Functional Data Structures for Typed Racket

Hari Prashanth and Sam Tobin-Hochstadt
Northeastern University

Motivation

Typed Racket has very few data structures

Motivation

Typed Racket has very few data structures
Lists

Motivation

Typed Racket has very few data structures
Lists

Vectors

Motivation

Typed Racket has very few data structures
Lists
Vectors

Hash Tables

Motivation

Typed Racket has very few data structures
Lists
Vectors

Hash Tables

Practical use of Typed Racket

Qutline

» Motivation

» Typed Racket in a Nutshell

» Purely Functional Data Structures
» Benchmarks

» Typed Racket Evaluation

» Conclusion

Function definition in Racket

#|l ang racket

, Conputes the length of a given list of elenents
, length : list-of-elens -> natural
(define (length Iist)
(1f (null? |ist)
0

(addl (length (cdr list)))))

Function definition in Typed Racket

#|l ang typed/ racket

, Conmputes the length of a given list of integers
(: length : (Listof Integer) -> Natural)
(define (length Iist)
(1f (null? Iist)
0
(addl (length (cdr list)))))

Function definition in Typed Racket

#|l ang typed/ racket

, Conputes the length of a given list of elenents
(: length : (Al (A ((Listof A -> Natural)))
(define (length Iist)
(1f (null? |ist)
0
(addl (length (cdr list)))))

10

Data definition in Racket

#l ang racket
, Data definition of tree of Integers

- A Tree 1S one of
- nul |
- - BTlree

(defi ne-struct BTree
(left
el em

right))

, left and right are of type Tree
, elemis an | nteger

11

Data definition in Typed Racket

#|l ang typed/ racket

, Data definition of tree of iIntegers

(define-type Tree (U Null

(define-struct:

(

| eft
el em

[right

Tr ee

| nt eger |

Tr ee

BTr ee

))

BTree))

12

Data definition in Typed Racket

#|l ang typed/ racket
Pol ynorphic definition of Tree

(define-type (Tree A) (U Null (BTree A)))

(define-struct: (A BTree

([left = (Tree A)]
elem : A]
‘right : (Tree A)]))

Qutline

» Motivation

» Typed Racket in a Nutshell

» Purely Functional Data Structures
» Benchmarks

» Typed Racket Evaluation

» Conclusion

14

Destructive and Non-destructive update

Destructive and Non-destructive update

. »
() Ca
Ol (2 ()
O IIOIO RIS IO
(D

Destructive update

Destructive and Non-destructive update

Non-destructive update

Functional Queue

(define-struct: (A Queue
([front : (Listof A)]
[rear : (Listof A]))

Functional Queue

(define-struct: (A Queue
([front : (Listof A)]
[rear . (Listof A]))

Front
Dequeue

=<
[——[-

Enqueue
Rear

19

(:

Functional Queue

dequeue : (Al (A ((Queue A) -> (Queue A))))

(defi ne (dequeue que)

(let ([front (cdr (Queue-front que))]
[rear (Queue-rear que)])
(i1f (null? front)
(Queue (reverse rear) null)
(Queue front rear))))

20

Functional Queue

Queue g

(for ([1d (in-range 100)])
(dequeue Qq))

21

Banker’s Queue [Okasaki 1998]

Lazy evaluation solves this problem

Banker’'s Queue [Okasaki 1998]

Lazy evaluation solves this problem

(: val : (Prom se Exact-Rational))

(define val (delay (/ 5 0)))

Banker’'s Queue [Okasaki 1998]

Lazy evaluation solves this problem
Streams

(define-type (Stream A)
(Pair A (Promse (StreamA))))

Banker’'s Queue [Okasaki 1998]

Lazy evaluation solves this problem

(define-struct: (A Queue

([front : (Stream A)
[lenf : Integer]
‘rear . (Stream A)]
lenr : Integer]))

Invariant | enf >= | enr

25

Banker’'s Queue [Okasaki 1998]

Lazy evaluation solves this problem

(: check :
(All (A (Stream A) Integer (Stream A) Integer -> (Queue A)))

(define (check front |lenf rear lenr)
(if (>= lenf lenr)
(make- Queue front lenf rear |enr)
(make- Queue (stream append front (streamreverse rear))
(+ lenf lenr) null 0)))

26

Banker’'s Queue [Okasaki 1998]

Lazy evaluation solves this problem

(make- Queue (stream append front (streamreverse rear))
(+ lenf lenr) null 0)

27

Banker’s Queue [Okasaki 1998]

Lazy evaluation solves this problem

Amortized running time of O(1) for the operations
enqueue, dequeue and head

28

Real-Time Queues [Hood & Melville 81]

Real-Time Queues [Hood & Melville 81]

Eliminating amortization by Scheduling

Real-Time Queues [Hood & Melville 81]

Eliminating amortization by Scheduling

Front
Dequeue

B e i e i RO
-1

Enqueue
Rear

Banker’'sQueue - r ever se isaforced completely

31

Real-Time Queues [Hood & Melville 81]

Eliminating amortization by Scheduling

(: rotate :
(Al (A ((Stream A (Listof A) (Stream A -> (StreamA))))

(define (rotate front rear accum
(1f (enmpty-streanf front)
(streamcons (car rear) accum
(streamcons (streamcar front)
(rotate (streamcdr front)
(cdr rear)
(streamcons (car rear) accum))))

Incremental reversing

32

Real-Time Queues [Hood & Melville 81]

Eliminating amortization by Scheduling

Worst-case running time of O(1) for the operations
enqueue, dequeue and head

33

Binary Random Access Lists [Okasaki 1998]

Nat 1s one of
-0
- (addl Nat)

List Is one of
- nul |
- (cons elem List)

Binary Random Access Lists [Okasaki 1998]

Nat 1s one of
- 0
- (addl Nat)

List is one of
- nul |
- (cons el em List)

cons corresponds to increment
cdr corresponds to decrement

append corresponds to addition

35

Binary Random Access Lists [Okasaki 1998]

(define-type (RALIist A (Listof (Digit A))

Binary Random Access Lists [Okasaki 1998]

(define-type (RALIist A (Listof (Digit A))
(define-type (Digit A) (U Zero (One A)))

Binary Random Access Lists [Okasaki 1998]

(define-struct: Zero ())

Binary Random Access Lists [Okasaki 1998]

(define-struct: Zero ())

(define-struct: (A One ([fst : (Tree A]))

Binary Random Access Lists [Okasaki 1998]

(define-type (Tree A) (U (Leaf A) (Node A)))

Binary Random Access Lists [Okasaki 1998]

(define-type (Tree A) (U (Leaf A) (Node A)))
(define-struct: (A Leaf ([fst : A]))

Binary Random Access Lists [Okasaki 1998]

(define-type (Tree A) (U (Leaf A) (Node A)))
(define-struct: (A Leaf ([fst : A]))
(define-struct: (A Node

([size : Integer]
left : (Tree A]
‘right : (Tree A]))

Binary Random Access Lists [Okasaki 1998]

(define-type (RALIist A (Listof (Digit A))

0

[

(list)

Binary Random Access Lists [Okasaki 1998]

(define-type (RALIist A (Listof (Digit A))

Binary Random Access Lists [Okasaki 1998]

(define-type (RALIist A (Listof (Digit A))

10

Y

(list 8 3)

Binary Random Access Lists [Okasaki 1998]

(define-type (RALIist A (Listof (Digit A))
11

LA

7 8 3
(list 7 8 3)

Binary Random Access Lists [Okasaki 1998]

(define-type (RALIist A (Listof (Digit A))

100

(list 1 7 8 3)

Binary Random Access Lists [Okasaki 1998]

(define-type (RALIist A (Listof (Digit A))

101

(list 41 7 8 3)

Binary Random Access Lists [Okasaki 1998]

(define-type (RALIist A (Listof (Digit A))

P weN

(list 1241 7 8 3)

Binary Random Access Lists [Okasaki 1998]

(define-type (RALIist A (Listof (Digit A))

P weN

(list 1241 7 8 3)

Worst-case running time of O(log n) for the operations
cons, car, cdr, | ookup and updat e

50

VLists [Bagwell 2002]

(define-struct: (A Base
([previous : (U Null (Base A))]
[el ens . (RALIist A]))

(define-struct: (A) VLI st
([offset : Natural]
' base . (Base A)]
Sl ze . Natural]))

VLists [Bagwell 2002]

List with one element - 6

Base
Offset

v

VLists [Bagwell 2002]

cons 5and 4 to the previous list

Base

>
Offset —>

VLists [Bagwell 2002]

cons 3 and 2 to the previous list

-

Base
Offset —> 2

VLists [Bagwell 2002]

cdr of the previous list

Base
Offset —>» 3

VLists [Bagwell 2002]

Random access takes O(1) average and O(log n) in
worst-case.

Our library

Library has 30 data structures which include
Variants of Queues
Variants of Deques
Variants of Heaps
Variants of Lists
Red-Black Trees
Tries
Sets
Hash Lists

57

Our library

Library has 30 data structures

58

Our library

Library has 30 data structures

Data structures have severa utility functions

59

Our library

Library has 30 data structures
Data structures have severa utility functions

Our implementations follows the original work

60

Qutline

» Motivation

» Typed Racket in a Nutshell

» Purely Functional Data Structures
» Benchmarks

» Typed Racket Evaluation

» Conclusion

61

Benchmarks

Queue benchmarks - enqueue
140

B Physicist's

M Banker's
Bootstrapped

B Imperative

120

100

a0

Time in ms

1000 10000 100000

Number of elements

** Benchmarking done with 2.1 GHz Intel Core 2 Dua (Linux) machine using Racket version 5.0.0.8

(fol dl enqueue que |1ist-of-100000-¢€l ens)

62

e in ms

Ti

Benchmarks

Queue benchmarks - dequeue

1800

B Physicist's
1600 B Banker's

Bootstrapped
B Imperative

1400

1200

1000

a00

600

400

200

100000 1000000

Number of elements

** Benchmarking done with 2.1 GHz Intel Core 2 Duo (Linux) machine using Racketversion 5.0.0.9

63

Benchmarks

Heap benchmarks - insert

Too

L]

200

400

e in ms

300

Ti

200

100

1000 10000 : 100000 1000000

Number of elements

** Benchmarking done with 2.1 GHz Intel Core 2 Duo (Linux) machine using Racketversion 5.0.0.9

M Binomial

M Pairing
Bootstrapped

B Imperative

e in ms

Ti

Benchmarks

Heap benchmarks - find-min/max

a0

B Binomial

70 M Pairing
- Bootstrapped
. B Imperative
40
30
20
10
0

1000 10000 100000 1000000

Number of elements

** Benchmarking done with 2.1 GHz Intel Core 2 Dua (Linux) machine using Racket version 5.0.0.9

65

e in ms

Ti

Benchmarks

Heap benchmarks - delete-min/max
3500

3000

2300

2000

1500

1000

300

100000 1000000
Number of elements

** Benchmarking done with 2.1 GHz Intel Core 2 Dua (Linux) machine using Racket version 5.0.0.9

M Binomial

M Pairing
Bootstrapped

B Imperative

66

Qutline

» Motivation

» Typed Racket in a Nutshell

» Purely Functional Data Structures
» Benchmarks

» Typed Racket Evaluation

» Conclusion

67

ML to Typed Racket

ML idioms can be easily ported to Typed Racket

68

ML to Typed Racket

ML idioms can be easily ported to Typed Racket

type '"a Queue = int * "a Stream?* int *

(define-struct: (A Queue

([lenf : Integer]
[front : (Stream A)]
[lenr : Integer]

[rear : (Stream A)]))

‘a Stream

69

ML to Typed Racket

ML idioms can be easily ported to Typed Racket

type '"a Queue = "a list * int * "alist susp * int * "a |list

(define-struct: (A Queue
([pref : (Listof A]

[lenf : Integer]
[front : (Prom se (Listof A))]
[lenr : Integer]

[rear : (Listof A]))

70

Optimizer in Typed Racket

Optimizer based on type information

Time in ms

30000

23000

20000

15000

10000

2000

6535

Binomial Heap

Optimizer in Typed Racket

Optimizer Benchmarks

26530

11065
10140

VList

Data structures

Leftist Heap

22800

Banker's Queue

B With Optimizer
B Without Optimizer

72

Polymorphic recursion

(define-type (Seq A) (Pair A (Seq (Pair A A))))

Non-uniform type

73

Polymorphic recursion

(define-type (EP A (U A (Pair (EP A (EP A))))
(define-type (Seq A) (Pair (EP A (Seq A)))

Uniform type

Conclusion

Typed Racket is useful for real-world software.

Functional data structures in Typed Racket are useful and
performant.

A comprehensive library of data structuresis now available.

75

Thank you...
Library is available for download from

http://planet.racket-lang.org/

76

