
Exceptional Continuations in JavaScript

Florian Loitsch
Inria Sophia Antipolis

2004 route des Lucioles - BP 93
F-06902 Sophia Antipolis, Cedex,

France
http://www.inria.fr/mimosa/Florian.Loitsch

ABSTRACT
JavaScript, the main language for web-site development, does not
feature continuation. However, as part of client-server communi-
cation they would be useful as a means to suspend the currently
running execution.
In this paper we present our adaption of exception-based continua-
tions to JavaScript. The enhanced technique deals with closures and
features improvements that reduce the cost of the work-around for
the missinggoto-instruction. We furthermore propose a practical
way of dealing with exception-based continuations in the context of
non-linear executions, which frequently happen due to callbacks.
Our benchmarks show that under certain conditions continuations
are still expensive, but are often viable. Especially compilers trans-
lating to JavaScript could benefit from static control flow analyses
to make continuations less costly.

1. Introduction
Xml-http-requestsare an integral part of Ajax and the now called
“Web 2.0”. Basically they allow JavaScript (standardized as Ec-
maScript (ECMA-262 1999)) programs to interactively communi-
cate with the server: a request is sent to a given URL and once the
server returns, a callback is invoked. Both synchronous andasyn-
chronous forms exist, but usually only the asynchronous form is
usable.1

Due to the asynchronous nature ofxml-http-requests program-
mers need to determine the work that needs to be done after there-
quests returns, and pack it into the callback function. Continuations
could free developers from this work. Some languages (eg. Scheme
(Kelsey et al. 1998)) feature first class continuations, buteven sim-
ple one-shot continuations (suspend/resume) would be sufficient
for our task.2

1 Whenxml-http-requests are used synchronously they block the User
Interface until the call is finished. A usually unacceptablebehavior.
2 An efficientsuspend/resume implementation is also interesting for co-
operative threading (see for example Fair Threads (Serranoet al. 2004)).

Proceedings of the 2007 Workshop on Scheme and Functional Programming
Université Laval Technical Report DIUL-RT-0701

JavaScript does not feature any construct similar to continua-
tions, though. Most interpreters carry the necessary information
to efficiently implement them, but as far as we know only Rhino
(Mozilla Foundation) gives access to its continuations. Ingeneral
continuations need to be implemented on top of JavaScript’shigh
level constructs.
Continuation Passing Style (CPS) lends itself for this taskand
with sufficiently high level features (in particular closures) CPS
can be implemented as a simple source code transformation (see
for example (Steele 1976)). A program in CPS form, as the name
suggests, passes the current continuation directly as a parameter
to every function and the continuation is hence always available.
This technique does indeed work in JavaScript, and some sys-
tems such as Links (Cooper et al. 2006) actually use it. In Links
the continuations are not exposed to the developers either,but
are used internally for threading and transparent asynchronous
xml-http-requests.
CPS’s efficiency is however largely dependent on the speed ofclo-
sure creation and tail call handling. Neither are fast in current main-
stream JavaScript implementations and two handwritten bench-
marks (fib andnested) were 30 and 130 times slower than the
native versions in our test setup. CPS transformed programsfur-
thermore change the call convention which makes it cumbersome
to interface with existing JavaScript code. We therefore looked for
different techniques without these drawbacks. Our focus eventually
concentrated on an exception-based technique similar to the one
presented by Tao (Tao 2001) or Sekiguchiet al. (Sekiguchi et al.
2001). Their work does not present full fledged continuations but
only a way of suspending and resuming executions. In the firstpart
of the next section we will show how to adapt the technique to
JavaScript. One of our motivations for this work was a Scheme-
to-JavaScript compiler where we need full-fledged continuations to
supportcall/cc. In the second part we show how we extended
the given technique for this more general form of continuations.
Work in this direction on a minimal language without side-effects
has already been published (Pettyjohn et al. 2005).

1.1 Organization

Section 2 presents exception-based continuations and summarizes
the work that has been done in this area. In Section 2.2, 2.3 and 2.4
we show how to adapt these existing techniques to JavaScript. Sec-
tion 3 then shows how we can implementcall/cc using similar
techniques. In Section 4 we discuss some optimizations. Ways to
handle callbacks are proposed in Section 5. Section 6 presents the
result of our benchmarks. Related work is discussed in Section 7
and we finally conclude in Section 8.

Scheme and Functional Programming 2007 37

http://www.inria.fr/mimosa/Florian.Loitsch

2. Suspend/Resume with Exceptions
This section summarizes existing work on exception-based contin-
uations by Tao (Tao 2001) and Sekiguchiet al. (Sekiguchi et al.
2001). In both cases the technique has been developed for transpar-
ent migration and checkpointing, and uses Java/JVM and/or C++
as target-language. As our work is targetted at JavaScript we will
use JavaScript for all code samples, though. Also, we are going to
ignore JavaScript’s higher-order functions during the initial sum-
mary. A discussion of this property is delayed to Section 2.4where
we evolve the summarized technique for higher order languages.

2.1 Idea

1: function sleep(ms) {
2: suspend(function(resume) {
3: setTimeout(resume, ms);
4: });
5: }

Figure 1: Sleep implemented through suspend/resume

The goal ofsuspend/resume is to save the current state of an ex-
ecution and to be able to resume it later on. We propose a library
function suspend which, similarly to Scheme’scall/cc takes a
function as parameter.suspend executes the given procedure in
turn with a reified version of the current continuation as parame-
ter. Independent of the outcome of this call (in particular excep-
tions are ignored), it then halts the execution. The programis ef-
fectively stopped, until an external event invokes the continuation
to resume execution. Once resumed the continuation has served
its purpose and becomes invalid, so it can not be invoked multi-
ple times. Figure 1 shows howsuspend would be used to create
the missingsleep function in JavaScript.suspend starts by ex-
ecuting the anonymous function of line2. This procedure passes
the given continuationresume to JavaScript’ssetTimeout, which
prepares a timeout with the continuation as callback. The anony-
mous function then returns, andsuspend halts the execution. After
ms milliseconds JavaScript triggers the timeout-event and invokes
the stored callback (theresume-continuation), which resumes the
execution.
The implementation of thesuspend function is not local and its
presence requires the instrumentation of all other functions. Each
function needs to be able to save its current activation frame (lo-
cal variables, and current position within the code) and to restore
it from this data. Contrary to CPS where the continuation is al-
ready given as parameter, we create the continuation only when
thesuspend function is called from inside the program:suspend
raises a special exception3 which triggers the saving in each live
function. The important work during suspension is hence done by
each function separately.
As expected, restoration rebuilds the call-stack by askingeach
function to rebuild its activation frame. Once the call-stack has been
rebuilt the continuation continues normally.
Although suspend and resume are tightly coupled we present
them in separate sections. This makes sense because thesuspend
code might be used independently (see Section 4.3).

2.2 Suspend

During suspension the whole call-stack needs to be saved. As
JavaScript does not give access to the stack itself, all functions

3 The exception starting the saving gives the whole techniqueits name, but
is itself not essential. Another convention could use a special return-value
to trigger the saving. Depending on the interpreter (or the JIT-compiler) this
could even be faster.

Figure 2: A global view of saving mechanism.

are instrumented so they can save their activation frame. The sum
of all these activation frames represents the complete call-stack.
To simplify the description (and implementation) we wrap the top-
level into a function. The new top-level hence consists of a simple
call to a function which contains the original top-level.
Saving is initiated by thesuspend function when it throws a special
exception. The exception triggers the saving code in each function.
Figure 2 presents a high level view of the suspension mechanism.
Whensuspend is called with parameterh, it stores the given pro-
cedure in a special exception. It subsequently throws the exception
which is intercepted by the first (youngest) function on the stack.
After having saved its activation frame the function then rethrows
the exception. The same exception is then intercepted by thenext
function, until finally at the bottom a global exception handler cap-
tures the exception. The handler builds a proper continuation-object
out of the saved data, and passes it to theh-function which had been
given tosuspend. Whenh returns the execution is halted.

1: function sequence(f, g) {
2: print(’1: ’ + f());
3: return g();
4: }

Figure 3: Running example

1: function sequence(f, g) {
2: var tmp1;
3: var index = 0;
4: try {

5: index = 1; tmp1 = f();
6: print(’1: ’ + tmp1);
7: index = 2; return g();
8: } catch(e) {
9: if (e instanceof ContinuationException) {

10: var frame = new Object();
11: frame.index = index; // save position
12: frame.f = f; frame.g = g;
13: frame.tmp1 = tmp1;
14: e.pushFrame(frame);
15: }
16: throw e;
17: }
18: }

Figure 4: with suspension code

Figure 4 takes a closer look at a single instrumented function. The
original non-instrumented version can be found in Figure 3.In ad-
dition to the previously mentionedtry/catch, anindex variable
has been introduced which represents the instruction pointer. Note
that only calls potentially leading to asuspend (dubbed “unsafe
calls”) need to be indexed. The call toprint is safe, and there-
fore doesn’t update theindex variable. The correct identification
of safefunction calls needs be determined by static analyses (see
Section 4.3). Thecatch part responsible for saving starts at line8.
A new frame object is constructed and filled with the local variables

38 Scheme and Functional Programming 2007

and the index variable. In this example the exception itselfserves
as container for the continuation data, and the frame objectis hence
stored in the exception. Finally the exception is rethrown.

2.3 Resume

At the end of suspension the global exception handler invokes the
function h which had been given tosuspend (see Section 2.2),
but then halts the execution. The program can only resume, ifan
external event triggers the invocation of the continuation. Usually
h registers the continuation (which has been given as parameter) as
call-back. In the example of Figure 1 the continuation was stored
as call-back for the timeout-event.

1: function sequence(f, g) {
2: var tmp1, goto = false;
3: if (RESTORE.doRestore) {
4: var frame = RESTORE.popFrame();
5: index = frame.index;
6: f = frame.f; g = frame.g;
7: tmp1 = frame.tmp1;
8: goto = index; // emulate a jump
9: }

10: ... <suspension-code omitted> ...
11: switch (goto) {
12: case false:
13: case 1: goto = false;
14: tmp1 = f();
15: print(’1: ’ + tmp1);
16: // fall-through
17: case 2: goto = false;
18: return g();
19: }
20: ... <suspension-code omitted> ...
21: }

Figure 5: with restoration code

When the continuation is invoked it starts by setting a global
restoration flagRESTORE.doRestore. Subsequently it calls the
last (oldest) function of the saved stack (in our case the top-level).
Each function is then responsible for restoring its original activa-
tion frame, and calling the next function of the initial stack. The
global flag serves as switch for restoration mode. The saved ac-
tivation frame itself too is accessible through a global variable.
Figure 5 shows the instrumented version of our running example
(Figure 3). A test first checks if the program is in restoration or
normal execution mode. In the first case it restores the values of the
local variables, and jumps to the saved position. Eventually the ex-
ecution arrives at the saved location and invokes the next function
(still in restoration mode), which in turn restores itself and calls the
next function. The restoration is finished when thesuspend func-
tion is reached:suspend clears the restoration flag and returns.
The execution then continues normally.
In our example aswitch-statement was introduced to emulate the
jump to the target given by theindex variable. In general blocks
are converted intoswitch statements and branching constructions
are modified so they reenter the saved branch. Function callsare
transformed into A-normal form (Flanagan et al. 1993), so the al-
ready calculated parameters are not executed multiple times. Fig-
ure 6 gives some examples of these transformations. Additional
material can be found in (Tao 2001) and (Sekiguchi et al. 2001).
The goto emulation makes code examples more difficult to read
and we will from now use an informal “goto index;” form, too.
Figure 7 shows the completesequence-function with suspension
and restoration instrumentation.

1: {
2: safe1;
3: safe2;
4: unsafe();
5: safe3;
6: }

1: switch (goto) {
2: case false: // default mode.
3: // no restoration
4: safe1; safe2;
5: // jump to unsafe statement
6: case 1: goto = false;
7: unsafe();
8: safe3;
9: }

1: if (test) {
2: unsafe1();
3: unsafe2();
4: } else
5: unsafe3();

1: if ((goto && goto <= 2) ||
2: (!goto && test)) {
3: switch (goto) {
4: case 0: case 1:
5: goto = false;
6: unsafe1();
7: case 2: goto = false;
8: unsafe2();
9: } else {

10: goto = false;
11: unsafe3();
12: }

Figure 6: Goto examples

1: function sequence(f, g) {
2: var tmp1;
3: var index = 0;
4: var goto = false;
5: if (RESTORE.doRestore) {
6: var frame = RESTORE.popFrame();
7: index = frame.index;
8: f = frame.f; g = frame.g;
9: tmp1 = frame.tmp1;

10: goto = index;
11: }
12: try {
13: switch (goto) {
14: case false:
15: case 1: goto = false;
16: index = 1; tmp1 = f();
17: print(’1: ’ + tmp1);
18: case 2: goto = false;
19: index = 2; return g();
20: }
21: } catch(e) {
22: if (e instanceof ContinuationException) {
23: var frame = new Object();
24: frame.index = index; // save position
25: frame.f = f; frame.g = g;
26: frame.tmp1 = tmp1;
27: e.pushFrame(frame);
28: }
29: throw e;
30: }
31: }

Figure 7: with suspension and restoration code

2.4 Suspend/Resume in JavaScript

The previous sections give an overview ofsuspend/resume in
first-order languages like C++ or Java/JVM. JavaScript, however,
is a higher order language and hence features functions as first
class citizens. In this section we will discuss the implications of
this property.

Scheme and Functional Programming 2007 39

JavaScript’s functions have semantics similar to Scheme proce-
dures. That is, free variables are lexically scoped and during the
creation of functions the current environment is saved in the clo-
sure. Closures contain hence references to variables of activation
frames.4 This however poses problems when the original call-stack
is destroyed by a call tosuspend. A similar call-stack is rebuilt
during theresume, but the closure’s references are still referenc-
ing variables of the old stack. The following example demonstrates
such a case:

1: function f() {
2: var x = 1; var y = 2;
3: var g = function() { print(x, y); };
4: suspendCall();
5: x = 3;
6: g(); // should print 3, 2
7: }

When the program reaches line4 the stack structure resembles the
diagram of Figure 8a. The call-stack contains a list of activation
frames withf’s activation frame on top. The frame containsf’s
three local variablesx, y andg. The variableg points to a function
which in turn capturesf’s x andy. For explanatory purposes we
have marked locations of this original call-stack with stars.
During the call tosuspendCall the continuation mechanism
throws an exception and saves the variables of all stack-frames.
When the execution is resumed a similar stack is reconstructed.
This new stack can be seen in Figure 8b. The restored call-stack is
(as intended) similar to the original call-stack, but the closureg still
references variables of the old call-stack. This does not pose any
problem for constant variables likey, but is incorrect for all others.
In our example thex of the new frame is changed, butg will still
reference the unchangedx and hence incorrectly print1.

(a) before (b) after

(c) boxed

Figure 8: Call-stacks before and after callcc-call.

Our solution is to box all non-constant escaping variables (a con-
servative super set of the concerned variables). The closure will
still reference an outdated variable, but the referenced box of the
escaped variables will be in sync with the equivalent variables of
the new stack-frame (see Figure 8c).5

4 In fact, most JavaScript implementations currently just store the call-stack
itself in the closure.
5 Scheme (and other) compiler writers will not be surprised bythe solution.
Boxing of escaping variables is a common practice in Scheme compilers
(Kranz et al. 1986), but usually for entirely different reasons.

Another subtle difficulty is introduced by pointers to functions
(which could appear in C++ too). If the variable that holds the call-
target is modified the call will not work as expected. Figure 9a con-
tains an example which demonstrates how this can be a problem.

1: function() {
2: var g = function() {
3: g = false;
4: suspendCall();
5: };
6: g();
7: }

(a) call-target g is modified

1: function() {
2: var g = function() {
3: g = false;
4: suspendCall();
5: };
6: var tmp = g;
7: tmp();
8: }

(b) call-target is constant

Figure 9: modified call-target

The call at line6 depends on the local variableg which is modified
after the invocation. During restorationg is correctly restored to
false and the program then jumps to the call location. Just calling
g again is however not possible anymore. The solution to this
problem is simple. One just needs to introduce additional local
variables so that calls do not depend on variables that are changed
outside their scope. Figure 9b shows the corrected version.

3. Call/cc
Suspend/Resume is sufficient for asynchronous communication
and cooperative threading. In the context of Scheme (and other lan-
guages) full fledged continuations are however needed. Thissection
presents the changes to evolvesuspend/resume to call/cc.
Suspend/resume basically pauses the control flow. Instead of
returning,suspend aborts the execution until an event invokes
the resume-continuations. With the exception of event-handling
code, the program continues semantically as if no instruction had
been executed between the end of thesuspend-function and its
continuation.
Call/cc-continuations, on the other hand, are more flexible. They
can be invoked at any time and multiple times. In particular users
are free to execute code between the return ofcall/cc and the
invocation of the captured continuation. This raises an important
question: what happens to (stack-)variables that are modified after
the continuation has been captured? Semantically there aretwo
possibilities: - either these variables are restored to thevalue they
had when the continuation was captured; - or they should be left
at their new value. Whereas the first choice could be useful for
checkpointing, etc. it is the latter one which is generally adopted.
Similar to Scheme we want hence modifications to variables remain
when continuations are executed.
The function in Figure 10a, for instance, would yield different re-
sults depending on the chosen semantics. After the first invocation
of the continuation theprint in line 4 should obviously print1,
but more importantly (due to the assignment in the followingline)
other invocations could then either continue printing1 (value at
time of suspension) or could then print2, 3, etc. We would like
our technique to print the incrementing sequence, but our previ-
ous suspension technique ignores modifications that happened to

40 Scheme and Functional Programming 2007

1: function () {
2: var x = 1;
3: callccCall();
4: print(x);
5: x = x + 1;
6: }

(a) call/cc example

1: function () {
2: // restoration code
3: // producing ’frame’
4: ...
5: callccCall();
6: print(x);
7: x = x + 1;
8: if (frame)
9: frame.x = x;

10: }

(b) update at the end

1: function () {
2: var x;
3: var frame = false;
4: if (RESTORE.doRestore) {
5: frame = RESTORE.popFrame();
6: index = frame.index;
7: x = frame.x;
8: goto index;
9: }

10: try {

11: x = 1;
12: gotoTarget1: callccCall();
13: print(x);
14: x = x + 1;
15: } catch (e) {
16: /* save-code */
17: } finally {

18: if (frame) { frame.x = x; }
19: }
20: }

(c) complete version with update in finally

Figure 10: Call/cc with side-effects

stack-variables after the continuation has been saved. It would have
printed1 all the time: asx does not escape it is not boxed (see Sec-
tion 2.4) and during the construction of the continuationx is saved
with value1. Every restoration of the original call-stack would sub-
sequently restore this value. There are (at least) two ways to ob-
tain the chosen behavior. One can either box all muted variables or
track the changes and update the continuation. Boxing is easier to
implement but for efficiency reasons we use the second technique.
Supposeframe is the name of the continuation structure that holds
all local variables. We could then just add a new line updating the
continuation at the end of the function as in Figure 10b.
If the function has already been suspended once, then theframe
variable is notfalse and the value forx is updated in line9. The
program now correctly outputs1, 2, etc. In general just updating
at the end of the function is however incorrect. There are many
means to exit a function, and only few go through the last line
of a function. We therefore use afinally clause of atry/-
catch (which incidentally has to be used for continuation support
anyway). This way variables are always updated before leaving the
function. The complete version (still without suspension code) can
be found in Figure 10c.

4. Suspend/Resume and Call/cc Optimizations
This section presents some optimizations to the previouslypre-
sented implementation. All important technical aspects have al-
ready been discussed in previous sections, and we will henceonly
focus on implementation and efficiency issues. The techniques
shown in this section do not add any functionality but succeed in

reducing the modifications to the original source code thus making
the code lighter and faster. In the remainder of the chapter we will
usecall/cc andsuspend/resume indifferently as all optimiza-
tions apply for both scenarios.
We will first present our hoisting- and tail-call optimizations in
separate sections and then discuss miscellaneous optimizations in
the following section.

4.1 Hoisting Instructions

During the restoration of the call-stack the program needs to exe-
cute a jump to the saved target which is an expensive operation in
JavaScript. The following optimization moves the targets to later
locations (thereby skipping instructions) which generally reduces
the cost of the jumps. The skipped instructions are duplicated at the
jump-origin, and are executed before the jump.
As discussed in Section 2.3 JavaScript does not feature anygoto-
instruction, and the body of functions has to be transformedto
emulate jumps. Most constructs surrounding a jump-target need to
test if they are executing an emulatedgoto or if they are executed
normally. We therefore define the cost of a jump-target to be its
nesting-level. The more nested a target is, the more it costs(even in
normal operation, as the tests have to be done all the time).
The goal of this optimization is to reduce the cost of jump-targets. It
basically copies code from the jump-target to the jump-origin. The
copied instructions are then already executed before the jump, and
the jump-target can be advanced so it skips the copied code. The
moved jump-target might leave constructs, thereby reducing the
nesting-level, and as a result one could avoid its instrumentation.
In Figure 11 we demonstrate on an example the impact this opti-
mization can have. In the first code-snippet we informally state the
need for a jump to the unsafe call (labeled with “target:”). The sec-
ond code-sample shows the expensive transformations needed to
emulate thisgoto-instruction. As the unsafe call is embedded in a
while-loop and anif, both constructs need to be transformed for
the emulated jump. In Figure 11c we copied the targets statement
to the jump-origin in line4. The call of line15 is therefore already
executed before the jump, and the jump-target has been advanced
to the instruction following the call. Theif-statement is finished,
and the next instruction would thus be the test of thewhile-loop
(line 9) which is equivalent to thewhile-construct itself. The new
jump-target is hence just before thewhile-statement. Both the loop
and theif-statement do not contain any jump-targets anymore and
can hence be left untransformed (Figure 11d).
The suspension code is left nearly untouched. The sole change
rectifies the scope of the suspensiontry/catch. As the restoration
code now contains calls to unsafe locations too, it is necessary to
enlarge the exception-handler so that thetry-keyword is before the
if-statement in the beginning of the function.
Due to implementation-specific reasons we currently restrict the
copied code to be at most the targeted call and a potential assign-
ment of its return-value. In the future we would like to remove this
limit and experiment with bigger copies.
Concluding this section we would like to point out that this opti-
mization is not always beneficial. Blocks containing jump-targets
are generally transformed toswitch-statements, with one excep-
tion: when there is only one jump-target and the target is (part of)
the first statement. In this case the block can be left untouched. The
presented optimization however advances jump-targets, and could
move the target from the first statement to the second statement.
In this case the previously untouched block would then be trans-
formed into aswitch-statement. Our implementation does not yet
take into account this special case.

Scheme and Functional Programming 2007 41

if (RESTORE.doRestore) {
...
goto target;

}
print(’before’);
while (test1) {
print(’loop’);
if (test2) {

doSomething;
} else {

print(’if’);
target: unsafeCall();

}
}
print(’after’);

(a) goto-example

if (RESTORE.doRestore) {
...
goto = 1;

}
switch (goto) {
case false:

print(’before’);
case 1:

while (goto == 1 || test1) {
switch (goto) {
case false: print(’loop’);

// fall through
case 1:

if (goto == 0 && test2)
doSomething;

else
switch (goto) {
case false:

print(’if’);
// fall through

case 1: goto = false;
unsafeCall();

}
}

}
print(’after’);

}

(b) jump to the call itself

1: if (RESTORE.doRestore)
2: {
3: ...
4: unsafeCall();
5: goto target;
6: }
7: print(’before’);
8: target:
9: while (test1) {
10: print(’loop’);
11: if (test2) {
12: doSomething;
13: } else {
14: print(’if’);
15: unsafeCall();
16: }
17: }
18: print(’after’);

(c) unsafe call copied to jump-origin

if (RESTORE.doRestore) {
...
goto = 1;
switch (goto) {
1: unsafeCall(); break;

}
}
switch (goto) {
case false:

print(’before’);
case 1: goto = false;

while (test1) {
print(’loop’);
if (test2) {

doSomething;
} else {

print(’if’);
unsafeCall();

}
}
print(’after’);

}

(d) with goto-emulation

Figure 11: jump to before and after the call.

4.2 Tail-call Optimization

The continuation-technique which has been presented untilnow
ensures that a restored call-stack is similar to the original one. Like
the original stack the restored stack would have the same number
of activation frames and each activation frame would have the same
values as the original stack. Often not all of these frames are still
needed, though. Supposef callsg which in turn tail-callsh. When
the continuation has been captured duringg’s tail-call, then the
restoration could skipg if f calledh directly. In practice changing
thef’s call target is however not that easy. Each function restores
itself and is then responsible to reexecute thesamecall as it had

done when it was suspended. Functionf would hence restore itself
and then reexecute the call tog. In the optimized versionf should
call h (a function which might not even be visible tof) directly to
skipg.
In this section we continue evolving our continuation technique
so that a tail-call optimization becomes possible. In the new ver-
sion functions save a pointer to themselves in addition to their
activation-frame data. This pointer is then looked up during restora-
tion to retrieve the next function. Tail-calling functionsare simply
skipped during saving and are hence removed in the restored stack.
In our running example, the tail-callingg would not save its frame
and would hence not appear in the saved continuation data. During
restoration functions must not just call the same next function as
before, but have to retrieve the function pointer in the nextframe.
The functionf would retrieveh’s frame (asg did not register its
frame), and therefore callh as next function.
The benefits of this optimization are twofold: the number of acti-
vation frames is reduced, and the instrumentation for tail-call lo-
cations is simplified. Indeed, tail-calling functions willnot be re-
stored, and it is hence unnecessary to add jump-emulations to their
tail-call locations.

1: function sequence(f, g) {
2: var tmp1, index = 0, isTail = false;
3: if (RESTORE.doRestore) {
4: var frame = RESTORE.popFrame();
5: index = frame.index;
6: f = frame.f; g = frame.g;
7: tmp1 = frame.tmp1;
8: // restore remaining stack:
9: var callCcTmp = RESTORE.callNext();

10: switch (index) {
11: case 1: tmp1 = callCcTmp; break;
12: }
13: goto index;
14: }
15: try {
16: index = 1; tmp1 = f();
17: gotoTarget1: print(’1: ’ + tmp1);
18: isTail = true; return g();
19: } catch(e) {
20: if (e instanceof ContinuationException &&
21: !isTail) {
22: var frame = new Object();
23: frame.index = index; // save position
24: frame.f = f; frame.g = g;
25: frame.tmp1 = tmp1;
26: e.pushFrame(frame, this, arguments.callee);
27: }
28: throw e;
29: }

Figure 12: complete version with assignment in restorationcode.

Figure 12 shows the new (suspension and restoration) code of
thesequence-example (Figure 3). We will first focus on the sus-
pension code, and hence skip the restoration-if for now. As al-
ready mentioned in the summary a pointer to the currently run-
ning function is saved during suspension. In JavaScript this pointer
is readily available as a combination of thethis-keyword and
thearguments.callee (line 26). The tail-call optimization itself
can be seen in line18 and line21. Tail-calls are now specially
marked (theisTail-variable is set totrue), and if a function is
tail-calling then it skips itself during saving (due to the test in line
21). Tail-calling functions are hence ignored during saving,and it
is the restoration part’s responsibility to determine and execute the
next non-skipped function. The necessary information is inside the

42 Scheme and Functional Programming 2007

saved continuation through the means of the function-pointers. In-
stead of calling the same previous call as before one just hasto
retrieve the next function of the continuation-state and invoke it in-
stead. In order to clarify the code we hide this operation anduse a
method-call (RESTORE.callNext) in line 9 instead.
The result is then assigned to their respective variables (if any).
Thanks to the hoisting-optimization this task is simplified. The
original call in the body is left untouched, and the copied call is
simply replaced by the temporary variablecallCcTmp which holds
the result of thecallNext-call: whereas we previously would have
hadtmp1=f(); in line 11, we now havetmp1=callCcTmp;.
We want to point out that this optimization is not a substitute
for (expensive) proper tail-recursion handling (as presented in
(Loitsch and Serrano 2007)). Frames are only discarded whencon-
tinuations are taken or invoked, which is clearly not sufficient for
proper tail-recursion (as required for Scheme). The main-benefit is
hence not the removal of the frames but the removal of instrumen-
tation for tail-calls. In some cases the optimization can avoid the
complete instrumentation for functions: if a function’s unsafe calls
are only at tail-call-locations, then it does not need any instrumen-
tation at all.

4.3 Miscellaneous Optimizations

This section groups several optimizations that are either too small
to merit a separate section, or are not yet sufficiently explored (and
hence subject for future work).
As call/cc is usually only present in few locations, most calls
do not (and often even can not) reach anycall/cc. An optimiz-
ing compiler should hence use standard compilation techniques
(Muchnick 1997) to reduce the number of unsafe call-locations.
We dub “unsafe” call-location calls that might eventually reach a
call/cc. In JavaScript one can modify global variables through
several ways, most of which are difficult to detect (amongst others
theeval-function, and the globalthis-object). JavaScript itself is
hence difficult to optimize in this area. Even though it is gener-
ally possible to mark most local functions as safe, calls to global
functions need to be considered unsafe. However, when JavaScript
is used as compilation target for a different language, thensuch
an analysis can be often much more effective. We have imple-
mented an ad-hoc analysis in our Scheme-to-JavaScript compiler
(SCM2JS). Even though Scheme is highly dynamic this analysis
was able to detect the absence of continuations in 10 out of 11
benchmarks. The remaining benchmark (a meta circular interpreter
making heavy use of higher-order functions) had about 75% ofits
functions instrumented.
One should also consider handling functions by hand. Especially
libraries are possible candidates for this special treatment. If the
library itself does not use continuations then only exported higher-
order functions need to be instrumented. To keep libraries generic
we usually export both versions of these functions (one unin-
stremented and one instrumented). As a bonus even continuation-
heavy programs might prefer calling the uninstremented func-
tion when they can prove that the sent parameter does not invoke
call/cc. In SCM2JS important functions likefor-each, map and
others have been implemented this way. The closures sent to these
functions are often small anonymous lambdas that can be easily
analyzed.
In a similar vein it can be beneficial to create versions without
restoration-code (and hence withoutgoto-emulation). This version
is sufficient in all but one context: during stack restoration the
full version is needed. The switch to full version can happenat
several occasions: during saving a function might save the full
version instead of itself; or thecallNext method of theRESTORE-
object could translate the original version to the full version and
call the latter. Even without this optimization the code growth is

already extensive and we therefore have not yet implementedthis
technique. Initial tests ontak (one of our benchmarks) showed
potential, though. The new version was about twice as fast asthe
old one.

5. Callbacks
Using our call/cc-framework the top-level is responsible for
catching the suspension-exception. In web-browsers, callbacks oc-
cur however outside the dynamic extent of the original top-level.
A call/cc inside a callback would hence fail. In this section we
review the importance of callbacks, and discuss our solution to this
issue.
JavaScript is usually used in web-browsers where it is responsible
for the user-interface. Web-browsers provide a (mostly) standard-
ized way, the Document Object Model (DOM) (Hors et al. 2000),
for accessing visual elements through JavaScript. A recurring pat-
tern involves the use of callbacks to react to events. Callbacks are
functions stored in the DOM which are then invoked when an event
occurs. Another form, not involving the DOM, can be found in Fig-
ure 1 where the timeout-callback had been used to resume the ex-
ecution of the suspended program. As already mentioned in Sec-
tion 2.2 suspended programs can only be awaken through external
callbacks. Due to the ubiquity of callbacks it is hence important to
allow call/cc to work inside callbacks with minimal effort for the
programmer.
The solution we adopted is completely transparent. Thecall/cc-
exception handler signals through a global flagCALLCC.handler
its presence (or absence). Every function starts by testingthis flag.
If the handler is present the execution continues normally.If the flag
is not set, though, then the function is not inside the dynamic extent
of a call/cc exception handler. In the latter case the function
creates the exception handler itself before continuing.

1: function callCcHandler(f, f_this, args) {
2: try {

3: CALLCC.handler = ’present’;
4: f.apply(f_this, args);
5: } catch (e) {
6: ...
7: } finally {

8: CALLCC.handler = ’absent’;
9: }

10: }

Figure 13:callCcHandler creates acall/cc-exception handler.

To avoid code duplication we have implemented the function
callCcHandler (Figure 13) which contains thetry/catch orig-
inally found in the top-level. It takes a function as parameter,
and invokes it inside thetry/catch. Functions that are invoked
through the handler, are hence inside a dynamic extent of acall/-
cc-exception handler.
Initially CALLCC.handler is set to’absent’. The first function
that is executed will hence encounter theabsent-state and there-
fore execute thecallCcHandler function.callCcHandler cre-
ates atry/catch and setsCALLCC.handler to ’present’. The
following functions are then protected and do not need to call the
handler again. When the top-level is left,callCcHandler sets
CALLCC.handler toabsent again. Callbacks that occur afterward
encounter the’absent’-state again and will hence reinvoke the
callCcHandler.
Figure 14 shows the few lines that are added to each function.
If the function has been invoked outside the dynamic extent of a
continuation-try/catch (as it happens for the top-level orin the case

Scheme and Functional Programming 2007 43

1: function f(...) {
2: if (CALLCC.handler === ’absent’) {
3: return callCcHandler(arguments.callee,
4: this,
5: arguments);
6: }
7: ...

Figure 14:Try/catch is triggered on demand.

of callbacks) then the function invokescallCcHandler which cre-
ates an exception-handler. The functioncallCcHandler would set
CALLCC.handler to ’present’ and invoke the given function.
The variablesarguments.callee (a pointer to the running func-
tion), this andarguments contain enough information to restart
the function.

6. Benchmarks

Firefox trampolines & call/cc

Suspend/Resume2 Call/cc2

1 2 3 4 5

Ewal 1.5
1.6

Even/Odd 1.5
1.5

Towers 3.2
3.2

Tak 4.1
3.4

Sieve 1.4
1.1

Quicksort 1.4
1.4

Nested 3.9
1.9

Mbrot 1.1
1.0

Mb100 1.1
1.0

Fib 3.5
3.5

Bague 1.8
1.8

(a) Firefox

Opera suspend & call/cc

Suspend/Resume2 Call/cc2

1 2 3 4 5 6 7 8 9 10

Ewal 4.7
4.4

Even/Odd 1.1
1.1

Towers 11.1
10.4

Tak 16.9
7.8

Sieve 3.8
2.2

Quicksort 3.3
2.7

Nested 7.7
7.2

Mbrot 3.9
3.5

Mb100 4.2
3.8

Fib 6.2
5.8

Bague 2.4
2.0

(b) Opera

Konqueror trampolines & call/cc

Suspend/Resume2 Call/cc2

1 2 3 4 5

Ewal 1.7
1.8

Even/Odd 1.0
1.0

Towers 2.5
2.5

Tak 3.1
2.0

Sieve 1.7
1.1

Quicksort 1.3
1.1

Nested 2.2
1.9

Mbrot 1.0
1.0

Mb100 1.0
1.0

Fib 2.9
2.9

Bague 1.4
1.3

(c) Konqueror

Figure 15: Impact of suspend/resume and call/cc instrumentation.
Raw code is the 1.0 mark. Lower is better.

Exception-based continuations instrument the original code and
thus slow down the program even when continuations are never
used. The impact however is largely dependent on the given pro-
gram. A sequential program without function calls is nearlyun-
affected, whereas small functions with many function callsare
significantly slowed down. A static analysis (like that of Shivers
(1991)) is usually able to reduce the number of instrumentedfunc-
tions, but if continuations are heavily used then such an analy-
sis does not help either. Links (Cooper et al. 2006), for instance,
uses continuations to implement threading. Due to the huge num-
ber of possible suspension points, nearly all functions must be in-
strumented. When, on the other hand, continuations are usedto
simulate synchronous client-server communication on top of asyn-
chronousxml-http-requests then only functions reaching these
requests need to be modified. In this case the penalties due tocon-
tinuations are furthermore usually insignificant comparedto the
time spent on the communication itself.
Our benchmarks are intended to measure realistic worst-case sce-
narios for the latter use-case. In particular we are not interested by
the cost of the actual continuation-construction and -invocation but
we want to determine the slow-down due to the instrumentation
(even when not reaching anycall/cc).
We have added continuation support to SCM2JS, our Scheme-to-
JavaScript compiler (Loitsch and Serrano 2007). As a typingpass
eliminated all instrumentation for all but one (ewal) benchmark we
modified the original benchmarks to disturb the typing algorithm.
The benchmarks still make no use of the continuation support, but
the typing pass is not able to prove this anymore. As a result most
(but not all) functions are now instrumented. We left our inlining
pass activated too, which reduces the stress on very small functions.
To evaluate the impact of continuation instrumentation we ran our
benchmarks under three Internet browsers:

• Firefox 2.0.0.3,
• Opera 9.20 build 638, and
• Konqueror 3.5.7

All benchmarks were run on an Intel Pentium 4 3.40GHz, 1GB,
running Linux 2.6.21. Each program was run 5 times, and the
minimum time was collected. The time measurement was done bya
small JavaScript program itself. Any time spent on the preparation
(parsing, precompiling, etc.) was hence not measured. The results
are shown in Figure 15.
We have noticed tremendous differences between the three browsers.
Konqueror seems to be the least affected, but as it was not very fast
in the beginning, the time penalties are important. Opera’sbehavior
largely depends on the benchmarks, but one can see that continu-
ation support can be expensive. Even though Firefox has worse
values than Konqueror one should note that Firefox was up to
ten times faster than Konqueror. Compared to the uninstrumented
version continuation-enabled code was however up to 4.1 times
slower.
Despite these apparently bad results we think that continuations are
viable, as most benchmarks have been modified to exhibit worst
case scenarios. Even the most realistic benchmark (ewal) repre-
sents a non-optimal example for exception-based continuations. Its
high number of anonymous functions and closures makes it diffi-
cult to analyze.

7. Related Work
Our work is an adaption and evolution of the suspension and migra-
tion techniques presented in Tao’s thesis (Tao 2001) and Sekiguchi
et al.’s paper (Sekiguchi et al. 2001). Pettyjohnet al. later extended
this technique forcall/cc (Pettyjohn et al. 2005) and formally

44 Scheme and Functional Programming 2007

showed the correctness of their approach on a minimal language
without side-effects.
Several other projects implemented continuations in JavaScript
using different techniques: Narrative JavaScript (Mix) and djax
(Friedlander) both unnest all constructs and explicitly handle the
control-flow. Code is within awhile(true)-loop and aswitch-
statement. Narrative JavaScript stores local variables inan object,
whereas djax creates a closure at each invocation. In the latter case
all local variables are declared outside the scope of the invoked
function, and are thereby captured.
jwacs (Wright) and Links (Cooper et al. 2006) both use CPS to
implement continuations.

8. Conclusion
We have presented exception-based continuations for JavaScript.
Starting with an implementation ofsuspend/resume for C++,
Java or JVM we have adapted the technique to JavaScript. We have
then extended the technique tocall/cc. We have presented several
optimizations that, most of which reduce the cost of thegoto-
emulation. Finally we have discussed our implementation todeal
with non-linear execution as happens with callbacks.
Our benchmarks show that full fledged continuations can still be
expensive, but are now usable in many scenarios. Especiallywhen
using JavaScript as target-language, static analyses can help im-
proving the speed of exception-based continuations.

References
Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop.

Links: Web programming without tiers. submitted to ICFP 2006,
URL http://groups.inf.ed.ac.uk/links/papers/-
links-icfp06/links-icfp06.pdf, 2006.

ECMA. ECMA-262: ECMAScript Language Specification. Third
edition, 1999.

Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias
Felleisen. The essence of compiling with continuations. In
Proceedings ACM SIGPLAN 1993 Conf. on Programming Lan-
guage Design and Implementation, PLDI’93, Albuquerque, NM,
USA, 23–25 June 1993, volume 28(6), pages 237–247. ACM
Press, New York, 1993.

Hamish Friedlander. djax. URLhttp://djax.mindcontrol-
dogs.com/.

A. Le Hors, P. Le Hegaret, G. Nicol, J. Robie, M. Champion, and
S. Byrne (Eds). “Document Object Model (DOM) Level 2 Core
Specification Version 1.0”. W3C Recommendation, 2000.

R. Kelsey, W. Klinger, and J. Rees. Revised5 report on the algo-
rithmic language Scheme.Higher-Order and Symbolic Compu-
tation, 11(1), August 1998.

David Kranz, Richard Kelsey, Jonathan Rees, Paul Hudak, James
Philbin, and Norman Adams. Orbit: an optimizing compiler
for scheme. InSIGPLAN ’86: Proceedings of the 1986 SIG-
PLAN symposium on Compiler construction, pages 219–233,
New York, NY, USA, 1986. ACM Press. ISBN 0-89791-197-
0.

Florian Loitsch and Manuel Serrano. Hop client-side compilation.
In TFP 2007: Draft Proceedings of the 8th Symposium on Trends
in Functional Programming, April 2007.

Neil Mix. Narrative javascript. URLhttp://neilmix.com/-
narrativejs/.

Mozilla Foundation. Rhino. URLhttp://www.mozilla.org/-
rhino/.

S. Muchnick.Advanced Compiler Design & Implementation. Mor-
gan Kaufmann, 1997. ISBN 1-55860-320-4.

Greg Pettyjohn, John Clements, Joe Marshall, Shriram Krishna-
murthi, and Matthias Felleisen. Continuations from general-
ized stack inspection. InInternational Conference on Functional
Programming, ICFP 2005, September 2005.

Tatsurou Sekiguchi, Takahiro Sakamoto, and Akinori Yonezawa.
Portable implementation of continuation operators in imperative
languages by exception handling.Lecture Notes in Computer
Science, 2022:217+, 2001.

Manuel Serrano, Frédéric Boussinot, and Bernard Serpette.
Scheme fair threads. InPPDP ’04: Proceedings of the 6th ACM
SIGPLAN international conference on Principles and practice of
declarative programming, pages 203–214, New York, NY, USA,
2004. ACM Press. ISBN 1-58113-819-9.

Olin Grigsby Shivers. Control-Flow Analysis of Higher-Order
Languages or Taming Lambda. PhD thesis, Carnegie Mellon
University, May 1991.

Guy L Steele. Lambda: The ultimate declarative. Technical report,
Massachusetts Institute of Technology, Cambridge, MA, USA,
1976.

Wei Tao. A portable mechanism for thread persistence and mi-
gration. PhD thesis, University of Utah, 2001. Adviser-Gary
Lindstrom.

James Wright. jwacs. URLhttp://chumsley.org/jwacs/-
index.html.

Scheme and Functional Programming 2007 45

46 Scheme and Functional Programming 2007

	Introduction
	Organization

	Suspend/Resume with Exceptions
	Idea
	Suspend
	Resume
	Suspend/Resume in JavaScript

	Call/cc
	Suspend/Resume and Call/cc Optimizations
	Hoisting Instructions
	Tail-call Optimization
	Miscellaneous Optimizations

	Callbacks
	Benchmarks
	Related Work
	Conclusion

