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Function definition in Racket

#lang racket
 
; Computes the length of a given list of elements
; length : list-of-elems -> natural
(define (length list)
  (if (null? list)

0
(add1 (length (cdr list)))))
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Function definition in Typed Racket

#lang typed/racket
 
; Computes the length of a given list of integers
(: length : (Listof Integer) -> Natural)
(define (length list)
  (if (null? list)

0
(add1 (length (cdr list)))))
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Function definition in Typed Racket

#lang typed/racket
 
; Computes the length of a given list of elements
(: length : (All (A) ((Listof A) -> Natural)))
(define (length list)
  (if (null? list)

0
(add1 (length (cdr list)))))
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Data definition in Racket

#lang racket
 
; Data definition of tree of integers    
 
; A Tree is one of
; - null
; - BTree
 
(define-struct BTree
  (left

elem
right))

 
; left and right are of type Tree
; elem is an Integer
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Data definition in Typed Racket

#lang typed/racket
 
; Data definition of tree of integers    
 
(define-type Tree (U Null BTree))
 
 
(define-struct: BTree
  ([left  : Tree]

[elem  : Integer]
[right : Tree]))
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Data definition in Typed Racket

#lang typed/racket
 
; Polymorphic definition of Tree
 
(define-type (Tree A) (U Null (BTree A)))
 
 
(define-struct: (A) BTree
  ([left  : (Tree A)]

[elem  : A]
[right : (Tree A)]))
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Destructive and Non-destructive update

e

15



Destructive and Non-destructive update
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Destructive and Non-destructive update
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Functional Queue

(define-struct: (A) Queue
  ([front : (Listof A)]

[rear  : (Listof A)]))
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(define-struct: (A) Queue
  ([front : (Listof A)]

[rear  : (Listof A)]))
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Functional Queue

(: dequeue : (All (A) ((Queue A) -> (Queue A))))
(define (dequeue que)
  (let ([front (cdr (Queue-front que))]

[rear  (Queue-rear que)])
  (if (null? front)

(Queue (reverse rear) null)
(Queue front rear))))
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Functional Queue

Queue  q

(for ([id (in-range 100)])
  (dequeue q))
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Banker’s Queue [Okasaki 1998]

Lazy evaluation solves this problem
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(: val : (Promise Exact-Rational))
 
(define val (delay (/ 5 0)))
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Banker’s Queue [Okasaki 1998]

Lazy evaluation solves this problem

Streams

(define-type (Stream A)
  (Pair A (Promise (Stream A))))
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Banker’s Queue [Okasaki 1998]

Lazy evaluation solves this problem

 
(define-struct: (A) Queue
  ([front : (Stream A)]

[lenf  : Integer]
[rear  : (Stream A)]
[lenr  : Integer]))

 

Invariant  lenf >= lenr
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Banker’s Queue [Okasaki 1998]

Lazy evaluation solves this problem

(: check :
(All (A) (Stream A) Integer (Stream A) Integer -> (Queue A)))

 
(define (check front lenf rear lenr)
  (if (>= lenf lenr)

(make-Queue front lenf rear lenr)
(make-Queue (stream-append front (stream-reverse rear))

(+ lenf lenr) null 0)))
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Banker’s Queue [Okasaki 1998]

Lazy evaluation solves this problem

 
 
 
 
 
 
(make-Queue (stream-append front (stream-reverse rear))

(+ lenf lenr) null 0)
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Banker’s Queue [Okasaki 1998]

Lazy evaluation solves this problem

Amortized running time of O(1) for the operations

enqueue, dequeue  and  head
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Real-Time Queues [Hood & Melville 81]
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Real-Time Queues [Hood & Melville 81]

Eliminating amortization by Scheduling

Banker’s Queue - reverse is a forced completely
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Real-Time Queues [Hood & Melville 81]

Eliminating amortization by Scheduling

 
(: rotate :

(All (A) ((Stream A) (Listof A) (Stream A) -> (Stream A))))
 
(define (rotate front rear accum)
  (if (empty-stream? front)

(stream-cons (car rear) accum)
(stream-cons (stream-car front)

(rotate (stream-cdr front)
(cdr rear)
(stream-cons (car rear) accum)))))

Incremental reversing
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Real-Time Queues [Hood & Melville 81]

Eliminating amortization by Scheduling

Worst-case running time of O(1) for the operations

enqueue, dequeue  and  head
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Binary Random Access Lists [Okasaki 1998]

 
Nat is one of
- 0
- (add1 Nat)

 
List is one of
- null
- (cons elem List)
 

34



Binary Random Access Lists [Okasaki 1998]

 
Nat is one of
- 0
- (add1 Nat)

 
List is one of
- null
- (cons elem List)
 

cons corresponds to increment

cdr corresponds to decrement

append corresponds to addition
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Binary Random Access Lists [Okasaki 1998]

(define-type (RAList A) (Listof (Digit A)))
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Binary Random Access Lists [Okasaki 1998]

(define-type (RAList A) (Listof (Digit A)))

(define-type (Digit A) (U Zero (One A)))
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Binary Random Access Lists [Okasaki 1998]

(define-struct: Zero ())
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Binary Random Access Lists [Okasaki 1998]

(define-struct: Zero ())

(define-struct: (A) One ([fst  : (Tree A)]))
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Binary Random Access Lists [Okasaki 1998]

(define-type (Tree A) (U (Leaf A) (Node A)))
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Binary Random Access Lists [Okasaki 1998]

(define-type (Tree A) (U (Leaf A) (Node A)))
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Binary Random Access Lists [Okasaki 1998]

(define-type (Tree A) (U (Leaf A) (Node A)))

(define-struct: (A) Leaf ([fst : A]))

(define-struct: (A) Node
  ([size  : Integer]

[left  : (Tree A)]
[right : (Tree A)]))
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Binary Random Access Lists [Okasaki 1998]

(define-type (RAList A) (Listof (Digit A)))
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Binary Random Access Lists [Okasaki 1998]

(define-type (RAList A) (Listof (Digit A)))
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Binary Random Access Lists [Okasaki 1998]

(define-type (RAList A) (Listof (Digit A)))

Worst-case running time of O(log n) for the operations 

cons,  car,  cdr,  lookup and  update
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VLists [Bagwell 2002]

(define-struct: (A) Base
  ([previous : (U Null (Base A))]

[elems    : (RAList A)]))
 
 
(define-struct: (A) VList
  ([offset : Natural]

[base   : (Base A)]
[size   : Natural]))
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VLists [Bagwell 2002]

List with one element - 6
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VLists [Bagwell 2002]

cons 5 and 4 to the previous list
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VLists [Bagwell 2002]

cons 3 and 2 to the previous list
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VLists [Bagwell 2002]

cdr of the previous list
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VLists [Bagwell 2002]

Random access takes O(1) average and O(log n) in
worst-case.
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Our library

Library has 30 data structures which include

Variants of Queues

Variants of Deques

Variants of Heaps

Variants of Lists

Red-Black Trees

Tries

Sets

Hash Lists
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Our library

Library has 30 data structures
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Our library

Library has 30 data structures

Data structures have several utility functions
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Our library

Library has 30 data structures

Data structures have several utility functions

Our implementations follows the original work
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Benchmarks

(foldl enqueue que list-of-100000-elems)
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ML to Typed Racket

ML idioms can be easily ported to Typed Racket
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ML to Typed Racket

ML idioms can be easily ported to Typed Racket

type 'a Queue = int * 'a Stream * int * 'a Stream
 
 
(define-struct: (A) Queue
  ([lenf  : Integer]

[front : (Stream A)]
[lenr  : Integer]
[rear  : (Stream A)]))
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ML to Typed Racket

ML idioms can be easily ported to Typed Racket

type 'a Queue = 'a list * int * 'a list susp * int * 'a list
 
 
(define-struct: (A) Queue
  ([pref  : (Listof A)]

[lenf  : Integer]
[front : (Promise (Listof A))]
[lenr  : Integer]
[rear  : (Listof A)]))
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Optimizer in Typed Racket

Optimizer based on type information
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Optimizer in Typed Racket
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Polymorphic recursion

(define-type (Seq A) (Pair A (Seq (Pair A A))))

Non-uniform type
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Polymorphic recursion

(define-type (EP A)  (U A (Pair (EP A) (EP A))))
(define-type (Seq A) (Pair (EP A) (Seq A)))

Uniform type
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Conclusion

Typed Racket is useful for real-world software.

Functional data structures in Typed Racket are useful and
performant.

A comprehensive library of data structures is now available.

75



Thank you...

Library is available for download from

http://planet.racket-lang.org/
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