript counterpart change,
replacing the target <img> src attribute with a new URL. In-
stead of being supplied with the new URL, however, this func-
tion takes an index to the nth selectable glyph on the page. In
this case there are four, one for each link (and one correspond-
ing to each URL in the focus-urls vector). The browser invokes
on-focus-change each time the you press a directional arrow
moving the focus from one link to another, as directed by the
<body> tag’s onfocuschange attribute.

This coupling of XHTML and Scheme replaces several kilo-
bytes of full-screen graphic images, a custom menu control invoked
by a client-specific browser tag, and the tag itself that previously
provided menus in which the center region of the screen changes
depending on the focused menu item. Not only is this a clear reduc-
tion in the complexity of the application’s resources, but it reduces
development time as our staff artist need only provide individual
components of an application’s main menu, not a multi-frame im-
age consisting of screen images of each possible selected state of
the application’s main menu,

4.2 Asynchronous Server Interactions
As touched upon in the introduction, a key motivation for this
work is the incorporation of asynchronous client-side server inter-
action with remote Web services. Asynchronous transactions pro-
vide users with a more interactive experience and reduce the num-
ber of key presses required when performing an action.

Consider an application providing reverse directory lookup (in
which you’re seeking a name associated with a known phone num-
ber). The following XHTML provides a user interface for this ap-
plication:

<html>
<head>
<script language="javascript">
var req;

function callback() {
div = document.getElementById("result");
if (req.readyState == 4 &&

req.status == 200) {
div.innerHTML = req.responseText;

}
else
{
div.innerHTML = "network error";

}
}

function lookup() {
var field = document.getElementById("number");
var url = "http://server.com/lookup.php?phone="
+ escape(field.value);

if ( field.value.length == 10 ) {
req=new XMLHttpRequest();
req.open("GET", url, true);
req.onreadystatechange = callback;
req.send(null);

}
}
</script>
</head>
<body>
<form>

<b>Phone</b>
<input type="text"

value="408"
id="number"

onkeyup="lookup();"/>
<div id="result"/>

</body>
</html>

The page has two functions and handles one user event. The func-
tion lookup creates a query URL with the number you’ve en-
tered, and if it looks like you’ve entered a full telephone number,
it creates an XMLHttpRequest object to use in requesting a server-
side lookup of the name for this number. This operation is asyn-
chronous; the XMLHttpRequest object will invoke the function
callback when the request is complete. The callback function
simply replaces the contents of the named <div> tag with either
the results of a successful transaction or an error message in the
event of a network error. This process—testing the value you en-
ter, issuing a request if it might be a valid phone number by testing
its length, and updating the contents a region of the page—is all
triggered any time you change the <input> field on the page.

In the Scheme-enabled browser, the algorithm is exactly the
same but shorter:

<html>
<head>
<script language="scheme">
(define service-url

"http://server.com/lookup.php?phone=")
(define input-glyph (document-at "entry"))
(define result-glyph (document-at "result"))

(define (lookup)
(if (eqv? (string-length
(glyph-value input-glyph)) 10)
(browser-get

(string-append service-url
(glyph-value input-glyph))

(lambda (succeeded result)
(if succeeded
(set!glyph-value result-glyph result)
(set!glyph-value result-glyph "error"))))))

</script>
</head>
<body>
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<form>
<b>Phone</b>
<input type="text"

value="408"
id="entry"
onkeyup=
"(lookup)"/>

<div id="result"/>
</body>
</html>

For clarity, this code pre-fetches references to the glyphs corre-
sponding to the two named XHTML tags and saves those ref-
erences in the input-glyph and result-glyph variables. The
function lookup does the same work as its JavaScript counter-
part, although is somewhat simpler because the underlying in-
terface to the browser for HTTP transactions is already created
and only needs an invocation via the browser foreign function
browser-get. Like its JavaScript cousin XMLHTTPRequest, it op-
erates asynchronously, applying the provided function to the result
of the Web request. This browser provides this result as a list with
two elements: whether the request succeeded as a boolean in the
list’s first element, and the text returned by the remote server as the
list’s second element. In the example, I pass an anonymous func-
tion that simply updates the value of the <div> tag on the page with
the results, just as the JavaScript callback function does.

This example not only shows functionality previously impossi-
ble to obtain using the browser without scripting support (a devel-
oper would likely have implemented a pair of custom tags, one pro-
cessing the user input and one displaying the results, and written a
fair amount of code in C for this specific functionality), but demon-
strates the brevity Scheme provides over JavaScript. This brevity is
important not just for developers but to limit the amount of time it
takes a page to download and render, as well as space used within
the browser cache.

5. Results
As the examples show, the resulting port of TinyScheme meets both
the objectives of the project and provides a reasonable alternative
to JavaScript. Not surprisingly, its limitations are not the language
itself but the degree of integration between the script runtime and
the browser.

However, TinyScheme provides two key advantages: the time
elapsed from the beginning of the port, and overall memory con-
sumption within the application. As previously noted, the small size
of TinyScheme made porting a trivial task (less than twenty hours
of effort).

While no JavaScript port to the wireless terminal was available
for comparison, one basis of comparison is the SpiderMonkey[20]
JavaScript implementation within Firefox on Microsoft Windows.
Compared against the TinyScheme DLL on Microsoft Windows
for the Qualcomm BREW simulator, the results are nearly 2 to 1 in
favor of TinyScheme for static footprint.

Implementation Source Files Symbols1 Size2

SpiderMonkey 36 8537 321 KB
TinyScheme 3 605 188 KB

Where:

1. The symbol count was calculated using Source Insight’s (www.
sourceinsight.com) project report; this count includes all C
symbols (functions and variables) in the project.

2. This size indicates the size as compiled as a Windows DLL
for the appropriate application target (Firefox or Qualcomm
BREW Simulator) in a release configuration.

On the wireless terminal, the TinyScheme interpreter and code
required to integrate it with the browser compile to about fifty
kilobytes of ARM Thumb assembly; this results in an increase
of approximately 50% to the browser’s static footprint. This is a
sizable penalty, although in practice most application binaries for
Qualcomm BREW-enabled handsets are significantly larger these
days; at Rocket Mobile engineers are typically concerned more
with the footprint of application resources such as images and
sounds rather than the code footprint.

The static footprint is a key metric for success because the Qual-
comm BREW architecture does not support any memory paging
mechanism. As a result, applications must be loaded from the hand-
set’s flash file system in their entirety prior to application execution.
This means that the static size directly affects the run-time RAM
footprint of the browser application as well. On newer handsets this
is not an issue—most mid-range handsets sold in the last eighteen
months have a half-megabyte or more of RAM for application use,
so a fifty kilobyte increase in memory footprint when loading an
application is incidental.

In addition to the memory consumed by simply loading the
Scheme runtime implementation and related support code into
RAM, memory is consumed by the interpreter itself. In practice,
once loaded, simply starting the interpreter consumes approxi-
mately eight kilobytes of memory; our initial Scheme definitions,
derived from TinyScheme’s init.scm file and containing the usual
definitions for things such as when, unless, and a handful of type
and arithmetic operators, consumes another ten kilobytes. Thus,
the startup overhead from first loading the code into memory and
then initializing the runtime before doing any useful work is about
seventy kilobytes of RAM. While not insignificant on older hand-
sets, this is not a serious impediment on handsets commercially
available today; in production, we can tune this file to use only the
definitions likely to be used by dynamic scripts.

Run-time performance is well within acceptable bounds for user
interface tasks. The user interface example shown in section 4.1 on
page 150 takes on the order of sixty milliseconds of time within
the Scheme interpreter on a high-end handset (the LG-9800, based
on the MSM6550 chipset from Qualcomm) to execute, resulting in
no apparent latency when navigating from one link to the next. The
asynchronous request example shown in section 4.2 on page 151
is somewhat slower, although the time spent executing the Scheme
code is dwarfed by the latency of the cellular network in completing
the request.

A final measurement of success, albeit subjective, is developer
satisfaction. The general consensus of those developing content for
browser-based applications at Rocket Mobile is that at the outset
developing applications using scripts in Scheme is no more diffi-
cult than doing the same work in JavaScript would be. Because our
Web applications are built by engineers proficient in both wireless
terminal and server-side work, their strong background in object-
oriented and procedural methodologies tend to slow initial adoption
of Scheme, and many scripts begin looking rather procedural in na-
ture. Over time, however, contributors have been quick to move to a
more functional approach to the problems they face. A key advan-
tage helping this transition is in providing a command-line REPL
built with TinyScheme and a small file of stubs that emulate the
browser’s foreign function interfaces. This lets new developers pro-
totype scripts for pages without the overhead of creating XHTML
files on a server, wireless terminal, or wireless terminal emulator,
and encourages experimentation with the language.

6. Future Work
Commercialization of this work at Rocket Mobile is ongoing but
not yet complete for two reasons. First, to streamline the develop-
ment cycle, products at Rocket Mobile are typically released as a
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single binary for all commercially available handsets at the time
of product release; thus the binary must meet the lowest common
denominator in both static and run-set size. With several million
handsets on the market today having RAM capacities under a half-
megabyte, the overhead posed by the interpreter and related code
prohibits a widespread release. However, this is not expected to be a
significant drawback for new products aimed at recently-marketed
mid- and high-tier handsets, which have much greater amounts of
RAM available. In the mean time, we are using the technology in
a variety of prototype and pilot projects for content providers and
carriers with great success.

Second, software quality is of paramount importance to wireless
carriers and subscribers. While the TinyScheme implementation
has had years of use in some configurations, the underlying port
to Qualcomm BREW is far from proven. At present, we are testing
and reviewing the implementation of the interpreter with an eye to
the types of problems that can cause application failures on wireless
terminals, such as ill-use of memory (dereferencing null pointers,
doubly freeing heap regions or the like). This work is ongoing, and
I intend to release any results of this work to the community of
TinyScheme users at large.

Another area of active investigation is to provide better inter-
faces via the FFI to the browser’s list of glyphs and individual glyph
attributes. In its present form, the glyph-src and glyph-value
functions and their set! counterparts are workable, but somewhat
clumsy. Worse, as the browser exports an increasing number of
glyph attributes (such as color, size, and position), the current ap-
proach will suffer from bloating due to the number of foreign func-
tions required to access and mutate individual glyph attributes.

An obvious future direction for this work is for the implementa-
tion to include support for SXML. While the present implementa-
tion of browser-get does nothing with the results returned from
an HTTP transaction but pass that content on as an argument to an
evaluated S-expression, client applications wishing to interact with
Web services via XML-RPC or SOAP would benefit from having
a parsed representation of the request results. SXML provides an
ideal medium for this, because it provides easy mechanisms for
querying the document tree or transforming the tree[21] in various
ways to provide human-readable output which can then be set as the
contents of an XHTML <div> region. Using this approach, a front-
end to a Web service can be built entirely using the browser applica-
tion and client-side scripts in Scheme that collect and process user
input, submit queries to the remote Web service and present results
without the need for an intermediary server to transform requests
and responses from XML to XHTML.
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A. Porting TinyScheme to Qualcomm BREW
While software development for wireless terminals is not nearly
the constrained affair it was a scant five years ago, platforms such
as Qualcomm BREW still impose many restrictions on the kinds
of things that can be done in C and C++. While this does not
significantly impair the development of all-new code for a mobile
platform, it can make porting applications from a more traditional
computing environment somewhat challenging.

In the case of the TinyScheme port, the single largest imped-
iment was the lack of a read-write segment on the Qualcomm
BREW platform.4 Without a read-write segment, the target com-
piler (ARM’s ADS 1.2) cannot compile applications or libraries
with global variables. This makes using the standard C library im-
possible. Instead, applications must use a limited set of helper func-
tions provided by Qualcomm to perform operations typically pro-
vided by the C standard and math libraries. Thus, references to C
functions such as strcmp must reconciled with Qualcomm BREW
helpers such as STRCMP. Rather than making numerous changes
to the TinyScheme implementation (which would make merging
changes from later releases difficult), I implemented a small port-
ing layer with functions for each of the required C standard library
functions. In many cases, this work was as simple as writing func-
tions such as:

static __inline int
strcmp(const char *a, const char *b) {

return STRCMP(a, b);
}

where STRCMP is the Qualcomm BREW API providing the C stan-
dard library strcmp facility. In addition, in a few cases such as the
interpreter’s use of the standard C file I/O library I had to imple-
ment the interfaces atop Qualcomm BREW’s native file manage-
ment functions. The resulting porting layer is approximately 300
lines of code (including comments) and can be reused when port-
ing other code requiring the standard library to Qualcomm BREW.

Dealing with floating-point numbers without a traditional math
library involved similar work; in addition to providing porting func-
tions for numeric functions such as trigonometric operations, I also
needed to deal with places where the interpreter used arithmetic
operators on floating-point numbers to keep the tool chain from
attempting to include the default floating-point library. When writ-
ing new code, Qualcomm suggests that developers use their helper
functions for arithmetic; these provide functions for addition, sub-
traction, multiplication, and division. Unwilling to make such dras-
tic changes to the TinyScheme implementation, I chose a second
route. To facilitate porting, Qualcomm has made available a re-
placement floating-point library for basic arithmetic that does not
use a read-write segment; including this library incurs an additional
static use of eight kilobytes of memory. If needed, I can back this
out and rewrite the functions that use floating-point arithmetic to
use the Qualcomm BREW helper functions to reduce the overall
footprint of the interpreter.

Along the same vein, the TinyScheme interpreter had a few
global variables that I had to move to the interpreter’s context
struct scheme; these were for things like the definition of zero
and one as native numbers in the interpreter’s representation of in-
teger and floating-point numbers. Similar work was required for the
array of type tests and a few other global variables. More problem-

4 Tools such as WinARM[22], based on GCC[23], have recently become
available that will generate ”fix-up” code that creates read-write variables
on the heap at runtime, although they generate additional code. In addition,
Qualcomm has announced support for a toolchain for use with ARM’s ADS
1.2 that does not have this limitation, but this tool was not available as I
performed this work.

atic, however, was the table of opcodes, defined at compile time us-
ing a series of preprocessor macros to initialize a large global array
of opcodes. Although this table is constant (and can thus be loaded
into the read-only segment), it results in compilation errors for an-
other reason: Qualcomm BREW requires relocatable code, and the
tool chain doesn’t know what to do with function pointer references
in constant variables. By moving the opcode dispatch table into
the interpreter’s context struct scheme, and adding the following
snippet to the interpreter’s initialization function scheme_init:

#define _OP_DEF(A,B,C,D,E,OP) \
sc->dispatch_table[j].func = A; \
sc->dispatch_table[j].name = B; \
sc->dispatch_table[j].min_arity = C; \
sc->dispatch_table[j].max_arity = D; \
sc->dispatch_table[j].arg_tests_encoding = E; \
j++;

{
int j = 0;
#include "opdefines.h"
#undef _OP_DEF

};

As each Scheme opcode is defined in the opdefines.h header using
the _OP_DEF macro, this yielded an easy solution with a minimum
of changes to the existing implementation.

With this work complete, the interpreter itself was able to com-
pile and execute on Qualcomm BREW-enabled handsets, although
its packaging was less than ideal. The Qualcomm BREW plat-
form is built around a component-oriented model similar in many
ways to the original Microsoft Windows Component Object Model;
packaging the Scheme interpreter as a module wrapped in a BREW
interface would provide greater opportunity for reuse throughout
my employer’s software development efforts. The resulting mod-
ule, called an extension in Qualcomm parlance, actually offers three
interfaces:

• The ISchemeInterpreter interface exports the basic inter-
face to the interpreter permitting developers to create an in-
stance of the interpreter, set an output port and have it evaluate
S-expressions.

• The ISchemeFFI interface exports the foreign function inter-
face provided by TinyScheme in its struct scheme_interface
structure, permitting developers familiar with Qualcomm BREW
an easy way to implement foreign functions for the interpreter
without needing to see or access the implementation of the in-
terpreter itself.

• The ISchemeFFP interface is an abstract interface that devel-
opers implement when creating foreign functions for use with
the interpreter. This interface uses the methods provided by the
ISchemeFFI interface of a running interpreter instance to im-
plement foreign functions. The foreign functions provided by
RocketBrowser are implemented as a BREW extension imple-
menting the ISchemeFFP interface.

To facilitate the ISchemeFFI and ISchemeFFP interfaces, I
extended TinyScheme to support references to C heap objects as
opaque Scheme cell contents through a new TinyScheme type,
foreign_data. A cell containing a reference to a C heap object
looks like this:

typedef struct foreign_data {
void *p;
uint32 clsid;

} foreign_data;

// and inside of the cell structure union:
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struct {
foreign_data *data;
foreign_func cleanup;

} _fd;

Thus, the foreign_data structure contains a pointer to the C heap
region it references, and an unsigned double word that can contain
type information, such as the native class identifier of the object
being referenced. Within the cell of a foreign data object is also
a pointer to a foreign function the garbage collector invokes when
freeing the cell. This allows foreign functions to create instances
of C heap objects for use with other foreign functions without
the need for explicit creation and destruction by the application
developer. This new type is supported in the same manner as other
TinyScheme types, with functions available for creating instances
of this type as well as testing a cell to see if it contains an instance of
this type. The display primitive is also extended to display these
objects in a manner similar to the display of foreign functions.

The type data that the foreign_data type carries permits de-
velopers to provide type-safe cast functions when accessing C data
in foreign function interfaces. For example:

// Return the class of the foreign_data
static __inline AEECLSID
ISCHEMEFFITYPE_GetClass(foreign_data *p) {

return p ? p->clsid : 0;
}

// return whether this foreign_data is
// of the desired class
static __inline boolean
ISCHEMEFFITYPE_IsInstanceOf(foreign_data *p,

AEECLSID cls) {
return (boolean)(p && p->clsid == cls);

}

// Return a typeless pointer to the data
// contained by a foreign_data
static __inline void *
ISCHEMEFFITYPE_GetData(foreign_data *p) {

return p ? p->p : NULL;
}

static __inline IShell *
ISCHEMEFFPTYPE_GetShell(foreign_data *p) {

return
ISCHEMEFFITYPE_IsInstanceOf(p, AEECLSID_SHELL) ?
(IShell *)ISCHEMEFFITYPE_GetData(p) : NULL;

}

Using inline functions such as ISCHEMEFFITYPE_GetShell to
ensure type-safe access to foreign_data wrapped data at the C
layer is unfortunately a manual approach. Because developers can
at any time circumvent this type-safety by accessing the contents of
a foreign_data item directly, it must be enforced by convention
and inspection.

The foreign_data type is also used with foreign functions
in this implementation. When defining foreign functions with the
interpreter, the developer can also register a foreign_data ob-
ject and its associated destructor. This lets foreign functions keep
state without needing to directly modify the TinyScheme context
struct scheme.

Wireless terminals typically provide a watchdog timer, so that
a rogue application cannot lock the handset indefinitely and pre-
vent its use as a telephone. If application execution continues until
the watchdog timer fires (typically two seconds), the handset re-
boots, terminating the rogue application. To avoid erroneous script

errors from triggering this timer and resetting the handset, I add a
similar timing mechanism to Eval_Cycle, as well as a function
scheme_set_eval_max to let TinyScheme users set the watchdog
timer’s maximum value. If a script runs for longer than the max-
imum permitted time, execution is aborted and the runtime user
notified with an error indicating that the script could not be com-
pleted and the runtime’s state is indeterminate. The RocketBrowser
application sets the maximum script execution time at 500 ms, giv-
ing ample time for simple UI operations and a more-than-adequate
ceiling for remaining browser operations during page layout and
drawing.

With all of this in place, extensions to the TinyScheme inter-
preter could be written as stand-alone BREW extensions imple-
menting the ISchemeFFP interface, making dynamic loading of
extensions to the TinyScheme runtime possible.
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Abstract
For the past two years we have been developing PLaneT, a pack-
age manager built into PLT Scheme’s module system that simplifies
program development by doing away with the distinction between
installed and uninstalled packages. In this paper we explain how
PLaneT works and the rationales behind our major design choices,
focusing particularly on our decision to integrate PLaneT into PLT
Scheme and the consequences that decision had for PLaneT’s de-
sign. We also report our experience as PLaneT users and developers
and describe what have emerged as PLaneT’s biggest advantages
and drawbacks.

1. Introduction
No matter how great your programming language is, it is always
harder to write a program in it yourself than it is to let someone
else write it for you. That is one reason why libraries are a big deal
in programming languages, big enough that some languages are
associated as much with their libraries as they are with their core
features (e.g., Java with java.util and C++ with the STL).

But when you move away from the standard libraries that come
built in to your programming language, you can end up paying a
high price for your convenience. If your program depends on any
libraries, you have to make sure those dependences are installed
wherever your program will run. And any dependences those li-
braries have need to be installed too, and any dependences those li-
braries have, and so on. If you don’t have any help with this task, it
is often easier to avoid using too many libraries than it is to explain
how to install dozens of dependences in a README file. A Scheme
programmer in this situation might reasonably bemoan the fact that
the choice needs to be made: why, in a language like Scheme with
so many great facilities for code reuse, is it so impractical to actu-
ally reuse code?

In this paper we describe our attempt at addressing that problem
by presenting the PLaneT package distribution system built into
PLT Scheme [5], a component-deployment tool that aims to make
package distribution and installation entirely transparent. To the
extent possible, PLaneT does away with the notion of an uninstalled
package: a developer can use any PLaneT package in a program just
by referring to it as though it were already installed, and whenever
anyone runs that program, the PLaneT system will automatically
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install it if necessary. Effectively, programmers get to treat every
library, even those they write themselves, as a standard library,
giving them the advantages of libraries without the pain of library
deployment.

Since PLaneT retrieves packages from a centralized reposi-
tory, it also establishes a component marketplace for developers;
it serves as a one-stop shop where they can publish their own pro-
grams and discover useful programs written by others. In effect,
PLaneT is an infrastructure that transforms PLT Scheme’s effec-
tive standard library from a monolithic cathedral development ef-
fort into a bazaar where anyone can contribute and the most use-
ful libraries rise to the top, buoyed by their quality and usefulness
rather than an official blessing [11]. This bazaar-like development
reinforces itself to the benefit of all PLT Scheme users: in the two
years since PLaneT has been included in PLT Scheme, users have
contributed nearly 300,000 lines of new Scheme code in 115 pack-
ages.

In this paper, we explain our experience with building and main-
taining PLaneT, with particular attention to PLaneT’s more unusual
design features and how they have worked in practice. Section 2
sets the stage by briefly introducing some existing component sys-
tems such as the Comprehensive Perl Archive Network (CPAN)
with particular attention to their deployment strategies. Section 3
then uses those other systems to motivate our goals for PLaneT.
The next few sections explain how we tried to achieve those goals:
section 4 explains our server design, section 5 explains our client
design with particular attention to our choice of integrating com-
ponent deployment into the language rather than keeping it as an
external program, section 6 discusses how PLaneT maintains PLT
Scheme tool support, and section 7 explains a few complications
we foresaw and tried to address in our design. In section 8 we try to
assess how well our design has stood up over the two years PLaneT
has been in use.

2. Some popular component systems
Before we explain the decisions we made for PLaneT, we need
to explain some background on existing component systems, how
they work, and some of their pitfalls. The software development
community has learned a lot about both the benefits of software
components and the problems they can cause. Probably the most
famous such problem is so-called “DLL hell,” a term coined to
describe what can happen to a Microsoft Windows installation if
DLLs (for “dynamically-linked libraries,” a component technol-
ogy) are installed incorrectly. Under the DLL system, when a pro-
gram wants some functionality from a DLL, it refers to the DLL
by name only. This can become a problem because the DLL may
evolve over the course of new releases; if two different programs
both rely on different versions of the same library, then they cannot
both be installed on the same system at the same time. Furthermore,
since DLLs have no particular package deployment strategy, soft-
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ware installers have to install any necessary libraries themselves;
and if an installer overwrites a DLL it can inadvertently break other
programs, possibly even leading to a situation where the user’s en-
tire system is unusable. Microsoft has addressed this problem in
several ways; the most recent of which is its .NET assembly format,
which includes metadata that includes versioning information [10].

Neither of those systems deal with component distribution — it
is the programmer’s responsibility to figure out some other way to
locate useful components and to arrange for them to be installed on
users’ computers, and if a user wants to upgrade a component then
it is up to that user to find and install it. Other component systems
have done work to help with these tasks, though. For instance,
CPAN [1] is a central repository of Perl libraries and scripts that
users can download, and tools allow users to install and upgrade
these libraries automatically in some cases (more on this later).
The Ruby programming language features a similar system called
RubyGems [12]. Many Unix-like operating systems also feature
package distribution systems that address these problems; Debian’s
dpkg system [14], for instance, provides a central repository of
programs and shared libraries that users can automatically fetch,
install, and upgrade upon request.

Since these systems try to do more than DLLs do, they have to
solve more potential problems. The most major of these is that if a
tool installs a new component that relies on functionality from other
components, the tool must also install appropriate versions of those
prerequisites if the user does not already have them. Identifying
the entire set of uninstalled prerequisites is not too difficult given
the right metadata, but automatically deciding what “appropriate”
means in this context is more of a challenge. For a human, the most
appropriate version of a prerequisite would probably be the one that
provides all the functionality that the requiring component needs in
the highest-quality way and has the fewest bugs. But an automatic
tool cannot hope to figure out which package that is, so it needs to
simplify the problem somehow.

The solution CPAN.pm (an automated client for CPAN) uses is
to assume that the version of a given package with the highest
version number is the most appropriate, based on the reasoning that
the highest version number represents the most recent package and
therefore the one with the most features and fewest bugs. That is, if
the user requests package foo, then CPAN.pm finds the most recent
version of foo it can. Furthermore, if foo depends on package
bar, then CPAN.pm downloads the highest-numbered version of
bar available (unless foo explicitly asks for a particular version
or a version number in a particular numeric range).

This policy is extremely optimistic, in that it assumes all pro-
grams can use any version of a package in place of its predecessors.
If for instance bar removes a function from its public interface in a
particular release, then unless foo compensates for that change by
releasing a new package with updated code or dependence informa-
tion, it will fail to install properly. In practice this problem does not
come up much, probably because most packages on CPAN only re-
lease a few different versions and those that are intended for use as
libraries try to maintain backwards-compatibility. However, it can
and has come up in the past, and there is no automatic way to cope
with it.

Debian’s dpkg system uses a similar underlying strategy to
CPAN.pm’s, but has evolved a convention that serves as a cop-
ing mechanism: many Debian packages include a number directly
in their names (for instance, libc5 versus libc6); if a package
changes and breaks backwards-compatibility, the number in the
package’s name changes. This way, humans looking through the
package list can select the most recent version of a package for new
projects without worrying that future revisions will break back-
wards compatibility.

The RubyGems system takes the convention a step farther;
their “Rational Versioning Policy,” while not technically required
of packages, is strongly recommended and explicitly supported by
their automatic installation tools. The rational versioning policy re-
quires that a package’s version should be a dotted triple of numbers
(e.g., 1.4.2). Incrementing the first number indicates a backwards-
incompatible change, incrementing the second number indicates a
backwards-compatible change that adds features, and an increment
of the last number indicates an internal change such as a bug-fix
that should not be visible to users. The automatic installation tools
use these numbers to decide which version of a package to down-
load; if a package requests a package of version number at least
2.3.1, then the tool considers version 2.5.0 an acceptable substitute
but not version 3.4.2.

All of these systems are in some sense optimistic, because they
all let a tool decide to substitute one version of a package for
another, and there is no way to know for certain that the program
making the request doesn’t depend on some hidden behavior that
differs between the two. Still, in practice this system seems to
work out, since most programs are not so deeply tied to the inner
workings of libraries they depend on that changes to those libraries
will break them.

3. Goals
In 2003 we decided to build a “CPAN for PLT Scheme” called
PLaneT1. We wanted our design to keep or improve on the good
features of existing component systems while removing as many of
the undesirable properties of those approaches as we could. Specif-
ically, we wanted to make it very easy for PLaneT to automatically
retrieve and install packages and recursively satisfy dependencies
with the best available packages, while giving package developers
as much flexibility as possible. We also wanted to make it easy for
programmers to find available packages and incorporate them into
their own programs, and easy for users of those programs to install
the packages they needed. More specifically:

• We wanted programmers to be able to find available libraries
easily and should be able to correctly incorporate them into
programs without having to know much about PLaneT. We
also wanted PLaneT’s more advanced features to have a gentle
learning curve.

• We wanted users to be able to correctly use programs that rely
on PLaneT libraries without being aware that those libraries,
or PLaneT itself, existed. Ideally, we wanted whether or not a
program relies on a library to be an implementation detail.

Moreover, and perhaps most importantly, we wanted to get rid
of the statefulness inherent to other package management systems.
With CPAN, for instance, every available package might or might
not be installed on any particular user’s computer, so a program that
relies on a particular CPAN package might or might not work for
that user depending on the global state defined by which packages
are installed. If that state does not have the necessary packages,
then the user or a setup script has to do what amounts to a set! that
updates the state. Just as global variables make it hard to reason
about whether a particular code snippet will work, we hypothesized
that the statefulness of package installations make it more difficult
than necessary to use component deployment systems. We wanted
to eliminate that problem to the extent possible.

One non-goal we had for PLaneT was making the client able
to manage the user’s overall computing environment, such as man-

1 After considering the name “CSPAN” briefly, we decided on the name
PLaneT due to the fact that it implied a global network, it contained the
letters P, L, and T in the correct order, and it turned out that John Clements
had coincidentally already designed a logo fit the name perfectly.
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aging global system configuration files or installing shared C li-
braries into standard locations. PLaneT is intended to help PLT
Scheme programmers share PLT Scheme libraries effectively, and
we can accomplish that goal much more simply if we assume that
the PLaneT client can have absolute control over its domain. That
isn’t to say that PLaneT code cannot interact with C libraries —
in fact, thanks to Barzilay’s foreign interface [3] it is often quite
easy to write a PLaneT package that interacts with a C library —
but distributing and installing those C libraries on all the platforms
PLT Scheme supports is not a problem PLaneT is intended to solve.

Our design for PLaneT consists of a client and a server: the
client satisfies programs’ requests for packages by asking for a
suitable package file from the server, and the server determines the
best package to serve for each request.

4. The PLaneT server
Most of the rest of this paper concerns the design of the PLaneT
client, but there is something to be said about the server as well.
PLaneT relies on a single, centralized repository located at http:
//planet.plt-scheme.org/. That site is the ultimate source for
all PLaneT packages: it contains the master list of all packages that
are available, and it is also responsible for answering clients’ pack-
age requests. Naturally, that means it has to decide which package
to return in response to these requests. Furthermore, since the server
is centralized, it is responsible for deciding what packages can be
published at all.

4.1 Versioning policy
As we discussed in section 2, PLaneT, or any other automatic com-
ponent deployment system, needs a policy to make tractable the de-
cision of what packages are compatible with what other packages.
The policy we have chosen is essentially a stricter variant of De-
bian’s de facto versioning policy or RubyGems’ Rational Version-
ing Policy, with the difference that PLaneT distinguishes between
the underlying version of a library, which the author may choose ar-
bitrarily, and the package version, which PLaneT assigns. Because
of this split, we can control the policy for package version numbers
without demanding that package authors conform to our numbering
policies for the “real” version numbers of their packages.

The package version of any package consists of two integers:
the major version number and the minor version number (which
we will abbreviate major.minor in descriptions, though technically
version numbers 1.1, 1.10, and 1.100 are all distinct). The first ver-
sion of a package is always 1.0, the next backwards compatible ver-
sion is always 1.1, and then 1.2, and on up, incrementing the minor
version number but keeping the major version number constant. If
a new version breaks compatibility, it gets the next major version
and gets minor version 0, so the first version that breaks backwards
compatibility with the original package is always 2.0. The pattern
is absolute: compatible upgrades increment the minor version only,
and incompatible upgrades increment the major version and reset
the minor version.

This makes it very easy for the PLaneT server to identify the
best package to send to a client in response to any request. For
instance, as of this writing the PLaneT repository contains four ver-
sions of the galore.plt package with package versions 1.0, 2.0, 3.0,
3.1, 3.2, and 3.3. If a client requests a package compatible with ga-
lore.plt version 3.0, the server can easily determine that 3.3 is the
right package version to use for that request, based only on the ver-
sion numbers. Similarly if a client requests a package compatible
with version 2.0, then it knows to respond with version 2.0 even
though more recent versions of the package are available, since
the developer has indicated that those versions are not backwards-
compatible.

The policy’s effectiveness depends on the conjecture that pack-
age maintainers’ notions of backwards compatibility correspond
to actual backwards compatibility in users’ programs. While it is
easy to come up with hypothetical scenarios in which the conjec-
ture would be false, it seems to hold nearly always in practice, and
the fact that is a more conservative version of strategies already
used in successful component deployment systems gives us more
assurance that our policy represents a reasonable trade-off.

4.2 Package quality control
As maintainers of the PLaneT repository, we are responsible for
deciding which submitted packages to include into the repository.
We decided early on that our policy for quality control should be
to accept all submitted packages. We decided this for a few rea-
sons. First, we wanted to make it as easy as possible for authors
to submit packages, because after all a package repository is only
useful if it contains packages. All the nontrivial quality-control
metrics we could think of would either entail too much work to
scale effectively orimpose barriers to submission that we thought
were unacceptably high. For instance, we considered only accept-
ing packages that provided a test suite whose tests all passed, but
we decided that would discourage programmers from submitting
packages without first writing large test suites in some test-suite
notation that we would have to devise; this seemed too discourag-
ing. (Of course we want programmers to write large, high-quality
test suites for their packages, and many of them do; but mandat-
ing those test suites seemed overly burdensome.) Second, we sus-
pected that low-quality packages didn’t need any special weeding
out, since no one would want to use them or suggest that others
use them; meanwhile high-quality packages would naturally float
to the top without any help.

As for malicious packages, after a similar thought process we
decided that there was nothing technical we could reasonably do
that would stop a determined programmers from publishing a pack-
age that intentionally did harm, and that throwing up technical hur-
dles would likely do more harm than good by offering users a false
sense of security and malicious programmers a challenge to try and
beat. But again, we suspected that the community of package users
could probably address this better by reputation: bad packages and
their authors would be warned against and good packages and their
authors would be promoted.

In short, after some consideration we decided that trying to
perform any kind of serious quality control on incoming packages
amounted to an attempt at a technical solution for a social problem,
so we opted to let social forces solve it instead. This solution is the
same solution used by the other component systems we studied,
which gave us confidence that our decision was workable.

5. The client as a language feature
The PLaneT client works by hooking in to the guts of PLT Scheme’s
module system. In PLT Scheme, programmers can write modules
that depend on other modules in several ways. For instance, the
following code:

(module circle-lib mzscheme
(require (file "database.ss")) ; to use run-sql-query
(require (lib "math.ss")) ; to use π

(define query "SELECT radius FROM circles")
(define areas

(map (lambda (r) (∗ pi r r)) (run-sql-query q)))

(provide areas))
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defines a module named circle-lib in the default mzscheme lan-
guage. The first thing mzscheme does when loading circle-lib (ei-
ther in response to a direct request from the user or because some
other module has required it) is to process all of its requirements.
In this case there are two, (require (file "database.ss")) and (re-
quire (lib "math.ss")), each of which use a different variant of the
require form: the (require (file "database.ss")) variant loads the
module in the file database.ss in the same directory as the source
code of circle-lib, and (require (lib "math.ss")) loads the module
in the file math.ss located in PLT Scheme’s standard library.

PLaneT integrates into this system by simply adding another
new require form. It looks like this:

(require (planet "htmlprag.ss" ("neil" "htmlprag.plt" 1 3)))

This declaration tells mzscheme that the module that contains it
depends on the module found in file htmlprag.ss from the package
published by PLaneT user neil called htmlprag.plt, and that only
packages with major version 1 and minor version at least 3 are
acceptable.

When mzscheme processes this require statement, it asks the
PLaneT client for the path to a matching package, in which it
will look for the file the user wanted (htmlprag.ss in this case).
The client keeps installed packages in its own private cache, with
each package version installed in its own separate subdirectory. It
consults this cache in response to these requests; due to the PLaneT
package version numbering strategy, it does not need to go over the
network to determine if it already has an installed a package that
satisfies the request. If it already has a suitable package installed, it
just returns a path do that installation; if it does not, it contacts the
central PLaneT server, puts in its request, and installs the package
the server returns; the process of installing that package recursively
fetches and installs any other packages that might also be necessary.

This strategy goes a long way towards solving the statefulness
problem we explained in section 3, for the simple reason that
we can think of the statefulness problem as a simpler variant of
the problem modules were designed to solve. In the absence of
modules (or an equivalent to modules), programmers have to write
what amount to control programs that tell the underlying Scheme
system how to load definitions in such a way that the top level is
set to an appropriate state before running the main program — a
problem that is especially bad for compilation [6], but that causes
annoyance even without considering compilation at all. The module
system addresses that top-level statefulness problem by making
modules explicitly state their requirements rather than relying on
context, and making it mzscheme’s responsibility to figure out how
to satisfy those requirements; from this perspective PLaneT just
extends the solution to that statefulness problem to address the
package-installation statefulness problem as well2.

The connection between packages and the require statement
also has a few pleasant side effects. First, it makes it easy for pro-
grammers to understand: PLT Scheme programmers need to learn
how to use the module system anyway, so using PLaneT just means
learning one new twist on a familiar concept, not having to learn
how to use an entirely new feature. Second, including package de-
pendence information directly in the source code means that there
is no need for a PLaneT programmer to write a separate metadata
file indicating which packages a program relies on. PLaneT is the

2 There is one important exception where statefulness shines though: if a
computer that is not connected to the network runs a program that requires
a PLaneT package, then that program might or might not succeed depending
on whether or not the PLaneT client has already installed a suitable version
of the required package. If it has, then the requirement will succeed; oth-
erwise it will fail and signal an error. Of course there isn’t very much the
PLaneT client can do to prevent this stateful behavior, but it does mean that
PLaneT works best for computers that are usually online.

only component deployment system we are aware of with this prop-
erty.

6. Tool support
Since the PLaneT client is a part of the language of PLT Scheme,
tools that work with PLT Scheme code need to be able to work with
PLaneT packages just as naturally as they work with any other con-
struct in the language. This is particularly important for DrScheme,
the PLT Scheme development environment [4], because it provides
programmers with several development tools that PLT Scheme pro-
grammers expect to work consistently regardless of which features
their programs use. For instance, it provides a syntax checker that
verifies proper syntax and draws arrows between bound variables
and their binding occurrences, a syntactic coverage checker that
verifies that a program has actually executed every code path, and
several debuggers and error tracers. Making PLaneT a language ex-
tension rather than an add-on tool places an extra burden on us here,
since it means programmers will expect all the language tools to
work seamlessly with PLaneT requires. For this reason, we have
tried to make tool support for PLaneT as automatic as possible.

In doing so, we are helped by the fact that PLaneT is incorpo-
rated into Scheme rather than some other language, because due to
macros Scheme tools cannot make very strong assumptions about
the source code they will process. Similarly, in PLT Scheme tools
must be generic in processing require statements because a macro-
like facility exists for them as well: even in fully-expanded code,
a program may not assume that a require statement of the form
(require expr) has any particular semantics, because expr has not
itself been “expanded” into a special value representing a particular
module instantiation. To get that value, the tool must pass expr to a
special function called the module name resolver, which is the only
function that is entitled to say how a particular require form maps to
a target module. PLaneT is nothing but an extension to the module
name resolver that downloads and installs packages in the process
of computing this mapping; since tools that care about the meaning
of require statements have to go through the module name resolver
anyway, they automatically inherit PLaneT’s behavior.

This has made DrScheme’s tools easy to adapt to PLaneT, and
in fact almost none of them required any modification. Figure 1
shows some of DrScheme’s tools in action on a small PLaneT
program: the first screenshot shows the syntax check tool correctly
identifying bindings that originate in a PLaneT package, and the
second shows PLaneT working with DrScheme’s error-tracing and
debugging tools simultaneously. None of these tools needed to be
altered at all to work correctly with PLaneT.

We did have to make some changes to a few tools for a couple of
reasons. The first was that some tools were only designed to work
on particular require forms, or made assumptions about the way
that libraries would be laid out that turned out to be too strong.
For instance, both the Help Desk and the compilation manager
assumed that all programs were installed somewhere within the
paths that comprise PLT Scheme’s standard library; PLaneT installs
downloaded code in other locations, which caused those tools to
fail until we fixed them. In principle, this category of tool change
was just fixing bugs that had been in these tools all along, though
only exposed by PLaneT’s new use patterns.

The second reason we had to modify some tools was that the
generic action that they took for all libraries didn’t really make
sense in the context of PLaneT packages, so we had to add special
cases. For instance, we had to add code to the Setup PLT installa-
tion management tool so that it would treat multiple installed ver-
sions of the same package specially. Also, DrScheme also includes
a module browser that shows a program’s requirements graph; we
modified that tool to allow users to hide PLaneT requirements in
that display as a special case. The module browser worked with-
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Figure 1. Two tools interacting seamlessly with PLaneT packages

out that modification, but we found that the extra requirements
that PLaneT packages introduced transitively tended to add a lot
of noise without being very useful. Figure 2 illustrates the impact
this special case had on the quality of the module browser’s output.

7. A few complications
We think PLaneT’s version-naming policy works fairly well: it is
simple to implement, simple to understand, and easy enough to use
that if you don’t understand it at all you’ll probably do the right
thing anyway. But of course versioning is never that quite that sim-
ple, and we have had to make a few tweaks to the system to make
sure it didn’t cause subtle and difficult-to-debug problems. Three
of these problems, which we call the “bad update” problem, the

“magic upgrade” problem and the module state problem, deserve
special attention.

The bad update problem
If a program relies on buggy, undocumented or otherwise subject-
to-change behavior in a package (for instance because it works
around a bug), then it may break in the presence of upgrades that
PLaneT thinks of as compatible (for instance the eventual bug fix).
We expect these cases to be the exception, not the rule (if we
thought these were the common case then we wouldn’t have added
versioning to PLaneT at all), but they could still represent major
problems for programmers unlucky enough to have to deal with
them.
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Figure 2. Sometimes special cases are important: the module browser displaying all requirements (above), and hiding PLaneT requirements
(below)
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To help those programmers cope, we decided early on to follow
the lead set by the other component deployment systems we studied
and make it possible to write a PLaneT require statement that
asks for a more specific package than just anything backwards-
compatible with a named package. In general, a PLaneT require
specification may specify any range for a package’s minor version
(but not the major version, since two different major versions of
a package don’t have the same interface in general); for instance
the package specifier ("soegaard" "galore.plt" 3 (0 1)))) indicates
that either package version 3.0 or version 3.1 is acceptable, but
no others. In fact the normal way of writing a package specifier
— ("soegaard" "galore.plt" 3 0) — is just syntactic sugar for
("soegaard" "galore.plt" 3 (0 +inf.0)). Similarly, the equality
form ("soegaard" "galore.plt" 3 (= 0)) is just syntactic sugar for
("soegaard" "galore.plt" 3 (0 0)). We hope that programmers will
not need to use these more general facilities often, but we expect
that they are occasionally very useful to have around.

The magic upgrade problem
A subtler and stranger behavior that we had to be careful not to
allow in PLaneT is what we call the magic upgrade problem, in
which a user could run a program and end up changing the behavior
of seemingly unrelated programs. If, in satisfying a requirement for
a particular package specification, the PLaneT client always were to
always look for the most recent locally-installed package that meets
the criteria, then the following situation could arise: suppose a user
has a program P that requires package A with package version 1.0
or later as part of its implementation, and has package A version 1.1
installed locally to satisfy that requirement. If package A releases a
new version, 1.2, and then the user runs program Q which requires
package A version 1.2 or later, then PLaneT must install package A
version 1.2 locally. But now, if the user runs the original program
P, its behavior will change because instead of using version 1.1,
the client can now supply it with the newer package version 1.2.
This might change program P’s behavior in unpredictable ways,
which is bad because according to our design principles, the user
isn’t supposed to have to know that package A even exists, much
less that P and Q happen both to use different versions of it and so
running Q might “magically upgrade” P without any warning!

Rather than allow this to happen, we have introduced a layer
of indirection. When a program requires a PLaneT package for the
first time, the PLaneT client remembers which particular package
it told mzscheme to use to satisfy that requirement. Whenever the
same program asks again, it returns the same path, regardless of
whether newer packages are available. We call these associations
“links” and a particular module’s set of links its “linkage”; the
links are collectively stored in the PLaneT client’s “linkage table.”
The PLaneT client adds a link to a module every time it resolves a
request for that module, and a module’s linkage persists until the
user explicitly clears it.

Module state conflicts
Another problem that can come up when two versions of a pack-
age are installed at the same time is that they may inadvertently
interfere with each other because they both behave in similar ways
but have different module state. In PLT Scheme, a module has only
one copy of its mutable state, no matter how many times other mod-
ules require it — this allows a module to establish its own whole-
program invariants or to regulate access to unique, non-duplicatable
resources on the system. For instance, suppose a library author
writes a module that maintains some internal state in the course
of its duties:

(module db mzscheme

(define ∗dbfile∗ "my-database.db")

(define num-items 0)

(define (write-to-db datum)
(with-output-to-file ∗dbfile∗

(lambda ()
(display datum)
(set! num-items (add1 num-items)))))

(provide write-to-db))

The author of this code might reasonably expect that no mat-
ter how a program used the db module to write values into my-
database.db, num-items would remain a faithful count of the num-
ber of items there (assuming that the file started out empty, of
course). That author would be correct, because no matter how many
modules require the db module they will each get the same copy
with shared internal state.

If the author puts this module in a PLaneT package, the same
behavior applies. However, that behavior may not be good enough
anymore, because PLaneT allows multiple versions of the same
package to run side-by-side. Suppose the developer releases a new
version of the db package:

;; new db module for PLaneT package version 1.1
(module db mzscheme

(define ∗dbfile∗ "my-database.db")
(define num-items 0)
(define (write-to-db datum) . . . [as before])
(define (read-from-db)

(with-input-from-file ∗dbfile∗
(lambda ()

(do ((ret null)
(i 0 (+ i 1)))

((= i num-items) ret)
(set! ret (cons (read) ret))))))

(provide write-to-db read-from-db))

Again, the developer might expect that num-items is always a true
count of the number of items written into my-database.db. But
it might not be the case anymore: from the solutions to the bad
update problem and the magic upgrade problem, we know that for
a variety of reasons different libraries within the same program
might end up loading the same package with two different versions
because of packages insisting on particular package versions or
because of different modules in the same program getting different
links. In particular, that means that a single program might use
the db modules from package version 1.0 and package version
1.1 at the same time, and as far as mzscheme is concerned those
are two separate modules with completely distinct states. If that
were to happen, writes that went through db version 1.0 would not
be reflected in version 1.1’s counter, possibly leading to a corrupt
database file or even a program crash if the program called read-
from-db.

We expect that most packages will not exhibit problems like
this, because most programming libraries do not rely on invariants
between module-level state and system state in the way the db
module does. However, we also expect that for the modules that
do rely on those invariants, this problem could easily be a source
of inscrutable bugs. Therefore our design takes the conservative
approach and by default we do not allow multiple versions of
the same library to be loaded at the same time, unless explicitly
allowed.
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Considering all of these issues together, we have arrived at the fol-
lowing final policy for clients resolving a PLaneT require statement
for a particular program and a particular package.

1. PLaneT first decides what package to use to satisfy the request:

(a) If the program has a link in the linkage table to a particular
version of the package being requested, then PLaneT always
uses that package.

(b) If the program does not have a link, then PLaneT obtains a
package that satisfies the request either from its local cache
or from the central PLaneT server.

2. If PLaneT decides on a version of a package, and another ver-
sion of that same package is already loaded (not just installed
but actually running) in some other part of the program, then
PLaneT signals an error unless the package itself explicitly tells
PLaneT that simultaneous loading should be allowed. Other-
wise it uses the package it has decided on to satisfy the request.

8. Evaluation
Up to this point we have described PLaneT as we originally de-
signed it. PLaneT has been in active use for over two years, and
in that time we have gained a lot of experience with how well our
design decisions have worked out in practice. Generally we have
found that our design works well, though we have identified a few
problems and oversights, both with its technical design and with its
ease-of-use features (which we consider to be at least as important).

First the good: PLaneT has quickly become many developers’
default way to distribute PLT Scheme libraries, and over the course
of two years we have received 115 packages and nearly 300,000
lines of Scheme code, compared to about 700,000 of Scheme code
in PLT Scheme’s standard library (which includes among other
things the entire DrScheme editor implementation). These user-
contributed libraries have been very useful for adding important
functionality that PLT Scheme itself does not include. For instance,
PLaneT currently holds implementations of several sophisticated
standard algorthims, three different database interfaces, two unit-
testing frameworks, and several bindings to popular native libraries.
PLT Scheme itself does not come with much built-in support for
any of these, so the easy availability of PLaneT packages has been
a big help to people writing programs that need those. (Schematics’
unit-testing package SchemeUnit [16], packaged as schemeunit.plt,
is the single most popular package on PLaneT and is required
by over a quarter of the other available packages.) Its utility is
also demonstrated by its usage statistics: PLaneT packages have
been download 22475 times (as of the moment of this writing),
an average of about 30 a day since PLaneT was launched (and an
average of about 50 a day in the last year).

We have also found that integration of package installation into
the require statement has had the effect we had hoped it would,
that programmers would have fewer qualms about using packages
than they would otherwise. Our evidence is anecdotal, but we have
found that code snippets on the PLT Scheme users’ mailing list
and in other programming fora have frequently included PLaneT
require statements, without even necessarily calling attention to
that fact; before PLaneT it was not common at all for people to
post code that relied on nonstandard libraries.

It is harder to say how successful our package version num-
bering strategy has been. We have not yet heard of any problems
resulting from backwards incompatibilities (with one arguable ex-
ception as we discuss below), but we have also found that nearly
half of all packages (54 out of 115) have only ever released one
version, and most (72 of 115) had released only one or two ver-
sions. This is not in itself alarming — on CPAN, for instance, most

packages only ever release one version as well — but none of our
version-compatibility machinery is relevant to packages with only
one version, so the fact that it has not given us problems is not very
informative.

Another area where we are still unsure of whether our policy
was correct is our choice not to perform any quality control on
incoming packages. While we still believe that we cannot and
should not try to verify that every submitted package is “good,”
we have begun to think that it may be beneficial to make a few
sanity checks before accepting a package. For instance, if an author
submits a new version of a package and claims the new version
is backwards-compatible, we cannot verify that absolutely but we
can at least make sure that it provides all the same modules the
old package did, and that none of those modules fails to provide
a name that was provided before. This does impose an additional
hurdle for package authors to clear, but in practice it seems that the
only packages that fail this test have obvious packaging errors that
authors would like to know about.

There have been a few design problems we have had to ne-
gotiate. One significant problem was that as new versions of PLT
Scheme were released, they introduced backwards incompatibili-
ties, and packages written for one version did not work later ones.
Similarly, code written for newer versions of PLT Scheme used fea-
tures that were not available in older versions, which could cause
problems for users of those older versions who tried to download
the new packages. This is the same problem that PLaneT’s ver-
sion numbering scheme tries to address, of course, but since PLT
Scheme is not itself a PLaneT package we could not reuse that
scheme directly. Furthermore, the PLT Scheme distribution does
occasionally introduce large, generally backwards-incompatible
changes in its releases, big events that define a new “series”,
but much more regularly it introduces more minor incompatibil-
ities. These incompatibilities are obscure enough that we thought
PLaneT packages would nearly never be affected by them, so we
did not want to make package authors release new versions of their
packages in response to each one. Considering these, we decided
on the following policy: when an author submits a package, we
associate a PLT Scheme series with it (currently there are two such
series, the “2xx” series and the “3xx” series), which places that
package in the 2xx or 3xx repository. By default we assume that
any PLT Scheme version in a series can use any package in its cor-
responding repository; packages can override this assumption by
indicating a minimum required PLT Scheme version if necessary.

Another problem that quickly became apparent in our initial
design was that we had imposed an annoying hurdle for package
developers. Developers understandably want to test their packages
as they will appear to users, and in particular they want to be able
to require and test packages using the (require (planet · · · )) form
since that form is what others will use. With our original design,
there was no way to do that; the only way to have your package
accessible as via PLaneT was to actually submit it, so developers
had to interact with their code using either a (require (file · · · )) or
a (require (lib · · · )) statement instead. This caused many problems
and considerable frustration. Our first attempt to solve the problem
was to allow programmers to install a package file directly to their
PLaneT clients’ local caches without going through the server. This
helped but did not eliminate the problem, since programmers still
had to create and install a package every time they wanted to run
their tests. Based on the response to that, we arrived at our current
solution: programmers can create “development links” that tell the
PLaneT client to look for a given package version in an arbitrary
directory of the programmer’s choice. Since we added development
links we have not had any more problems with programmers not
being able to test their packages adequately.
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9. Conclusions and related work
With two years of experience, we feel confident now in concluding
that PLaneT has basically met the goals we set out for it: it is easy
to use for package authors, developers who use PLaneT packages,
and end users who don’t want to think about PLaneT packages at
all. We attribute this ease of use to our unusual inclusion of package
management features into the language itself, which has allowed
us to do away with the concept of an uninstalled package from
the programmer’s perspective. While to our knowledge that feature
is unique, PLaneT otherwise borrows heavily from previously-
existing package distribution systems and language-specific library
archives.

As we have already discussed, we have taken insight for our
design from the designs of CPAN, Debian Linux’s dpkg system
and Ruby’s RubyGems system; and there are several other pack-
age management systems that also bear some level of similarity
to PLaneT. Many Linux distributions come with automatic pack-
age managers (such as Gentoo’s portage system [15] and the
RPM Package Manager [7]), and there have also been a few im-
plementations of completely automatic application-launching sys-
tems, i.e. application package managers that eliminate the con-
cept of an uninstalled application: Zero Install [8] and klik [9]
are examples of this kind of system. Furthermore there are many
language-specific component and component-deployment systems
for other language implementations; examples of these include
Chicken Scheme’s eggs system [17], Michael Schinz’ scsh pack-
age manager [13], and the Common Lisp asdf and asdf-install sys-
tem [2].

We hope with PLaneT we have achieved a synthesis of all these
ideas into a single coherent system that is as natural and as easy
to use as possible. We believe that every programming language
should make it simple for one programmer to reuse another pro-
grammer’s code; and we believe a key part of that is just making
sure that programmers have a standard way to access each others’
programs. As we have shown, moving package management into
the language’s core is a powerful way to achieve that goal.
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