
Thinking Scheme

Kenneth A Dickey
Ken.Dickey@whidbey.com

Abstract
Like APL crossword puzzles, the goal in Scheme is not how
to find a way to implement something but to discover the
best implementation style(s) to adopt based on the computa-
tional patterns inherent in the artifact being developed.

This paper describes the author’s experience building
GUI-Toy, a simple graphical user interface, using SDL, two
different object systems, and multiple Scheme implementa-
tions.

Keywords Graphical User Interface, Scheme Program-
ming Language, Software Development, Object System,
Foreign Function Interface

1. Introduction
Computing systems today typically suffer from excess com-
plexity. Some of this complexity is inherent, but much is
simply the brambles of history as people cycle through
projects and knowledge is lost. One way to understand soft-
ware systems is to build them. Developing software allows
one to understand and challenge conventional wisdom and
clarify one’s thinking. [Re]implementing theory leads to
comprehension.

Like APL [1] crossword puzzles, the problem in Scheme
[25] is not how to find a way to implement something but
to discover which implementation style(s) to adopt based on
the patterns in the computational artifact being developed.
An analogy is in writing poetry verses prose. In poetry, one
looks for and coins new metaphors which make use of exist-
ing mechanisms of association to compactly communicate
meaning. Programming languages with a high impedance
get in the way by requiring one to write verbose prose.

This paper describes the author’s experience building
GUI-Toy, a simple graphical user interface, using SDL [26],
two object systems with different object models, and mul-
tiple Scheme implementations. To comprehend computa-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
2008 Workshop on Scheme and Functional Programming 20 September 2008, Vic-
toria, British Columbia.

tional systems, it is often still useful to walk down well
trodden paths. Transliterating ideas from other languages
into Scheme gives a common baseline for comparison and
contrast.

GUI-Toy [13] is a proof of concept for a graphical user
interface in the spirit of Sun’s Lively Kernel [20] or Squeak
Smalltalk [28] and indeed grew out of a desire to under-
stand the Lively Kernel code. It consists of two computa-
tional engines, the rendering of SDL and the object struc-
ture and event processing of Scheme. These two engines
are implemented variously as separate threads or as sepa-
rate processes. The main window has a bitmapped back-
ground, nested graphic objects with mouse dragging, and
simple time based animation. Events are targeted to graphic
objects based on Z-order and mouse sensitivity.

Figure 1. GUI-Toy window.

49

The two object systems used are TinyTalk [29] and OOPS
[21]. While both object systems support multiple inheri-
tance, they are diametrically opposed in philosophy and im-
plementation.

OOPS is a sophisticated object system for Gambit Scheme
[11] in the legacy of CLOS [9] and Dylan [10]. OOPS sup-
ports generic functions, predicate and limited types, sup-
port for Scheme native types via virtual classes, condition
handlers with restarts, access to Gambit’s native record
types, and a substantial collection library, including thread-
safe hash tables which allow concurrent access by multiple
threads. Classes are data structures which are also the proce-
dures used to create instances. It could be ported to Scheme
implementations which support access to closure environ-
ments such as Larceny [18].

TinyTalk is a minimalist object toolkit with first class
objects, selector name lookup independent of the Scheme
namespace, and no global tables. Unlike OOPS, TinyTalk
uses single selector dispatch and does not note or use the
types of its arguments. It uses a prototype/delegation model
and was implemented in less than 500 lines of code. This is
about the size of the OOPS define-class macro alone. It is
quite portable.

2. GUI Architecture
The model presented to the user is that of nested graphical
objects with a Z-order (objects are always in front of or
behind others). Objects may be moved within their container.
Moving a container moves its contents as well. I.e. contents
are always relative to their container.

Figure 2. Contained Rectangles and Z-Order.

Figure 2 shows a root-graphic containing two rectangles,
the frontmost of which contains three rectangles.

In Gui-Toy there is a crisp separation between the graph-
ical rendering system and the computational objects orga-
nizing their appearance and behavior. In the implementa-
tion the SDL-interface, graphical objects implementation,
and the composition of the two are maintained as three sep-

arate files. The computational flow is of drawing commands
from Scheme to SDL and user events from SDL to Scheme.

Figure 3. User Events and Drawing Commands

There are four general categories of events:

• mouse events move, button-down and button-up are di-
rected to the mouse-target object.

• keyboard events are directed to the keyboard-focus ob-
ject.

• focus-change events (mouse-focus, keyboard-focus,
application-focus) are directed to the application-focus
object.

• timer-tick events are given to the tick-announcer object
about 30 times a second, which drives the frame-rate for
redisplay and for timer-based animation.

A mouse target is the topmost mouse sensitive graphic at
the current mouse position. Finding the mouse target when
a mouse event occurs involves searching. The search starts
at the frontmost content of the rearmost graphic, the root
graphic. The general strategy is to check contained objects in
inverse Z-order, from front to back. If an object contains the
mouse point, then its contents are searched in the same fash-
ion recursively. This strategy is modified somewhat based on
mouse sensitivity, which in turn is based on experience with
Apple’s SK8 (pronounced ”skate”) multimedia development
environment [27].

When mouse-sensitivity is

• normal - the mouse target is content or self
• transparent - the mouse target is content or container,

never self
• opaque - the mouse target is always self
• invisible - the mouse target is always container

Each sensitive mouse-target object decides itself how to
handle mouse events, which may indeed be ignored.

In keeping with the desire for ease of comprehension, the
code is kept as simple as possible. For example, GUI-Toy
does not track damage areas. The basic idea of damage ar-
eas (a.k.a. damage rectangles) is that screen changes are ex-
pensive and other computation is cheap, so only areas that
have changed (are ’damaged’) need to be redrawn. GUI-Toy
simply keeps two buffers, drawing all graphics on the ”off
screen” buffer from back to front and then swapping buffers
between screen redraws. This has sufficed in tests with sev-
eral hundred small animated objects. It will be interesting to

50

find the knee of the performance curve, if it exists, where
damage rectangles will begin to pay for their added com-
plexity.

Renderers are another idea from SK8. A renderer encap-
sulates the visual presentation of a shape, i.e. color, gradi-
ent, pattern/stipple, picture. This is separate from the graphic
shape, which may be algorithmic (rect, polyline, etc.) or an
arbitrary bitmask. A renderer takes a shape, which has a po-
sition relative to its container, a surface, and a point repre-
senting the container’s screen position in global coordinates.

The method for rendering is now dirt simple [from the
TinyTalk code for graphic objects]:

[(display self screen parent-offset)
; Convert from local to global coordinates.
(let ((my-global-offset

[$ + parent-offset
[$ top-left-point self]]))

(when [$ visible? self]
; paint the pixels
([$ renderer self]

self screen my-global-offset)
; tell contents to display
(for-each
(lambda (graphic)
[$ display graphic

screen my-global-offset])
[$ contents self])

))
]

Given the above, the primary features of a GUI-Toy
graphic object are a shape, a renderer, container and con-
tents, a mouse-sensitivity, and event handlers.

3. Object System Comparison
After a programming hiatus, the author noted the publication
of R6RS [25]. The TinyTalk object system was developed in
order to learn and explore the differences between the new
and previous reports. TinyTalk was then ported to Gambit
using old style macros and GUI toy started using Gambit’s
foreign function interface, timer events and threads. Once
GUI-Toy was running, it was natural to transliterate the code
into the more CLOS-ish style of OOPS to compare coding
styles.

OOPS grew out of reading a number of object dispatch
theory papers (e.g. [5]) and a desire to better understand the
design trade-offs in supporting sophisticated and efficient
generic function dispatch. OOPS includes support for sin-
gletons, type unions, one-of types, limited types, type pred-
icates, et cetera, while striving to be as simple as possible.
The current implementation of generic dispatch lazily builds
tail-recursive lookup automata [7] [31] which use an effi-
cient subtype test [2].

TinyTalk, on the other hand, was designed to be very
flexible in order to explore alternative object oriented styles
before committing to a particular, optimized OO system. Its
design is consciously minimalist. It is prototype based and
uses single argument dispatch.

On the surface, usage of TinyTalk and OOPS is fairly
similar. There are, however, subtle differences which point
to some of the deep differences ”under the hood”.

We will explore this briefly with an example of point ob-
jects, which are used in GUI-Toy to represent screen pixel
positions.

In OOPS, points look a lot like in CLOS:

(define-class <point> ()
([x init-value: 0 type: <s32int>]
[y init-value: 0 type: <s32int>]

)
)

(define-method (->string (p <point>))
(format "#<point x:~a y:~a>"

[x p] [y p]))

(define p (<point> x: 10 y: 22))

In TinyTalk one can do this in several ways.

One can make an anonymous point and add methods to it.

(define p (object ([x 10] [y 22])))

[$ add-method! p ’point? (lambda (self) #t)]

(define-predicate point?)

[$ add-method! p ’->string
(lambda (self)
(format "#<point x: ~a y: ~a>"

[$ x self] [$ y self]))
]
; ...

The $ character is a macro which just gives the ”selector” to
the lookup function along with the first argument and returns
either a method or a suitable error procedure which is then
applied.

;; [$ <selector-sym> <obj> <arg> ...]
(define-syntax $; send [user syntax]
(syntax-rules ()
[($ <selector> <obj> <arg> ...)
;=>
((-> ’<selector> <obj>) <obj> <arg> ...)

]))

In this style a point is a prototype.

51

To make new points, one clones the prototype. Adding
methods to the point p adds methods only to the single object
p.

(define p2 [$ deep-clone p])

Alternatively, one can define a constructor function.

(define (new-point x y)
(object ([x x] [y y])

[(point self) #t)]
[(->string self)
(format "#<point x: ~a y: ~a>"

[$ x self] [$ y self])]
; ...

))

While the above looks like a class definition, it should
be noted that in the implementation, each point gets a new
set of closures for point methods. As instance value accesses
are done via getter functions, one can factor them out to get
a more class-based style.

(define proto-point
(object () ; Nota Bene: methods only

[(point self) #t)]
[(->string self)
(format "#<point x: ~a y: ~a>"

[$ x self] [$ y self])]
; ...

))

(define (new-point x y)
([x x] [y y]) ; NB: data only
[(delegate self) proto-point]

)

In this style, a new point has its own x and y accessors, but
shares the proto-point methods. One can now add methods
either to a single instance, or add them to the shared proto-
point, so that all point instances will share the behavior.

An additional flexibility comes from using selectors. As
method and instance data names are local to objects and not
part of the Scheme namespace, one can easily reuse names
like + without worrying about interactions with existing
definitions.

OOPS by contrast has a great deal of convenience built
into its relativity Procrustean style. For example, it is very
easy to add variant methods to OOPS because of the behind
the scenes centralized information.

OOPS:

(define-method (add (p1 <point>)(p2 <point>))
(<point> x: (+ [x p1] [x p2])

y: (+ [y p1] [y p2])))

(define-method (add (p <point>)(n <integer>))
(<point> x: (+ [x p] n)

y: (+ [y p] n)))

(define-method (add (n <integer>)(p <point>))
(<point> x: (+ n [x p])

y: (+ n [y p])))

Doing the same in TinyTalk requires dealing with dis-
tributed information.
TinyTalk:

(define proto-point
(object () ; methods only
[(point? self) #t]
[(add self other)
(cond
((point? other)
(new-point (+ [$ x self] [$ x other])

(+ [$ y self] [$ y other])))
((number? other)
(new-point (+ [$ x self] other)

(+ [$ y self] other)))
(else

(error ’point:add
"Can’t add self to other"
self other)))]

; ...
))

[$ add-method!
; get deputy prototype for built-in type
(deputy-object 3) ;-> integer prototype
’add ; method name
(lambda (self other)
(cond
[(point? other)
(new-point (+ self [$ x other])

(+ self [$ y other]))]
[(number? other) (+ self other)]
[else
(error ’number:add
"Can’t add self to other"
self other)]

))]

As one might suspect, TinyTalk is a language for ”con-
senting adults”. Its flexibility comes at the price of having to
maintain a clear idea of one’s intent and in having to write
code specifics in more detail. For example, differences be-
tween shallow and deep cloned objects and the ability to
attach methods to individual objects is sometimes surpris-
ing in practice. One case where this matters is in cloning of
graphic objects. A graphic objects has the shape (x, y, width,
height) as a delegate. If a shallow-clone is done, the shape
is shared between both the original and the cloned graphic.
When one is moved or resized, the other is moved and re-
sized as well. Since one is on top of the other, the second
is hidden and it appears that it has vanished. Deep-cloning

52

gives each graphic its own shape and they can be moved and
resized independently.

OOPS is fairly classic to one familiar with CLOS or Dylan.
Notable features of OOPS include predicate dispatch types,
limited types, one-of types, and the use of virtual classes to
support native Scheme value types.

(define-virtual-class <string> <indexed>
((element-type type: <type>

init-value: <character>
allocation: each-subclass:)

(fill type: <character>
init-value: #\space
allocation: override:))

; replace inst w string
(lambda (inst)

(make-string (size inst) (fill inst))))

;E.g.
(is-a? "abc" <string>) ;--> #t
(class-of "abc") ;--> <string>
(<string> size: 3 fill: #\x) ;--> "xxx"

(define <even?>
(<predicate-type> superclass: <integer>

test-for: even?))

(define <u8int> ; Useful in a FFI
(<limited-range> superclass: <integer>

min-value: 0
max-value: #xFF))

(define <vowels>
(apply <one-of>

(string->list "aeiouAEIOU")))

Given this flexibility in dispatch mechanics, it is un-
surprising that argument type checking is delegated to the
generic dispatch system in the OOPS rendition of the GUI-
Toy code.

(define <mouse-sensitivity>
(<one-of>
’normal ’invisible ’transparent ’opaque))

(define-class <graphic> ()
([shape type: <shape>]
[renderer type: <renderer>]
[mouse-sensitivity

type: <mouse-sensitivity>
init-value: ’normal]

[visible? type: <boolean> init-value: #t]
; Container is #f or a <graphic>
[container]
; Contents are z-ordered back to front

[contents type: <list> init-value: ’()]
; Delegate location to SHAPE
[x
allocation: virtual:
slot-ref: (lambda (g) (x (shape g)))
slot-set!:

(lambda (g v) (x-set! (shape g) v))
]
;
; Individual instances must override
; default handlers to do something useful.
[mouse-move-handler type: <function>

init-value: ignore-graphic-event]
;

; Instance Init:
(lambda (me)
(when (container me)
; a <graphic> unless the root-graphic
(let* ([my-container (container me)]

[my-siblings
(contents my-container)])

; Contents list is 1st in Z-order
(contents-set! my-container

(concatenate my-siblings (list me)))
))))

3.1 OO Style Contrast
In contrasting the styles, one finds OOPS comforting. Key-
words, while verbose, provide additional documentation.
Given academic emphasis on type theory, type based dis-
patch, aside from complexities on class precedence list cal-
culation, is fairly intuitive.

TinyTalk, on the other hand, allows one to build exactly
what is wanted, but its minimalism is sometimes disconcert-
ing. For example, the access functions act as both setters and
getters. This violates the user interface guideline that things
which are different should look different.

[$ x point] ; get value for x
[$ x point 3] ; set value of x to 3

In OOPS this is more distinguishable.

[x point] ; get value for x
[x-set! point 3] ; set value of x to 3

On the other hand, it is very handy for TinyTalk not to
add to the Scheme name space. It is often convenient to have
a variable with the same name as a method.

(let ([shape [$ shape graphic]])
; Here one can use variable shape as well
; as calling method [$ shape foo]
)

The contrast in object styles has been interesting. In
OOPS one uses generic functions which collect all meth-
ods of the same name and are separate from the data objects

53

which they use in object dispatch. The generic function name
is required to be in the Scheme namespace. In TinyTalk the
selector symbol is given to the data object, along with any
other arguments, and the first object argument determines
which method to invoke. TinyTalk method names are un-
known to the Scheme namespace.

In this small example, the author found these object sys-
tem differences as simple matters of style. Neither style of
object system was a clear win in all cases. As a user, OOPS
code seems more readable, but as an implementor it is much
more work to understand and implement and requires more
runtime internals knowledge and support. TinyTalk code re-
quires a bit more care to write, but the TinyTalk implementa-
tion is quite small, comprehensible, and ports easily. On bal-
ance, it seems that in the case of GUI-Toy the OOPS system
does not yet carry the weight of its complex implementation.

Where the difference matters is in support of GUI usabil-
ity. The SK8 experience was that multi-media authors who
were not programmers liked to work from pallets of me-
dia objects which they could clone and then add behaviors
(methods) to. The authors tend to make large numbers of id-
iosyncratic objects and sometimes move or clone behaviors
as well. As one scales up GUI features, the prototype im-
plementation of objects fits better with this style of media
authoring.

4. Foreign Function Interface Issues
Unlike Common Lisp’s CFFI [6], Scheme has no standard
foreign function interface. Due to the brambles of various
Scheme implementations, several styles have evolved with
some interesting differences (e.g. [19] [23] [12] [4] [8]).
This makes porting and testing any non-trivial graphic UI
a significant project.

Perhaps the most portable way to access non-Scheme
code is to avoid using a FFI in favor of pipes to a server
process as used in PS/Tk [24], a portable interface between
a number of Scheme implementations and the Tk Toolkit.
The trade-off here is that one must deal with multi-threading
issues between a Scheme implementation and the server
and keep interface encodings consistent. The obvious way
to portably support a FFI of any complexity is to define a
declarative interface and generate the C glue code. As the
size of the interface increases, a compression strategy will
probably be required. A ”portable FFI” would help evolution
here as well.

Starting with the simple server in the Worms game devel-
oped in Ikarus Scheme [16], the author implemented an SDL
interface and server which currently works across Chez,
Gambit, Ikarus, Larceny, PLT, and Ypsilon Schemes. The
use of a server process does allow for rapid porting. While
simple, the C server code required considerable debugging
time and the author was forced to relearn why he had forgot-
ten the C language.

To give a brief feel for this interface, some of this mech-
anism follows.

A request for an operation on the SDL interface writes
binary data in a format known by the server.

(define SDL::load-bmp-file
(lambda (file-name-string)
(unless (string? file-name-string)

(report-arg-check-error
’SDL::load-bmp-file
’file-name-string
’string?))

(let ([return-id (next-return-id)])
(put-Uint8 port->sdl 33) ; call tag
(put-Uint16 port->sdl return-id)
(put-Str port->sdl file-name-string)
(flush-output-port port->sdl)
(await-return return-id))

))

The server processes the command and writes to a text
port read by the Scheme system. The convention used is that
events are lists with a leading symbol which denotes what
event is taking place. For example:

(sdl-result 2 134574568)
(focus-change 0 1)
(focus-change 1 1)
(key-down 115 0 115)

The Scheme code is event driven with a simple dispatch
function.

(define (client-event-loop)
(process-sdl-event
(SDL::get-event ’wait))

(unless sdl-to-exit?
(client-event-loop)))

(define (process-sdl-event evt)
; ...
(case (car evt)
[(sdl-result)
(SDL::handle-return-event evt)]
[(mouse-move)
(%handle-mouse-event

(evt->mouse-move evt))]
[(tick)
[$ announce tick-announcer

(make-event ’tick)]]
; ...
])
)

54

4.1 Interleaved Event Processing
One interesting problem with a pipe interface to a subpro-
cess is that processing of asynchronous events (mouse move,
timer ticks, keyboard input) is interleaved with the process-
ing of commands which return values.

Fortunately, Scheme’s call-with-current-continuation func-
tion provides a ready mechanism with which to associate
return values with computations awaiting results. The SDL
interface and GUI code are separate, but the GUI registers
the client-event-loop with the SDL interface and gives sdl-
return events back to the interface as shown above. Aside
from this communication for execution control, association
of results with SDL commands remains local to the SDL
interface. This code uses the return-id to find and dispatch to
the appropriate continuation.

The author started with the design of a more complex
coroutine system but, in realizing that the piping mechanism
acts as a concurrency constraint, eliminated the complex
cases. After a day or two reviewing papers (e.g. [3]) and
thinking about the problem, the implementation, testing, and
refinement took under an hour. The implementation is small
enough to be included here.

(define (await-return return-id)
(call/cc
(lambda (receiver)
(register-return return-id receiver)
(client-event-loop))))

(define (register-return id receiver)
(set! return-cont-alist

(alist-cons id receiver
return-cont-alist)))

(define (process-return id val)
(let ([bucket

(assq id return-cont-alist)])
(unless bucket
(error ’process-return

"can’t find return for id"
id val))

(set! return-cont-alist
(remq bucket return-cont-alist))

; NB: continuation never returns
((cdr bucket) val)

))

(define (SDL::handle-return-event evt)
(let-values
([(id result)

(check-return-shape evt)])
(if id
(process-return id result)
(error ’SDL::handle-return-event

"badly formed return event"

evt)))))

4.2 Declarative Call Interface
The code to match Scheme ”calls” to SDL reads is tedious
and care must be taken to match the number and interpreta-
tion of bytes sent by both sides of the pipe. This naturally led
to the development of a simple, declarative FFI to generate
both the Scheme and C call code to more easily add calls to
the system.

The interface descriptions enable the code generator to
insert basic checks and spread object fields to be gathered
on the C side into stack allocated structs.

(describe-interface
; ...
(describe-call
(Scheme SDL::load-bmp-file

(file-name-string char*))
(C "SDL_LoadBMP"

(file-name-string)
(pointer "SDL_Surface")))

(describe-c-struct SDL_Rect
(x Sint16) (y Sint16)
(w Uint16) (h Uint16))

(describe-access (SDL_Rect rectangle?)
; (c-field-name scheme-getter-name) ...
(x x) (y y) (w width) (h height))

(describe-call
(Scheme SDL::draw-rect

(surface (pointer "SDL_Surface"))
(rect (access rectangle? SDL_Rect))
(rgb-color Uint32))

(C "SDL_FillRect"
(surface rect rgb-color) void))

;...
)

The generated Scheme code does basic error checks and
reporting, puts out a shared call tag, and accesses object
fields.

(define (SDL::draw-rect surface rect rgb-color)
(unless (Uint32? surface)

(report-arg-check-error
’SDL::draw-rect ’surface ’Uint32?))

(unless (rectangle? rect)
(report-arg-check-error

’SDL::draw-rect ’rect ’rectangle?))
(unless (Uint32? rgb-color)

(report-arg-check-error
’SDL::draw-rect ’rgb-color ’Uint32?))

(put-Uint8 port->sdl 34) ; call tag

55

(put-Uint32 port->sdl surface)
(put-Sint16 port->sdl [$ x rect])
(put-Sint16 port->sdl [$ y rect])
(put-Uint16 port->sdl [$ width rect])
(put-Uint16 port->sdl [$ height rect])
(put-Uint32 port->sdl rgb-color)
(flush-output-port port->sdl)

)

The generated C code dispatches on the call tag, stack
allocates temporaries, makes the SDL call, and returns a
result as required.

case (char)(34):
{ /* SDL::draw-rect -> SDL_FillRect */

unsigned char buf[16];
read(fileno(stdin), buf, 16);
int offset = 0 ;

/* surface */
Uint32 surface

= getUint32(buf, offset) ;
offset += sizeof(Uint32) ;

/* rect */
SDL_Rect rect ;
rect.x = getSint16(buf, offset) ;

offset += sizeof(Sint16) ;
rect.y = getSint16(buf, offset) ;

offset += sizeof(Sint16) ;
rect.w = getUint16(buf, offset) ;

offset += sizeof(Uint16) ;
rect.h = getUint16(buf, offset) ;

offset += sizeof(Uint16) ;
/* rgb-color */
Uint32 rgb_color

= getUint32(buf, offset) ;
offset += sizeof(Uint32) ;

SDL_FillRect((SDL_Surface*)(surface),
&(rect),
rgb_color);

}
break;

Previous to the implementation of the interface generator,
the SDL interface was independent of the object system(s)
used. In order to use argument checks and object accessors,
the SDL interface currently imports the graphic object inter-
face. This could be changed by creating a separate library
which does the checking, spreads the arguments, and calls
the (then) object system independent SDL interface. One
could then use either the checked or unchecked interface.

4.3 Performance
Qualitatively, native compiled Scheme implementations eas-
ily handle 200 or more animated objects at 30 frames per

second with live dragging. Interpreted Schemes fall off a bit
earlier but typically handle 60 animated objects well.

A best case for the pipe interface is redrawing the screen
objects. In this case, no result is required and the SDL ren-
dering cost is charged against the SDL server process. Direct
FFI calls include the SDL rendering cost.

OO kind 60 graphics 200 graphics
OOPS FFI 12 ms 24 ms
TinyTalk FFI 12 ms 16 ms
TinyTalk Pipe 4 ms 8 ms

. Display Redraw [Gambit, Linux, 1 GB RAM]
The worst case for the pipe implementation is when a

result is required. In the following, a trivial procedure was
called which adds two numbers and returns the result. In this
case the pipe code has to capture the continuation, parse the
result, associate the result with the initial continuation, and
periodically garbage collect the parsed i/o data objects. The
FFI on the other hand is in a tight loop and is not required to
collect intermediate data.

Note that these timings are a qualitative sampling. Other
activity is taking place and no attempt was made to optimize
calculation or normalize results.

Scheme kind 1000 Calls 1,000,000 Calls
Ikarus Pipe 16 ms 18,909 ms
Ypsilon Pipe 16 ms 26,158 ms
Ypsilon FFI 4 ms 716 ms
PLT-r6rs Pipe 160 ms 88,569 ms
PLT-r6rs FFI 4 ms 452 ms
Gambit Pipe 36 ms 48,862 ms
Gambit FFI 2 ms 2,134 ms
Larceny Pipe 116 ms 112,283 ms
Larceny FFI 4 ms 1,856 ms

. Call with 2 args and Return result

5. Wins and Losses
There are two kinds of project time: rapid progress and
speed bumps.

Let’s start with the speed bumps. An amazing amount of
time was wasted debugging C code and learning enough of
LaTeX to produce this paper. Debugging old style macros
(used in Gambit) was somewhat of a time sink. In port-
ing GUI-Toy code to various Scheme systems, underdoc-
umentation and large code bases were sometimes an im-
pediment [notable exceptions were Chez Scheme, which
ported in about an hour and PLT-r6rs which came up even
faster]. There are certainly too many pre-R6 alias names for
arithmetic-shift-right.

Wins included regression test suites for both object sys-
tems (during development the author completely changed
the implementation of the OOPS access functions). Another
was keeping the same SDL interface for both native FFI and

56

the process/pipe implementation. Parnas’ idea of hiding de-
sign decisions [22] is of note here. Despite the controver-
sies surrounding R6RS and some oddities, such as requiring
calls to initialize libraries, the author has found in porting
GUI-Toy across a number of scheme systems that the R6RS
systems presented the fewest speed bumps. E.g. there is one
name for bitwise-arithmetic-shift-right !

6. Next Steps
This project has evolved in phases of exploration and con-
solidation with many side trips. There are two seeds here:
a simple GUI and a portable FFI. With care and watering it
is hoped they will nurture each other. The seed of the GUI
is expected to grow to approximate the features of Lively or
Squeak. The seed of a portable FFI was done in isolation
but with community input could mature into or inspire the
creation of a common cross-implementation Scheme foreign
function call interface. A particular help would be a common
Scheme finalization interface (e.g. wills) to manage deallo-
cation of C malloc’ed storage.

7. Conclusion
Scheme is a highly adaptable language in which to think
concretely about computation. Rather than being cast in con-
crete, useful software architectures may be cast in jello and
easily remolded. This flexibility readily allows a single au-
thor to explore a wide range of interesting computational
ideas and idioms.

Lao Tze said, ”If you are one with the way, the way
welcomes you” [17].

After a quarter century of use and dozens of other pro-
gramming languages, the author finds that Scheme still wel-
comes him.

Acknowledgments
This space is much too small to list proper acknowledge-
ments to the Scheme implementers, developers, and re-
searchers who have contributed to the author’s enjoyment
of the language. Those that cannot be elided are the credit
to Jeremey Friesen and ioCreative [14] for the background
graphic, to the anonymous reviewers, and to Andrew Wright
and Bruce Duba for their pattern matching code [30] which
made the declarative call interface so much easier to write.

References
[1] APL = A Programming Language is described at

http://en.wikipedia.org/wiki/APL (programming language)

[2] Jonathan Bachrach jrb@ai.mit.edu
Simple and Efficient Subclass Tests.
http://people.csail.mit.edu/people/jrb/pve/pve.htm
See file OOPS/SRC/SUBCLASS.SCM for details

[3] Darrell Ferguson and Dwight Deugo
Call with Current Continuation Patterns.

In 8th Conference on Pattern Languages of Programs (PLoP
2001), 2001.
http://repository.readscheme.org/ftp/papers
/PLoP2001 dferguson0 1.pdf

[4] Chicken Scheme’s FFI is documented at
http://chicken.wiki.br/Interface to external functions and
variables

[5] Craig Chambers and Weimin Chen
Efficient Multiple and Predicate Dispatching.
In Proceedings of the 1999 ACM Conference on Object-Oriented
Programming Languages, Systems, and Applications (OOPSLA
’99), 1999.
http://citeseer.ist.psu.edu/chambers99efficient.html

[6] CFFI is available from and described at
http://common-lisp.net/project/cffi/

[7] Weimin Chen and Volker Turau
Multiple-Dispatching Based on Automata.
In Journal of Theory and Practice of Object Systems, 1(1), 1995.
See file OOPS/SRC/GENERICS.SCM for details.

[8] Chez Scheme’s FFI is documented at
http://www.scheme.com/csug7/foreign.html#./foreign:h0

[9] CLOS, the Common Lisp Object System, is described in
http://en.wikipedia.org/wiki/Common Lisp Object System

[10] The Dylan programming language is described in
http://en.wikipedia.org/wiki/Dylan programming language

[11] The Gambit Scheme system is available at
http://dynamo.iro.umontreal.ca/˜gambit/

[12] The Gambit Scheme’s FFI is documented at
http://www.iro.umontreal.ca/˜gambit/doc
/gambit-c.htmlSEC129

[13] The GUI-Toy code is available at
http://code.google.com/p/gui-toy/

[14] ioCreative No Plan B Graphic is from their web site
http://www.iocreative.com/funstuff

[15] Ikarus Scheme is available from
http://www.cs.indiana.edu/˜aghuloum/ikarus/

[16] SDL Worms game is available from
https://code.launchpad.net/ aghuloum/ikarus-libraries/ikarus-
sdl

[17] Lao Tze Tao Te Ching
[18] Larceny Scheme procedure access is documented in the

Larceny User Manual:
http://larceny.ccs.neu.edu/doc/user-manual-alt.html

[19] Larceny Scheme’s FFI is described at
http://larceny.ccs.neu.edu/doc/LarcenyNotes/note7-ffi.html

[20] Sun’s Lively Kernel is available from
http://research.sun.com/projects/lively/

[21] OOPS is available as part of GUI-Toy for Gambit at
http://dynamo.iro.umontreal.ca/˜gambit/wiki
/index.php/Dumping Grounds

[22] David L. Parnas
On the Criteria to be Used in Decomposing Systems into
Modules.
In Comm. ACM vol 15, December 1972.

[23] PLT’s FFI is documented at
http://download.plt-scheme.org/doc/372/html/foreign/

57

[24] PSTk is available from
http://t3x.org/pstk/

[25] The Revised 6 Report on Scheme is available at
http://www.r6rs.org/

[26] SDL, the Simple Direct-media Layer, is a cross-platform
graphics library available from
http://www.libsdl.org/

[27] The SK8 multimedia development environment is described
in
http://en.wikipedia.org/wiki/SK8

[28] Squeak is available from
http://www.squeak.org/

[29] TinyTalk is available as part of GUI-Toy for Gambit at
http://dynamo.iro.umontreal.ca/˜gambit/wiki
/index.php/Dumping Grounds
A portable R6RS version is available from
https://launchpad.net/kend/

[30] Andrew K. Wright and Bruce F. Duba
Pattern Matching for Scheme
1995
http://en.scientificcommons.org/66521

[31] Yoav Zibin and Joseph Gil
Fast Algorithm for Creating Space Efficient Dispatching
Tables with Application to Multi-Dispatching.
OOPSLA ’92, 1992
http://citeseer.ist.psu.edu/zibin02fast.html
See file OOPS/SRC/GENERICS.SCM for details.

58

