The Layers of Larceny’s Foreign Function Interface

Felix S Klock Il

Northeastern University
pnkfelix@ccs.neu.edu

Abstract Finally, a low-level interface to a foreign library that requires

The Foreign Function Interface (FFI) in Larceny supports interact- har'd_codlng offsets into native structures (see Fl_gure 1), or tran-
ing with dynamically loaded C libraries via glue code written in scribing full C structure definitions from header files can lead to

Scheme. The programmer does not need to develop any C code t(?lue_ cc_)de that works on one host but not_others. Such code IS
interface with C libraries. The FFl is divided into layers of Larceny rag||’e in the presence of C source-_c_ompatlble cha_mges to the .“‘
Scheme code; the lower layers implement kernel functionality, and _brarys header f_|Ie_s_,, such as t_hg addmgn (or reordering) Qf fields in
the higher layers support portable glue code development. its structure definitions. Specifying an interfguertablyrequires a

The lower level has two main features of interest. First, the FFI molre Eophisticatedhapprc()jach.l d dFEL The | |
supports callbacks: objects that look like simple function pointers __'N L-arceny, we have developediayered-r1. Ine lower iay-
to foreign code but invoke Scheme closures when called. This re- €S constitute the kernel of Larceny's FFI implementation; their
quires generating specialized machine code, and is further compli-description here is targeted at Scheme implementors. The upper
cated by the potential movement of the closures during garbage'ayers aid development of portable glue code, and illustrate ideas

collections. Second, Larceny heaps can be dumped to disk andVOrth incorporating into other Scheme systems. In particular, the
reloaded during a fresh runtime execution. The FFI automatically ""ierface provided by theef ine-c-info special formis asimple,
relinks the foreign procedures in such heaps. structure-shy approach for portably interfacing with library frame-
The higher level layers provide macros and procedures for ex- WOEI'_(; written in C. h | the FEL Section 3 d
tracting information from header files and dictating how values __INe nextsection shows example uses of the FFI. Section 3 de-
translate between Scheme and foreign code. These tools ease devefCiPeS how the lower layers of the FF libraries work together with
opment of portable glue code. The upper layers have simple imple- 1€ Larceny runtime to handle value marshaling and procedure in-
mentations and do not require much Larceny-specific functionality; vocation. Section 4 describes the middie layer, which provides the

they may be useful for the FFIs of other Scheme systems most primitive interface we expect developers to use. Section 5 de-
’ scribes the higher layers that ease interfacing with foreign libraries.

Section 6 describes related work and section 7 concludes.
1. Introduction

Scheme implementations cannot provide built-in access to all low- 2 Example FFI code
level libraries, and clients cannot be expected to reimplement them__)) .) i)
from scratch. Many Scheme implementations provide a Foreign This section presents code using forelgn functlons,.startlng. with
Function Interface (FFI) to allow the connection of Scheme pro- low-level flle—syster_n exar_nples and working up to GUI interactions.
grams with foreign C libraries. The Fqur sFarts with qnlsuseof the Larceny FFl: a I(_)W-Ievel
An FFI has many design axes. First, an FFI that only allows deflnltlon_wnh aportablllt_y bug. The _bqg motivates our higher level
Scheme to hook into C functions that receive and produce values!00!S, which we present in the remaining examples.
of a singlescheme_value type (as in [Kelsey and Sperber(2003)]) Figure 1 defines a directory Ilstlng_ procedure_. Lines 5 thrpugh
forces the client to develop (write, compile, debug, etc) glue code 10 link the UNIX procedures for opening, traversing, and closing a
written in C, rather than accessing the external library directly directory. Itthen definesirent->name, a procedure that extracts
support for a more expressive FFI. ’peek-string procedure that constructs a Scheme string from a
Second, transmitting complex objects requires bridging the gap Zero-terminated string of bytes at the given memory address.
between the semantics of Scheme and that of C. For example, mak- There is signficant machinery ben_eath the surface of Flgu_re 1.
ing a Scheme closure appear to the C world as a C function pointer FOr examplennix/opendir marshals its argument Scheme string
requires some semantic gymnastics, as the calling convention fort0 & zero-terminated byte array, matching ther+ idiom for C

invoking a closure may differ signficantly from that of a C function ~ Strings. _ .
pointer.g y 9 y On Mac OS X (Intel), Figure 1'3ist-directory misbehaves

> (begin (for-each system ’("mkdir dtmp"
"touch dtmp/abcdef"
"touch dtmp/mnopqrst"))
(list-directory "dtmp"))
Permission to make digital or hard copies of all or part of this work for personal or ("" "" "def" "pqrst")
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute * The author of Figure 1 presumably determined thatdheame field is
to lists, requires prior specific permission and/or a fee. located 11 bytes after the start of therent structure, perhaps by manual
Scheme Workshop ‘08 20 September 2008, Victoria, British Columbia inspection of the header files on a Linux distribution, or perhaps by writing
C code to reveal this information.

69

1;; The offsets in the dirent accessors 1 (require ’foreign-ctools)

2 ;; are probably x86-Linux-specific!! 2 (require ’foreign-cstructs)
3 (require ’std-ffi) 3
4 4 (define file-directory?
. . . 5 (let O
° (deflne_unlx/opendlr " o . - 6 (define-c-info (include<> "sys/stat.h")
6 (f?relgnjprocedu;e opendir" ’(string) ’uint)) 8 (const s-ifdir wint "S.IFDIR"))
7 (define unix/readdir 8 (define-c-struct ("struct stat" make-stat
8 (foreign-procedure "readdir" ’(uint) ’uint)) 9 (include<> "sys/stat.h"))
9 (define uniX/ClOSedir 10 ("st_mode" (stat-mode)))
10 (foreign-procedure "closedir" ’(uint) ’int)) 11 ;; unix/stat : String Bytevector -> Int
1 12 (define unix/stat
12 ;; dirent->name : [Addressof dirent] -> String 13 (foreign-procedure "stat" ’(string boxed) ’int))
13 (define (dirent->name ent) 14 éé ;ile_?;?iCtZ?Y? ; Stiig$1‘> Bo;lean
0 . 15 erine lle—-dlrectoryy’ llename
1 (hpeek-string (+ ent 11))) 16 (let* ((buf (make-stZt))
® 17 (errcode (unix/stat filename buf)))
16 ;; list-directory : String -> [Listof String] 18 (cond ((zero? errcode)
17 (define (list-directory dirname) 19 (let ((mode (stat-mode buf)))
18 (let ((dir (unix/opendir dirname))) 20 (not (zero? (integer-logand mode s-ifdir)))))
19 (if (zero? dir) 21 (else (error ’file-directory? filename)))))
20 (error ’list-directory path) 22 file-directory?))
21 (let loop ((files ’()))
22 (let ((ent (unix/readdir dir))) Figure 3. Semi-portablefile-directory? definition
23 (if (zero? ent)
2 (begin (unix/closedir dir)
25 (reverse files)) 1;; void gsort(void *base, size_t nmemb, size_t size,
26 (loop (cons (dirent->name ent) 233 int (*compar) (const void*, const voidx))
27 files)))))))) 3 (let* ((gsort (foreign-procedure
4 "gsort" ’(boxed uint uint
Figure 1. A [mis]use of the FFI s (> (void* void#) int))
6 ’void))
7 (input (sint-list->bytevector
8 > (10000 20 10001 100) ’little 4))
1 (require ’foreign-ctools) 9 (len (bytevector-length input))
2 10 (output (make-nonrelocatable-bytevector len)))
3;; dirent->name : [Addressof dirent] -> String 1 (bytevector-copy! input O output O len)
4 (define (dirent->name ent) 12 (gsort output (quotient len 4) 4
5 (define-c-info (include<> "dirent.h") 13 (lambda (x y) (- (void*-word-ref x 0)
6 (struct "dirent" (name-offs "d_name"))) 14 (void*-word-ref y 0))))
7 (Jipeek-string (+ ent name-offs))) 15 (list input output
16 (bytevector->sint-1list output ’little 4)))
Figure 2. More portabledirent->name definition — (#vus(16 39 0 0 20 0 0 0 17 39 0 0 100 0 0 0)

#vu8(20 0 0 0 100 0 0 0 16 39 0 0 17 39 0 0)
(20 100 10000 10001))

On Mac OS X,list-directory returns strict suffixes of the
actual filenames in the directory. The hard-coded offsét imame Figure 4. Callback example (with result on little-endian systems)
ties the code to one host and does not work on other systems.

Figure 2 shows a more portable definitionddfrent->name. It . . o
uses thelefine-c-info special form of Larceny'soreign-ctools The foreign-procedure invocation linkingunix/stat to
library, binding the identifename-of s to the offset appropriate to ~ stat uses’string to say that its first parameter is a Scheme
the host. The developer ditbthave to provide the entire definiton ~ String to be marshaled to a zero-terminated byte array. The link-
for thestruct dirent type (a definition that may differ between — @ge usesboxed to say the second parameter is a Scheme heap-
Operating SystemS, introducing a new portability issue). One only allocated ObJeCt. The Invocatlonﬁﬁit/stat maps the bytevector

indicates a source header file, {include<> "dirent.h"),and buf (produced bynake-stat) to a pointer to the memory imme-
lists the fields of interest'@_name") alongside identifers to bind ~ diately after the bytevector's header and passes that pointer to the
their offsets fame-of£s). C stat function.stat initializes the bytevector’s contents with in-

Figure 3 defines a predicate distinguishing directories from formation about the argument patfile-directory? finally de-
other nodes in the file system. It illustrates some subtle policies termines whether the path is a directory by performing the Scheme

in Communicating W|th C procedures_ equivalent Of the C expressioh! (St . st_mode. & S_IFDIR)

The definition offile-directory? uses thélefine-c-struct ~ The FFlalso supports callbacks: marshaling closures to C func-
form to bindmake-stat to a stat buffer constructor astlat-mode tion pointers. Figure 4 presents an example with the C quicksort
to a field accessor. It also bindsdir-const to a preproces- function,gsort. Callback invocation could cause garbage collec-
sor constant needed to compute with the mode. It then binds tions, which may relocate objects; therefore this code copies the
unix/stat to the foreign function: unsorted bytevector into non-relocatable (but still managed) mem-

ory. The callback itself usesoid*-word-ref to access memory
int stat(const char *path, struct stat *buf); via an address held in an opagueid*-rt record.

70

1
2
3

4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

(require ’gtk)
(define (gtk-example) :
(define (key-press w e)
(write ‘(key-press ,(gdk-event-keyval e)))
(newline))
(gtk-init)
(let* ((lambda-img (gtk-image-new-from-file
"/tmp/Lambda.png"))
(window (gtk-window-new ’toplevel)))
(gtk-window-set-title window "Example")
(gtk-widget-set-size-request window 400 500)
(g-signal-connect window "key_press_event"
key-press)
(g-signal-connect window "delete_event"
(lambda (w e)
(gtk-main-quit) #f))
(gtk-widget-show window)
(gtk-container-add window lambda-img)
(gtk-widget-show lambda-img)
(gtk-main)))

2
3
4
5
6
7
8
9
10
11
12
13
14

18
19
20

Figure 5. Example of FFI callbacks in the Gimp Toolkit (GTK+)

22
23
24

Marshaling Scheme closures is handled by all of the Iayer;sz

working together; the lower layers provide the basic functionality,,
for creating and invoking C callbacks, while the middle and upper,
layers ease interfacing to foreign functions with callbacks. ”

As a final example, figure 5 uses the Gimp toolkit to create,
a window that responds to key presses by printing their charac;
ter value. This code builds upon tlgek library. Figures 6 and 7
present relevant snippets of tgek library using high-level func-
tionality further described in section 5.

Figure 5 marshals the Scheme symbobplevel to the inte-
ger value of the C enurdTK_WINDOW_TOPLEVEL. Figure 6 uses
the define-c-enum form to introduce agtkwindowtype Sym-
bolic enumeration, whch marshalgsoplevel and’ popup to and
from GTK_WINDOW_TOPLEVEL andGTK_WINDOW_POPUP. This mar-
shaling happens only in contexts expectgigwindowtype, such
asgtk-window-new invocations. The upper layers of the FFI im-
plement enum support; the lower layers are oblivious to C enums.

Figure 6's invocation okstablish-void*-subhierarchy!
establishes classes of C pointers extendingwhsd*-rt type.
Foreign function invocations with arguments that do not satisfy3
the encoded subtyping relation signal an error. The special form
(define-foreign (foo-bar-baz) ——) searches for a
foreign export namedoo_bar_baz (note the underscores) and
then fooBarBaz, binding foo-bar-baz to the resulting foreign
function if found.

Figure 7 links to the GTK+ functiogtk_init. To satisfy the
interface ofgtk_init, it uses the combinatot&all-with-char**
(marshaling a vector of strings tachar**) andcall-with-boxed
(taking values of C typ& to Tx). »

After tasting the FFI programming experience, we now delve13
into its implementation.

32
33
34
35
36

1
2

© © ~N o v »

10
11

14
15
6
3. Lower layers of the FFI -
This section describes the implementation of the FFI's kernel funcs
tionality. During the invocation of callouts and callbacks, control
flows from the MacScheme machine through the Larceny runtime
and into C code (and back again). Support for this is distributed
amongst structures allocated on the Larceny heap.

’foreign-ctools)
’foreign-cenums)
’foreign-stdlib)
’foreign-sugar)

(require
(require
(require
(require

(foreign-file "/sw/1lib/libgtk-x11-2.0.dylib")

(define-c-enum gtkwindowtype

((path "/sw/include/glib-2.0")
(path "/sw/lib/glib-2.0/include")
(path "/sw/1lib/gtk-2.0/include")
(path "/sw/include/pango-1.0")
(path "/sw/include/gtk-2.0")
(include<> "gtk/gtkenums.h"))

(toplevel "GTK_WINDOW_TOPLEVEL")

(popup "GTK_WINDOW_POPUP"))

;3 (actual hierachy is much larger)

(establish-void*-subhierarchy!

’ (gtkwidget* (gtkcontainer* (gtkwindowx))
(gtkimage*)))

(define-foreign (gtk-window-new

gtkwindowtype) gtkwindow*)

(gtk-window-set-title

gtkwindow* string) void)

(gtk-image-new-from-file

string) gtkimagex*)

(gtk-widget-set-size-request

gtkwidget* int int) void)

(gtk-widget-show

gtkwidget*) void)

(gtk-main) void)

(gtk-main-quit) void)

(gtk-container-add

gtkcontainer* gtkwidget*) void)

(define-foreign
(define-foreign
(define-foreign
(define-foreign
(define-foreign

(define-foreign
(define-foreign

Figure 6. Some definitions frongtk library

;3 void gtk_init(int *argc, char *x*argv)
(define gtk-init
(et O
(define-foreign (gtk-init void* void*) void)
(lambda arg-strings
(let ((string-vec
(1ist->vector
(cons "larceny" arg-strings))))
(call-with-char**
string-vec
(lambda (argv)
(call-with-boxed
argv
(lambda (&argv)
(call-with-boxed
(vector-length string-vec)
(lambda (&argc)
(gtk-init &argc &argv)))))))))))

Figure 7. Definition of gtk-init from gtk library

71

extract code bytevector from
trampoline object

c-ffi-apply: allocate receipt
location for return value;
convert actuals list into argument
syscall c-ffi-apply; pass code »1 array; invoke code bytevector with
bytevector, arg encoding,
return encoding, and actuals list

return result

copy parameters out of
argument array to fit ABI calling
convention for C; invoke <proc>
(foreign code

.

CALLOUT CLOSURE
MACHINE CODE

argument array and receipt location for <proc>)
convert receipt value to copy result (returned according
Scheme result; return to to ABI calling convention)
MacScheme machine to the receipt location
_— = - —
LARCENY RUNTIME CALLOUT TRAMPOLINE FOREIGN
c-ffi-apply syscall MACHINE CODE PROCEDURE

MACSCHEME MACHINE MODEL

C RUNTIME MACHINE MODEL

Figure 8. Control flow of a callout (solid lines for main invocation; dashed for return)

copy parameters (formatted
to ABI calling convention) into
argument array

convert_and_call: copy args
into Scheme numeric data

(foreign extract closure from handle \

: : . . . R . (target closure's
invocation invoke convert_and_call, passing and invoke it, shifting to .

X machine code)
of callback) args and handles for closure MacScheme machine model
and arg encoding bytevector
copy result into <
v return, using calling convention receipt location and return -~ -
~ — =

FOREIGN CALLBACK TRAMPOLINE LARCENY RUNTIME TARGET CLOSURE

PROCEDURE MACHINE CODE convert_and_call function MACHINE CODE

C RUNTIME MACHINE MODEL MACSCHEME MACHINE MODEL

Figure 9. Control flow of a callback (solid lines for main invocation; dashed for return)

3.1 Control flow of FFI invocations

Scheme code in Larceny is compiled and run in the environment
of an abstract MacScheme machine, with its own stack and heap3 1.2 Control flow of a callout
representations and conventions for using registers. o
The abstract MacScheme machine is supported by the LarcenyThe FFI trampoline generated for calling out to a foreign function
runtime, implemented in C. System calls shift control from the f declared to have typ& can be thought of as implementing a
MacScheme machine model to the runtime; during such shifts, “scatter arguments fof and invokef” operation, illustrated in
MacScheme state is copied into C-accessible memory and the pro-figure 8.
cessor is reconfigured to follow the machine model expected by the The trampoline code has a fixed input interface where it receives
runtime’s compiled C code. a set of arguments (packaged as an array in memory). It is respon-
Foreign libraries expect to be invoked using the C machine sible for distributing the arguments from the packaged array into
model. It would be nice for FFI invocations to reuse the shift of the ABI-specified format expected by the compiled C code for a
machine model implemented to support Larceny system calls. Thatfunction of typeT. The trampoline code must then invakaccord-
is, we desire an FFI callout that jumps into the Larceny runtime ing to the calling convention. The trampoline code copies the value
and then directly to the target foreign function. We would also like returned fromf into a receiving area established by the runtime,
a callback to be a pointer to a Larceny runtime function that shifts and then returns control to the runtime. The runtime marshals the
into the MacScheme machine when invoked. returned value back to the MacScheme machine. Section 3.2.3 has
Unfortunately, we cannot implement this approach directly. more details on this structure.

code sits between the Larceny runtime and the world of foreign
functions. We call each such fragmentFrl trampoline

3.1.1 Customized machine code is necessary 3.1.3 Control flow of a callback

The foreign target of an FFI callout expects its parameters to be The trampoline code generated for a callback to a Scheme proce-
set up according to the calling convention of the application binary durep and emulating a foreign function of tyfecan be thought of
interface (ABI). We do not want to code a separate system call for as implementing a “gather argumentsTadéind invokep” operation,
each possible argument combination. Also, an FFI callback must illustrated in figure 9.
appear to be a C function pointer that consumes some number of The machine code receives its arguments according to the call-
parameters that depends on what function type the callback is em-back’s typeT and the ABI. The code packages pointers to its argu-
ulating and somehow knows which Scheme closure it is associatedments (copying from positions specified by the calling convention
with; no fixed function implemented in the runtime would suffice into a C stack allocated array when necessary), and then directly
for this purpose. invokes theffi_convert_and_call Larceny runtime function to
Instead of having the Larceny runtime directly interact with perform the remaining work: set up the MacScheme machine, un-
foreign functions, a fragment of dynamically generated machine package the arguments according to the MacScheme calling con-

72

vention, and invoke. If the invocation returns, then the runtime
marshals the returned value accordindrtand returns control to
the trampoline code. The trampoline code puts the marshaled valug CALLOUT
into the appropriate place according to the ABI calling convention CALLOUT CLOSURE c-fi-apply
and finally returns to the foreign code. Section 3.2.4 documents this CLOSURE | |IMACHINE CODE (syscall)
structure further.

Both callout and callback trampolines uerly the C calling
convention. The complexity of shifting the machine’s register state
from MacScheme mode to the C runtime’s state and back again is ARGUMENT LARCENY
isolated from the machine code associated with the trampolines. ENCODING | (TRAMPOLINE RUNTIME
This simplifies porting the FFI to other ABIs; one can start by BYTEVECTOR OBJECT
inspecting the object code for a hand-constructed C program.

Separating the trampoline’s calling convention from that of
MacScheme was a crucial design decision. When an FFI for the
Intel x86 architecture was first added, only Petit Larceny ran on RELOCATABLE MEMORY
x86 processors. Years after that addition, the project introduced a|
native Larceny implementation that compiles x86 code on the fly.
Even after this dramatic change (and significant experimentation CALLOUT
with its native calling convention), the FFI workeschangedbe- TRAMPOLINE
cause it only depends on the ABI calling convention, not that of MACHINE CODE ¢ 8]
MacScheme!

3.2 Structures supporting the FFI NON-RELOCATABLE MEMORY

LarcenyScheme source coderesponsible for constructing the ma-
chine code that lies between the runtime and the foreign functions. SCHEME MANAGED HEAP C RUNTIME
Larceny FFI's lower layers are factored into three components: the
Larceny runtime itself, ABl-dependent Scheme source providing Figure 10. Callout heap structure; diagrammatic conventions are
a small interface for constructing FFI trampolines for each target IisgtJed . séction 39 p - diag
architecture and operating system, and ABIl-independent Scheme e
source implementing the remainder of the low-level FFI.
This section describes the different structures allocated from the trampoline. Thechange-fptr operation supports relinking
Scheme code to support the FFI. We illustrate them using heap dia-foreign functions during heap loads; see section 3.3.3.
grams in figures 10 and 11. In the diagramis;lesdenote objects . . .
scanned by the garbage collector (e.g. closures, vectectan- 3.2.2 Descriptors for primitive type signatures
glesdenote unscanned objects (e.g. bytevects)d arrows de- At this lower level of the FFI, the argument list for a callout is
note object references traced by the collector (tagged pointers), andmade up of only fixnums or objects allocated on the Scheme heap.
dashedarrows are untraced memory references (integer addresses)This argument list does not indicate on its own whether a given
Here are three invariants that the diagrams must observe toargument should be marshaled as a pointer, a signed 32-bit integer,
reflect a sound heap structure: or an unsigned 64-bit integer, etc. Invocationscefffi-apply
pass along an encoding of the argument signature for the target
function; we use a bytevector based encoding, wherétthbyte
indicates a primitive type.

<proc>

7 FOREIGN
4 cope

foreign
state

1. Solid arrows originate at circles
2. Dashed arrows cannot point into relocatable memory

3. No solid arrows point into the unmanaged C runtime state byte | primitive type scheme types accepted
These invariants motivate constructions introduced in this section. 0 | signed32 exact integer if—2°", 2°")
1 | unsigned32 exact integer irfo, 2°2)
3.2.1 Anatomy of a trampoline 2 | ieee32 (“float”) flonum
The core of each FFI trampoline object is a list of bytevectors 3 | ieee64 (“double”) | flonum _
(called anilist for “instruction list"), where each bytevector 4 | pointer bytevector, vector, pair
holds ABI-dependent machine code to accomplish a task, such as 5 | signed64 exact integer if—2°°, 2°%)
copying a double word argument packaged by the runtime into the 6 | unsigned64 exact integer irj0, 26*)
appropriate location according to the calling convention, or per- Likewise, for return types we encode the primitive typégned32,
forming the actual foreign invocation invocation. New bytevectors unsigned32, ieee32, ieee64, signed64, unsigned64, as well
can be added to this list via the mutation procedwesat-end asvoid. pointer is not a primitive return type; the FFI design
andtr-at-beginning. assumes that if a foreign function is returning a pointer, it is a
After the necessary bytevectors have been added to a trampo-pointer into the C heap, could not be sensibly treated as a pointer
line, the tr-pasteup allocates anonrelocatablebytevector and into the Scheme heap, and thus should be marshaled as an integer,

copies all of the machine code fragments to it. This bytevector is the NnOtpointer.

code for the trampoline; it is the intermediary between the runtime ~ The current FFI does not support direatruct parameters or
and the foreign function. The trampoline also clears the processorreturn types; only pointers to structures.

instruction cache if necessary.

Each callout trampoline must supportcaange-fptr oper-
ation, which takes an integer address of a foreign function as Figure 10 shows the heap structure for a callout: a closure that in-
an additional argument. This operation modifies tflest so vokes a foreign procedure. The callout’s lexical environment car-
that the invocation code targets the new foreign function. After riesthree key components: an FFI trampoline, a bytevector describ-
change-fptr is invoked,tr-pasteup regenerates the code for ing the argument signature for the foreign function, and an integer

3.2.3 Anatomy of a callout

73

nonrelocatable handles: one that points to the target Scheme clo-
sure and another that points to a bytevector holding the argument
TARGET convert descriptors. From the C side, a callback is the address of the tram-
TARGET CLOSURE and call poline’s code. When foreign code invokes the trampoline, it first
CLOSURE | 1\ ACHINE CODE (runtime ensures that the arguments are all stack-allocated, and then invokes
C function) the runtime functiorffi_convert_and_call, passing along the
4 handles for the closure and the bytevector of argument descriptors,
/ as well as an array of argument addresses, and a descriptor and
ARGUMENT ' LARCENY receiving location for the result when the callback returns. The im-
ENCODING | (TRAMPOLINE RUNTIME plementation offfi_convert_and_call is careful not to deref-
BYTEVECTOR OBJECT erence the handles unéifter it has finished allocating state on the
heap, so that potential garbage collections will not invalidate the
<proc> dereferenced values.
3.3 Source code factoring of the lower layers
FOREIGN 3.3.1 Runtime system calls supporting the FFI
CALLBACK CODE The runtime provides a small set of system calls to support the FFI.
TRAMPOLINE We limit the runtime code supporting the FFI, moving functionality
MACHINE CODE (foreign into Scheme when possible.
Y\, state e c-ffi-dlopen takes a path to a file holding a foreign library;
it delegates t@alopen on UNIX (LoadLibrary on Win32) and
L HAEHOIEATAELE AEAGIRY returns a library handle (ar for errors).

e c-ffi-dlsym takes a library handle and an symbol name; it
delegates tailsym on UNIX (GetProcAddress on Win32)
and returns the associated addres(far errors).

Figure 11. Callback heap structure; diagrammatic conventions are ® c-ffi-apply is described in section 3.2.3.
listed in section 3.2. e ffi-getaddr extracts functions within the runtime. its used to
gettheffi_convert_and_call function (see section 3.2.4).

e make-nonrelocatable takes a size and a type tag; it allocates
(and initializes) an object that the collector cannot move.

SCHEME MANAGED HEAP

C RUNTIME

describing the type of the return value it expects from the foreign
function.

The invocation of a callout first extracts the code associated There are also system calls for low-level memory interac-
with its trampoline. It then invokes the-ffi-apply runtime tions: object->address produces the address for an object on
system call, passing the trampoline’s code object, the signaturethe Scheme heap, whilgeek-bytes, and poke-bytes provide
bytevector, the return code integer, and the list of arguments for unchecked functionality to read and write C runtime memory.
the invocation. The system call first marshals the arguments into i
anargs array according to the signature bytevector and sets up a 3-3-2 Construction of callouts and callbacks
location on the stack for the trampoline code to write the result Callouts and callbacks have ABI-independent interfaces. From the
value returned by the foreign invocation. The system call then viewpoint of a client of the FFI, a callout can be specified by just
invokes the trampoline code, passing thgs array and the result the name of the function being invoked, the library exporting the
location along as arguments. When that returnsctffe i-apply function, and the primitive types of the function’s arguments and
system call proceeds to convert the result held in the return location return type (see section 3.2.2). Likewise, a callback can be specified
into a Scheme value and returns it to the MacScheme machine. by just the target closure along with the primitive types of the

function’s arguments and its return type (from the viewpoint of C
3.2.4 Anatomy of a callback code).
Each callback is associated with a Scheme closure targeted for in- Every callout and callback is associated with a trampoline struc-
vocation. The garbage collector mayovethe target closure. The ture. The construction of the trampoline requires the injection of
callback’s code is just a bytevector of machine code; if the closure’s ABI-dependent machine code. The injected machine code is pro-
address were directly encoded in the bytevector, the garbage col-cessor dependent as well as calling-convention dependent.
lector would not update that address (because the garbage collector The Larceny code base separates the ABl-independent interface
does not modify the contents of bytevectors), and the callback’s from the ABI-dependent implementation using an object-oriented
encoded reference to the closure would become invalid. style of implementation. Each target supported by the FFI provides

We resolve the problem of closures moving during garbage col- acallout-abiobject that implements methods for constructing call-
lections by introducing a level of indirection. Instead of putting a out trampolines, and likewisecallback-abiobject for constructing
direct reference to the targeted closure in the callback code bytevec-callback trampolines. This object-oriented style eases code reuse of
tor, we create a nonrelocatalilandlefor every callback The han- details (such as instruction encodings) between different hosts.
dle points to the closure, and the callback’s machine code holds an .
untraced reference to the handle. 3.3.3 Relink on load

Also, the callback and its target closure need to live as long as The lower layer of the FFI provides the kernel interface for con-
the foreign library could invoke it. Since the garbage collector is structing callouts. The last part of this layer maintains a table of
not going to scan foreign memory, we keep extra references to thethe foreign functions that it has linked. If the heap is dumped and
callback and its handles in a manually managed list. subsequently reloaded, FFI attemptsatmad and relinkall of the

Figure 11 illustrates the resulting structure of a callback. From libraries and foreign procedures that were linked at the time the
the Scheme side, a callback is an FFI trampoline coupled with two heap was dumped.

74

Two operations act together to support this. First, the trampo- to the low-level domain, and a Scheme procedure that unmarshals
line object provides ahange-fptr operation, which allowsoneto values from the low-level domain to the high-level domain.
change the function address associated with a trampoline. To sup- There are two kinds of attributes:care attributeis a Scheme
port this, a foreign callout does not directly reference the trampo- symbol registered in a table maintained by the middle layer; this ta-
line’s machine code, but rather pulls the code out of the trampoline ble stores the association between such symbols and their low level

on demand (see figure 10).

Second, Larceny provides a primitivgld-init-procedure!,
which registers a Scheme procedure as an initialization routine.
When the heap is dumped and later loaded, all of the initialization
routines for that heap are invoked. The FFI maintains a list of for-
eign objects and registers an initialization procedure that will relink
them during a heap reload.

4. Middle layer of the FFI

The lower layer of the FFI offers all of the basic primitives required
to dynamically load a foreign library and hook into symbols ex-
ported by the foreign library. However, the interface provided by
the lower layer is baroque.

The remaining middle and upper layers of the FFI are built
upon the lower layer. The middle layer provides procedures for
loading libraries and linking foreign functions. Part of the linkage
functionality is an extensible domain specific language (DSL) for
defining the interface to foreign functions. The upper layers build
upon this interface by adding common patterns and automating
some of the work of extracting information from header files for
C source code.

At its core, the middle layer provides the following procedures:

e (foreign-file lib) opens the dynamic library specified by
lib and registers it on a list of of loaded libraries.

e (foreign-procedure name param-types ret-typsearches
the loaded libraries for an export efameand generates a
callout invoking the function at the exported address.

e (foreign-procedure-pointer addr param-types ret-type
generates a callout invoking the functiorealdr.2

Above, param-typesandret-typeare s-expressions of the mid-
dle layer’s interface DSL. These arguments guide the marshaling of

descriptor and mapping functions.canstructed attributés a non-
atomic s-expression which the middle layer maps to appropriate
attribute components.

4.2 Core (symbolic) attribute entries

There are a number of predefined core attributes. The simplest,
’byte, ’short, ’int, ’long, ’unsigned, ’uint, ’ushort, and
’ulong, all map to one of the descriptors for primitive integers,
with marshaling that performs a range check but is otherwise
the identity. Likewise’float maps to the primitiveieee32 and
’double maps to the primitive.eee64.

The ’char and ’uchar attributes map to 32-bit integers, with
marshaling that identifies characters with corresponding ASCII val-
ues. Both attributes do not handle characters that fall outside the ex-
pected range of ASCII characters gracefdlljhe *bool attribute
maps to thesigned32 domain, marshals non-false Scheme values
to 1 (#£ to 0) and unmarshalg to #£ (other integers tet).

The more interesting built-in core attributes are those that rep-
resent objects with more state than fixed-width integers. There are
three of these’boxed, ’string, and’voidx*.

The ’boxed attribute maps to thepointer low-level de-
scriptor, and marshals heap-allocated objects (pairs, vector-likes,
bytevector-likes, and procedures) to themselves#mitb the for-
eign null pointer. There is no unmarshaling function; it is an error
for a callout to indicate that it returns soxed. The main val-
ues used withboxed are bytevectors; other heap allocated objects
hold Scheme formatted words that foreign libraries do not gener-
ally process.

The’ string attribute maps to thepointer low-level descrip-
tor. Marshaling and unmarshaling o§tring allocates a fresh ob-
ject on the Scheme heap and copies character data into it.

Finally, the’void* attribute is used to encode pointers to mem-
ory unmanaged by the Scheme runtime system.

parameters from Scheme to C and unmarshaling of values passeth 2 1 The’void* FFI attribute and void*-rt

from C to Scheme. For the remainder of this section we focus on
the interface DSL used fgraram-typesandret-type

4.1 FFI attribute entries

The lowest layer of the FFI expresses all data in terms of a fixed set
of primitive types like “unsigned 32-bit word” and “64-bit floating
point number.” Foreign libraries are often written in terms of C
types likechar or int. Therefore, the interface DSL introduces
symbolic names such ashar or ’int with intuitive mappings
to foreign values, richer names such ‘agring or ’bool, and
complex symbolic expressions like(-> (string) int). The
middle layer translates these specifications into the primitive types
of the lower layer.

We call these symbolic type expressideal attributes or just
attributes

Each attribute can be thought of as describing a domain of high-
level Scheme values, a domain of low-level Scheme values (that
trivially correspond to foreign values) and the functions necessary
to map elements of the Scheme domain into and out of the foreign

domain. The middle layer associates every attribute s-expression

with three components: a low-level primitive type descriptor, a

Scheme procedure that marshals values from the high-level domain

2Unlike functions linked vig oreign-procedure, foreign function point-
ers will not be automatically reestablished by the lower layer.

Using the’ void* attribute wraps addresses up in a Larceny record,
so that standard numeric operations cannot be directly applied
by accident. Larceny’s record system is similar to that proposed
for ERR5RS [Clinger(2008)]. The FFI uses two properties of the
record system: the record type descriptor is a first class value with
an inspectable name, and record types are extensible via single-
inheritance.

The FFI providesvoid*-rt, a record type descriptor with a
single field (a wrapped address). The FFI provides a family of
functions for dereferencing the pointer withiveid*-rt.

The ’void* attribute maps to thensigned32 low-level de-
scriptor. Marshaling checks that its input is an instance of the
void*-rt record type and then extracts its wrapped address. Its
unmarshaling function constructs an instance®fd*-rt.

4.2.2 Extending the set of core FFI attributes

The public interface to many foreign libraries is written in terms of
types defined within that foreign library. One can introduce new
types to the Larceny FFI by extending the core attribute entry
table. Theffi-add-attribute-core-entry! procedure con-
sumes four parameters: a symbol (the high-level attribute), a low-

3The majority of the middle and lower layers of the FFI was developed
ten years ago when Larceny did not have Unicode support; adding Unicode
support to the FFI is future work.

75

level type descriptor symbol, a marshaling function, and a unmar- 5. Upper layer of the FFI

shaling function; it extends the internal table with the new entry. The upper layer of the FFI consists of various libraries that add

This extensbility is c_ruual; one can add new doma_lns _that corre- syntactic sugar, capture common programming patterns, and aid in
spond to the abstractions provided by particular foreign library. The making code more abstract and portable

upper layers of the FFI assist with common extensions.
5.1 foreign-ctools

4.3 Constructured EEI attribute entries Theforeign-ctools library provides a special forrdefine-c-info,
that binds Scheme identifiers to values computed from the contents
of C header files.

The interesting thing abodiefine-c-info is its implementa-
tion (section 5.1.1); here we describe its specification.

Figure 12 presents the grammar of #efine-c-info spe-
cial form. The(c-decl) clauses ofdefine-c-info control how
header files are processed. Tdwnpiler clause selects between
cc (the default UNIX system compiler) antl (the compiler in-
cluded with Microsoft’s Windows SDK). Thpath clause adds a

Core attributes suffice for linking to simple functions. Construc-
tured FFI attributes express more complex marshaling protocols

A structured FFI attribute of the forng-> (s1 ... s,) s.)
allows passing functions from Scheme to C and back again. The
low-level descriptor for such a form is a pointer to non-relocatable
(and possibly unmanaged) memory;atsigned32 on 32-bit ar-
chitectures.

To marshal a closurg of arity n, the (> (s1 ... sn) $5)

attribute: directory to search when looking for header files. Thelude and
) ,] include<> clauses indicate header files to include when executing

1. wrapsp in another closurg’ thatunmarshalghe foreign argu- the (¢-defn) clauses; the two variants correspond to the quoted and
ments ofp” according to{s:. . .s, }, feeds the results tp, and bracketed forms of the C preprocessa#isiclude directive.
thenmarshalsthe value returned by invokingaccording tos,. The (c-defn) clauses bind identifie’SsA (const z t "ae")

Note thatp’ is itself notacceptable by the lower layers. clause binds: to the integer value ofie according to the C lan-

2. Next the marshaling procedure for> ——) constructs a call- guage;ae can be any C arithmetic expression that evaluates to a
back trampolinep”, from p’, using the callback construction value of typet. (The expected usage is ferto be an expression
procedure provided by the FFI's lower layer. that the C preprocessor expands to an arithmetic expression.)

3. Finally the marshaling extracts the code bytevector figm The remaining clauses provide similar functionality:

passing the address of the trampoline machine code as the

unsigned32 received by the foreign code. e (sizeof z "te") bindsx to the size occupied by values of

typete, wherete is any C type expression.

e (struct "en" --- (x "c¢f" y) ---) bindsz to the offset
from the start of a structure of typeeruct c¢n to its ¢f field,
and bindsy, if present, to the field’s size. Aields clause
is similar, but it applies to structures of type. rather than
struct cn.

The unmarshaling of &> (s1 ... s,) s,) FFI attribute ac-
cepts an address (the function pointer to be invoked), and constructs
a callout to that machine code, usifyg. . .s,] as the callout’s pa-
rameter attributes ang- as its return type, as one would expect.

These two mappings naturally generalize to arbitrary nesting of .
-> FFl attributes, so one can create callbacks that consume callouts, ® (ifdefconst x ¢ "cn") clause bindse to the value ofcn

Other structured attribute entries encode common marshaling ~ value.
patterns. The structured attribu¢eaybe ¢) captures the pattern)]
of passingiULL in C and#£ in Scheme to represent the absence of 5.1.1 The implementation ofdefine-c-info
information. The low-level descriptor dhaybe ¢) isthe same as Header files are usually written with the assumption that they will
that Oft; it marshals#f to the foreign null pointer, and otherwise first be passed through acC preprocessor and then a C parser. Even
applies the marshaling of Likewise, it unmarshals the foreignnull after preprocessing, C is a tricky language to parse, due in part to its
pointer to#f and otherwise applies the unmarshaling.of context-sensitivity. Furthermore, the contents of included system

header files are sometimes written in a non-standard dialect of C,
further complicating direct attempts to parse header files.
4.4 Accessing foreign memory Theforeign-ctools library resolves these problems by using
If all foreign libraries provided a complete set of procedures for @ (Perhaps surprising) “standard library” the system's C compiler
everykind of operation provided by the library, then the FFI might itself. _ _ ‘ _ .
not need more than thesrreign-procedure function. However, The philosophy behind théoreign-ctools library is: "A
most C libraries are designed with the assumption that they will be C Program generatoris easier to write than a @arser” That
used from C code that directly accesses and modifies the fields ofclaim, combined with the common Schemagstem procedure,

structures in memory. procedural Scheme macros, and C pointer arithmetic, leads to the
To support operations like extracting an integer field from a define-c-info design. . .
C structure, the middle layer provides a family of functions for Thedef ine-c-info form is a procedural macro that:

_reading and writing arbitrary addresses in memory. Such functions 1 generates a C program (in a temporary file),
introduce a measure of unsafety to Larceny, since uncontrolled 2. compiles the program
invocations could corrupt the internal state of the MacScheme = P prog o i
machine. 3. executes the program, printing results to another temporary file,
On top of the two system calfseek-bytes andpoke-bytes, 4. reads the output of the execution (usually numeric data), and,

the middle layer provides two large families of functions for ob- 5. expands to a Scheme expression binding the read values.
serving and modifying low-level memory. One family is orga-

nized around exact bitwidths (e kpeek8, %peek16u, %poke32); 4This is binding in the sense of thizfine special form; at the top-level
the other family is organized around primitive C types (€.0. define-c-info introduces global definitions, and in internal definition
%peek-short, ;peek-ulong, %poke-pointer). contexts it introduces local definitions.

76

(exp)

(c-decl)

(cc-spec)
(c-defn)

(c-type)
(include-path)
(header)
(field-clause)

(c-expr)
(c-type-expr)
(c- namei

(c-field

(define-c-info (c-decl) ---
(c-defn) -)

(compiler (cc-spec))

(path (include-path))

(include (header))

(include<> (header))

cclecl

(const (id) (c-type) (c-expr))

(sizeof (id) (c-type-expr))

(struct (c-name) (field-clause) ---)

(fields (c-name) (field-clause) ---)

(ifdefconst (id) (c-type) (c-name))

int | uint | long | ulong

(string-literal)

(string-literal)

((offset-id) (c-field))

(offset-id) (c-field) (size-id))

(string-literal)

(string-literal)

(string-literal)

(string-literal)

Figure 12. Grammar fordef ine-c-info form

[pair-h

struct pair { int id; int x; char pad; inty; };

m‘

#include "pair.n"
#include <stdio.h>

{ struct paird s;

{ struct pairs;

}

int main() { printf("\n(\n");

printf("%Id ",((long)((char *)&s.x - (char *)&s))); } (

printf("%ld ",((long)((char *)&s.y - (char *¥)&s))); })
printf("\n)\n"); return 0;

A

(define-c-info

(struct "pair"

(include "pair.h")

(begin
(define x-offs 4)
(define y-offs 12)

(x-offs "x") (y-offs "y"))))

SCHEME EXPRESSION

EXPANSION

Figure 13. Expansion oflefine-c-info form

(define-c-struct
({struct-type) (ctor-id) (c-decl) ---)
(field-clause) --+)

((c-field) (getter))

({c-field) (getter) (setter))

(exp)

(field-clause)

(getter) ((id)) | ({(id) (unmarshal))
(setter) == ((id)) | ((id) (marshal))
(marshal) == {(ffi-attr-symbol) | (marshal-proc-exp)
(unmarshal) (ffi- attr-symbol) | (unmarshal-proc-exp)
(struct-type) == (string-literal)

Figure 14. Grammar fordef ine-c-struct form

(exp) == (define-c-enum (enum-id) ({c-decl) ---)
((id) (c-name)) ---)
(ezp) == (define-c-enum-set (enum-id) ({c-decl) ---
((id) (c-name)) ---)
(enum-id) == (id)

Figure 15. Grammar forforeign-cenums forms

5.2 foreign-cstructs

Theforeign-cstructs library provides a more direct interface to

C structures. Figure 14 presents the grammar @gifine-c-struct
form. This form is layered on top afefine-c-info; the latter
provides the structure field offsets and sizes used to generate con-
structors§ and field accessors. Thiefine-c-struct form com-
bines them with the marshaling and unmarshaling procedures from
the middle layer's DSL to provide high-level access to a structure.

5.3 foreign-cenums

The foreign-cenums library provides forms to associate the
identifiers of a Cenum type declaration with the integer values
they denote. The&foreign-cenuns library is layered above the
foreign-ctools library.

The two forms introduced by the library agefine-c-enum
anddefine-c-enum-set (Figure 15). Thelef ine-c-enum form
describes enums encoding a discriminated si#fiine-c-enum-set
describes bitmasks, mapping them &R enum-sets in Scheme.

Both forms expand into uses of thefine-c-info form to ex-
tract integer values associated with thename)’s. Both also in-
vokeffi-add-attribute-core-entry!, extending the attribute

All of these steps occur during macro expansion; the evaluation table with bindings for enum-id).

of the expanded code doestinvoke the C compiler. This enables

distribution of compiled Scheme code that uge$ine-c-info
to end-users who do not have a C compiler or the necessary header z; to the integer value thatn; denotes in C; unmarshaling does

files.

Figure 13 provides a concrete examplelef ine-c-info. The
thin arrows are actions of the procedural macro; they commute with form bindsens to an FRS enum-set constructor with universe re-
the thick arrow representing macro expansion.

The functionality provided byforeign-ctools is useful
but incomplete; there are desirable pieces of information that structed byens to the corresponding bitmask in C (that is, the
a specialized tool could extract from the header files but the integer one would get by logically or'ing atin; such thatc; is in

foreign-ctools library cannot. Examples include: the bodies

of parameterized C macros, the names of all of fields afram or

struct type, and the equivalences established fyedef.
Despite such shortcomings, tliereign-ctools library has

been a useful way to develop code abstracted from system-specific® The constructors produce appropriately sized bytevectors, not record in-

values when programming to a foreign interface. In particular, one stances.

can write code to access fields of a structure without knOWing the 6 The inverse uniquely exists when the high-to-low mapping is a bijection,

entire set of fields or their ordering.

The (define-c-enum en (——) (x; "cn;") ...) form
adds the’en FFI attribute. The attribute marshals each symbol

the inverse translation.
The (define-c-enum-set ens (——) (x; "cni") ...)

sulting from (make-enumeration ’(z; ...)); it also adds the
>ens FFI attribute. The attribute marshals an enum-seton-

s). Unmarshaling attempts to do the inverse transldtion.
Unlike constructs derived from unguided automated processing
of C header filesdefine-c-enum works onany set of integer

which depends on the denotations{ef:; . . .} assigned by the header files.

i

valued identifiers. It can capture discriminated tags that are not we review some published treatments of interfacing to foreign
explicitly defined as Gnums.x libraries.

5.4 foreign-stdlib 6.1 Interfacing high-level languages with foreign libraries

The (£fi-install-void*-subtype Sub-rtd procedure is the |rgher et al.(2000)Fisher, Pucella, and Reppy] argue that a foreign
heart of theforeign-stdlib library. It extends the FFl attribute jnierface should not copy a foreign structure into corresponding
entry table with a new primitive entry fotrtd-name sub-rtd), structures in the target system, but rather should manipulate the
where sub-rtd must eXtendVOld*TI‘t. The rgsultlng record rep- raw memory directly. We support either approach: a developer
resents a tagged wrapped C pointer, allowing one to encode typecap indicate that a foreign value should be copied and provide
hierarchies. _)) the corresponding marshaling procedure via our middle layer, or

This procedure is then used to establish the FFI attributes .54 use aroid*-rt record to pass around a pointer into memory
’charx, >int#, ’double*, *float#, and’ char**. Foreachsuch managed by the C runtime. Much of their paper is devoted to how
attrlbutg’ T, there is arecord typg-rt and a comblnator_functlon types are translated from C to Moby; we mostly sidestep the issue,
call-with-T that allocates (deallocates) an appropriately mar- gjjowing the introduction of unsafe operations but also providing
shaled array on entry (exit) to a procedure parameterized over angome high-level interfaces to structures and enums so that users are
instance of the corresponding record type. not always forced into to low-level interactions.

For example(call-with-char** Strings prog consumes an [Blume(2001)] presents an FFI between SML/NJ and C based
vector of strings and a procedure that consumegar**-rt. It on data-level interoperability. It encodes much of the C type system
first allocates a array on the C heap, marshaling each argumentyirecily into complex ML types. Their system supports preserva-
string to a C string in the newly allocated array. Then it invgkes tion of foreign functions during a heap export in a manner analo-
on char**-rt wrapped address of the array. Wheroc returns, gous to how we support them during a heap dump. Their FFI avoids
it deallocates the array. Theall-with-boxed procedure USes & mych of the complexity that we show in our lower layer because it
similar pattern to allocate a memory cell to hold any instance of ygag not suppoxtallbacks
void-rt.]]] [Huelsbergen(1995)] presents an FFI between SML/NJ and C
_ Finally, (establish-void*-subhierarchy! symbol-re@ that employs a copying policy for marshaling (as opposed to a pol-
is a convenience function for constructing large object hierarchies, icy of data-level interoperability). It works by generating C code
such as that found in GTK+. It descends gyenbol-tregcreates a a1 one compiles and links into the SML runtime (they state replac-
record type descriptor for each symbol (where the root of the tree ing this static linkage with a dynamic one based on dynamically
has the parentoid*-rt), and invokegfi-install-void*-subtype |inked libraries is straightforward). Their system supports callouts
on all of the introduced types. and callbacks; they deal with migration of callback target closures
by registering the closure’s address in the callback as a root with

5.5 foreign-sugar . ; L
9 9 the collector. We instead introduce a level of indirection between

The (define-foreign (name arg-type..) ret-type form is the machine code bytevector and the target closure.
the heart of theoreign-sugar library. _ [Urban(2004)] provides a broad (though incomplete) survey of
This form is simple whenamedirectly corresponds to aforeign £ systems and implementations. The current draft ends with the
function; then its expansion is: suggestion that that values should be passed only by value (not by
(define name reference), to avoid any use of foreign pointershich appears at
(foreign-procedure (symbol->string ’name odds with a policy of data-level interoperability. It is interesting that
» (arg-type...) ’ret-type) even as late as 2004 there is not an obviously “right” choice for this
design axis.

The interesting case is whamameis not a foreign export.
Then thedefine-foreign form perform; a.search, applyingase- g2 FEFrs for Scheme
guence of name generatorsriameuntil it finds an export from
some foreign library. Each name generator maps a string to an-[Rose and Muller(1992)] present a Scheme system centered around
other string (or false when inapplicable). The library itself pro- integrated development with C. All C types are mapped into some
vides the sample name generatse®-bar-baz->foo_bar_baz class of data on the Scheme side, allowing seamless transfer of data
and foo-bar-baz->fooBarBaz, which perform transformations ~ between the two sides. This design goal led to a number of design
capturing some common naming conventions found in C libraries. €onstraints, such as using a “hyperconservative” garbage collector
The |ibrary also provides procedures to extend the set of name and a Cal“ng convention for Scheme Cpmpatlble with that of C. In
generators, changing the search strategy to deal with other namingEonstrast, we layered an Féi top ofa high-performance Scheme
conventions. One can devise “natural” mappings of foreign func- runtime: we extend_ed the runtime Wl_th new primitives, but the FFI
tion names to Scheme procedure names. (However, there are phas@o€es not compromise the main design goals of Larceny. Larceny
issues when extending the set of name generators; one must ensurdas precise garbage collectors and a specialized calling convention
that the appropriate name generators are installed before performfor the MacScheme machine.) N
ing the expansion ofefine-foreign.) [Kelsey and Sperber(2003)] propose an interface for writing
When this library was developed, Larceny’s reader case-folded 9lue code in C. It provides a “lowest common demoninator” ap-
by default, and many C identifiers did not directly correspond Proach to interfacing with foreign libraries: you can hook into ar-
to Scheme identifiers. Automatically mapping Scheme-compatible bitrary libraries, but you have to develop C code to do it.
names to their C counterparts was preferable to linking them by _ [Barzilay and Orlovsky(2004)] present the FFI for PLT Scheme.

hand. With Larceny’s new case-sensitive reader, such name map-Their philosophy of “stay in the fun world” agrees with our own;
ping is unnecessary and this library is less relevant. we have taken that philosophy further by using Scheme to generate

our callout and callback trampolines. The PLT Scheme FFI uses

6. Related Work - — , o . ,

)) . Urban'’s conclusion is based in part on his view that lisp code for interact-
Almost every Lisp and Scheme implementation has some sort of ing with foreign memory is even less readable than C code; perhaps tools
foreign function interface; we cannot address all of them. Here such as those provided by our upper layers would address this concern.

78

a GNU library, 1ibffi [Green(2008)], to support callouts and code is completely independent from the the MacScheme machine

callbacks; they point out that theibffi generated structures are model used for compiled Scheme code.

allocated viamalloc to circumvent the garbage collector, but do Our higher layer libraries providéef ine-c-info, a tool that

not provide further detail on how movement of callback targets is extracts information from C header files without reinventing the

handled. It would be interesting to see if Larceny could also use wheel of a C parser. This special form provides the basis for a high-

1ibffi to avoid the need to develop ABI-specific code in the FFI level portable interface to €truct andenum types.

lower layer; but the effort of hooking intaibffi may exceed Future work includes improving Unicode interface support,

the effort of maintaining our construction of callout and callback adding the ability to marshal structure parameters between the mid-

trampolines. The PLT Scheme FFI has a sophisticated extensibledle and lower layers, and adopting a more expressive interface DSL

syntax for generating wrapper code; we hope to adopt some of theiralong the lines of [Barzilay and Orlovsky(2004)]. We also want to

ideas in a future revision of the middle layer of the Larceny ¥FI. acquire experience interfacing to other foreign libraries, such as
OpenGL.

6.3 Extracting information from header files P

[Rose and Muller(1992)] describes an interface extractor tool to References
scan header files and store information in Unix object files that |gar5ilay and Orlovsky(2004)] Eli Barzilay and Dmitry Orlovsky. Foreign

their Scheme system can later load. They extract a large amount interface for PLT Scheme. 2004 Scheme Workshopeptember

of data from the headers, converting definitions of macros with 2004.

arguments into dynamic functions and definitions of types into first [geazley(1996)] David M. Beazley. SWIG: an easy to use tool for

class Scheme values. We are much more limited in what we can integrating scripting languages with C and C++. TGLTK'96:

extract, because we do not parse the header files directly. Proceedings of the 4th conference on USENIX Tcl/Tk Workshop,
[Hansen(1996)] claims that header files do not provide reason- 1996 pages 15-15, Berkeley, CA, USA, 1996. USENIX Association.

able definitions of library interfaces, and argues that converting a C [Blume(2001)] Matthias Blume. No-longer-foreign: Teaching an ML
header into a rational intermediate form should be separated from compiler to speak C “natively”.Electronic Notes in Theoretical
generating an FFI specification. His FFIGEN system has a front- Computer Scieng®9(1), 2001.

end derived from a portable ANSI C compiler and a sample back- [Clinger(2008)] Will Clinger. SRFI 99: ERR5RS records, 2008. URL
end for Chez Scheme. We agree that one cannot generally derive ~ http://srfi.schemers.org/srfi-99/srfi-99.htnl.

all necessary interface information from a C header file alone. Thus [Fisher et al.(2000)Fisher, Pucella, and Reppy] Kathleen Fisher, Riccardo

we require a user to specify more specific policy information to our Pucella, and John Reppy. Data-level interoperability. Technical
FFI's middle layer. Like FFIGEN, we attempt to isolate the pol- memorandum, Bell Laboratories, April 2000.

icy writer from the pain of parsing C header files; our approach [Green(2008)] Anthony Green. The libffi home page, 2008. URL
in foreign-ctools of invoking the system’s C compiler directly http://sources.redhat.com/1ibffi/.

avoids porting acC Comp”er_ We cannot automatica"y extract as [Hansen(1996)] Lars Thomas Hansen. FFIGEN manifesto and overview,

much as FFIGEN, because we did not develop a separate C header 1996. URLhttp://www.ccs.neu.edu/home/1th/ffigen/manifesto.html.

file parser. [Huelsbergen(1995)] L. Huelsbergen. A portable C interface for Standard
[Beazley(1996)] is a popular tool for generating C and C++ ML of New Jersey. Technical report, November 1995.

header files into scripts for hooking to foreign libraries. SWIG pro- [Kelsey and Sperber(2003)] Richard Kelsey and Michael Sperber. SRFI

cesses interface files written using a large subset of C and C++ syn- 50: Mixing Scheme and C, 2003. URittp://srfi.schemers.org/srfi-50/srf:

tax, and generates code to interface to one of a number of scripting[Reppy and Song(2006)] John Reppy and Chunyan Song. Application-

languages. Our system, like that of [Barzilay and Orlovsky(2004)], specific foreign-interface generation. GPCE "06: Proceedlngs of

stays in the Scheme world. The user must write interface code the 5th international conference on Generative programming and

in Scheme, rather than automatically extracting the interface from X%r&pﬂg?& Tjg&%g_'gg?_%es 49-58, New York, NY, USA, 2006.

header files, but even SWIG cannot automatically extract interfaces ' '

.~ [Rose and Muller(1992)] John R. Rose and Hans Muller. Integrating the
from arbitrary header file code, and if one is to be forced to write scheme and ¢ languages. LIRP '92: Proceedings of the 1992 ACM

code, we prefer to do it using Scheme syntax. .) conference on LISP and functional programmipages 247-259,
[Reppy and Song(2006)] presents a tool for generating foreign New York, NY, USA, 1992. ACM. ISBN 0-89791-481-3.

interfaces by combining header files with a declarative script. Their yrhan(2004)] Reini Urban. Design issues for foreign function interfaces,
typemapfour tuples seem analogous to the FFI attributes that we 2004. URLhttp://autocad.xarch.at/lisp/ffis.html.

employ in our middle layer. Their work uses a combination of a
declarative DSL and term-rewriting to derive interfaces to foreign
libraries, which they claim is simpler than expressions in a full
programming language as is done in FFIGEN and in our higher
layer libraries.

7. Conclusion and Future Work

We have presented the layers of the Larceny FFI, from the low level
details of callouts and callbacks and up to the high level syntactic
forms used to write abstract interfaces.

Our FFI supports advanced features such as relinking foreign
functions on heap reload. The FFI design is robust: we dynamically
generate ABI-specific machine code in our trampolines, but that

8The interface of the PLT FFI is not directly portable to Larceny; in
particular, their strategy for extensibility requires procedural macros to be
able to expand subexpressions and inspect the results in a local manner,
which Larceny does not currently support.

79

80

