
Implementing Language-Dependent Lexicographic Orders
in Scheme

Jean-Michel HUFFLEN
LIFC (EA CNRS 4157) — University of Franche-Comté

16, route de Gray — 25030 BESANÇON CEDEX — FRANCEhu�en�lif
.univ-f
omte.fr
Abstract
The lexicographical order relations used within dictionaries are
language-dependent, and we explain how we implemented such
orders in Scheme. We show how our sorting orders are derived
from the Unicode collation algorithm. Since the result of a Scheme
function can be itself a function, we use generators of sorting
orders. Specifying a sorting order for a new natural language has
been made as easy as possible and can be done by a programmer
who just has basic knowledge of Scheme. We also show how
Scheme data structures allow our functions to be programmed
efficiently.

Keywords Lexicographical order relations, collation algorithm,
Unicode, MlBIBTEX, Scheme.

1. Introduction
Sorting words belonging to a natural language, like in a dictio-
nary, depends on this language. As part of the MlBIBTEX project—
for ‘MultiL ingual BIBTEX’—we developed functions implemented
collation, that is, determining sorting orders of strings of charac-
ters. Let us recall that MlBIBTEX aims to be a ‘better’ BIBTEX
[Patashnik, 1988]—the bibliography processor usually associated
with the LATEX word processor [Lamport, 1994]—especially about
multilingual features. When BIBTEX or MlB IBTEX builds a ‘Refer-
ences’ section for a LATEX document, abibliography styleis used
to rule the layout of this section. Most of BIBTEX styles sort this
section’s items w.r.t. the alphabetical orders of authors’names. TheSORT function used within these styles [Mittelbach et al., 2004,Ta-
ble 13.7] ignores accents and other diacritical signs, so inpractice,
it is suitable only for the English language. MlBIBTEX allows bib-
liographical items of a document written in English (resp. French,
German, . . .) to be sorted according to the English (resp. French,
German, . . .) order.

MlB IBTEX has been developed in Scheme, we explained the rea-
sons of this choice and outlined its architecture in [Hufflen, 2005b].
Here we focus on the definitions of sorting orders as part of this
framework. MlBIBTEX’s first version only deals with the European
languages using the Latin alphabet. Our method is derived from an

Copyright c© 2007 Jean-Michel Hufflen.
Proceedings of the 2007 Workshop on Scheme and Functional Programming
Université Laval Technical Report DIUL-RT-0701

algorithm related to Unicode, an industry standard designed to al-
low text and symbols from all of the writing systems of the world to
be consistently represented [2006]. Our method can be generalised
to other alphabets. In addition, let us mention that if a document
cites some works written using the Latin alphabet and some writ-
ten using another alphabet (Arabic, Cyrillic, . . .), they are usually
itemised in two separate bibliography sections. So this limitation is
not too restrictive within MlBIBTEX’s purpose.

The next section of this article is devoted to some examples
in order to give some idea of this task’s complexity. We briefly
recall the principles of the Unicode collation algorithm [2006a] in
Section 3 and explain how we adapted it in Scheme in Section 4.
Section 5 discusses some points, gives some limitations of our
implementation, and sketches possible future work.

2. Lexicographic orders and natural languages
The basic lexicographic order, well-known in Mathematics,can be
defined by:

[] ≤ s1

[x0|s0] ≤ [x1|s1] ⇐⇒ x0 < x1 ∨ (x0 = x1 ∧ s0 ≤ s1)

wherex0 and x1 are characters,s0 and s1 strings of characters,
and the notations ‘[]’ and ‘[x0|s0]’ are for the empty string and
a non-empty string whose first character isx0 and rest iss0. This
simple order relation may be used for English words, except that
the differences in case—between uppercase and lowercase letters—
are to be ignored in a first pass. Then if two words differ only
be the case of a letter, an uppercase letter takes precedenceover
the corresponding lowercase one, according to a left-to-right order.
In addition, let us notice that this relation can be implemented
efficiently for unaccented letters since theASCII1 codes for letters
follow the English alphabetical order.

deal with: an uppercase letter takes precedence over the corre-
sponding downcase one if two words differ only by the case of a
letter, and the order is left-to-right.

As shown by some non-limitative examples in Figure 1, this
problem may be more complicated for other languages. We can ob-
serve some changes in the alphabetical order of unaccented letters:
in the Estonian language, ‘z’ is not the last letter of the alphabet, it
is ranked between ‘s’ and ‘t’. Accented letters may be treated as
individual letters, like in Swedish, or interleaved with unaccented
letters, like in the most common orders used in Germany. The same
for ligatures: ‘æ’ is viewed as a separate letter in Swedish, alpha-
beticised like ‘ae’ in French. If accented letters are interleaved with
unaccented ones, the latter take precedence when two words differ
only by accents. In most cases, the order is left-to-right—that is true

1 AmericanStandardCode forInformationInterchange.

Scheme and Functional Programming 2007 139

• The Czech alphabet is: a< b < c < č < d < . . . < h < ch< i < . . . < r < ř < s< š< t < . . . z< ž.
• In Danish, accented letters are grouped at the end of the alphabet: a< . . . < z < æ< ø< å∼ aa.
• The Estonian language does not use the same order for unaccented letters than usual Latin order; in addition, accented letters are either

inserted into the alphabet or alphabeticised like the corresponding unaccented letter:

a< . . . < s∼ š< z ∼ ž < t < . . . < w < õ < ä< ö < ü < x < y

• Here are the accented letters in the French language: à∼ â, ç, è∼ é∼ ê∼ ë, î∼ ï, ô, ù∼ û∼ ü, ÿ.
When two words differ by an acccent, the unaccented letter takes precedence, but w.r.t. a right-to-left order: cote< côte< coté< côté.
The French language also use two ligatures: ‘æ’ (resp. ‘÷’), alphabeticised like ‘ae’ (resp. ‘oe’).

• There are three accented letters in German—‘ä’, ‘ ö’, ‘ ü’—and three lexicographic orders:

DINa-1: a∼ ä, o∼ ö, u∼ ü;
DIN-2: ae∼ ä, oe∼ ö, ue∼ ue;
Austrian: a< ä< . . . < o < ö < . . . < u < ü < v < . . . < z.

• The Hungarian alphabet is:

a∼ á< b < c < cs< d < dz< dzs< e∼ é< f < g < gy < h < i ∼ í < j < k < l < ly < m <

n < ny < o∼ ó < ö∼ ő < p < . . . < s< sz< t < ty < u∼ ú < ü∼ ű < v < . . . < z < zs

• In Swedish, accented letters are grouped at the end of the alphabet: a< . . . < z < å< ä< ö.

‘a < b’ denotes that the words beginning witha are less than the words beginning withb, whereas ‘a ∼ b’ expresses that the lettersa andb

are interleaved, except thata takes precedence overb if two words differ only by these two letters.

a DeutscheInstitut fürNormung(German Institute of normalisation).

Figure 1. Some order relations used in European languages.

for Italian and Portuguese—but not always: the French language
uses a right-to-left order (cf. Fig. 1). In some languages, digraphs
may sort as separate letters: for example, ‘
h’ is ranked between ‘h’
and ‘i’ in Czech. The Hungarian language uses a trigraph, ‘dzs’,
as a separate letter. In addition, there are special rules for double
digraphs in this language: for example, ‘sz+sz’ is written ‘ssz’ in
this language, but the two successive digraphs should be restored
before sorting: ‘depresszió’ should be sorted as ‘depresz szió’.
The same rule holds for the double trigraph ‘ddzs’, for ‘ dzs+dzs’.
Other equivalences exist: in Danish, ‘aa’ is equivalent to ‘å’ 2.

So it clearly appears that there cannot be a universal order,en-
compassing all lexicographic orders. In addition, let us recall that
we are interested in such order relations in order to sort bibliograph-
ical items w.r.t. authors’ names. These names may be ‘foreign’
proper names if we consider the language used for the bibliogra-
phy, that is, the language of the document. A very simple example
is the use of English names within the bibliography of a document
written in French. Such foreign names may include characters out-
side the alphabet of the document’s language. As a consequence,
an order relation for sorting the items of a bibliography should be
able to deal with any letter belonging to a language written using
the Latin alphabet, since such letters may appear in foreignnames.
A good choice is to associate accented foreign letters with the cor-
responding unaccented letter. If we consider the English language,
this means that accented letters are interleaved with unaccented let-

2 The fact that a sequence of several letters may be equivalentto one has
been pointed out in an example given in the proposal for the new standard
of Scheme [cf. Sperber et al., 2007, § 1.2]:(string-
i=? "Straÿe" "Strasse") =⇒ #t
because in German, the uppercase form of the ‘ÿ’ letter is ‘SS’. On the
contrary: (string=? "Straÿe" "Strasse") =⇒ #f
As mentioned in [Flatt and Feeley, 2005], the implementation of the func-
tions comparing strings can no longer be defined in terms of character-by-
character comparisons, as they are in the present standardR5RS[1998].

ters, but unaccented letters take precedence over the foreign letter if
two words differ only by these two letters. So proceed most ofim-
plementations of lexicographic order relations. Let us notice that a
foreign name may include additional letters whose association with
a basic letter may be difficult: for example, the Icelandic ‘þ’ letter.

3. The Unicode collation algorithm
Unicode provides a default algorithm [2006a] to sort all thestrings
build over its characters. It consists of amultilevelalgorithm: each
step sorts the elements left unsorted by the preceding step.Here are
these levels:

L1 Base characters role < roles < rule
L2 Accents role < r�le < roles
L3 Case role < Role < r�le
L4 Punctuation role < "role" < Role
Ln Tie-breaker role < ro�le < "role"

The differences indicated by the underlined characters areswamped
at stronger-level steps, for example, the difference between ‘o’ and
‘�’ at Level 1. In the last example, ‘�’ represents a format charac-
ter, which is otherwise ignorable.

The first two steps are based on adecomposition property
[2006b] for composite characters. For example, the ‘�’ letter,
whose name and code point—given using hexadecimal numbers—
are:

LATIN SMALL LETTER O WITH CIRCUMFLEX , U+00F4

can be decomposed into these two ‘simpler’ characters put together
when a text is to be written:

LATIN SMALL LETTER O , U+006F
COMBINING CIRCUMFLEX ACCENT, U+0302

Thesort keysused for each level are extracted from a Unicode
collation element table, which defaults to theDUCET3, given by

3 Default UnicodeCollation ElementTable.

140 Scheme and Functional Programming 2007

the file allkeys.txt, available at the Web site of Unicode4. These
keys areweight values. For example, these values for the letters ‘
’,
‘o’, and the combining circumflex accent, given using hexadecimal
values, are:

LATIN SMALL LETTER C [.0FFE.0020.0002.0063℄
LATIN SMALL LETTER O [.113B.0020.0002.006F℄
COMBINING CIRCUMFLEX ACCENT[.0000.003C.0002.0302℄

The first pass uses the first column’s values as primary sort
key, the second pass uses the second column’s values as sec-
ondary sort key, and so on. ‘.0000’ values are to being ignored.
In our example, this means that a combining circumflex accent
is to be ignored by the first pass of the algorithm. In fact, this
algorithm now consists of a binary comparison between double
bytes, until the two strings can be distinguished. If a right-to-left
order is to be used for the second step, like in the French lan-
guage, the lists of double bytes belonging to the second column
should be reversed before applying comparisons. For example,
these values are.0020.0020.003C.0020.0020 for the ‘
�te’
word, ‘.0020.0020.0020.0020.0032 for the ‘
oté’ word. Do-
ing a double-byte-to-double-byte comparison allows us to con-
clude that
�te <
oté, which is the case if the default colla-
tion algorithm is applied. If we consider the right-to-leftorder
(e.g., for French), these lists of double-bytes are to be reversed,
and the comparison between.0020.0020.003C.0020.0020 and.0032.0020.0020.0020.0020 implies that
�te >
oté, which
is correct for this language.

Weight values used as sort keys may be different from the code
points ranking all the characters of Unicode and may be language-
dependent. If a letter should be viewed as synonym of consecutive
letters, for example, the ‘æ’ ligature in English, the table gives
several 4-uples:

LATIN SMALL LETTER AE [.0FD0.0020.0004.00E6℄[.0000.0199.0004.00E6℄[.1029.0020.001F.00E6℄
‘0FD0’ and ‘1029’ being the primary sort keys for the letters ‘a’ and
‘e’. If a digraph should be viewed as a single letter, two consecutive
characters are given a unique 4-uple of weight values. For example,
‘
h’ in traditional Spanish:

LATIN SMALL LETTER C , LATIN SMALL LETTER H ; "ch"[0707.0020.0002.00E6℄
Given a particular language, some characters are givenvari-

ableweight values for the Unicode collation algorithm [see 2006a,
§ 3.2.2]: they may beignorable, non-ignorable, shifted, or shift-
trimmed. ‘Shifted’ (resp. ‘shift-trimmed’) means that the variable-
weighted characters are ranked before (resp. after) the others at the
fourth step.

4. Our implementation
As part of MlBIBTEX, our implementation of the collation algo-
rithm aims to serve two purposes:

• end-users should be able to add a new order for a new language
easily, provided that they can express how this order is built in
an abstract way;

• resulting sorting orders for strings should be efficient, because
they are used to sort list of bibliographical items, these lists be-
ing possibly big: such an operation requires many comparisons
among strings. Of course, efficient sort algorithms are known
for a long time, but the more efficient the comparisons among
strings, the more efficient the list sort.

4http://www.uni
ode.org/Publi
/UCA/latest/allkeys.txt

In addition, the general collation algorithm can be simplified in
our case. Let us recall that we deal with natural languages written
using the Latin alphabet.

• Only letters and whitespace characters are of interest for us:
the punctuation signs can be dropped out, so the last step of
the general algorithm is not needed. According to languages,
some additional characters can be recognised—for example,
the hyphen ‘-’ character—they are either ignored or ranked
between the space character and all the letters.

• As far as we know, the third step is the same for all the lan-
guages we deal with: an uppercase letter takes precedence over
the corresponding downcase one if two words differ only by the
case of a letter, and the order is left-to-right.

So, to derive a sorting order for strings from a generator, we
have to provide four arguments.

• A list whose elements areseparatorcharacters, viewed less
than any letter. It should begin by the space character and
often this list contains only this character, in which case the<spa
e-only variable can be used. This is not universal: for
example, space characters are ignored when words are sorted
in Hungarian (cf. the definition of the<hungarian? variable in
Figure 2).

• An alphabet, given w.r.t. the increasing order, as a list of strings.
If the ‘classical’ alphabet is used—unaccented letters of the
Latin alphabet, sorted according to the usual order— just put
the ‘false’ value (cf. the definition of the<english? variable).

• An association list for additional sequences of characters, each
sequence being followed by a replacement and a weight value.
That means that a decomposition is to be applied to these
sequences.

• A function related to the sense of the second step: when the first
is finished, weight values prepared for the second step appear
in reverse order, so putreverse!5 if this second step’s order is
left-to-right, putidentity—the identity function) for a right-
to-left order. Cf. the use of these two values for<fren
h? and<english?.

It should be noticed that only lowercase letters have to be specified,
the equivalent relations among uppercase letters will be deduced.

Figure 2 shows how the order relations for the European lan-
guages described in Figure 1 are put into action. The result of
our generator of order relations,<mk-order-relation, is a 2-
argument function. Such a function takes two strings,s0 ands1,
and returns#t if s0 is strictly less thans1 according to the order
relation for the corresponding language,#f otherwise. Such an or-
der relation is able to deal with strings containing ‘foreign’ letters,
since there are default associations for the accented letters of all the
European languages. For example, the Polish letter ‘ª’ is associated
with the ‘l’ letter by default, the weight value allowing ‘l’ to take
precedence over ‘ª’ at the second step of the sorting order if need
be. Let us give two examples:(<english? "
oté" "
�te") =⇒ #t(<fren
h? "
oté" "
�te") =⇒ #f
In the first example, ‘é’ and ‘�’ are foreign letters for the English
language, and the order for the second step is left-to-right. In the
second example, this order is right-to-left, as in French.

Our generator proceeds as follows.

5 Some Schemers could observe that this function does not belong to pure
functional style, because it is potentially destructive [Shivers, 1999, see].
But it is more efficient than thereverse function and the weight informa-
tion list is not shared with other lists.

Scheme and Functional Programming 2007 141

(define <english (<mk-order-relation <spa
e-only #f '() reverse!))(define <austrian?(<mk-order-relation <spa
e-only'("a" "ä" "b" "
" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "ö" "p" "q" "r" "s""t" "u" "ü" "v" "w" "x" "y" "z")'() reverse!))(define <
ze
h?(<mk-order-relation <spa
e-only'("a" "b" "
" "£" "d" "e" "f" "g" "h" "
h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r""°" "s" "²" "t" "u" "v" "w" "x" "y" "z" "º")'() reverse!))(define <danish?(<mk-order-relation <spa
e-only(<push-default-alphabet '("æ" "ø" "å")) ; Put these three letters at the end of the standard; alphabet.'(("aa" ("å" . 2))) reverse!))(define <estonian?(<mk-order-relation <spa
e-only'("a" "b" "
" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s" "z" "t""u" "v" "w" "õ" "ä" "ö" "ü" "x" "y")'(("²" ("s" . 2)) ("º" ("z" . 2))) reverse!))(define <fren
h?(<mk-order-relation <spa
e-only #f'(("à" ("a" . 2)) ("â" ("a" . 3)) ("è" ("e" . 2)) ("é" ("e" . 3)) ("ê" ("e" . 4))("ë" ("e" . 5)) ("î" ("i" . 2)) ("ï" ("i" . 3)) ("ö" ("o" . 2)) ("ù" ("u" . 2))("ü" ("u" . 3)) ("¸" ("y" . 2)))identity))(define <german-din-1?(<mk-order-relation <spa
e-only #f '(("ä" ("a" . 2)) ("ö" ("o" . 2)) ("ü" ("u" . 2))) reverse!))(define <german-din-2?(<mk-order-relation <spa
e-only #f'(("ä" ("a" . 2) ("e" . 2)) ("ö" ("o" . 2) ("e" . 2)) ("ü" ("u" . 2) ("e" . 2)))reverse!))(define <hungarian?(<mk-order-relation '() ; In Hungarian, a whitespace character is irrelevant when words are sorted.'("a" "b" "
" "
s" "d" "dz" "dzs" "e" "f" "g" "gy" "h" "i" "j" "k" "l" "ly" "m" "n""ny" "o" "ö" "p" "q" "r" "s" "sz" "t" "ty" "u" "ü" "v" "w" "x" "y" "z" "zs")'(("á" ("a" . 2)) ("é" ("e" . 2)) ("

s" ("
s" . 2) ("
s" . 2))("ddz" ("dz" . 2) ("dz" . 2)) ("ddzs" ("dzs" . 2) ("dzs" . 2))("ggy" ("gy" . 2) ("gy" . 2)) ("í" ("i" . 2)) ("lly" ("ly" . 2) ("ly" . 2))("nny" ("ny" . 2) ("ny" . 2)) ("ó" ("o" . 2)) ("®" ("ö" . 2))("ssz" ("sz" . 2) ("sz" . 2)) ("tty" ("ty" . 2) ("ty" . 2)) ("ú" ("u" . 2))("¶" ("ü" . 2)))reverse!))(define <swedish?(<mk-order-relation <spa
e-only (<push-default-alphabet '("æ" "ä" "ö")) '() reverse!))
Figure 2. Building order relations for some European languages.

• All the letters of the alphabet—the second argument of the<mk-order-relation function—and all the members—its
third argument—supersede the default definitions.

• All the separator characters and letters of the alphabet arenum-
bered and used as entries of a hash table, getting access to cor-
responding numbers. Such hash tables have been put into action
by means of the functions ofSRFI69 [see Kalliokoski, 2005].

• All the separator characters, all the letters of the alphabet, all
the associations’ keys, and all the default definitions are used

to build a trie6. If a single letter—or a digraph or trigraph—
is recognised, this trie gets access to either the corresponding
value of an association, or the#t value, in which case the recog-
nised sequence belongs to the alphabet. The other characters are
ignored.

6 This word originates from the central letters of the word ‘retrieval’ Fred-
kin [1960]. A digital tree is a tree for storing strings in which nodes are
organised by substrings common to two or more strings, atrie is a particu-
lar case of a digital tree: there is only one node for every common prefix.

142 Scheme and Functional Programming 2007

(define g0 ; Definition of a zero-argument function that will section theword ‘szőlő’ (‘ grape’).(mk-hungarian-word-se
tioner "sz®l®"))(g0) =⇒ ("sz" . 1) ; The successive equivalent letters, digraphs, etc. of this word are returned in turn, with the corresponding(g0) =⇒ ("ö" . 2) ; weight value.(g0) =⇒ ("l" . 1)(g0) =⇒ ("ö" . 2)(g0) =⇒ #f ; The word is finished, so all the calls of this function will return the ‘false’ value, from now on.(define g1 (mk-hungarian-word-se
tioner "depresszió")) ; Another example.(g1) =⇒ ("d" . 1)(g1) =⇒ ("e" . 1)(g1) =⇒ ("p" . 1)(g1) =⇒ ("r" . 1)(g1) =⇒ ("e" . 1)(g1) =⇒ ("sz" . 2) ; Although the double digraph is written as‘ssz’, it is replaced by two occurrences of the‘sz’ digraph.(g1) =⇒ ("sz" . 2)(g1) =⇒ ("i" . 1)(g1) =⇒ ("o" . 2)(g1) =⇒ #f
Figure 3. Sectioning Hungarian words.

• Our tries are implemented by balanced ternary search trees.
‘Balanced’ means that for each non-empty subtree, the numbers
of elements of the left, middle, and right branches do not differ
from more than 1. To get this trie, we sort the alphabet accord-
ing to theLatin 1 encoding, so our hash table is used to retain
information about precedence within this alphabet. On another
point, the resulting trie allows us to efficiently implementword
sectioning into letters, digraphs, etc.

The weight value associated with each string belonging to the
alphabet is 1. So you can use weight values greater than or equal
to 2 for accented letters belonging to the language. In comparison
with the Unicode collation algorithm, we skip combining charac-
ters resulting from the decomposition procedure and only give their
weight value. For example, the accents allowed in French over the
‘a’ letter are the grave and circumflex accents (‘à’ and ‘â’), but not
the acute one (‘á’). The allowed accents are given 2 and 3 as weight
values, they come before the default value for the acute accent over
this letter. On the contrary, we do not specify that the ‘æ’ ligature is
alphabeticised like ‘ae’ because it is the default definition for this
character.

We show how strings are sectioned in Figure 3. When an order
relation is applied to two strings, we build sectioner functions for
these two strings. We section a string as few times as possible and
stop as soon as we can conclude. The example given is a sectioner
for Hungarian words, possibly using digraphs and double digraphs
(cf. § 2). This example also includes words containing accented
letters interleaved with unaccented ones (‘®’ and ‘ó’, interleaved
with ‘ö’ and ‘o’).

5. Discussion
As we explain in [Hufflen, 2005b], we decided that MlBIBTEX
should be used with several Scheme interpreters, in order toenforce
this program’s portability. There is a proposal to make Scheme
Unicode-compliant [Flatt and Feeley, 2005]; that is planned for
the future standard [Sperber et al., 2007, §§ 1.1 & 1.2]; but only
a little support for Unicode is provided now, rudimentary about
possible encodings [Serrano, 2006, p. 35],MIT Scheme [Hanson
et al., 2002, § 5.7],PLT S
heme [Flatt, 2007, § 1.2.1]. In fact,
MlB IBTEX’s basic encoding isLatin 1, and European characters
outside it are obtained by means of a workaround: the LATEX com-
mands to produce them [see Mittelbach et al., 2004, Table 7.33].

For example, the Hungarian word ‘sz®l®’ (cf. Figure 3) should be
typed by ‘"sz\\H{o}l\\H{o}" ’. As part of MlBIBTEX, this is not
a real drawback since end-users get used to type accented letters
by means of LATEX commands within their bibliography database
files7. In addition, it will easy to adapt our functions when Scheme
becomes Unicode-compliant.

Another limitation is given by exceptions. For example, letus
consider the following Hungarian person names:Kótz < Kótyi.
They follow the Hungarian rules for sorting names (cf. Figure 1).
But we haveKót y < Kótz because of etymological reasons, su-
perseding the usual decomposition of words. Probably a dictionary
of exceptions would be the best way to solve this problem, butwe
have not implemented it yet.

In MlB IBTEX, we chose to allow the introduction of a new sort-
ing order by means of only one definition. This allows a globalview
of this new order relation and makes easier some coherence tests
among the information about this relation. A different approach has
been followed byx◦�ndy [Kehr, 1998], a multilingual index proces-
sor associated with LATEX, and written using COMMON L ISP[Steele
et al., 1990]. The specification of an order relation is different be-
cause it is done step by step. There are forms:define-alphabet define-letter-groupmerge-rule sort-rule
to specify an alphabet, a letter group (digraph, trigraph, etc.), and
the replacement of a pattern. If a sort procedure is quite close to the
standard way used in English, it is probably easier to usex◦�ndy’s
forms, because only small changes have to be expressed. On the
contrary, MlBIBTEX allows users to define a new order relation by
applying only one function, encompassing all the aspects ofthis
new order relation.

Even if we have adapted the Unicode collation algorithm to
our requirements for MlBIBTEX, we think that we could easily
implement an efficient version of the whole algorithm—not limited
to languages written using the Latin alphabet—by means of the
same structures: tries and hash tables. A possible improvement

7 When a bibliography data base file is parsed by MlBIBTEX, the LATEX com-
mands that result in characters belonging to theLatin 1 encoding are ex-
panded, the others are left unchanged. So parsing ‘
\^{o}t\'{e}’ within
the value associated with a BIBTEX field results in ‘
�té’, whereas parsing
‘sz\H{o}l\H{o}’ results in the Scheme string ‘sz\\H{o}l\\H{o}’.

Scheme and Functional Programming 2007 143

could be the extraction of sort keys from the files available at the
Web site of Unicode: it would just require anad hocparser.

Finally, let us remark that we used continuation-based functions
to put into action the sectionning of a string into letters, including
the case of digraphs. A more concise specification could havebeen
given by using a lazy functional programming language basedon
the call by need—e.g., Haskell [Peyton Jones, 2003]—getting the
next letter is done only if need be.

6. Conclusion
The availability of sorting orders depending on natural languages
is planned inXSLT8 [1999], the language of transformations used
for XML 9 documents.XSLT provides anxsl:sort element that can
sort strings according to the rules of a natural language [see W3C,
1999, § 10]. But in practice, most ofXSLT processors implement
this feature only partially, and the way to design new order rela-
tions, if need be, is unspecified by theW3C10 recommendation as
well as the documentation of these processors. Designers ofbibli-
ography styles for MlBIBTEX can use order relations by means of
an element analogous toXSLT’s [see Hufflen, 2005a]. But as shown
in § 4, only basic knowledge of Scheme is needed for people inter-
ested in enlarging MlBIBTEX by new relations.

When MlBIBTEX’s first experimental versions were launched,
there was only an order relation implementing the default collation
algorithm roughly11. In parallel, we developed our order relation
generator. That aimed to ask some people for tests about their own
language. We do not forget that natural languages are an open
domain, that is, it is difficult to establish general rules that may fail
on particular cases since the features of natural languagesare very
diverse. So we consider our present work as a first version subject
to changes when we explore other languages or get criticisms
from end-users. But until now, feedback has been good, and asa
consequence, our order relation generator has been integrated into
MlB IBTEX’s first public version.

Acknowledgements
Many testers of MlBIBTEX helped me fix some errors concerning
various languages: thank to them. I am also grateful to the referres,
who suggested me some improvements.

References
Matthew Flatt. PLT MzScheme: Language Manual. Version

370. http://download.plt-s
heme.org/do
/370/pdf/mzs
heme.pdf, May 2007.
Matthew Flatt and Marc Feeley.R6RS Unicode Data. http://srfi.s
hemers.org/srfi-75/, July 2005.
Edward Fredkin. Trie memory.Communications of the ACM, 3(9):

490–499, September 1960.
Chris Hanson, theMIT Scheme team, et al.MIT Scheme Reference

Manual. Massachusetts Institute of Technology, 1.96 edition,
March 2002.

Jean-Michel Hufflen. Bibliography styles easier with MlBIBTEX. In
Proc. EuroTEX 2005, pages 179–192, Pont-à Mousson, France,
March 2005a.

Jean-Michel Hufflen. Implementing a bibliography processor in
Scheme. In J. Michael Ashley and Michel Sperber, editors,Proc.

8 eXtensibleLanguageStylesheetTransformations.
9 eXtensibleMarkupLanguage.
10World Wide WebConsortium.
11That was the case for the version described in [Hufflen, 2005b].

of the 6th Workshop on Scheme and Functional Programming,
volume 619 ofIndiana University Computer Science Depart-
ment, pages 77–87, Tallinn, September 2005b.

Panu Kalliokoski.Basic Hash Tables. http://srfi.s
hemers.org/srfi-69/, September 2005.

Roger Kehr. x◦�ndy Manual. http://www.xindy.org/do
/manual.html, February 1998.
Richard Kelsey, William D. Clinger, Jonathan A. Rees, Harold

Abelson, Norman I. Adams iv, David H. Bartley, Gary Brooks,
R. Kent Dybvig, Daniel P. Friedman, Robert Halstead, Chris
Hanson, Christopher T. Haynes, Eugene Edmund Kohlbecker, Jr,
Donald Oxley, Kent M. Pitman, Guillermo J. Rozas, Guy Lewis
Steele, Jr, Gerald Jay Sussman, and Mitchell Wand. Revised5

report on the algorithmic language Scheme.HOSC, 11(1):7–105,
August 1998.

Leslie Lamport. LATEX: A Document Preparation System. User’s
Guide and Reference Manual. Addison-Wesley Publishing
Company, Reading, Massachusetts, 1994.

Frank Mittelbach, Michel Goossens, Johannes Braams, David
Carlisle, Chris A. Rowley, Christine Detig, and Joachim Schrod.
The LATEX Companion. Addison-Wesley Publishing Company,
Reading, Massachusetts, 2 edition, August 2004.

Oren Patashnik. BIBTEXing. Part of the BIBTEX distribution,
February 1988.

Simon Peyton Jones, editor.Haskell 98 Language and Libraries.
The Revised Report. Cambridge University Press, April 2003.

Manuel Serrano. Bigloo. A Practical Scheme Compiler. User
Manual for Version 2.9a, December 2006.

Olin Shivers. List Library. http://srfi.s
hemers.org/srfi-1/, October 1999.
Michael Sperber, William Clinger, R. Kent Dybvig, Matthew

Flatt, Anton van Straaten, Richard Kelsey, and Jonathan Rees.
Revised5.97 Report on the Algorithmic Language Scheme —
Standard Libraries. hhtp://www.r6rs.org, June 2007.

Guy Lewis Steele, Jr., Scott E. Fahlman, Richard P. Gabriel,
David A. Moon, Daniel L. Weinreb, Daniel Gureasko Bobrow,
Linda G. DeMichiel, Sonya E. Keene, Gregor Kiczales, Crispin
Perdue, Kent M. Pitman, Richard Waters, and Jon L White.
COMMON L ISP. The Language. Second Edition. Digital Press,
1990.

Unicode Collation Algorithm. The UNICODE CONSORTIUM,http://uni
ode.org/reports/tr10/, July 2006a. Unicode
Technical Standard #10.

Unicode Normalization Forms. The UNICODE CONSORTIUM,http://uni
ode.org/reports/tr15/, October 2006b. Uni-
code Standard Annex #15.

The UNICODE CONSORTIUM. The Unicode Standard Version 5.0.
Addison-Wesley, November 2006.

W3C. XSL Transformations (XSLT). Version 1.0. http://www.w3.org/TR/1999/REC-xslt-19991116, November
1999. W3C Recommendation. Edited by James Clark.

144 Scheme and Functional Programming 2007

