
2010 Workshop on Scheme and
Functional Programming
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Invited Talk: Eager parsing and user interaction with call/cc

Olin Shivers

Northeastern University

Abstract
Many s-expressions have the pleasant property of being syntactically self-terminating: we know when we come
to the right parenthesis at the end of a list that the list is complete. Old (but advanced) Lisp systems such as
Maclisp and the Lisp Machine exploited this fact by interleaving the parser and the interactive “rubout” handler:
a call to the reader completes as soon as the parser has consumed a complete s-expression without the user
needing to input a following separator character. Yet the user is also able to correct erroneous, incomplete
input by “backing up” with the delete key and re-entering corrected text.

Implementing such an input facility turns out to be a task for which Scheme has just the right tools: call/cc
and other higher-order control operators. I will show how to use these operators to implement a reader that is
eager, yet interactively permits correction. Although the parsing and error-correction functionality is interleaved,
the code is not. The implementation is quite modular: the reader is a standard, off-the-shelf recursive-descent
parser, written with no concern for error correction; the error-correction code works with any parser that needs
no more than one character of lookahead.

The talk will show the development of real code, giving a demonstration of how Scheme’s sophisticated
control operators are put to work in a real systems-programming context.
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Functional Data Structures for Typed Racket

Hari Prashanth K R
Northeastern University
krhari@ccs.neu.edu

Sam Tobin-Hochstadt
Northeastern University
samth@ccs.neu.edu

Abstract
Scheme provides excellent language support for programming in
a functional style, but little in the way of library support. In this
paper, we present a comprehensive library of functional data struc-
tures, drawing from several sources. We have implemented the li-
brary in Typed Racket, a typed variant of Racket, allowing us to
maintain the type invariants of the original definitions.

1. Functional Data Structures for a Functional
Language

Functional programming requires more than just lambda; library
support for programming in a functional style is also required.
In particular, efficient and persistent functional data structures are
needed in almost every program.

Scheme does provide one supremely valuable functional data
structure—the linked list. This is sufficient to support many forms
of functional programming (Shivers 1999) (although lists are sadly
mutable in most Schemes), but not nearly sufficient. To truly sup-
port efficient programming in a functional style, additional data
structures are needed.

Fortunately, the last 15 years have seen the development of
many efficient and useful functional data structures, in particular
by Okasaki (1998) and Bagwell (2002; 2000). These data structures
have seen wide use in languages such as Haskell and Clojure, but
have rarely been implemented in Scheme.

In this paper, we present a comprehensive library of efficient
functional data structures, implemented in Typed Racket (Tobin-
Hochstadt and Felleisen 2008), a recently-developed typed dialect
of Racket (formerly PLT Scheme). The remainder of the paper is
organized as follows. We first present an overview of Typed Racket,
and describe how typed functional datastructures can interoperate
with untyped, imperative code. Section 2 describes the data struc-
tures, with their API and their performance characteristics. In sec-
tion 3, we present benchmarks demonstrating that our implemena-
tions are viable for use in real code. We then detail the experience
of using Typed Racket for this project, both positive and negative.
Finally, we discuss other implementations and conclude.

1.1 An Overview of Typed Racket
Typed Racket (Tobin-Hochstadt and Felleisen 2008; Tobin-Hochstadt
2010) is an explicitly typed dialect of Scheme, implemented in
Racket (Flatt and PLT 2010). Typed Racket supports both integra-
tion with untyped Scheme code as well as a typechecker designed
to work with idiomatic Scheme code.

While this paper presents the API of the functional data struc-
tures, rather than their implementation, we begin with a brief de-
scription of a few key features of the type system.

First, Typed Racket supports explicit polymorphism, which is
used extensively in the functional data structure library. Type argu-
ments to polymorphic functions are automatically inferred via lo-
cal type inference (Pierce and Turner 2000). Second, Typed Racket

supports untagged rather than disjoint unions. Thus, most data
structures presented here are implemented as unions of several dis-
tinct structure types.

1.2 Interoperation with External Code
Most Scheme programs are neither purely functional nor typed.
That does not prevent them from benefiting from the data struc-
tures presented in this paper, however. Typed Racket automatically
supports interoperation between typed and untyped code, allowing
any program to use the data structures presented here, regardless of
whether it is typed. Typed Racket does however enforce its type in-
variants via software contracts, which can reduce the performance
of the structures.

Additionally, using these data structures in no way requires
programming in a purely functional style. An mostly-functional
Scheme program that does not mutate a list can replace that list
with a VList without any problem. Using functional data structures
often adds persistence and performance without subtracting func-
tionality.

2. An Introduction to Functional Data Structures
Purely functional data structures, like all data structures, come in
many varieties. For this work, we have selected a variety that pro-
vide different APIs and performance characteristics. They include
several variants of queues, double-ended queues (or deques), pri-
ority queues (or heaps), lists, hash lists, tries, red-black trees, and
streams. All of the implemented data structures are polymorphic in
their element type.

The following subsections describe each of these data struc-
tures, many with a number of different implementations with dis-
tinct performance characteristics. Each subsection introduces the
data structure, specifies its API, provides examples, and then dis-
cusses each implementation variant and their performance charac-
teristics.

2.1 Queues
Queues are simple “First In First Out” (FIFO) data structures. We
have implemented a wide variety of queues, each with the interface
given below. Each queue implementation provides a polymorphic
type (Queue A), as well as the following functions:

• queue : (∀ (A) A * → (Queue A))

Constructs a queue with the given elements in order. In the
queue type signature, ∀ is a type constructor used for poly-
morphic types, binding the given type variables, here A. The
function type constructor→ is written infix between arguments
and results. The annotation * in the function type specifies that
queue accepts arbitrarily many elements of type A, producing
a queue of type (Queue A).

• enqueue : (∀ (A) A (Queue A) → (Queue A))
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Inserts the given element (the first argument) into the given
queue (the second argument), producing a new queue.

• head : (∀ (A) (Queue A) → A)

Returns the first element in the queue. The queue is unchanged.
• tail : (∀ (A) (Queue A) → (Queue A))

Removes the first element from the given queue, producing a
new queue.

> (define que (queue -1 0 1 2 3 4))
> que
- : (Queue Fixnum)
#<Queue>
> (head que)
- : Fixnum
-1
> (head (tail que))
- : Fixnum
0
> (head (enqueue 10 que))
- : Fixnum
-1

Banker’s Queues The Bankers Queues (Okasaki 1998) are amor-
tized queues obtained using a method of amortization called the
Banker’s method. The Banker’s Queue combines the techniques
of lazy evaluation and memoization to obtain good amortized run-
ning times. The Bankers Queue implementation internally uses
streams (see section 2.4.4) to achieve lazy evaluation. The Banker’s
Queue provides a amortized running time of O(1) for the opera-
tions head, tail and enqueue.

Physicist’s Queue The Physicist’s Queue (Okasaki 1998) is a
amortized queue obtained using a method of amortization called the
Physicist’s method. The Physicist’s Queue also uses the techniques
of lazy evaluation and memoization to achieve excellent amortized
running times for its operations. The only drawback of the Physi-
cist’s method is that it is much more complicated than the Banker’s
method. The Physicist’s Queue provides an amortized running time
of O(1) for the operations head, tail and enqueue.

Real-Time Queue Real-Time Queues eliminate the amortization
of the Banker’s and Physicist’s Queues to produce a queue with ex-
cellent worst-case as well as amortized running times. Real-Time
Queues employ lazy evaluation and a technique called schedul-
ing (Okasaki 1998) where lazy components are forced systemati-
cally so that no suspension takes more than constant time to ex-
ecute, assuring ensures good asymptotic worst-case running time
for the operations on the data structure. Real-Time Queues have an
O(1) worst-case running time for the operations head, tail and
enqueue.

Implicit Queue Implicit Queues are a queue data structure im-
plemented by applying a technique called implicit recursive slow-
down (Okasaki 1998). Implicit recursive slowdown combines lazi-
ness with a technique called recursive slowdown developed by Ka-
plan and Tarjan (1995). This technique is simpler than pure recur-
sive slow-down, but with the disadvantage of amortized bounds on
the running time. Implicit Queues provide an amortized running
time of O(1) for the operations head, tail and enqueue.

Bootstrapped Queue The technique of bootstrapping is applica-
ble to problems whose solutions require solutions to simpler in-
stances of the same problem. Bootstrapped Queues are a queue data
structure developed using a bootstrapping technique called struc-
tural decomposition (Okasaki 1998). In structural decomposition,
an implementation that can handle data up to a certain bounded

size is used to implement a data structure which can handle data of
unbounded size. Bootstrapped Queues give a worst-case running
time of O(1) for the operation head and O(log∗ n)1 for tail
and enqueue. Our implementation of Bootstrapped Queues uses
Real-Time Queues for bootstrapping.

Hood-Melville Queue Hood-Melville Queues are similar to the
Real-Time Queues in many ways, but use a different and more com-
plex technique, called global rebuilding, to eliminate amortization
from the complexity analysis. In global rebuilding, rebalancing is
done incrementally, a few steps of rebalancing per normal opera-
tion on the data structure. Hood-Melville Queues have worst-case
running times of O(1) for the operations head, tail and en-
queue.

2.2 Deque
Double-ended queues are also known as deques. The difference
between the queues and the deques lies is that new elements of
a deque can be inserted and deleted from either end. We have
implemented several deque variants, each discussed below. All the
deque data structures implement following interface and have the
type (Deque A).

• deque : (∀ (A) A * → (Deque A))

Constructs a double ended queue from the given elements in
order.

• enqueue : (∀ (A) A (Deque A) → (Deque A))

Inserts the given element to the rear of the deque.
• enqueue-front : (∀ (A) A (Deque A) → (Deque A))

Inserts the given element to the front of the deque.
• head : (∀ (A) (Deque A) → A)

Returns the first element from the front of the deque.
• last : (∀ (A) (Deque A) → A)

Returns the first element from the rear of the deque.
• tail : (∀ (A) (Deque A) → (Deque A))

Removes the first element from the front of the given deque,
producing a new deque.

• init : (∀ (A) (Deque A) → (Deque A))

Removes the first element from the rear of the given deque,
producing a new deque.

> (define dque (deque -1 0 1 2 3 4))
> dque
- : (Deque Fixnum)
#<Deque>
> (head dque)
- : Fixnum
-1
> (last dque)
- : Fixnum
4
> (head (enqueue-front 10 dque))
- : Fixnum
10
> (last (enqueue 20 dque))
- : Fixnum
20
> (head (tail dque))
- : Fixnum
0

1 log∗ n is at most 5 for all feasible queue lengths.
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> (last (init dque))
- : Fixnum
3

Banker’s Deque The Banker’s Deque is an amortized deque.
The Banker’s Deque uses the Banker’s method and employs the
same techniques used in the Banker’s Queues to achieve amortized
running times of O(1) for the operations head, tail, last,
init, enqueue-front and enqueue.

Implicit Deque The techniques used by Implicit Deques are same
as that used in Implicit Queues i.e. Implicit Recursive Slowdown.
Implicit Deque provides O(1) amortized running times for the
operations head, tail, last, init, enqueue-front and
enqueue.

Real-Time Deque The Real-Time Deques eliminate the amorti-
zation in the Banker’s Deque to produce deques with good worst-
case behavior. The Real-Time Deques employ the same techniques
employed by the Real-Time Queues to provide worst-case run-
ning time of O(1) for the operations head, tail, last, init,
enqueue-front and enqueue.

2.3 Heaps
In order to avoid confusion with FIFO queues, priority queues are
also known as heaps. A heap is similar to a sortable collection,
implemented as a tree, with a comparison function fixed at creation
time. There are two requirements that a tree must meet in order for
it to be a heap:

• Shape Requirement - All its levels must be full except (possi-
bly) the last level where only rightmost leaves may be missing.

• Parental Dominance Requirement - The key at each node must
greater than or equal (max-heap) OR less than or equal (min-
heap) to the keys at its children. A tree satisfying this property
is said to be heap-ordered.

Below, we present several heap variants. Each variant has the type
(Heap A) and implements the following interface:

• heap :(∀ (A) (A A → Boolean) A * → (Heap A))

Constructs a heap from the given elements and comparison
function.

• find-min/max : (∀ (A) (Heap A) → A)

Returns the min or max element of the given heap.
• delete-min/max : (∀ (A) (Heap A) → (Heap A))

Deletes the min or max element of the given heap.
• insert : (∀ (A) A (Heap A) → (Heap A))

Inserts an element into the heap.
• merge : (∀ (A) (Heap A) (Heap A) → (Heap A))

Merges the two given heaps.

> (define hep (heap < 1 2 3 4 5 -1))
> hep
- : (Heap (U Positive-Fixnum Negative-Fixnum))
#<Heap>
> (find-min/max hep)
- : (U Positive-Fixnum Negative-Fixnum)
-1
> (find-min/max (delete-min/max hep))
- : (U Positive-Fixnum Negative-Fixnum)
1
> (define new-hep (heap < -2 3 -4 5))
> (find-min/max (merge hep new-hep))
- : (U Positive-Fixnum Negative-Fixnum)

-4

Binomial Heap A Binomial Heap (Vuillemin 1978; Brown 1978)
is a heap-ordered binomial tree. Binomial Heaps support a fast
merge operation using a special tree structure. Binomial Heaps
provide a worst-case running time of O(log n) for the operations
insert, find-min/max, delete-min/max and merge.

Leftist Heap Leftist Heaps (Crane 1972) are heap-ordered binary
trees that satisfy the leftist property. Each node in the tree is as-
signed a value called a rank. The rank represents the length of its
rightmost path from the node in question to the nearest leaf. The
leftist property requires that right descendant of each node has a
lower rank than the node itself. As a consequence of the leftist
property, the right spine of any node is always the shortest path
to a leaf node. The Leftist Heaps provide a worst-case running
time of O(log n) for the operations insert, delete-min/max
and merge and a worst-case running time of O(1) for find-
min/max.

Pairing Heap Pairing Heaps (Fredman et al. 1986) are a type
of heap which have a very simple implementation and extremely
good amortized performance in practice. However, it has proved
very difficult to come up with exact asymptotic running time for
operations on Pairing Heaps. Pairing Heaps are represented either
as a empty heap or a pair of an element and a list of pairing
heaps. Pairing Heaps provide a worst-case running time of O(1)
for the operations insert, find-min/max and merge, and an
amortized running time of O(log n) for delete-min/max.

Splay Heap Splay Heaps (Sleator and Tarjan 1985) are very simi-
lar to balanced binary search trees. The difference between the two
is that Splay Heaps do not maintain explicit balance information.
Instead, every operation on a splay heap restructures the tree with
simple transformations that increase the balance. Because of the re-
structuring on every operation, the worst-case running time of all
operations is O(n). However, the amortized running time of the
operations insert, find-min/max, delete-min/max and
merge is O(log n).

Skew Binomial Heap Skew Binomial Heaps are similar to Bino-
mial Heaps, but with a hybrid numerical representation for heaps
which is based on the skew binary numbers (Myers 1983). The
skew binary number representation is used since incrementing
skew binary numbers is quick and simple. Since the skew bi-
nary numbers have a complicated addition, the merge operation is
based on the ordinary binary numbers itself. Skew Binomial Heaps
provide a worst-case running time of O(log n) for the operations
find-min/max, delete-min/max and merge, and a worst-
case running time of O(1) for the insert operation.

Lazy Pairing Heap Lazy Pairing Heaps (Okasaki 1998) are simi-
lar to pairing heaps as described above, except that Lazy Pairing
Heaps use lazy evaluation. Lazy evaluation is used in this data
structure so that the Pairing Heap can cope with persistence effi-
ciently. Analysis of Lazy Pairing Heaps to obtain exact asymptotic
running times is difficult, as it is for Pairing Heaps. Lazy Pairing
Heaps provide a worst-case running time of O(1) for the opera-
tions insert, find-min/max, and merge, and an amortized
running time of O(log n) for the delete-min/max operation.

Bootstrapped Heap Bootstrapped Heaps (Okasaki 1998) use a
technique of bootstrapping called structural abstraction (Okasaki
1998), where one data structure abstracts over a less efficient data
structure to get better running times. Bootstrapped Heaps pro-
vide a worst-case running time of O(1) for the insert, find-
min/max and merge operations and a worst-case running time of
O(log n) for delete-min/max operation. Our implementation
of Bootstrapped Heap abstracts over Skew Binomial Heaps.
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2.4 Lists
Lists are a fundamental data structure in Scheme. However, while
singly-linked lists have the advantages of simplicity and efficiency
for some operations, many others are quite expensive. Other data
structures can efficiently implement the operations of Scheme’s
lists, while providing other efficient operations as well. We imple-
ment Random Access Lists, Catenable Lists, VLists and Streams.
Each implemented variant is explained below. All variants pro-
vide the type (List A), and the following interface, which is
extended for each implementation:

• list : (∀ (A) A * → (List A))

Constructs a list from the given elements, in order.
• cons : (∀ (A) A (List A) → (List A))

Adds a given element into the front of a list.
• first : (∀ (A) (List A) → A)

Returns the first element of the given list.
• rest : (∀ (A) (List A) → (List A))

Produces a new list without the first element.

2.4.1 Random Access List
Random Access Lists are lists with efficient array-like random
access operations. These include list-ref and list-set (a
functional analogue of vector-set!). Random Access Lists
extend the basic list interface with the following operations:

• list-ref : (∀ (A) (List A) Integer → A)

Returns the element at a given location in the list.
• list-set : (∀ (A) (List A) Integer A → (List A))

Updates the element at a given location in the list with a new
element.

> (define lst (list 1 2 3 4 -5 -6))
> lst
- : (U Null-RaList (Root (U Positive-Fixnum

Negative-Fixnum)))
#<Root>
> (first lst)
- : (U Positive-Fixnum Negative-Fixnum)
1
> (first (rest lst))
- : (U Positive-Fixnum Negative-Fixnum)
2
> (list-ref lst 3)
- : (U Positive-Fixnum Negative-Fixnum)
4
> (list-ref (list-set lst 3 20) 3)
- : (U Positive-Fixnum Negative-Fixnum)
20
> (first (cons 50 lst))
- : (U Positive-Fixnum Negative-Fixnum)
50

Binary Random Access List Binary Random Access Lists are
implemented as using the framework of binary numerical represen-
tation using complete binary leaf trees (Okasaki 1998). They have
worst-case running times of O(log n) for the operations cons,
first, rest, list-ref and list-set.

Skew Binary Random Access List Skew Binary Random Access
Lists are similar to Binary Random Access Lists, but use the skew
binary number representation, improving the running times of some
operations. Skew Binary Random Access Lists provide worst-case
running times of O(1) for the operations cons, head and tail

and worst-case running times of O(log n) for list-ref and
list-set operations.

2.4.2 Catenable List
Catenable Lists are a list data structure with an efficient append
operation, achieved using the bootstrapping technique of structural
abstraction (Okasaki 1998). Catenable Lists are abstracted over
Real-Time Queues, and have an amortized running time of O(1)
for the basic list operations as well as the following:

• cons-to-end : (∀ (A) A (List A) → (List A))

Inserts a given element to the rear end of the list.
• append : (∀ (A) (List A) * → (List A))

Appends several lists together.

> (define cal (list -1 0 1 2 3 4))
> cal
- : (U EmptyList (List Fixnum))
#<List>
> (first cal)
- : Fixnum
-1
> (first (rest cal))
- : Fixnum
0
> (first (cons 50 cal))
- : Fixnum
50
> (cons-to-end 50 cal)
- : (U EmptyList (List Fixnum))
#<List>
> (define new-cal (list 10 20 30))
> (first (append new-cal cal))
- : Fixnum
10

2.4.3 VList
VLists (Bagwell 2002) are a data structure very similar to normal
Scheme lists, but with efficient versions of many operations that
are much slower on standard lists. VLists combine the extensibility
of linked lists with the fast random access capability of arrays. The
indexing and length operations of VLists have a worst-case running
time of O(1) and O(lg n) respectively, compared to O(n) for lists.
Our VList implementation is built internally on Binary Random
Access Lists. VLists provide the standard list API given above,
along with many other operations, some of which are given here.

• last : (∀ (A) (List A) → A)

Returns the last element of the given list.
• list-ref : (∀ (A) (List A) Integer → A)

Gets the element at the given index in the list.

> (define vlst (list -1 1 3 4 5))
> vlst
- : (List (U Positive-Fixnum Negative-Fixnum))
#<List>
> (first vlst)
- : (U Positive-Fixnum Negative-Fixnum)
-1
> (first (rest vlst))
- : (U Positive-Fixnum Negative-Fixnum)
1
> (last vlst)
- : (U Positive-Fixnum Negative-Fixnum)
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5
> (length vlst)
- : Integer
5
> (first (cons 50 vlst))
- : (U Positive-Fixnum Negative-Fixnum)
50
> (list-ref vlst 3)
- : (U Positive-Fixnum Negative-Fixnum)
4
> (first (reverse vlst))
- : (U Positive-Fixnum Negative-Fixnum)
5
> (first (map add1 vlst))
- : Integer
0

2.4.4 Streams
Streams (Okasaki 1998) are simply lazy lists. They are similar to
the ordinary lists and they provide the same functionality and API.
Streams are used in many of the foregoing data structures to achieve
lazy evaluation. Streams do not change the asymptotic performance
of any list operations, but introduce overhead at each suspension.
Since streams have distinct evaluation behavior, they are given a
distinct type, (Stream A).

2.5 Hash Lists
Hash Lists (Bagwell 2002) are similar to association lists, here im-
plemented using a modified VList structure. The modified VList
contains two portions—the data and the hash table. Both the por-
tions grow as the hash-list grows. The running time for Hash Lists
operations such as insert, delete, and lookup are very close
to those for standard chained hash tables.

2.6 Tries
A Trie (also known as a Digital Search Tree) is a data structure
which takes advantage of the structure of aggregate types to achieve
good running times for its operations (Okasaki 1998). Our imple-
mentation provides Tries in which the keys are lists of the element
type; this is sufficient for representing many aggregate data struc-
tures. In our implementation, each trie is a multiway tree with each
node of the multiway tree carrying data of base element type. Tries
provide lookup and insert operations with better asymptotic
running times than hash tables.

2.7 Red-Black Trees
Red-Black Trees are a classic data structure, consisting of a binary
search tree in which every node is colored either red or black,
according to the following two balance invariants:

• no red node has a red child, and
• every path from root to an empty node has the same number of

black nodes.

The above two invariants together guarantee that the longest
possible path with alternating black and red nodes, is no more
then twice as long as the shortest possible path, the one with black
nodes only. This balancing helps in achieving good running times
for the tree operations. Our implementation is based on one by
Okasaki (1999). The operations member?, insert and delete,
which respectively checks membership, inserts and deletes ele-
ments from the tree, have worst-case running time of O(log n).

3. Benchmarks
To demonstrate the practical usefulness of purely functional data
structures, we provide microbenchmarks of a selected set of data
structures, compared with both simple implementations based on
lists, and imperative implementations. The list based version is im-
plemented in Typed Racket and imperative version is implemented
in Racket. The benchmaking was done on a 2.1 GHz Intel Core
2 Duo (Linux) machine and we used Racket version 5.0.0.9 for
benchmarking.

In the tables below, all times are CPU time as reported by
Racket, including garbage collection time. The times mentioned
are in milli seconds and they are time taken for performing each
operation 100000 times, averaged over 10 runs. 2

3.1 Queue Performance
The table in figure 1 shows the performance of the Physicist’s
Queue, Banker’s Queue, Real-Time Queue and Bootstrapped
Queue compared with an implementation based on lists, and an
imperative queue (Eastlund 2010). 3

3.2 Heap Performance
The table in figure 2 shows the performance of the Leftist Heap,
Pairing Heap, Binomial Heap and Bootstrapped Heap, compared
with an implementation based on sorted lists, and a simple impera-
tive heap.

3.3 List Performance
The below table shows the performance of the Skew Binary Ran-
dom Access List and VList compared with in built lists.

Size Operation RAList VList List

1000
list 24 51 2

list-ref 77 86 240
first 2 9 1
rest 20 48 1
last 178 40 520

10000
list 263 476 40

list-ref 98 110 2538
first 2 9 1
rest 9 28 1
last 200 52 5414

100000
list 2890 9796 513

list-ref 124 131 33187
first 3 10 1
rest 18 40 1
last 204 58 77217

1000000
list 104410 147510 4860

list-ref 172 178 380960
first 2 10 1
rest 20 42 1
last 209 67 755520

4. Experience with Typed Racket
This project involved writing 5300 lines of Typed Racket code, in-
cluding 1300 lines of tests, almost all written by the first author,
who had little previous experience with Typed Racket. This allows
us to report on the experience of using Typed Racket for a program-
mer coming from other languages.

2 The constructor functions queue, heap and list were repeated only
100 times.
3 Since 100000 (successive) tail (or dequeue) operations can not be
performed on 1000 element queue, we do not have running time for tail
operation for for these sizes.
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Size Operation Physicist’s Banker’s Real-Time Bootstrapped List Imperative

1000
queue 16 72 137 20 6 83
head 9 14 30 10 6 54

enqueue 10 127 176 22 256450 73

10000
queue 232 887 1576 227 61 746
head 8 17 32 2 7 56

enqueue 11 132 172 18 314710 75

100000
queue 3410 13192 20332 2276 860 11647
head 9 16 30 6 8 51
tail 412 312 147 20 7 57

enqueue 12 72 224 18 1289370 84

1000000
queue 65590 182858 294310 53032 31480 101383
head 8 17 30 4 7 56
tail 243 1534 1078 20 8 61

enqueue 30 897 1218 20 ∞ 68

Figure 1. Queue Performance

Size Operation Binomial Leftist Pairing Bootstrapped List Imperative

1000
heap 45 192 30 122 9 306

insert 36 372 24 218 323874 623
find 64 7 6 4 6 8

10000
heap 422 2730 340 1283 76 4897

insert 34 358 28 224 409051 628
find 52 9 8 10 7 7

100000
heap 6310 40580 4863 24418 1010 69353

insert 33 434 30 198 1087545 631
find 63 8 8 10 7 9

delete 986 528 462 1946 7 439

1000000
heap 109380 471588 82840 293788 11140 858661

insert 32 438 28 218 ∞ 637
find 76 9 6 8 7 7

delete 1488 976 1489 3063 8 812

Figure 2. Heap Performance

4.1 Benefits of Typed Racket
Several features of Typed Racket makes programming in Typed
Racket quite enjoyable. First, the type error messages in Typed
Racket are very clear and easy to understand. The type checker
highlights precise locations which are responsible for type errors.
This makes it very easy to debug the type errors.

Second, Typed Racket’s syntax is very intuitive, using the infix
operator → for the type of a function. The Kleene star * is used
to indicate zero or more elements for rest arguments. ∀ is the type
constructor used by the polymorphic functions, and so on.

Typed Racket comes with a unit testing framework which makes
it simple to write tests, as in the below example:

(require typed/test-engine/scheme-tests)
(require "bankers-queue.ss")
(check-expect (head (queue 4 5 2 3)) 4)
(check-expect (tail (queue 4 5 2 3))

(queue 5 2 3))
The check-expect form takes the actual and expected value,

and compares them, printing a message at the end summarizing the
results of all tests.

The introductory and reference manuals of Racket in general
and Typed Racket in particular are comprehensive and quite easy
to follow and understand.

4.2 Disadvantages of Typed Racket
Even though overall experience with Typed Racket was positive,
there are negative aspects to programming in Typed Racket.

Most significantly for this work, Typed Racket does not support
polymorphic non-uniform recursive datatype definitions, which are
used extensively by Okasaki (1998). Because of this limitation,
many definitions had to be first converted to uniform recursive
datatypes before being implemented. For instance, the following
definition of Seq structure is not allowed by Typed Racket.

(define-struct: (A) Seq
([elem : A] [recur : (Seq (Pair A A))]))

The definition must be converted not to use polymorphic recursion,
as follows:

(define-struct: (A) Elem ([elem : A]))
(define-struct: (A) Pare

([pair : (Pair (EP A) (EP A))]))
(define-type (EP A) (U (Elem A) (Pare A)))
(define-struct: (A) Seq

([elem : (EP A)] [recur : (Seq A)]))
Unfortunately, this translation introduces the possibility of illegal
states that the typechecker is unable to rule out. We hope to support
polymorphic recursion in a future version of Typed Racket.

It is currently not possible to correctly type Scheme functions
such as foldr and foldl because of the limitations of Typed
Racket’s handling of variable-arity functions (Strickland et al.
2009).
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Typed Racket’s use of local type inference also leads to poten-
tial errors, especially in the presence of precise types for Scheme’s
numeric hierarchy. For example, Typed Racket distinguishes inte-
gers from positive integers, leading to a type error in the following
expression:

(vector-append (vector -1 2) (vector 1 2))
since the first vector contains integers, and the second positive
integers, neither of which is a subtype of the other. Working around
this requires manual annotation to ensure that both vectors have
element type Integer.

Although Racket supports extension of the behavior of primitive
operations such as printing and equality on user-defined data types,
Typed Racket currently does not support this. Thus, it is not possi-
ble to compare any of our data structures accurately using equal?,
and they are printed opaquely, as seen in the examples in section 2.

Typed Racket allows programmers to name arbitrary type ex-
pressions with the define-type form. However, the type printer
does not take into account definitions of polymorphic type aliases
when printing types, leading to the internal implementations of
some types being exposed, as in section 2.4.2. This makes the print-
ing of types confusingly long and difficult to understand, especially
in error messages.

5. Comparison with Other Implementations
Our implementations of the presented data structures are very faith-
ful to the original implementations of Purely Functional Data Struc-
tures by Okasaki (1998) and VLists and others by Bagwell (2000;
2002). In some cases, we provide additional operations, such as for
converting queues to lists.

> (queue->list (queue 1 2 3 4 5 6 -4))
- : (Listof (U Positive-Fixnum Negative-Fixnum))
’(1 2 3 4 5 6 -4)

We also added an to delete elements from the Red-Black Trees,
which was absent in the original implementation. Finally, the heap
constructor functions take an explicit comparison function of the
type (A A → Boolean) as their first argument followed by the
elements for the data structure, whereas the original presentation
uses ML functors for this purpose. With the above exceptions, the
implementation is structurally similar the original work.

We know of no existing comprehensive library of functional
data structures for Scheme. Racket’s existing collection of user-
provided libraries, PLaneT (Matthews 2006), contains an imple-
mentation of Random Access Lists (Van Horn 2010), as well as a
collection of several functional data structures (Soegaard 2009).

VLists and several other functional data structures have recently
been popularized by Clojure (Hickey 2010), a new dialect of Lisp
for the Java Virtual Machine.

6. Conclusion
Efficient and productive functional programming requires efficient
and expressive functional data structures. In this paper, we present
a comprehensive library of functional data structures, implemented
and available in Typed Racket. We hope that this enables program-
mers to write functional programs, and inspires library writers to
use functional designs and to produce new libraries to enable func-
tional programming.

Acknowledgments
Thanks to Matthias Felleisen for his support of this work, and
to Vincent St-Amour and Carl Eastlund for valuable feedback.
Sam Tobin-Hochstadt is supported by a grant from the Mozilla
Foundation.

Bibliography
Phil Bagwell. Fast And Space Efficient Trie Searches. Technical report,

2000/334, Ecole Polytechnique Federale de Lausanne, 2000.
Phil Bagwell. Fast Functional Lists, Hash-Lists, Deques and Variable

Length Arrays. In Implementation of Functional Languages, 14th In-
ternational Workshop, 2002.

Mark R Brown. Implementation and analysis of binomial queue algorithms.
SIAM Journal on Computing, 7(3):298-319, 1978.

Clark Allan Crane. Linear lists and priority queues as balanced binary trees.
PhD thesis, Computer Science Department, Stanford University. STAN-
CS-72-259., 1972.

Carl Eastlund. Scheme Utilities, version 7. PLaneT Package Repository,
2010.

Matthew Flatt and PLT. Reference: Racket. PLT Scheme Inc., PLT-
TR2010-reference-v5.0, 2010.

Michael L. Fredman, Robert Sedgewick, Daniel D. K. Sleator, and Robert
E. Tarjan. The pairing heap: A new form of self-adjusting heap. Algo-
rithmica 1 (1): 111-129, 1986.

Rich Hickey. Clojure. 2010. http://clojure.org
Haim Kaplan and Robert E. Tarjan. Persistent lists with catenation via

recursive slow-down. Proceedings of the twenty-seventh annual ACM
symposium on Theory of computing, 1995.

Jacob Matthews. Component Deployment with PLaneT: You Want it
Where? In Proc. Scheme and Functional Programming, 2006.

Eugene W. Myers. An applicative random-access stack. Information Pro-
cessing Letters 17(5), pp. 241–248, 1983.

Chris Okasaki. Red-Black Trees in Functional Setting. Journal Functional
Programming, 1999.

Chris Okasaki. Purely Functional Data Structures. Cambridge University
Press, 1998.

Benjamin C. Pierce and David N. Turner. Local type inference. ACM
Transactions on Programming Languages and Systems 22(1), pp. 1–44,
2000.

Olin Shivers. SRFI-1: List Library. 1999.
Daniel D. K. Sleator and Robert E. Tarjan. Self-adjusting binary search

trees. Journal of the ACM, 32(3):652-686, 1985.
Jens Axel Soegaard. Galore, version 4.2. PLaneT Package Repository,

2009.
T. Stephen Strickland, Sam Tobin-Hochstadt, and Matthias Felleisen. Prac-

tical Variable-Arity Polymorphism. In Proc. European Symposium on
Programming, 2009.

Sam Tobin-Hochstadt. Typed Scheme: From Scripts to Programs. PhD
dissertation, Northeastern University, 2010.

Sam Tobin-Hochstadt and Matthias Felleisen. The Design and Implemen-
tation of Typed Scheme. In Proc. Symposium on Principles of Program-
ming Languages, 2008.

David Van Horn. RaList: Purely Functional Random-Access Lists, version
2.3. PLaneT Package Repository, 2010.

Jean Vuillemin. A data structure for manipulating priority queues. Commu-
nications of the ACM, 21(4):309-315, 1978.

14



Implementing User-level Value-weak Hashtables

Aaron W. Hsu

Indiana University

awhsu@indiana.edu

Abstract
Value weak hashtables retain only weak references to the val-
ues associated with either a strongly or weakly referenced
key. Value-weak hashtables automatically remove entries
with invalid weak references, which occur when the collec-
tor reclaims a weakly referenced value. Value-weak hashta-
bles provide a convenient way to automatically manage a
table of information whose entries do not need to exist once
the values associated with the keys no longer need to ex-
ist. However, most Scheme implementations do not provide
value-weak hashtables by default in their base library. Key-
weak hashtables are more common. This paper presents an
user-level technique for implementing value-weak hashtables
that relies on features commonly found or that could be im-
plemented in most implementations. This makes value-weak
hashtables a practical reality for most Scheme users without
requiring additional work on the implementation code itself.
Programmers may, therefore, utilize value-weak hashtables
in code that targets a wider range of implementations.

1. Introduction
Value-weak hashtables behave similarly to regular, strong
hashtables except that they retain only weak references to
the values associated with the keys of the table. They may
or may not behave like key-weak tables by retaining a weak
reference to the key. Weak hashtables simplify tables where
the values in the table subordinate the keys. These sorts
of tables often appear as “secondary” access points to ob-
jects. The keys in the table may represent a secondary,
non-primary key. In such tables, once an entry’s value is
no longer referenced or used elsewhere, the entry does not
serve any purpose and may be removed. A collector may
invalidate a weak value reference during its collection cycle,
which enables the hashtable to remove the invalidated entry
from the table. This automatic management of the entries
frees the programmer from explicitly managing these tedious
operations.

Tables that weakly reference their value slots can be
used to simplify the implementation of a number of “sup-
porting” structures. A fairly simple example is when im-
plementing Scheme symbols. One could implement string-
>symbol by associating the strings of symbols in the system
with their symbol objects in a value-weak hashtable. Here,
the strings are the keys, and the symbols the values. If the
system can then prove at some later time that the symbol
no longer needs to exist in the system and can be reclaimed,

then the entry in this table will also be removed automati-
cally by the storage manager.

The Guile Scheme manual [6] suggests that value-weak
hashtables could be used to implement parts of a debugger,
where line numbers are keys and source expressions are val-
ues. When the source expressions are no longer necessary,
they can be removed automatically from the debugger with-
out more book keeping. The author has also found such tech-
niques useful when implementing web programs that carry
around some state, such as in session tables, cookies, or the
like. In this case, tables associating things like IP addresses
and user names to a session object may hold that session
object weakly, which automates the cleanup of these objects
when the session objects are cleaned up or time out.

While very useful, the author is not aware of an easy to
port library for value-weak hashtables, nor of any existing
documents explaining how to implement this feature with-
out directly programming the internal hashtable code of an
implementation. A fairly common interface exists for using
hashtables [11], but most Scheme implementations do not
provide value-weak hashtables built-in. Without a portable
library, programmers cannot readily target many Scheme im-
plementations if their code depends on value-weak hashta-
bles. Perhaps due to this limited availability, many Scheme
programmers do not take advantage, nor are they commonly
aware, of value-weak hashtables.

This paper presents an user-level implementation of
value-weak hashtables that relies on more widely available
features. Thus, a programmer can comfortably use value-
weak hashtables on implementations that do not provide
built-in support. The implementation is efficient enough to
make the library practical for widespread use, and simple
enough that programmers can port the interface to their
Scheme implementation of choice. As an added advantage,
the technique admits different strategies to manage the au-
tomatic collection of unneeded entries to suit specific appli-
cation needs.

The following section discusses prerequisite informa-
tion: strong and weak hashtables, weak references, garbage
collection, and any other non-standard features necessary
to understand the implementation in Section 3. It also de-
scribes how well various implementations support these fea-
tures. Section 4 discusses variations on the primary imple-
mentation technique, and examines some of its limitations.
Section 5 concludes.
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2. Prerequisites/Background
This section describes the interfaces and background depen-
dencies used to implement the value-weak hashtables de-
scribed in Section 3. It also discusses how well a range of
systems supports these features. Section 3 assumes that key-
weak and strong hashtables, weak references, and some form
of collection sensitive structures such as guardians or finaliz-
ers exist on the targeted Scheme system. Some of these fea-
tures, such as key-weak hashtables, may be reasonably im-
plemented using other structures, such as weak references, so
the actual minimal requirements of the technique and struc-
tures described in Section 3 is less than what is listed here.
However, to simplify the implementation, Section 3 uses a
larger set of libraries and existing interfaces than strictly
necessary. That set which extends beyond standard R6RS
Scheme [11], as well as a subset of the R6RS hashtable in-
terface is described below.

Hashtables. The R6RS Scheme standard [11] provides
a library for hashtables, and this paper uses this interface.
The implementation described in Section 3 focuses on EQ?
hashtables, but readily adapts to other types of hashtables.
R6RS hashtables have four primary operations: reference,
assignment, deletion, and update. To create a hashtable,
make-eq-hashtable can be used in one of two ways:

(make-eq-hashtable)
(make-eq-hashtable k)

When called with no arguments, make-eq-hashtable con-
structs an empty hashtable. When called with a positive ex-
act integer argument, make-eq-hashtable creates an empty
hashtable with an initial capacity of roughly k. [1] Reference
is provided by hashtable-ref.

(hashtable-ref ht key default)

When passed a hashtable, key, and a default, if an associa-
tion from the provided key to a value exists in the hashtable
ht, then that value is returned. Otherwise, default is re-
turned.

(hashtable-set! ht key val)

The assignment procedure will create an association from
key to val in the ht hashtable. hashtable-set! replaces
any existing association to key.

(hashtable-delete! ht key)

The deletion procedure will remove the association for key
from the hashtable ht if it exists, and will do nothing if it
does not exist.

(hashtable-update! ht key proc default)

The update procedure allows the programmer to update the
value associated with a given key using a procedure. After
applying hashtable-update!, the association of key will be
the result of applying proc to the previous association value
if one exists or to the default value if one does not exist.
This allows more efficient updating of values in the hashtable
when the new value may be based on the old value. [1]

Key-weak hashtables. In most implementations key-
weak hashtables are used like regular hashtables, with the
exception of a different constructor. This paper assumes that
the constructor for key-weak hashtables is make-weak-eq-
hashtable and that all normal hashtable procedures work
on key-weak hashtables. Weak hashtables differ from strong

hashtables only in that if the weakly referenced value or
key becomes invalid, that entry becomes invalid and may be
removed. [2]

Weak pairs [2]. Scheme implementations commonly
support weak references through weak pairs or boxes. In
a weak pair, one or both of the slots of the pair are weak
references. A weak reference does not prevent the garbage
collector from reclaiming an object. Specifically, if only weak
references to an object exist, then a collector may reclaim
that objects allocated space. After reclaiming an object
weak references to that object, when evaluated, will return
a special value indicating that the value originally references
no longer exists. Note that a programmer cannot expect
the collector to reclaim an object in any specific amount of
time. The collector may never reclaim objects that it could
reclaim, in which case the implementation may be wasting
space, but it is not violating any of the basic behaviors of
weak references.

Another way of thinking about weak references is in
terms of reachability. An object is said to be weakly reach-
able whenever there exist only weak references to the object,
and strongly reachable when one or more strong references to
the object exist. Weakly reachable objects may be collected,
while strongly reachable ones may not.

This paper assumes a weak-cons procedure that, given
two values, returns a cons pair whose first (car) value is
the first argument passed to weak-cons and whose second
(cdr) value is the second. The returned cons pair behaves
like a regular pair except that the car field of the pair is a
weak reference. The cdr field of the returned pair is a strong
reference. If the weakly held reference in the cons pair is
reclaimed by the collector, and subsequently, car is applied
to the pair, the call will return #!bwp instead of the original
value. Weak pairs return true when passed to the pair?
predicate.

Here is a short interaction which illustrates this behav-
ior:

> (define v "value")
> (define p (weak-cons v ’()))
> p
("value")
> (define v #f)
> (collect (collect-maximum-generation))
> p
(#!bwp)

Guardians and Finalizers. Section 3 requires some way
to run code after certain objects have been proven unreach-
able by the collector, implementations usually provide this
functionality through guardians or finalizers. Guardians are
parameter-like structures that allow you to preserve an ob-
ject for further action after the collector determines that it
is safe to collect that object. One creates guardians using
make-guardian, which returns a guardian procedure. Call-
ing a guardian procedure on an object registers that object
with the guardian. Calling the guardian procedure with no
arguments will return one of the registered objects marked as
safe for collection; otherwise, if no objects registered with the
guardian are safe to collect, the guardian procedure returns
false, instead. The guardian removes objects from its regis-
ter whenever it returns them. Repeated calls to the guardian
return different registered, reclaimable objects until no such
objects remain. Thus, guardians allow a program to save
objects from the collector for some further processing before
finally releasing them for real. Often, one registers objects
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that require additional clean up, such as memory allocated
by a foreign program, to clean up automatically instead of
forcing manual clean up calls to pollute the primary code
base.

To give an example, suppose that we have the following
interaction:

> (define g (make-guardian))
> (define v "value")
> (g v)
> (g)
#f
> (define v #f)
> (g)
#f
> (collect (collect-maximum-generation))
> (g)
"value"

Note how the guardian preserves a reference to the object in
question, without interrupting the behavior of the collector.
That is, while with weak references, after the collector has
reclaimed storage, the weak reference becomes invalid, with
a guardian, if the collector finds a reclaimable object (one
that has no references, or that has only weak references to
it) that is also registered with the guardian, it will not re-
claim the storage for the object until the guardian returns
and subsequently removes that object from its set of objects.
The interaction between weak references, guardians and the
storage manager can be understood a little easier by exam-
ining the following example:

> (define g (make-guardian))
> (define v "value")
> (define p (weak-cons v ’()))
> (g v)

At this point the heap allocated string object “value” is ref-
erenced strongly by v, weakly by p, and is registered with
the guardian g. In this state, the strong reference pre-
vents the storage manager from reclaiming the storage for
“value” since it is still needed. We can break that refer-
ence though, and then the collector would normally be free
to collect the value. The weak reference in p will not hin-
der the garbage collector from reclaiming the storage. How-
ever, since “value” is registered with the guardian, when the
collector tries to reclaim the storage, it will encounter the
guardian’s hold on the object, and instead of reclaiming the
storage, the object now moves into the set of the guardian’s
reclaimable objects, to be returned at some point when the
guardian is called with zero arguments.

> (define v #f)
> (g)
#f
> (collect (collect-maximum-generation))
> p
("value")
> (g)
"value"

Once the guardian returns the object, it is no longer pro-
tected from the collector unless a new strong reference is
created or it is re-registered with the guardian. At this point,
when the collector runs again, it may clear out the object,
and the weak reference in p will be invalid.

> (collect (collect-maximum-generation))

> p
(#!bwp)

This paper makes use of guardians [3], but a suitably ex-
pressive alternative, such as Gambit Scheme’s Wills [4], also
suffices. Guardians make it easy to switch between different
cleaning techniques discussed in Section 4. Whether using
guardians, finalizers, wills, or other structures which accom-
plish the same purpose, the primary feature that makes this
implementation possible is the ability to prevent the storage
manager from collecting an object while guaranteeing that
the object is not referenced elsewhere.

Given something like Wills or suitably expressive final-
izers, an implementation of guardians is possible, and vice
versa. Gambit’s implementation of Wills defines a construc-
tor make-will that takes a “testator” and an “action.” The
will then maintains a weak reference to the testator and a
strong reference to the unary action procedure. When the
testator becomes reclaimable (no strong references to the
testator exist), the system will call the action procedure as-
sociated with the testator with the testator as its argument.

One could implement wills in terms of guardians using
something similar to the following code. In this code, we
assume that we have the ability to hook into the collector to
run arbitrary code during collection cycles.

(define g (make-guardian))
(define action-list ’())
(define (make-will testator action)

(let ([p (weak-cons testator action)])
(set! action-list (cons p action-list))
(g testator)
p))

(let ([handler (collect-request-handler)])
(collect-request-handler

(lambda ()
(set! action-list

(remp
(lambda (x) (bwp-object? (car x)))
action-list))

(do ([res (g) (g)]) [(not res)]
(for-each

(lambda (x)
(when (eq? res (car x))

((cdr x) res)))
action-list))

(handler))))

Similarly, using wills, one can implement guardians.

(define make-guardian
(let ([claimable ’()])

(case-lambda
[()
(when (pair? claimable)

(let ([res (car claimable)])
(set! claimable (cdr claimable))
res))]

[(val)
(make-will val

(lambda (x)
(set! claimable

(cons x claimable))))])))

Of course, the above implementations are not complete, but
illustrate the main concepts. Additional work must be done,
for example, to ensure their correct behavior in threaded
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applications. This is especially true in cases where the un-
derlying implementation is either finalizers or wills, because
there is less control as to when the action procedures will
be executed. These sorts of tradeoffs are discussed in more
detail in Section 4.

Implementation Support. The following technique for
implementing value-weak hashtables requires the above fea-
tures, whether they are provided as built-ins or as libraries.
Some implementations have built-in value-weak hashtables.
The author is aware of Gambit [9] and Guile [10] which have
documented value-weak hashtable interfaces. Chez Scheme
[7] and PLT Racket [5] both have support for the above fea-
tures built-in. Chicken [8] appears to have some support for
the above features, but the author was unable to verify the
functioning of key-weak hashtables. Others Schemes have
other, varying degrees of support, often with documentation
that makes it difficult to determine whether or not a given
feature is in fact supported.

3. Implementation
Essentially, a value-weak hashtable removes entries from the
table whenever it can based on the reachability of the val-
ues of those entries. Put another way, the collection of a
value associated with some key in the table should trigger
the deletion of that entry. The following demonstrates a
simple interaction with a value-weak hashtable.

> (define ht (make-value-weak-eq-hashtable))
> (define v1 "First value")
> (define v2 "Second value")
> (value-weak-hashtable-set! ht ’first v1)
> (value-weak-hashtable-set! ht ’second v2)
> (value-weak-hashtable-set! ht ’third v1)

At this point the hashtable ht now contains three entries,
where the first and third entries both contain v1 as their
value.

> (value-weak-hashtable-ref ht ’first #f)
"First value"
> (value-weak-hashtable-ref ht ’second #f)
"Second value"
> (value-weak-hashtable-ref ht ’third #f)
"First value"
>
(eq? (value-weak-hashtable-ref ht ’first #f)

(value-weak-hashtable-ref ht ’third #f))
#t

At this point, there is no apparent difference in behavior
from a strong hashtable. However, suppose that we eliminate
all of the strong references to the string referenced by v1, and
then perform a collection.

> (define v1 #f)
> (collect (collect-maximum-generation))

By now, there is no reason for the table to retain the en-
tries which contain the string “First value” as their values.
Therefore, the table may clean up these entries and remove
them.

> (value-weak-hashtable-ref ht ’first #f)
#f
> (value-weak-hashtable-ref ht ’third #f)
#f

The reader may already be considering how to implement
such a structure. Very likely, the idea of wrapping values
in weak pairs has already presented itself. Indeed, the most
obvious approach to implementing value-weak hashtables is
to take a normal hashtable and use weak-pairs for all the
values. We might then define a hashtable-set! procedure
for value-weak tables like so:

(define (value-weak-hashtable-set! ht key val)
(hashtable-set! ht key (weak-cons val ’())))

The task of referencing this table would then be simply im-
plemented using something like the following:

(define (value-weak-hashtable-ref ht key def)
(let ([res (hashtable-ref ht key #f)])

(if (not res)
def
(let ([val (car res)])

(if (bwp-object? val)
def
val)))))

Indeed, this does work, up to a point. This code does enforce
the most obvious feature of value-weak hashtable, that their
value slots weakly reference their values. However, when the
storage manager does collect the value, nothing cleans up
the table. An entry with an invalid reference in it should
not stick around as doing so causes a space leak in the pro-
gram. Without some additional work, the only hope to an
user of such a system is to walk through the entries of the
hashtable and manually delete all of the invalid entries ev-
ery so often. This solution undermines the running time of
hashtables if we are forced to do this operation with any
regularity and makes value-weak hashtables rather useless.
Instead, we need a way to selectively delete entries automat-
ically without having to scan the entire table. For this, we
consider the use of cleaner thunks.

Using closures, cleaner thunks that delete a specific en-
try in the table if triggered at the right time accomplish the
task of removing the entries. The implementation must call
such a thunk when the collector reclaims the value associ-
ated with it. Using a key-weak hashtable, we can associate
the value (now used as a key) with its cleaner, and if each
cleaner has only a single reference to it through this table,
then the collection of the value will trigger the collection of
the appropriate cleaner. We can intercept this collection by
registering the cleaners with a guardian. This guardian ex-
poses the cleaners that are safe to run because the values
associated with them have been collected.

Any newly introduced strong references to the entry
value that persist after the entry is added will undermine
the weakness of the value cell in the table, so the code must
ensure that only weak references to the value persist after
adding the entry. To achieve this, the value is placed in
a weak pair, with the key in the strong cell. This pair is
inserted into the primary hashtable instead of the value di-
rectly. Only the weak key reference in the cleaner table
remains in addition to the pair reference, so the invariant is
maintained.

Figure 1 illustrates an actual example of this idea. Sup-
pose that we have already run the interaction earlier in the
section to fill the hashtable, but we have not yet invalidated
any of the references. Our value-weak table structure has
two internal tables, a db table, and a trail table. It also
has a guardian associated with it. In the db table, there are
three entries, one for each of the entries in the value-weak
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DB Table Trail Table Cleaner Guardian

’second ’(v2)

’(v1)

’(v1)

’third

’first
 #<third>)

’(#<first>
v1

v2 ’(#<second>) #<second>

#<third>

#<first>

v1: "First Value" v2: "Second Value"

Figure 1. Basic Value-weak hashtable structure

table itself. The values of each of these entries is wrapped
in a weak pair. In fact, this table represents the same naive
technique that we started with above. This forms the core
table for doing our operations. The trail table maintains
an association and entry for each of the unique values that
are indexed by the db table. In this case, there are two en-
tries: our two strings. Each of these is associated with a
list of cleaners. In the case of the second value string, only
one key has been associated with that value in the main ta-
ble, so only one element exists in the trail table. However,
two entries in our table are associated with our first value
string, so we have two cleaners in our list for that value in the
trail table. In total, at this point, three cleaners were cre-
ated. Each of these cleaners is registered with the guardian,
and only one reference to the cleaners exists, which is the
reference in the trail table.

At this point, if we invalidate the first value string, as
we did in the above interaction, then at some point, the
collector will see that there exists only weak references to
that value, and it will reclaim that structure. This will in
turn trigger the trail database to clean up its entry for that
value, which has not been reclaimed. When this occurs, the
references for the two cleaners associated with that value
lose their references as well. When the collector sees this,
the guardian will prevent them from being reclaimed and
put them in the set of values that are safe to collect. We can
then call this guardian at any point and, seeing the cleaners,
know that they are safe to run. When we execute them they
will delete their entries in the main hashtable if they were
not already replaced, and finish the original task assigned to
them.

Thus, the guardian of each table gives us a sort of
stream like interface to the set of entries that we can re-
move. It tells us exactly which entries are safe to remove
by returning only those cleaners that can be safely invoked.
This works by carefully setting up our strong and weak ref-
erences.

When implementing the user-level library all of these
structures should be encapsulated inside a record. An R6RS
version of this could look like this:

(define-record-type value-weak-eq-hashtable
(fields db trail guardian)
(protocol

(lambda (n)
(case-lambda

[() (n (make-eq-hashtable)
(make-weak-eq-hashtable)
(make-guardian))]

[(k) (n (make-eq-hashtable k)
(make-weak-eq-hashtable k)
(make-guardian))]))))

This defines a make-value-weak-hashtable procedure that
creates a value-weak EQ? based hashtable.

While this structure enables collector based cleaning,
an explicit procedure must still call each cleaner thunk. This
procedure need only loop through the non-false values of the
guardian:

(define (clean-value-weak-hashtable! guardian)
(let loop ([cleaner (guardian)])

(when cleaner
(cleaner)
(loop (guardian)))))

Each table operation calls clean-value-weak-hashtable! at
the start of of the procedure, ensuring that the hashtable
has removed any entries it can. Doing the cleaning here,
on entry to every operation, and not at random and unpre-
dictable collection times makes the implementation of ta-
ble operations simpler because the code does not have to
lock the structures before using them. Cleaning on entry,
in essence, linearizes or serializes the operations on the ta-
bles and mostly eliminates the need to worry about thread
interactions.
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In order to make accessing the fields of the record easier,
the following syntax serves as a binding form for the record
fields.

(define-syntax let-fields
(syntax-rules ()

[(_ table (db trail guard) e1 e2 ...)
(let

([db
(value-weak-eq-hashtable-db table)]

[trail
(value-weak-eq-hashtable-trail

table)]
[guard

(value-weak-eq-hashtable-guardian
table)])

e1 e2 ...)]))

Revisiting the previous naive hashtable code, how does it
change? The reference operation is the easiest to implement.
A simple check of the value of the pair associated with the
key assures the intended behavior.

(define (value-weak-hashtable-ref
table key default)

(let-fields table (db trail guard)
(clean-value-weak-hashtable! guard)
(let ([res (hashtable-ref db key #f)])

(if res
(let ([val (car res)])

(if (bwp-object? val)
default
val))

default))))

So, in fact, the reference operation changes very little. As-
signment needs more reworking.

(define (value-weak-hashtable-set!
table key value)

(let-fields table (db trail guard)
(let ([data (weak-cons value ’())])

(clean-value-weak-hashtable! guard)
(let ([cleaner

(make-cleaner db data key)])
(hashtable-set! db key data)
(add-cleaner! trail value cleaner)
(guard cleaner)))))

Here, we need to make sure that we create the cleaner and
add it to the trail as well as do the insertion. We also register
the cleaner with the guardian. The above implementation
is simplified by our use of clean on entry, so that we don’t
have to disable the collector while editing our structures.
This particular element is discussed in later sections.

Creating cleaners does require a little more care than
just blindly deleting the entry. Each cleaner cannot simply
delete the entry with the right key from the table because
an operation may have altered the value associated with the
key. The cleaner must check this before it deletes the entry.

(define (make-cleaner db data key)
(case-lambda

[()
(let ([res (hashtable-ref db key #f)])

(when (and res (eq? res data))
(hashtable-delete! db key)))]

[(maybe-key) (eq? key maybe-key)]))

The above procedure provides two functionalities. The first,
nullary version deletes the key from the table if it has not
been changed since the cleaner was created. The second,
unary version reveals the key to which the cleaner belongs.
This second functionality makes it easier to write drop-
cleaner! below.

A table may associate multiple keys to the same value,
so the trail table must associate values to a set of cleaners.
The following simple procedure encapsulates the process of
adding a cleaner to the trail.

(define (add-cleaner! trail val cleaner)
(hashtable-update! trail val

(lambda (rest) (cons cleaner rest))
’()))

It requires more work to delete a cleaner from the trail. Since
we could have more than one cleaner for every value, we must
walk through the cleaners, asking each in turn whether it is
associated with the key we need to delete. In other words,
we uniquely identify each cleaner by both the key and the
value to which it is associated.

(define (drop-cleaner! db trail key)
(let ([db-res (hashtable-ref db key #f)])

(when db-res
(let ([val (car db-res)])

(unless (bwp-object? val)
(let ([trail-res

(hashtable-ref
trail val ’())])

(if (or (null? trail-res)
(null? (cdr trail-res)))

(hashtable-delete! trail val)
(hashtable-update! trail val

(lambda (orig)
(remp (lambda (cleaner)

(cleaner key))
orig))

’()))))))))

The drop-cleaner! procedure handles most of the work for
deletion, but technically, an implementation could omit this
entirely, further simplifying the delete operation. One could
avoid explicitly dropping the cleaners, assuming, instead,
that at some point the collector will reclaim the values and
their cleaners. Deletion costs less when ignoring the cleaners,
but is subject to other limitations. Section 4 discusses these
limitations and various tradeoffs in more detail. As drop-
cleaner! handles almost all the work, the code can just call
things in the appropriate order to implement deletion.

(define (value-weak-hashtable-delete!
table key)

(let-fields table (db trail guard)
(clean-value-weak-hashtable! guard)
(drop-cleaner! db trail key)
(hashtable-delete! db key)))

Care should be taken when implementing the update oper-
ation. While straightforward, the update operation requires
working with the weak pairs in the table. Thus far, we have
avoided threading interactions, but the weak pairs do not
benefit from the clean on entry strategy that allowed us to
do this. The collector could suddenly invalidate the weakly
referenced values. Since update requires us to check for this
and then call the provided updater procedure on the value in
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the pair, the code should extract the value in the pair only
once, to prevent a possible timing inconsistency if the col-
lector should happen to invalidate a reference between the
check for validity and the actual point where the value is
used.

(define (value-weak-hashtable-update!
table key proc default)

(let-fields table (db trail guard)
(define (updater val)

(let* ([res
(if val

(let ([wp (car val)])
(if (bwp-object? wp)

default
wp))

default)]
[new (proc res)]
[data (weak-cons new ’())]
[cleaner

(make-cleaner db data key)])
(guard cleaner)
(add-cleaner! trail new cleaner)
data))

(clean-value-weak-hashtable! guard)
(hashtable-update! db key updater #f)))

Notice also that we choose to create an explicit, strong refer-
ence to the new result obtained from calling proc on the old
value. This avoids the situation where the new result is not
actually strongly referenced anywhere else, possibly causing
the weak pair to have an invalid reference by the time we add
a cleaner to it later, if the collector somehow runs between
the point where we define the weak pointer and the time
when we extract the value. While it does not appear par-
ticularly useful to return an immediately reclaimable object,
the code should handle that possibility.

4. Discussion
The above section illustrates the core technique for imple-
menting value-weak hashtables, but in various places, an im-
plementor could choose a different strategy, based on the
various tradeoffs.

An implementor should examine and weigh the various
methods for collecting the unneeded entries from the table.
In Chez Scheme, for instance, the code could use the collect-
request-handler parameter to run the cleaners during collec-
tion cycles rather than at the start of every table operation
[2]. In doing so, collections may occur at any time, which
requires some synchronization of the table state to prevent
cleaners from running while a critical section of a hashtable
operation runs.

Our implementation does have some limitations. Ob-
viously, normal hashtable procedures will not operate on
value-weak hashtables because our record declaration cre-
ates a disjoint type for value-weak tables. Less obvious, we
do not guarantee that a hashtable will remove any entries
in a timely manner. We only remove entries when entering
a value-weak operation on that table, if a table is not used,
potentially unneeded entries may persist. This will not pre-
vent the collection of the values stored in the table, though
cleaners tied to those values will remain in the associated
guardian.

Of course, non-deterministically collecting the table en-
tries has its own cost. While entries can be collected more

routinely in situations where the clean-on-entry approach
may not run any cleaners at all, it forces synchronization
costs every time the code operates on the table. Fortu-
nately, both these techniques may co-exist in a single im-
plementation, so the user can enable or disable these various
approaches individually for each table.

The above code only demonstrates the implementation
of an eq? based (pointer based) hashtable. A value-weak
hashtable taking an arbitrary hash procedure and equiva-
lence predicate can also be constructed, but the various eq?
comparisons on the keys should be replaced throughout the
code.

One can tweak the code to allow for key and value-weak
references in a single hashtable, but this requires more work.
To do so, the strong references to the above key would have
to be removed, and perhaps replaced with weak references.
This creates more work in the code to handle the potentially
invalid key references, but otherwise the technique remains
the same.

The user of value-weak tables should be aware of their
behavior with immediate values. In the above implementa-
tion, immediate values can be associated with keys. Such
entries will never be automatically reclaimed, because the
collector does not reclaim immediate values. These entries
can only be removed manually.

Someone implementing this library for their system and
domain should consider whether or not to delete cleaners
from the trail when the entry is removed from the table. Not
doing so improves the overhead of the deletion operation,
but it also means that the cleaners will not disappear until
the values with which they are associated are first collected.
In cases such as immediate values, where these values will
never be collected, the cleaners will remain indefinitely. This
creates a leak in the general case, but may be worth it to
those implementing the library for some special application.

The discussion of guardians and finalizer type mecha-
nisms deserves some attention. The above implementation
would work in a native implementation of finalizers or wills,
but synchronization issues must be handled. Guardians have
a benefit in this particular task because they are determin-
istic, which allows the implementor more control over when
code attached to the guardian or reliant on its behavior runs.
Finalizers are non-deterministic in that they may occur at
any point the system determines they should run, and there
is often little the programmer can do to control this. The
discussion of synchronization above applies to finalizers and
finalizer-like solutions in particular.

An implementation based on guardians can choose and
switch between deterministic and non-deterministic cleaners
easily. This can also be done with finalizers, but requires
that the programmer implement guardian-like functionality
to do so. Care should be taken to ensure the safety of this
abstraction.

A completely different implementation strategy exists
for implementations that provide a generational garbage col-
lector. The implementation can avoid using a trail at all.
This will result in all the cleaners becoming reclaimable in
the guardian at some point. If the cleaners are re-registered
with the guardian if their entries still exist, then as the pro-
gram runs, those entries which stick around longer will have
their cleaners in progressively older generations. This will
result in the cleaners being run less and less often until they
reach the oldest generation. While this doesn’t provide the
same type of guarantees as the trail based implementation
does, it has the benefit of greatly reducing the overhead for
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certain operations. On the other hand, it also creates a level
of overhead itself since the cleaners are essentially being cy-
cled through by the collector, even if they are doing so with
different generations. The author has not thoroughly stud-
ied the effects and differences of this method against the
trail based method, but in the benchmarks below, switching
to this method almost halves the overhead of insertion and
update, while increasing the timing for reference, which has
very little overhead in the trail based implementation. Using
this generation trick also forces this guardian/cleaner over-
head on other procedures and the rest of the system, even if
the value-weak hashtables are rarely, if ever, used.

5. Performance
The above implementation of value-weak hashtables has at
least two important design choices which directly affect its
performance. Firstly, because we rely on two hashtables to
implement another, we incur more than double the cost of
storage. We also perform more book keeping than normally
occurs in native hashtable operations. However, we do not
expect to encounter any worse asymptotic performance.

The appendix shows the timings for a fairly rough and
informal test of four hashtable operations: insertion, dele-
tion, update, and reference. As expected, there is a fairly
high constant factor associated with operations which must
handle book keeping between the two internal tables. Refer-
ence suffers the least because it has the lowest extra burden
for tracking the entries. Both update and set operations
have the highest, which seems consistent with their more
complex definitions.

The benchmarks for each consisted of constructing a
table and performing N number of operations of that given
type, and taking the overall time. The smallest tested N
was 1,000, and the largest was 3,000,000, since after this,
the test machine ran out of RAM. The tests compare the
performance of the native key-weak and strong EQV? based
tables in Chez Scheme against the above implementation of
value-weak tables.

The author has not attempted to tune the performance
of these operations.

6. Conclusion
This paper illustrates how to build a value-weak hashtable
abstraction without access to the internals of the Scheme
system. This makes it easier to port to other Scheme im-
plementations, provided that a few more basic and more
commonly implemented structures are also available. The
above implementation strategy is flexible enough to support
a number of different design preferences, such as differing col-
lection strategies and different cleaning guarantees. While
the technique does not easily allow for the direct integra-
tion of the abstraction into existing hashtable operations, it
is practical. It provides an avenue for programmers to im-
plement value-weak hashtables easily and to encourage their
use.
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Appendix

All timings are in miliseconds.
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Abstract
Context-free approaches to static analysis gain precision over clas-
sical approaches by perfectly matching returns to call sites—
a property that eliminates spurious interprocedural paths. Var-
doulakis and Shivers’s recent formulation of CFA2 showed that it
is possible (if expensive) to apply context-free methods to higher-
order languages and gain the same boost in precision achieved over
first-order programs.

To this young body of work on context-free analysis of higher-
order programs, we contribute a pushdown control-flow analy-
sis framework, which we derive as an abstract interpretation of a
CESK machine with an unbounded stack. One instantiation of this
framework marks the first polyvariant pushdown analysis of higher-
order programs; another marks the first polynomial-time analy-
sis. In the end, we arrive at a framework for control-flow analysis
that can efficiently compute pushdown generalizations of classical
control-flow analyses.

1. Introduction
Static analysis is bound by theory to accept diminished precision as
the price of decidability. The easiest way to guarantee decidability
for a static analysis is to restrict it to a finite state-space. Not
surprisingly, finite state-spaces have become a crutch.

Whenever an abstraction maps an infinite (concrete) state-space
down to the finite state-space of a static analysis, the pigeon-hole
principle forces merging. Distinct execution paths and values can
and do become indistinguishable under abstraction, e.g., 3 and 4
both abstract to the same value: positive.

Our message is that finite abstraction goes too far: we can ab-
stract into an infinite state-space to improve precision, yet remain
decidable. Specifically, we can abstract the concrete semantics of
a higher-order language into a pushdown automaton (PDA). As an
infinite-state system, a PDA-based abstraction preserves more in-
formation than a classical finite-state analysis. Yet, being less pow-
erful than a Turing machine, properties important for computing
control-flow analysis (e.g. emptiness, intersection with regular lan-
guages, reachability) remain decidable.

1.1 The problem with merging
A short example provides a sense of how the inevitable merging
that occurs under a finite abstraction harms precision. Shivers’s
0CFA [Shivers 1991] produces spurious data-flows and return-
flows in the following example:

(let* ((id (lambda (x) x))
(a (id 3))
(b (id 4)))

a)

∗ Supported by the National Science Foundation under grant 0937060 to the
Computing Research Association for the CIFellow Project.

0CFA says that the flow set for the variable a contains both 3
and 4. In fact, so does the flow set for the variable b. For return-
flow,1 0CFA says that the invocation of (id 4) may return to the
invocation of (id 3) or (id 4) and vice versa; that is, according
to Shivers’s 0CFA, this program contains a loop.

To combat merging, control-flow analyses have focused on
increasing context-sensitivity [Shivers 1991]. Context-sensitivity
tries to qualify any answer that comes back from a CFA with a
context in which that answer is valid. That is, instead of answer-
ing “λ42 may flow to variable v13,” a context-sensitive analysis
might answer “λ42 may flow to variable v13 when bound after call-
ing f .” While context-sensitivity recovers some lost precision, it is
no silver bullet. A finite-state analysis stores only a finite amount
of program context to discriminate data- and control-flows during
analysis. Yet, the pigeon-hole principle remains merciless: as long
as the state-space is finite, merging is inevitable for some programs.

Of all the forms of merging, the most pernicious is the merg-
ing of return-flow information. As the example shows, a finite-state
control-flow analysis will lose track of where return-points return
once the maximum bound on context is exceeded. Even in pro-
grams with no higher-order functions, return-flow merging will still
happen during control-flow analysis.

1.2 A first shot: CFA2
Vardoulakis and Shivers’s recent work on CFA2 [Vardoulakis and
Shivers 2010] constitutes an opening salvo on ending the return-
flow problem for the static analysis of higher-order programs.
CFA2 employs an implicit pushdown system that models the stack
of a program. CFA2 solves the return-flow problem for higher-order
programs, but it has drawbacks:

1. CFA2 allows only monovariant precision.

2. CFA2 has exponential complexity in the size of the program.

3. CFA2 is restricted to continuation-passing style.

Our solution overcomes all three drawbacks: it allows polyvari-
ant precision, we can widen it to O(n6)-time complexity in the
monovariant case and we can operate on direct-style programs.

1.3 Our solution: Abstraction to pushdown systems
To prevent return-flow merging during higher-order control-flow
analysis, we abstract into an explicit pushdown system instead of a
finite-state machine. The program stack, which determines return-
flow, will remain unbounded and become the pushdown stack. As a
result, return-flow information will never be merged: in the abstract
semantics, a function returns only whence it was called.

1 “Return-flow” analysis asks to which call sites a given return point may
return. In the presence of tail calls, which break the balance between calls
and returns, return-flow analysis differs from control-flow analysis.
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1.4 Overview
This paper is organized as follows: first, we define a variant of the
CESK machine [Felleisen and Friedman 1987] for the A-Normal
Form λ-calculus [Flanagan et al. 1993]. In performing analysis, we
wish to soundly approximate intensional properties of this machine
when it evaluates a given program. To do so, we construct an ab-
stract interpretation of the machine. The abstracted CESK machine
operates much like its concrete counterpart and soundly approxi-
mates its behavior, but crucially, many properties of the concrete
machine that are undecidable become decidable when considered
against the abstracted machine (e.g. “is a given machine configura-
tion reachable?” becomes a decidable property).

The abstract counterpart to the CESK machine is constructed
by bounding the store component of the machine to some finite
size. However, the stack component (represented as a continuation)
is left unabstracted. (This is in contrast to finite-state abstractions
that store-allocate continuations [Van Horn and Might 2010].) Un-
like most higher-order abstract interpreters, the unbounded stack
implies this machine has a potentially infinite set of reachable ma-
chine configurations, and therefore enumerating them is not a fea-
sible approach to performing analysis.

Instead, we demonstrate how properties can be decided by trans-
forming the abstracted CESK machine into an equivalent push-
down automaton. We then reduce higher-order control-flow anal-
ysis to deciding the non-emptiness of a language derived from the
PDA. (This language happens to be the intersection of a regular lan-
guage and the context-free language described by the PDA.) This
approach—though concise, precise and decidable—is formidably
expensive, with complexity doubly exponential in the size of the
program.

We simplify the algorithm to merely exponential in the size of
the input program by reducing the control-flow problem to push-
down reachability [Bouajjani et al. 1997]. Unfortunately, the ab-
stracted CESK machine has an exponential number of control states
with respect to the size of the program. Thus, pushdown reachabil-
ity for higher-order programs appears to be inherently exponential.

Noting that most control states in the abstracted CESK machine
are actually unreachable, we present a fixed-point algorithm for de-
ciding pushdown reachability that is polynomial-time in the num-
ber of reachable control states. Since the pushdown systems pro-
duced by abstracted CESK machines are sparse, such algorithms,
though exponential in the worst case, are reasonable options. Yet,
we can do better.

Next, we add an ε-closure graph (a graph encoding no-stack-
change reachability) and a work-list to the fixed-point algorithm.
Together, these lower the cost of finding the reachable states of a
pushdown system from O(|Γ|4m5) to O(|Γ|2m4), where Γ is the
stack alphabet and m is the number of reachable control states.

To drop the complexity of our analysis to polynomial-time in
the size of the input program, we must resort to both widening and
monovariance. Widening with a single-threaded store and using
a monovariant allocation strategy yields a pushdown control-flow
analysis with polynomial-time complexity, at O(n6), where n is
the size of the program.

Finally, we briefly highlight applications of pushdown control-
flow analyses that are outside the reach of classical ones, discuss
related work, and conclude.

2. Pushdown preliminaries
In this work, we make use of both pushdown systems and push-
down automata. (A pushdown automaton is a specific kind of push-
down system.) There are many (equivalent) definitions of these
machines in the literature, so we adapt our own definitions from

[Sipser 2005]. Even those familiar with pushdown theory may want
to skim this section to pick up our notation.

2.1 Syntactic sugar
When a triple (x, `, x′) is an edge in a labeled graph, a little
syntactic sugar aids presentation:

x
`

�x′ ≡ (x, `, x′).

Similarly, when a pair (x, x′) is a graph edge:

x � x′ ≡ (x, x′).

We use both string and vector notation for sequences:

a1a2 . . . an ≡ 〈a1, a2, . . . , an〉 ≡ ~a.

2.2 Stack actions, stack change and stack manipulation
Stacks are sequences over a stack alphabet Γ. Pushdown systems
do much stack manipulation, so to represent this more concisely,
we turn stack alphabets into “stack-action” sets; each character
represents a change to the stack: push, pop or no change.

For each character γ in a stack alphabet Γ, the stack-action set
Γ± contains a push character γ+ and a pop character γ−; it also
contains a no-stack-change indicator, ε:

g ∈ Γ± ::= ε [stack unchanged]
| γ+ for each γ ∈ Γ [pushed γ]
| γ− for each γ ∈ Γ [popped γ].

In this paper, the symbol g represents some stack action.

2.3 Pushdown systems
A pushdown system is a triple M = (Q,Γ, δ) where:

1. Q is a finite set of control states;

2. Γ is a stack alphabet; and

3. δ ⊆ Q× Γ± ×Q is a transition relation.

We use PDS to denote the class of all pushdown systems.
Unlike the more widely known pushdown automaton, a push-

down system does not recognize a language.

For the following definitions, let M = (Q,Γ, δ).

• The configurations of this machine—Configs(M)—are pairs
over control states and stacks:

Configs(M) = Q× Γ∗.

• The labeled transition relation (7−→M ) ⊆ Configs(M) ×
Γ± × Configs(M) determines whether one configuration may
transition to another while performing the given stack action:

(q,~γ)
ε7−→

M
(q′, ~γ) iff q

ε
� q′ ∈ δ [no change]

(q, γ : ~γ)
γ−7−→
M

(q′, ~γ) iff q
γ−
� q′ ∈ δ [pop]

(q,~γ)
γ+7−→
M

(q′, γ : ~γ) iff q
γ+
� q′ ∈ δ [push].

• If unlabelled, the transition relation (7−→) checks whether any
stack action can enable the transition:

c 7−→
M

c′ iff c
g7−→
M

c′ for some stack action g.

• For a string of stack actions g1 . . . gn:

c0
g1...gn7−→

M
cn iff c0

g17−→
M

c1
g27−→
M
· · ·

gn−17−→
M

cn−1
gn7−→
M

cn,

for some configurations c0, . . . , cn.
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• For the transitive closure:

c
∗7−→
M

c′ iff c
~g7−→
M

c′ for some action string ~g .

Note Some texts define the transition relation δ so that δ ⊆
Q×Γ×Q×Γ∗. In these texts, (q, γ, q′, ~γ) ∈ δ means, “if in control
state q while the character γ is on top, pop the stack, transition
to control state q′ and push ~γ.” Clearly, we can convert between
these two representations by introducing extra control states to our
representation when it needs to push multiple characters.

2.4 Rooted pushdown systems
A rooted pushdown system is a quadruple (Q,Γ, δ, q0) in which
(Q,Γ, δ) is a pushdown system and q0 ∈ Q is an initial (root) state.
RPDS is the class of all rooted pushdown systems.

For a rooted pushdown system M = (Q,Γ, δ, q0), we define a
the root-reachable transition relation:

c
g7−→−→
M

c′ iff (q0, 〈〉)
∗7−→
M

c and c
g7−→
M

c′.

In other words, the root-reachable transition relation also makes
sure that the root control state can actually reach the transition.

We overload the root-reachable transition relation to operate on
control states as well:

q
g7−→−→
M

q′ iff (q,~γ)
g7−→−→
M

(q′, ~γ ′) for some stacks ~γ,~γ ′.

For both root-reachable relations, if we elide the stack-action label,
then, as in the un-rooted case, the transition holds if there exists
some stack action that enables the transition:

q 7−→−→
M

q′ iff q
g7−→−→
M

q′ for some action g.

2.5 Pushdown automata
A pushdown automaton is a generalization of a rooted pushdown
system, a 7-tuple (Q,Σ,Γ, δ, q0, F,~γ) in which:

1. Σ is an input alphabet;

2. δ ⊆ Q× Γ± × (Σ ∪ {ε})×Q is a transition relation;

3. F ⊆ Q is a set of accepting states; and

4. ~γ ∈ Γ∗ is the initial stack.

We use PDA to denote the class of all pushdown automata.
Pushdown automata recognize languages over their input al-

phabet. To do so, their transition relation may optionally con-
sume an input character upon transition. Formally, a PDA M =
(Q,Σ,Γ, δ, q0, F,~γ) recognizes the language L(M) ⊆ Σ∗:

ε ∈ L(M) if q0 ∈ F
aw ∈ L(M) if δ(q0, γ+, a, q

′) and w ∈ L(Q,Σ,Γ, δ, q′, F, γ : ~γ)

aw ∈ L(M) if δ(q0, ε, a, q′) and w ∈ L(Q,Σ,Γ, δ, q′, F,~γ)

aw ∈ L(M) if δ(q0, γ−, a, q′) and w ∈ L(Q,Σ,Γ, δ, q′, F,~γ′)

where ~γ = 〈γ, γ2, . . . , γn〉 and ~γ′ = 〈γ2, . . . , γn〉,

where a is either the empty string ε or a single character.

3. Setting: A-Normal Form λ-calculus
Since our goal is to create pushdown control-flow analyses of
higher-order languages, we choose to operate on the λ-calculus.
For simplicity of the concrete and abstract semantics, we choose
to analyze programs in A-Normal Form, however this is strictly a
cosmetic choice; all of our results can be replayed mutatis mutandis
in a direct-style setting. ANF enforces an order of evaluation and it

requires that all arguments to a function be atomic:

e ∈ Exp ::= (let ((v call)) e) [non-tail call]
| call [tail call]
| æ [return]

f,æ ∈ Atom ::= v | lam [atomic expressions]
lam ∈ Lam ::= (λ (v) e) [lambda terms]
call ∈ Call ::= (f æ) [applications]
v ∈ Var is a set of identifiers [variables].

We use the CESK machine of Felleisen and Friedman [1987] to
specify the semantics of ANF. We have chosen the CESK machine
because it has an explicit stack, and under abstraction, the stack
component of our CESK machine will become the stack component
of a pushdown system.

First, we define a set of configurations (Conf ) for this machine:

c ∈ Conf = Exp× Env × Store ×Kont [configurations]
ρ ∈ Env = Var ⇀ Addr [environments]
σ ∈ Store = Addr → Clo [stores]
clo ∈ Clo = Lam× Env [closures]

κ ∈ Kont = Frame∗ [continuations]
φ ∈ Frame = Var × Exp× Env [stack frames]
a ∈ Addr is an infinite set of addresses [addresses].

To define the semantics, we need five items:

1. I : Exp→ Conf injects an expression into a configuration.

2. A : Atom×Env×Store ⇀ Clo evaluates atomic expressions.

3. E : Exp → P (Conf ) computes the set of reachable machine
configurations for a given program.

4. (⇒) ⊆ Conf × Conf transitions between configurations.

5. alloc : Var×Conf → Addr chooses fresh store addresses for
newly bound variables.

Program injection The program injection function pairs an ex-
pression with an empty environment, an empty store and an empty
stack to create the initial configuration:

c0 = I(e) = (e, [], [], 〈〉).

Atomic expression evaluation The atomic expression evaluator,
A : Atom × Env × Store ⇀ Clo, returns the value of an atomic
expression in the context of an environment and a store:

A(lam, ρ, σ) = (lam, ρ) [closure creation]
A(v, ρ, σ) = σ(ρ(v)) [variable look-up].

Reachable configurations The evaluator E : Exp → P (Conf )
returns all configurations reachable from the initial configuration:

E(e) = {c : I(e)⇒∗ c} .

Transition relation To define the transition c⇒ c′, we need three
rules. The first rule handles tail calls by evaluating the function into
a closure, evaluating the argument into a value and then moving to
the body of the λ-term within the closure:

cz }| {
([[(f æ)]], ρ, σ, κ)⇒

c′z }| {
(e, ρ′′, σ′, κ) , where

([[(λ (v) e)]], ρ′) = A(f, ρ, σ)

a = alloc(v, c)

ρ′′ = ρ′[v 7→ a]

σ′ = σ[a 7→ A(æ, ρ, σ)].
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Non-tail call pushes a frame onto the stack and evaluates the call:
cz }| {

([[(let ((v call)) e)]], ρ, σ, κ)⇒

c′z }| {
(call , ρ, σ, (v, e, ρ) : κ) .

Function return pops a stack frame:
cz }| {

(æ, ρ, σ, (v, e, ρ′) : κ)⇒

c′z }| {
(e, ρ′′, σ′, κ) , where

a = alloc(v, c)

ρ′′ = ρ′[v 7→ a]

σ′ = σ[a 7→ A(æ, ρ, σ)].

Allocation The address-allocation function is an opaque param-
eter in this semantics. We have done this so that the forthcoming
abstract semantics may also parameterize allocation, and in so do-
ing provide a knob to tune the polyvariance and context-sensitivity
of the resulting analysis. For the sake of defining the concrete se-
mantics, letting addresses be natural numbers suffices, and then the
allocator can choose the lowest unused address:

Addr = N
alloc(v, (e, ρ, σ, κ)) = 1 + max(dom(σ)).

4. An infinite-state abstract interpretation
Our goal is to statically bound the higher-order control-flow of the
CESK machine of the previous section. So, we are going to conduct
an abstract interpretation.

Since we are concerned with return-flow precision, we are go-
ing to abstract away less information than we normally would.
Specifically, we are going to construct an infinite-state abstract in-
terpretation of the CESK machine by leaving its stack unabstracted.
(With an infinite-state abstraction, the usual approach for comput-
ing the static analysis—exploring the abstract configurations reach-
able from some initial configuration—simply will not work. Sub-
sequent sections focus on finding an algorithm that can compute a
finite representation of the reachable abstract configurations of the
abstracted CESK machine.)

For the abstract interpretation of the CESK machine, we need
an abstract configuration-space (Figure 1). To construct one, we
force addresses to be a finite set, but crucially, we leave the stack
untouched. When we compact the set of addresses into a finite
set, the machine may run out of addresses to allocate, and when
it does, the pigeon-hole principle will force multiple closures to
reside at the same address. As a result, we have no choice but to
force the range of the store to become a power set in the abstract
configuration-space. To construct the abstract transition relation,
we need five components analogous to those from the concrete
semantics.

Program injection The abstract injection function Î : Exp →
Ĉonf pairs an expression with an empty environment, an empty
store and an empty stack to create the initial abstract configuration:

ĉ0 = Î(e) = (e, [], [], 〈〉).

Atomic expression evaluation The abstract atomic expression
evaluator, Â : Atom× dEnv × Ŝtore → P(dClo), returns the value
of an atomic expression in the context of an environment and a
store; note how it returns a set:

Â(lam, ρ̂, σ̂) = {(lam, ρ)} [closure creation]

Â(v, ρ̂, σ̂) = σ̂(ρ̂(v)) [variable look-up].

Reachable configurations The abstract program evaluator Ê :

Exp → P(Ĉonf ) returns all of the configurations reachable from

ĉ ∈ Ĉonf = Exp× dEnv × Ŝtore × K̂ont [configurations]

ρ̂ ∈ dEnv = Var ⇀ Âddr [environments]

σ̂ ∈ Ŝtore = Âddr → P
“dClo

”
[stores]cclo ∈ dClo = Lam× dEnv [closures]

κ̂ ∈ K̂ont = F̂rame
∗

[continuations]

φ̂ ∈ F̂rame = Var × Exp× dEnv [stack frames]

â ∈ Âddr is a finite set of addresses [addresses].

Figure 1. The abstract configuration-space.

the initial configuration:

Ê(e) =
n
ĉ : Î(e) ;

∗ ĉ
o

.

Because there are an infinite number of abstract configurations,
a naı̈ve implementation of this function may not terminate. In
Sections 5 through 8, we show that there is a way to compute a
finite representation of this set.

Transition relation The abstract transition relation (;) ⊆
Ĉonf × Ĉonf has three rules, one of which has become non-
deterministic. A tail call may fork because there could be multiple
abstract closures that it is invoking:

ĉz }| {
([[(f æ)]], ρ̂, σ̂, κ̂) ;

ĉ′z }| {
(e, ρ̂′′, σ̂′, κ̂) , where

([[(λ (v) e)]], ρ̂′) ∈ Â(f, ρ̂, σ̂)

â = âlloc(v, ĉ)

ρ̂′′ = ρ̂′[v 7→ â]

σ̂′ = σ̂ t [â 7→ Â(æ, ρ̂, σ̂)].

We define all of the partial orders shortly, but for stores:

(σ̂ t σ̂′)(â) = σ̂(â) ∪ σ̂′(â).

A non-tail call pushes a frame onto the stack and evaluates the call:
ĉz }| {

([[(let ((v call)) e)]], ρ̂, σ̂, κ̂) ;

ĉ′z }| {
(call , ρ̂, σ̂, (v, e, ρ̂) : κ̂) .

A function return pops a stack frame:
ĉz }| {

(æ, ρ̂, σ̂, (v, e, ρ̂′) : κ̂) ;

ĉ′z }| {
(e, ρ̂′′, σ̂′, κ̂) , where

â = âlloc(v, ĉ)

ρ̂′′ = ρ̂′[v 7→ â]

σ̂′ = σ̂ t [â 7→ Â(æ, ρ̂, σ̂)].

Allocation, polyvariance and context-sensitivity In the abstract
semantics, the abstract allocation function âlloc : Var × Ĉonf →
Âddr determines the polyvariance of the analysis (and, by exten-
sion, its context-sensitivity). In a control-flow analysis, polyvari-
ance literally refers to the number of abstract addresses (variants)
there are for each variable. By selecting the right abstract allocation
function, we can instantiate pushdown versions of classical flow
analyses.

Monovariance: Pushdown 0CFA Pushdown 0CFA uses variables
themselves for abstract addresses:
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Âddr = Var

alloc(v, ĉ) = v.

Context-sensitive: Pushdown 1CFA Pushdown 1CFA pairs the
variable with the current expression to get an abstract address:

Âddr = Var × Exp

alloc(v, (e, ρ̂, σ̂, κ̂)) = (v, e).

Polymorphic splitting: Pushdown poly/CFA Assuming we com-
piled the program from a programming language with let-bound
polymorphism and marked which functions were let-bound, we can
enable polymorphic splitting:

Âddr = Var + Var × Exp

alloc(v, ([[(f æ)]], ρ̂, σ̂, κ̂)) =

(
(v, [[(f æ)]]) f is let-bound
v otherwise.

Pushdown k-CFA For pushdown k-CFA, we need to look beyond
the current state and at the last k states. By concatenating the
expressions in the last k states together, and pairing this sequence
with a variable we get pushdown k-CFA:

Âddr = Var × Expk

âlloc(v, 〈(e1, ρ̂1, σ̂1, κ̂1), . . .〉) = (v, 〈e1, . . . , ek〉).

4.1 Partial orders
For each set X̂ inside the abstract configuration-space, we use the
natural partial order, (vX̂) ⊆ X̂ × X̂ . Abstract addresses and
syntactic sets have flat partial orders. For the other sets:

• The partial order lifts point-wise over environments:

ρ̂ v ρ̂′ iff ρ̂(v) = ρ̂′(v) for all v ∈ dom(ρ̂).

• The partial orders lifts component-wise over closures:

(lam, ρ̂) v (lam, ρ̂′) iff ρ̂ v ρ̂′.

• The partial order lifts point-wise over stores:

σ̂ v σ̂′ iff σ̂(â) v σ̂′(â) for all â ∈ dom(σ̂).

• The partial order lifts component-wise over frames:

(v, e, ρ̂) v (v, e, ρ̂′) iff ρ̂ v ρ̂′.

• The partial order lifts element-wise over continuations:

〈φ̂1, . . . , φ̂n〉 v 〈φ̂′1, . . . , φ̂′n〉 iff φ̂i v φ̂′i.

• The partial order lifts component-wise across configurations:

(e, ρ̂, σ̂, κ̂) v (e, ρ̂′, σ̂′, κ̂′) iff ρ̂ v ρ̂′ and σ̂ v σ̂′ and κ̂ v κ̂′.

4.2 Soundness
To prove soundness, we need an abstraction map α that connects
the concrete and abstract configuration-spaces:

α(e, ρ, σ, κ) = (e, α(ρ), α(σ), α(κ))

α(ρ) = λv.α(ρ(v))

α(σ) = λâ.
G

α(a)=â

{α(σ(a))}

α〈φ1, . . . , φn〉 = 〈α(φ1), . . . , α(φn)〉
α(v, e, ρ) = (v, e, α(ρ))

α(a) is determined by the allocation functions.

P̂DA(e) = (Q,Σ,Γ, δ, q0, F, 〈〉), where

Q = Exp× dEnv × Ŝtore

Σ = Q

Γ = F̂rame

(q, ε, q′, q′) ∈ δ iff (q, κ̂) ; (q′, κ̂) for all κ̂

(q, φ̂−, q
′, q′) ∈ δ iff (q, φ̂ : κ̂) ; (q′, κ̂) for all κ̂

(q, φ̂′+, q
′, q′) ∈ δ iff (q, κ̂) ; (q′, φ̂′ : κ̂) for all κ̂

(q0, 〈〉) = Î(e)
F = Q.

Figure 2. P̂DA : Exp→ PDA.

It is easy to prove that the abstract transition relation simulates
the concrete transition relation:

Theorem 4.1. If:

α(c) v ĉ and c⇒ c′,

then there must exist ĉ′ ∈ Ĉonf such that:

α(c′) v ĉ′ and ĉ⇒ ĉ′.

Proof. The proof follows by case-wise analysis on the type of the
expression in the configuration. It is a straightforward adaptation of
similar proofs, such as that of Might [2007] for k-CFA.

5. From the abstracted CESK machine to a PDA
In the previous section, we constructed an infinite-state abstract
interpretation of the CESK machine. The infinite-state nature of the
abstraction makes it difficult to see how to answer static analysis
questions. Consider, for instance, a control flow-question:

At the call site (f æ), may a closure over lam be called?

If the abstracted CESK machine were a finite-state machine, an
algorithm could answer this question by enumerating all reach-
able configurations and looking for an abstract configuration
([[(f æ)]], ρ̂, σ̂, κ̂) in which (lam, ) ∈ Â(f, ρ̂, σ̂). However, be-
cause the abstracted CESK machine may contain an infinite number
of reachable configurations, an algorithm cannot enumerate them.

Fortunately, we can recast the abstracted CESK as a special
kind of infinite-state system: a pushdown automaton (PDA). Push-
down automata occupy a sweet spot in the theory of computation:
they have an infinite configuration-space, yet many useful proper-
ties (e.g. word membership, non-emptiness, control-state reacha-
bility) remain decidable. Once the abstracted CESK machine be-
comes a PDA, we can answer the control-flow question by check-
ing whether a specific regular language, when intersected with the
language of the PDA, turns into the empty language.

The recasting as a PDA is a shift in perspective. A configura-
tion has an expression, an environment and a store. A stack char-
acter is a frame. We choose to make the alphabet the set of control
states, so that the language accepted by the PDA will be sequences
of control-states visited by the abstracted CESK machine. Thus,
every transition will consume the control-state to which it transi-
tioned as an input character. Figure 2 defines the program-to-PDA
conversion function P̂DA : Exp → PDA. (Note the implicit use
of the isomorphism Q× K̂ont ∼= Ĉonf .)

At this point, we can answer questions about whether a speci-
fied control state is reachable by formulating a question about the
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intersection of a regular language with a context-free language de-
scribed by the PDA. That is, if we want to know whether the control
state (e′, ρ̂, σ̂) is reachable in a program e, we can reduce the prob-
lem to determining:

Σ∗ ·
˘
(e′, ρ̂, σ̂)

¯
· Σ∗ ∩ L(P̂DA(e)) 6= ∅,

where L1 ·L2 is the concatenation of formal languages L1 and L2.

Theorem 5.1. Control-state reachability is decidable.

Proof. The intersection of a regular language and a context-free
language is context-free. The emptiness of a context-free language
is decidable.

Now, consider how to use control-state reachability to answer
the control-flow question from earlier. There are a finite number of
possible control states in which the λ-term lam may flow to the
function f in call site (f æ); let’s call the this set of states Ŝ:

Ŝ =
n

([[(f æ)]], ρ̂, σ̂) : (lam, ρ̂′) ∈ Â(f, ρ̂, σ̂) for some ρ̂′
o

.

What we want to know is whether any state in the set Ŝ is reachable
in the PDA. In effect what we are asking is whether there exists a
control state q ∈ Ŝ such that:

Σ∗ · {q} · Σ∗ ∩ L(P̂DA(e)) 6= ∅.
If this is true, then lam may flow to f ; if false, then it does not.

Problem: Doubly exponential complexity The non-emptiness-
of-intersection approach establishes decidability of pushdown
control-flow analysis. But, two exponential complexity barriers
make this technique impractical.

First, there are an exponential number of both environments
(|Âddr ||Var|) and stores (2|dClo|×|Âddr|) to consider for the set Ŝ. On
top of that, computing the intersection of a regular language with a
context-free language will require enumeration of the (exponential)
control-state-space of the PDA. As a result, this approach is doubly
exponential. For the next few sections, our goal will be to lower the
complexity of pushdown control-flow analysis.

6. Focusing on reachability
In the previous section, we saw that control-flow analysis reduces
to the reachability of certain control states within a pushdown sys-
tem. We also determined reachability by converting the abstracted
CESK machine into a PDA, and using emptiness-testing on a lan-
guage derived from that PDA. Unfortunately, we also found that
this approach is deeply exponential.

Since control-flow analysis reduced to the reachability of
control-states in the PDA, we skip the language problems and go
directly to reachability algorithms of Bouajjani et al. [1997], Ko-
dumal and Aiken [2004], Reps [1998] and Reps et al. [2005] that
determine the reachable configurations within a pushdown system.
These algorithms are even polynomial-time. Unfortunately, some
of them are polynomial-time in the number of control states, and
in the abstracted CESK machine, there are an exponential number
of control states. We don’t want to enumerate the entire control
state-space, or else the search becomes exponential in even the best
case.

To avoid this worst-case behavior, we present a straightforward
pushdown-reachability algorithm that considers only the reachable
control states. We cast our reachability algorithm as a fixed-point
iteration, in which we incrementally construct the reachable subset
of a pushdown system. We term these algorithms “iterative Dyck
state graph construction.”

A Dyck state graph is a compacted, rooted pushdown system
G = (S,Γ, E, s0), in which:

1. S is a finite set of nodes;

2. Γ is a set of frames;

3. E ⊆ S × Γ± × S is a set of stack-action edges; and

4. s0 is an initial state;

such that for any node s ∈ S, it must be the case that:

(s0, 〈〉)
∗7−→
G

(s,~γ) for some stack ~γ.

In other words, a Dyck state graph is equivalent to a rooted push-
down system in which there is a legal path to every control state
from the initial control state.2

We use DSG to denote the class of Dyck state graphs. Clearly:

DSG ⊂ RPDS.

A Dyck state graph is a rooted pushdown system with the “fat”
trimmed off; in this case, unreachable control states and unreach-
able transitions are the “fat.”

We can formalize the connection between rooted pushdown
systems and Dyck state graphs with a map:

DSG : RPDS→ DSG.

Given a rooted pushdown system M = (Q,Γ, δ, q0), its equivalent
Dyck state graph is DSG(M) = (S,Γ, E, q0), where the set S
contains reachable nodes:

S =
n
q : (q0, 〈〉)

∗7−→
M

(q,~γ) for some stack ~γ
o

,

and the set E contains reachable edges:

E =
n
q

g
� q′ : q

g7−→−→
M

q′
o

,

and s0 = q0.
In practice, the real difference between a rooted pushdown sys-

tem and a Dyck state graph is that our rooted pushdown system will
be defined intensionally (having come from the components of an
abstracted CESK machine), whereas the Dyck state graph will be
defined extensionally, with the contents of each component explic-
itly enumerated during its construction.

Our near-term goals are (1) to convert our abstracted CESK
machine into a rooted pushdown system and (2) to find an efficient
method for computing an equivalent Dyck state graph from a rooted
pushdown system.

To convert the abstracted CESK machine into a rooted push-
down system, we use the function R̂PDS : Exp→ RPDS:

R̂PDS(e) = (Q,Γ, δ, q0)

Q = Exp× dEnv × Ŝtore

Γ = F̂rame

q
ε

� q′ ∈ δ iff (q, κ̂) ; (q′, κ̂) for all κ̂

q
φ̂−
� q′ ∈ δ iff (q, φ̂ : κ̂) ; (q′, κ̂) for all κ̂

q
φ̂+
� q′ ∈ δ iff (q, κ̂) ; (q′, φ̂ : κ̂) for all κ̂

(q0, 〈〉) = Î(e).

7. Compacting rooted pushdown systems
We now turn our attention to compacting a rooted pushdown system
(defined intensionally) into a Dyck state graph (defined extension-

2 We chose the term Dyck state graph because the sequences of stack
actions along valid paths through the graph correspond to substrings in
Dyck languages. A Dyck language is a language of balanced, “colored”
parentheses. In this case, each character in the stack alphabet is a color.
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ally). That is, we want to find an implementation of the function
DSG. To do so, we first phrase the Dyck state graph construction
as the least fixed point of a monotonic function. This will provide a
method (albeit an inefficient one) for computing the functionDSG.
In the next section, we look at an optimized work-list driven algo-
rithm that avoids the inefficiencies of this version.

The function F : RPDS → (DSG → DSG) generates the
monotonic iteration function we need:

F(M) = f , where
M = (Q,Γ, δ, q0)

f(S,Γ, E, s0) = (S′,Γ, E′, s0), where

S′ = S ∪
n
s′ : s ∈ S and s 7−→−→

M
s′

o
∪ {s0}

E′ = E ∪
n
s

g
� s′ : s ∈ S and s

g7−→−→
M

s′
o

.

Given a rooted pushdown system M , each application of the func-
tion F(M) accretes new edges at the frontier of the Dyck state
graph. Once the algorithm reaches a fixed point, the Dyck state
graph is complete:

Theorem 7.1. DSG(M) = lfp(F(M)).

Proof. Let M = (Q,Γ, δ, q0). Let f = F(M). Observe that
lfp(f) = fn(∅,Γ, ∅, q0) for some n. When N ⊆ M , then it easy
to show that f(N) ⊆M . Hence, DSG(M) ⊇ lfp(F(M)).

To show DSG(M) ⊆ lfp(F(M)), suppose this is not the case.
Then, there must be at least one edge in DSG(M) that is not in
lfp(F(M)). Let (s, g, s′) be one such edge, such that the state s
is in lfp(F(M)). Let m be the lowest natural number such that s
appears in fm(M). By the definition of f , this edge must appear in
fm+1(M), which means it must also appear in lfp(F(M)), which
is a contradiction. Hence, DSG(M) ⊆ lfp(F(M)).

7.1 Complexity: Polynomial and exponential
To determine the complexity of this algorithm, we ask two ques-
tions: how many times would the algorithm invoke the iteration
function in the worst case, and how much does each invocation cost
in the worst case? The size of the final Dyck state graph bounds the
run-time of the algorithm. Suppose the final Dyck state graph has
m states. In the worst case, the iteration function adds only a single
edge each time. Since there are at most 2|Γ|m2 +m2 edges in the
final graph, the maximum number of iterations is 2|Γ|m2 +m2.

The cost of computing each iteration is harder to bound. The
cost of determining whether to add a push edge is proportional to
the size of the stack alphabet, while the cost of determining whether
to add an ε-edge is constant, so the cost of determining all new push
and pop edges to add is proportional to |Γ|m + m. Determining
whether or not to add a pop edge is expensive. To add the pop edge
s �γ− s′, we must prove that there exists a configuration-path
to the control state s, in which the character γ is on the top of the
stack. This reduces to a CFL-reachability query [Melski and Reps
2000] at each node, the cost of which is O(|Γ±|3m3) [Kodumal
and Aiken 2004].

To summarize, in terms of the number of reachable control
states, the complexity of the most recent algorithm is:

O((2|Γ|m2 +m2)× (|Γ|m+m+ |Γ±|3m3)) = O(|Γ|4m5).

While this approach is polynomial in the number of reachable
control states, it is far from efficient. In the next section, we provide
an optimized version of this fixed-point algorithm that maintains a
work-list and an ε-closure graph to avoid spurious recomputation.

8. Efficiency: Work-lists and ε-closure graphs
We have developed a fixed-point formulation of the Dyck state
graph construction algorithm, but found that, in each iteration, it
wasted effort by passing over all discovered states and edges, even
though most will not contribute new states or edges. Taking a cue
from graph search, we can adapt the fixed-point algorithm with a
work-list. That is, our next algorithm will keep a work-list of new
states and edges to consider, instead of reconsidering all of them.
In each iteration, it will pull new states and edges from the work
list, insert them into the Dyck state graph and then populate the
work-list with new states and edges that have to be added as a
consequence of the recent additions.

8.1 ε-closure graphs
Figuring out what edges to add as a consequence of another edge
requires care, for adding an edge can have ramifications on distant
control states. Consider, for example, adding the ε-edge q�ε q′

into the following graph:

q0
γ+ // q q′

γ− // q1

As soon this edge drops in, an ε-edge “implicitly” appears between
q0 and q1 because the net stack change between them is empty; the
resulting graph looks like:

q0
γ+ //

ε

���
m h e b _ \ Y V Q

<

q ε // q′
γ− // q1

where we have illustrated the implicit ε-edge as a dotted line.
To keep track of these implicit edges, we will construct a sec-

ond graph in conjunction with the Dyck state graph: an ε-closure
graph. In the ε-closure graph, every edge indicates the existence of
a no-net-stack-change path between control states. The ε-closure
graph simplifies the task of figuring out which states and edges are
impacted by the addition of a new edge.

Formally, an ε-closure graph, is a pairGε = (N,H), whereN
is a set of states, and H ⊆ N ×N is a set of edges. Of course, all
ε-closure graphs are reflexive: every node has a self loop. We use
the symbol ECG to denote the class of all ε-closure graphs.

We have two notations for finding ancestors and descendants of
a state in an ε-closure graph Gε = (N,H):

←−
G ε[s] =

˘
s′ : (s′, s) ∈ H

¯
[ancestors]

−→
G ε[s] =

˘
s′ : (s, s′) ∈ H

¯
[descendants].

8.2 Integrating a work-list
Since we only want to consider new states and edges in each
iteration, we need a work-list, or in this case, two work-graphs.
A Dyck state work-graph is a pair (∆S,∆E) in which the set ∆S
contains a set of states to add, and the set ∆E contains edges to be
added to a Dyck state graph.3 We use ∆DSG to refer to the class
of all Dyck state work-graphs.

An ε-closure work-graph is a set ∆H of new ε-edges. We use
∆ECG to refer to the class of all ε-closure work-graphs.

8.3 A new fixed-point iteration-space
Instead of consuming a Dyck state graph and producing a Dyck
state graph, the new fixed-point iteration function will consume and
produce a Dyck state graph, an ε-closure graph, a Dyck state work-
graph and an ε-closure work graph. Hence, the iteration space of

3 Technically, a work-graph is not an actual graph, since ∆E 6⊆ ∆S ×
Γ± ×∆S; a work-graph is just a set of nodes and a set of edges.
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F ′(M) = f , where

M = (Q,Γ, δ, q0)

f(G,Gε,∆G,∆H) = (G′, G′
ε,∆G

′,∆H ′ −H), where

(S,Γ, E, s0) = G

(S,H) = Gε

(∆S,∆E) = ∆G

(∆E0,∆H0) =
[

s∈∆S

sproutM (s)

(∆E1,∆H1) =
[

(s,γ+,s′)∈∆E

addPushM (G,Gε)(s, γ+, s
′)

(∆E2,∆H2) =
[

(s,γ−,s′)∈∆E

addPopM (G,Gε)(s, γ−, s
′)

(∆E3,∆H3) =
[

(s,ε,s′)∈∆E

addEmptyM (G,Gε)(s, s
′)

(∆E4,∆H4) =
[

(s,s′)∈∆H

addEmptyM (G,Gε)(s, s
′)

S′ = S ∪∆S

E′ = E ∪∆E

H ′ = H ∪∆H

∆E′ = ∆E0 ∪∆E1 ∪∆E2 ∪∆E3 ∪∆E4

∆S′ =
˘
s′ : (s, g, s′) ∈ ∆E′¯

∆H ′ = ∆H0 ∪∆H1 ∪∆H2 ∪∆H3 ∪∆H4

G′ = (S ∪∆S,Γ, E′, q0)

G′
ε = (S′, H ′)

∆G′ = (∆S′ − S′,∆E′ − E′).

Figure 3. The fixed point of the function F ′(M) contains the
Dyck state graph of the rooted pushdown system M .

the new algorithm is:

IDSG = DSG× ECG×∆DSG×∆ECG.

(The I in IDSG stands for intermediate.)

8.4 The ε-closure graph work-list algorithm
The function F ′ : RPDS → (IDSG → IDSG) generates the
required iteration function (Figure 3). Please note that we implicitly
distribute union across tuples:

(X,Y ) ∪ (X ′, Y ′) = (X ∪X,Y ∪ Y ′).

The functions sprout , addPush , addPop, addEmpty calculate
the additional the Dyck state graph edges and ε-closure graph edges
(potentially) introduced by a new state or edge.

Sprouting Whenever a new state gets added to the Dyck state
graph, the algorithm must check whether that state has any new
edges to contribute. Both push edges and ε-edges do not depend
on the current stack, so any such edges for a state in the pushdown
system’s transition function belong in the Dyck state graph. The
sprout function:

sprout(Q,Γ,δ) : Q→ (P (δ)× P (Q×Q)),

checks whether a new state could produce any new push edges or
no-change edges. We can represent its behavior diagrammatically:�� ���� ��s

ε

δ

��

γ+

δ ��
q′ q′′

which means if adding control state s:

add edge s �ε q′ if it exists in δ, and

add edge s �γ+ q′′ if it exists in δ.

Formally:

sprout(Q,Γ,δ)(s) = (∆E,∆H), where

∆E =
n
s

ε
� q : s

ε
� q ∈ δ

o
∪


s

γ+
� q : s

γ+
� q ∈ δ

ff
∆H =

n
s � q : s

ε
� q ∈ δ

o
.

Considering the consequences of a new push edge Once our
algorithm adds a new push edge to a Dyck state graph, there is
a chance that it will enable new pop edges for the same stack frame
somewhere downstream. If and when it does enable pops, it will
also add new edges to the ε-closure graph. The addPush function:

addPush(Q,Γ,δ) : DSG× ECG→ δ → (P (δ)× P (Q×Q)),

checks for ε-reachable states that could produce a pop. We can
represent this action diagrammatically:

�� ���� ��s γ+ //

ε

ε

GG
�� ���� ��q ε

ε
// q′

γ−

δ
// q′′

which means if adding push-edge s �γ+ q:

if pop-edge q′ �γ− q′′ is in δ, then

add edge q′ �γ− q′′, and

add ε-edge s � q′′.

Formally:

addPush(Q,Γ,δ)(G,Gε)(s
γ+
� q) = (∆E,∆H), where

∆E =


q′

γ−
� q′′ : q′ ∈

−→
G ε[q] and q′

γ−
� q′′ ∈ δ

ff
∆H =


s � q′′ : q′ ∈

−→
G ε[q] and q′

γ−
� q′′ ∈ δ

ff
.

Considering the consequences of a new pop edge Once the al-
gorithm adds a new pop edge to a Dyck state graph, it will create at
least one new ε-closure graph edge and possibly more by matching
up with upstream pushes. The addPop function:

addPop(Q,Γ,δ) : DSG× ECG→ δ → (P (δ)× P (Q×Q)),

checks for ε-reachable push-edges that could match this pop-edge.
We can represent this action diagrammatically:

s
γ+ //

ε

ε

IIs′
ε

ε
//
�� ���� ��s′′

γ−

δ
//�� ���� ��q

which means if adding pop-edge s′′ �γ− q:

if push-edge s �γ+ s′ is already in the Dyck state graph, then
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add ε-edge s � q.

Formally:

addPop(Q,Γ,δ)(G,Gε)(s
′′ γ−

� q) = (∆E,∆H), where

∆E = ∅ and ∆H =


s � q : s′ ∈

←−
G ε[s

′′] and s
γ+
� s′ ∈ G

ff
.

Considering the consequences of a new ε-edge Once the algo-
rithm adds a new ε-closure graph edge, it may transitively have to
add more ε-closure graph edges, and it may connect an old push to
(perhaps newly enabled) pop edges. The addEmpty function:

addEmpty(Q,Γ,δ) :
DSG× ECG→ (Q×Q)→ (P (δ)× P (Q×Q)),

checks for newly enabled pops and ε-closure graph edges: Once
again, we can represent this action diagrammatically:

s
γ+ //

@A BC
ε

ε

OOs′
ε

ε
//

ε

ε

��

ε

ε

GG
�� ���� ��s′′

ε //

ε

ε

���� ���� ��s′′′
ε

ε
// s′′′′

γ−

δ
// q

which means if adding ε-edge s′′ � s′′′:

if pop-edge s′′′′ �γ− q is in δ, then

add ε-edge s � q; and

add edge s′′′′ �γ− q;

add ε-edges s′ � s′′′, s′′ � s′′′′, and s′ � s′′′′.

Formally:

addEmpty(Q,Γ,δ)(G,Gε)(s
′′ � s′′′) = (∆E,∆H), where

∆E =
˘
s′′′′

γ−
� q : s′ ∈

←−
G ε[s

′′] and s′′′′ ∈
−→
G ε[s

′′′] and

s
γ+
� s′ ∈ G

¯
∆H =

˘
s � q : s′ ∈

←−
G ε[s

′′] and s′′′′ ∈
−→
G ε[s

′′′] and

s
γ+
� s′ ∈ G

¯
∪

n
s′ � s′′′ : s′ ∈

←−
G ε[s

′′]
o

∪
n
s′′ � s′′′′ : s′′′′ ∈

−→
G ε[s

′′′]
o

∪
n
s′ � s′′′′ : s′ ∈

←−
G ε[s

′′] and s′′′′ ∈
−→
G ε[s

′′′]
o

.

8.5 Termination and correctness
Because the iteration function is no longer monotonic, we have to
prove that a fixed point exists. It is trivial to show that the Dyck state
graph component of the iteration-space ascends monotonically with
each application; that is:

Lemma 8.1. Given M ∈ RPDS, G ∈ DSG such that G ⊆ M , if
F ′(M)(G,Gε,∆G) = (G′, G′

ε,∆G
′), then G ⊆ G′.

Since the size of the Dyck state graph is bounded by the original
pushdown system M , the Dyck state graph will eventually reach a
fixed point. Once the Dyck state graph reaches a fixed point, both
work-graphs/sets will be empty, and the ε-closure graph will also
stabilize. We can also show that this algorithm is correct:

Theorem 8.1. lfp(F ′(M)) = (DSG(M), Gε, (∅, ∅), ∅).

Proof. The proof is similar in structure to the previous one.

8.6 Complexity: Still exponential, but more efficient
As with the previous algorithm, to determine the complexity of
this algorithm, we ask two questions: how many times would the
algorithm invoke the iteration function in the worst case, and how
much does each invocation cost in the worst case? The run-time of
the algorithm is bounded by the size of the final Dyck state graph
plus the size of the ε-closure graph. Suppose the final Dyck state
graph has m states. In the worst case, the iteration function adds
only a single edge each time. There are at most 2|Γ|m2+m2 edges
in the Dyck state graph and at mostm2 edges in the ε-closure graph,
which bounds the number of iterations.

Next, we must reason about the worst-case cost of adding an
edge: how many edges might an individual iteration consider? In
the worst case, the algorithm will consider every edge in every
iteration, leading to an asymptotic time-complexity of:

O((2|Γ|m2 + 2m2)2) = O(|Γ|2m4).

While still high, this is a an improvement upon the previous algo-
rithm. For sparse Dyck state graphs, this is a reasonable algorithm.

9. Polynomial-time complexity from widening
In the previous section, we developed a more efficient fixed-point
algorithm for computing a Dyck state graph. Even with the core
improvements we made, the algorithm remained exponential in the
worst case, owing to the fact that there could be an exponential
number of reachable control states. When an abstract interpreta-
tion is intolerably complex, the standard approach for reducing
complexity and accelerating convergence is widening [Cousot and
Cousot 1977]. (Of course, widening techniques trade away some
precision to gain this speed.) It turns out that the small-step variants
of finite-state CFAs are exponential without some sort of widening
as well.

To achieve polynomial time complexity for pushdown control-
flow analysis requires the same two steps as the classical case:
(1) widening the abstract interpretation to use a global, “single-
threaded” store and (2) selecting a monovariant allocation function
to collapse the abstract configuration-space. Widening eliminates a
source of exponentiality in the size of the store; monovariance elim-
inates a source of exponentiality from environments. In this section,
we redevelop the pushdown control-flow analysis framework with
a single-threaded store and calculate its complexity.

9.1 Step 1: Refactor the concrete semantics
First, consider defining the reachable states of the concrete seman-
tics using fixed points. That is, let the system-space of the evalua-
tion function be sets of configurations:

C ∈ System = P (Conf ) = P (Exp× Env × Store ×Kont).

We can redefine the concrete evaluation function:

E(e) = lfp(fe), where fe : System → System and

fe(C) = {I(e)} ∪
˘
c′ : c ∈ C and c⇒ c′

¯
.

9.2 Step 2: Refactor the abstract semantics
We can take the same approach with the abstract evaluation func-
tion, first redefining the abstract system-space:

Ĉ ∈ Ŝystem = P
“
Ĉonf

”
= P

“
Exp× dEnv × Ŝtore × K̂ont

”
,
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and then the abstract evaluation function:

Ê(e) = lfp(f̂e), where f̂e : Ŝystem → Ŝystem and

f̂e(Ĉ) =
n
Î(e)

o
∪

n
ĉ′ : ĉ ∈ Ĉ and ĉ ; ĉ′

o
.

What we’d like to do is shrink the abstract system-space with a
refactoring that corresponds to a widening.

9.3 Step 3: Single-thread the abstract store
We can approximate a set of abstract stores {σ̂1, . . . , σ̂n} with
the least-upper-bound of those stores: σ̂1 t · · · t σ̂n. We can
exploit this by creating a new abstract system space in which the
store is factored out of every configuration. Thus, the system-space
contains a set of partial configurations and a single global store:

Ŝystem
′
= P

“
P̂Conf

”
× Ŝtore

π̂ ∈ P̂Conf = Exp× dEnv × K̂ont .

We can factor the store out of the abstract transition relation as well,
so that (_σ̂) ⊆ P̂Conf × (P̂Conf × Ŝtore):

(e, ρ̂, κ̂)
σ̂
_ ((e′, ρ̂′, κ̂′), σ̂′) iff (e, ρ̂, σ̂, κ̂) ; (e′, ρ̂′, σ̂′, κ̂′),

which gives us a new iteration function, f̂ ′e : Ŝystem
′
→ Ŝystem

′
,

f̂ ′e(P̂ , σ̂) = (P̂ ′, σ̂′), where

P̂ ′ =


π̂′ : π̂

σ̂
_ (π̂′, σ̂′′)

ff
∪ {π̂0}

σ̂′ =
G 

σ̂′′ : π̂
σ̂
_ (π̂′, σ̂′′)

ff
(π̂0, 〈〉) = Î(e).

9.4 Step 4: Dyck state control-flow graphs
Following the earlier Dyck state graph reformulation of the push-
down system, we can reformulate the set of partial configurations as
a Dyck state control-flow graph. A Dyck state control-flow graph
is a frame-action-labeled graph over partial control states, and a
partial control state is an expression paired with an environment:

Ŝystem
′′

= D̂SCFG × Ŝtore

D̂SCFG = P(P̂State)× P(P̂State × F̂rame± × P̂State)

ψ̂ ∈ P̂State = Exp× dEnv .

In a Dyck state control-flow graph, the partial control states are
partial configurations which have dropped the continuation com-
ponent; the continuations are encoded as paths through the graph.

If we wanted to do so, we could define a new monotonic iter-
ation function analogous to the simple fixed-point formulation of
Section 7:

f̂e : Ŝystem
′′
→ Ŝystem

′′
,

again using CFL-reachability to add pop edges at each step.

A preliminary analysis of complexity Even without defining the
system-space iteration function, we can ask, How many iterations
will it take to reach a fixed point in the worst case? This question
is really asking, How many edges can we add? And, How many
entries are there in the store? Summing these together, we arrive at
the worst-case number of iterations:

DSCFG edgesz }| {
|P̂State| × |F̂rame±| × |P̂State|+

store entriesz }| {
|Âddr | × |dClo| .

With a monovariant allocation scheme that eliminates abstract en-
vironments, the number of iterations ultimately reduces to:

|Exp| × (2|dVar|+ 1)× |Exp|+ |Var| × |Lam|,
which means that, in the worst case, the algorithm makes a cubic
number of iterations with respect to the size of the input program.4

The worst-case cost of the each iteration would be dominated
by a CFL-reachability calculation, which, in the worst case, must
consider every state and every edge:

O(|Var|3 × |Exp|3).

Thus, each iteration takes O(n6) and there are a maximum of
O(n3) iterations, where n is the size of the program. So,total
complexity would be O(n9) for a monovariant pushdown control-
flow analysis with this scheme, where n is again the size of the
program. Although this algorithm is polynomial-time, we can do
better.

9.5 Step 5: Reintroduce ε-closure graphs
Replicating the evolution from Section 8 for this store-widened
analysis, we arrive at a more efficient polynomial-time analysis.
An ε-closure graph in this setting is a set of pairs of store-less,
continuation-less partial states:

ÊCG = P
“
P̂State × P̂State

”
.

Then, we can set the system space to include ε-closure graphs:

Ŝystem
′′′

= D̂SG × ÊCG × Ŝtore .

Before we redefine the iteration function, we need another fac-
tored transition relation. The stack- and action-factored transition
relation (⇁σ̂

g ) ⊆ P̂State × P̂State × Store determines if a tran-
sition is possible under the specified store and stack-action:

(e, ρ̂)
σ̂
⇁
φ̂+

((e′, ρ̂′), σ̂′) iff (e, ρ̂, σ̂, κ̂) ; (e′, ρ̂′, σ̂′, φ̂ : κ̂′)

(e, ρ̂)
σ̂
⇁
φ̂−

((e′, ρ̂′), σ̂′) iff (e, ρ̂, σ̂, φ̂ : κ̂) ; (e′, ρ̂′, σ̂′, κ̂′)

(e, ρ̂)
σ̂
⇁
ε

((e′, ρ̂′), σ̂′) iff (e, ρ̂, σ̂, κ̂) ; (e′, ρ̂′, σ̂′, κ̂′).

Now, we can redefine the iteration function (Figure 4).

Theorem 9.1. Pushdown 0CFA can be computed in O(n6)-time,
where n is the size of the program.

Proof. As before, the maximum number of iterations is cubic in
the size of the program for a monovariant analysis. Fortunately, the
cost of each iteration is also now bounded by the number of edges
in the graph, which is also cubic.

10. Applications
Pushdown control-flow analysis offers more precise control-flow
analysis results than the classical finite-state CFAs. Consequently,
pushdown control-flow analysis improves flow-driven optimiza-
tions (e.g., constant propagation, global register allocation, inlin-
ing [Shivers 1991]) by eliminating more of the false positives that
block their application.

The more compelling applications of pushdown control-flow
analysis are those which are difficult to drive with classical control-
flow analysis. Perhaps not surprisingly, the best examples of such

4 In computing the number of frames, we note that in every continuation,
the variable and the expression uniquely determine each other based on
the let-expression from which they both came. As a result, the number of
abstract frames available in a monovariant analysis is bounded by both the
number of variables and the number of expressions, i.e., |F̂rame| = |Var|.
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f̂((P̂ , Ê), Ĥ, σ̂) = ((P̂ ′, Ê′), Ĥ ′, σ̂′′), where

T̂+ =

(
(ψ̂

φ̂+
� ψ̂′, σ̂′) : ψ̂

σ̂
⇁
φ̂+

(ψ̂′, σ̂′)

)
T̂ε =

n
(ψ̂

ε
� ψ̂′, σ̂′) : ψ̂
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Figure 4. An ε-closure graph-powered iteration function for push-
down control-flow analysis with a single-threaded store.

analyses are escape analysis and interprocedural dependence anal-
ysis. Both of these analyses are limited by a static analyzer’s abil-
ity to reason about the stack, the core competency of pushdown
control-flow analysis. (We leave an in-depth formulation and study
of these analyses to future work.)

10.1 Escape analysis
In escape analysis, the objective is to determine whether a heap-
allocated object is safely convertible into a stack-allocated object.
In other words, the compiler is trying to figure out whether the
frame in which an object is allocated outlasts the object itself. In
higher-order languages, closures are candidates for escape analysis.

Determining whether all closures over a particular λ-term lam
may be heap-allocated is straightforward: find the control states in
the Dyck state graph in which closures over lam are being created,
then find all control states reachable from these states over only ε-
edge and push-edge transitions. Call this set of control states the
“safe” set. Now find all control states which are invoking a closure
over lam . If any of these control states lies outside of the safe set,
then stack-allocation may not be safe; if, however, all invocations
lie within the safe set, then stack-allocation of the closure is safe.

10.2 Interprocedural dependence analysis
In interprocedural dependence analysis, the goal is to determine, for
each λ-term, the set of resources which it may read or write when
it is called. Might and Prabhu showed that if one has knowledge
of the program stack, then one can uncover interprocedural depen-
dencies [Might and Prabhu 2009]. We can adapt that technique to
work with Dyck state graphs. For each control state, find the set
of reachable control states along only ε-edges and pop-edges. The

frames on the pop-edges determine the frames which could have
been on the stack when in the control state. The frames that are live
on the stack determine the procedures that are live on the stack. Ev-
ery procedure that is live on the stack has a read-dependence on any
resource being read in the control state, while every procedure that
is live on the stack also has a write-dependence on any resource be-
ing written in the control state. This logic is the direct complement
of “if f calls g and g accesses a, then f also accesses a.”

11. Related work
Pushdown control-flow analysis draws on work in higher-order
control-flow analysis [Shivers 1991], abstract machines [Felleisen
and Friedman 1987] and abstract interpretation [Cousot and Cousot
1977].

Context-free analysis of higher-order programs The closest re-
lated work for this is Vardoulakis and Shivers very recent work
on CFA2 [Vardoulakis and Shivers 2010]. CFA2 is a table-driven
summarization algorithm that exploits the balanced nature of calls
and returns to improve return-flow precision in a control-flow anal-
ysis. Though CFA2 alludes to exploiting context-free languages,
context-free languages are not explicit in its formulation in the
same way that pushdown systems are in pushdown control-flow
analysis. With respect to CFA2, pushdown control-flow analysis is
polyvariant, covers direct-style, and the monovariant instatiation is
lower in complexity (CFA2 is exponential-time).

On the other hand, CFA2 distinguishes stack-allocated and
store-allocated variable bindings, whereas our formulation of push-
down control-flow analysis does not and allocates all bindings in
the store. If CFA2 determines a binding can be allocated on the
stack, that binding will enjoy added precision during the analysis
and is not subject to merging like store-allocated bindings.

Calculation approach to abstract interpretation Midtgaard and
Jensen [2009] systematically calculate 0CFA using the Cousot-
Cousot-style calculational approach [1999] to abstract interpreta-
tion applied to an ANF λ-calculus. Like the present work, Midt-
gaard and Jensen start with the CESK machine of Flanagan et al.
[1993] and employ a reachable-states model. The analysis is then
constructed by composing well-known Galois connections to re-
veal a 0CFA incorporating reachability. The abstract semantics ap-
proximate the control stack component of the machine by its top
element. The authors remark monomorphism materializes in two
mappings: “one mapping all bindings to the same variable,” the
other “merging all calling contexts of the same function.” Essen-
tially, the pushdown 0CFA of Section 4 corresponds to Midtgaard
and Jensen’s analsysis when the latter mapping is omitted and the
stack component of the machine is not abstracted.

CFL- and pushdown-reachability techniques This work also
draws on CFL- and pushdown-reachability analysis [Bouajjani
et al. 1997, Kodumal and Aiken 2004, Reps 1998, Reps et al. 2005].
For instance, ε-closure graphs, or equivalent variants thereof, ap-
pear in many context-free-language and pushdown reachability al-
gorithms. For the less efficient versions of our analyses, we implic-
itly invoked these methods as subroutines. When we found these
algorithms lacking (as with their enumeration of control states), we
developed Dyck state graph construction.

CFL-reachability techniques have also been used to compute
classical finite-state abstraction CFAs [Melski and Reps 2000]
and type-based polymorphic control-flow analysis [Rehof and
Fähndrich 2001]. These analyses should not be confused with
pushdown control-flow analysis, which is computing a fundamen-
tally more precise kind of CFA. Moreover, Rehof and Fahndrich’s
method is cubic in the size of the typed program, but the types may
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be exponential in the size of the program. In addition, our technique
is not restricted to typed programs.

Model-checking higher-order recursion schemes There is ter-
minology overlap with work by Kobayashi [2009] on model-
checking higher-order programs with higher-order recursion schemes,
which are a generalization of context-free grammars in which
productions can take higher-order arguments, so that an order-
0 scheme is a context-free grammar. Kobyashi exploits a re-
sult by Ong [2006] which shows that model-checking these re-
cursion schemes is decidable (but ELEMENTARY-complete) by
transforming higher-order programs into higher-order recursion
schemes. Given the generality of model-checking, Kobayashi’s
technique may be considered an alternate paradigm for the analysis
of higher-order programs. For the case of order-0, both Kobayashi’s
technique and our own involve context-free languages, though ours
is for control-flow analysis and his is for model-checking with re-
spect to a temporal logic. After these surface similarities, the tech-
niques diverge. Moreover, there does not seem to be a polynomial-
time variant of Kobyashi’s method.

Other escape and dependence analyses We presented escape and
dependence analyses to prove a point: that pushdown control-flow
analysis is more powerful than classical control-flow analysis, in
the sense that it can answer different kinds of questions. We have
not yet compared our analyses with the myriad escape and depen-
dence analyses (e.g., [Blanchet 1998]) that exist in the literature,
though we do expect that, with their increased precision, our anal-
yses will be strongly competitive.

12. Conclusion
Pushdown control-flow analysis is an alternative paradigm for
the analysis of higher-order programs. By modeling the run-time
program stack with the stack of a pushdown system, pushdown
control-flow analysis precisely matches returns to their calls. We
derived pushdown control-flow analysis as an abstract interpre-
tation of a CESK machine in which its stack component is left
unbounded. As this abstract interpretation ranged over an infi-
nite state-space, we sought a decidable method for determining
th reachable states. We found one by converting the abstracted
CESK into a PDA that recognized the language of legal control-
state sequences. By intersecting this language with a specific regu-
lar language and checking non-emptiness, we were able to answer
control-flow questions. From the PDA formulation, we refined the
technique to reduce complexity from doubly exponential, to best-
case exponential, to worst-case exponential, to polynomial. We
ended with an efficient, polyvariant and precise framework.

Future work Pushdown control-flow analysis exploits the fact
that clients of static analyzers often need information about control
states rather than stacks. Should clients require information about
complete configurations—control states plus stacks—our analy-
sis is lacking. Our framework represents configurations as paths
through Dyck state graphs. Its results can provide a regular de-
scription of the stack, but at a cost proportional to the size of the
graph. For a client like abstract garbage collection, which would
pay this cost for every edge added to the graph, this cost is unac-
ceptable. Our future work will examine how to incrementally sum-
marize stacks paired with each control state during the analysis.
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ABSTRACT 

Good error messages are critical for novice programmers.  Many 

projects attempt to rewrite expert-level error messages in terms 

suitable for novices.  DrScheme's language levels provide a 

powerful alternative through which error messages are customized 

to pedagogically-inspired language subsets.  Despite this, many 

novices still struggle to work effectively with DrScheme's error 

messages.  To better understand why, we have begun using 

human-factors research methods to explore the effectiveness of 

DrScheme's error messages.  Unlike existing work in this area, we 

study messages at a fine-grained level by analyzing the edits 

students make in response to various classes of errors.  Our results 

point to several shortcomings in DrScheme's current treatment of 

errors; many of these should apply to other languages.  This paper 

describes our methodology, presents initial findings, and 

recommends new approaches to presenting errors to novices. 

Keywords 

Error message design, Novice programmers, User-studies 

1. INTRODUCTION 
In a compiler or programming environment, error messages are 
arguably the most important point of contact between the system 
and the programmer. This is all the more critical in tools for 
novice programmers, who lack the experience to decipher a 
poorly-constructed error message. Indeed, many research efforts 
have sought to make professional compilers more suitable for 
teaching by rewriting their error messages [16] or by 
supplementing them with hints and explanations [6].  Such efforts 
complement more general research on improving error messages 
through techniques such as error recovery during parsing. 

DrScheme1 [10] reflects a philosophy that programming 
languages designed for experts cannot be shoehorned into a 
teaching role. Programming courses teach only a few constructs 
of a full language; at any time, students have seen only a fragment 
of the full language. This creates a mismatch between the 
programming language that the students believe they are using—
the subset that they are aware of—and the language the compiler 
processes. Students experience this mismatch in two ways: (1) 
when they use an advanced construct by mistake and their 
program does not fail, but instead behaves in a weird way; and (2) 
when their mistakes are explained by the error message in terms 
of concepts they do not yet know. 

                                                                 

1 Now known as DrRacket. 

To address this issue, DrScheme offers several language levels 
[15]. Each level is a subset of the next level up. As the course 
progresses, students move through five language levels, from 
Beginner Student Language (BSL) to Advanced (ASL). Each 
level's error messages describe problems by referring only to 
concepts the student has learned so far. The levels also rule out 
programs that would be legal in more advanced levels; as a 
corollary, errors are not preserved as students move up the chain. 
Figure 1 illustrates the impact of switching levels on the 
messages. Running program (a) in BSL results in the error 
message “define: expected at least one argument name after the 

function name, but found none”. The same program runs without 
errors in ASL, since once students reach ASL they have learned 
about side effects, at which point it makes sense to define a 
function without arguments; this illustrates point (1). Similarly, 
running program (b) in ASL does not raise an error, since placing 
a variable in function position is not a mistake for students who 
have been taught first-class functions; this illustrates point (2). 

The DrScheme error messages were developed through well over 
a decade of extensive observation in lab, class, and office settings.  
Despite this care, we still see novice Scheme programmers 
struggle to work effectively with these messages.  We therefore 
set out to quantify the problem through finer-grained studies of 
the error messages as a feedback mechanism, following HCI and 
social science methods [33]. Specifically, we set out to understand 
how students respond to individual error messages and to 
determine whether some messages cause students more problems 
than others.  Over the longer term, we hope to develop metrics for 
good error messages and recommendations for developers of 
pedagogical IDEs that generalize beyond Scheme. 

(a)  (define (add-numbers)  

      (5 + 3))  

 define: expected at least one argument name after 

the function name, but found none  

 
(b) (define (add-numbers x y)  

       (x + y)) 

 function call: expected a defined name or a 

primitive operation name after an open parenthesis, 

but found a function argument name  

Figure 1. Not an error in ASL  (a) Function without 

arguments  (b) Variable in callee position 
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This paper presents results from a multi-faceted study of student 
interactions with DrScheme’s error messages.  We have looked at 
student edits in response to errors, interviewed students about 
their interpretations of error messages, and quizzed students on 
the vocabulary that underlies the error messages in a typical 
introductory college course using DrScheme.  Our work is novel 
in using fine-grained data about edits to assess the effectiveness of 
individual classes of error messages.  Most other work, in 
contrast, changes the IDE and measures student performance over 
an entire course.  The evaluation rubric we designed, which 
measures the performance of error messages through edits, is a 
key contribution of this work.   We also identify several problems 
in DrScheme’s current error messages and recommend changes 
that are consistent with our observations. 

To motivate the project, Section 2 gives examples of errors that 
students made in actual class sessions.   Section 3 presents our 
methodology in detail.  Section 4 describes the rubric and the 
evolution of its design.  Sections 5 through 7 describe the results 
of our analysis thus far, while Section 8 presents initial 
recommendations for error message design arising from our 
observations.  Related work appears in Section 9. 

2. RESPONSES TO ERROR MESSAGES 
We begin by showing a few examples of student responses to 
error messages during Lab #1. When Lab #1 begins, most 
students have not had any contact with programming beyond four 
hours of course lectures given in the days before and two short 
homeworks due the day before and evening after the lab. 

Figure 2 (a) shows one function (excerpted from a larger 
program) submitted for execution 40 minutes after the start of the 
lab. The student is defining a function label, with one argument 
name. Most likely the student is missing a closing parenthesis 
after name, and another one after "conservative". The nesting 
suggests that the student is struggling to remember how to 
combine two different Boolean tests into one using the or 
operator.  

Figure 2 (b) shows the student’s edit in response to that particular 
error message. The student inserted name as an argument to the 
function call to string=? . There is a logic to this response: the 
message says a name is expected, so the student provided a name. 
Beginning programmers often make this mistake (confusing a 
literal reference with an indirect reference). Learning to reflect 
with accuracy about the difference between referent, referee, and 
literal references is one of the skills students learn in 
programming courses. There is however an ambiguity in the error 
message that might have prompted the mistake in the response: 
the word “function” in the fragment “for the function's second 
argument” can refer to either the function being defined (label) 
or the function being called (string=?). DrScheme means the 
former, but it seemed that the student understood the latter 
(perhaps influenced by the highlighting). We found this kind of 
ambiguity common. Specifically, whenever the error messages of 
DrScheme use referencing phrases to point at pieces of code, it is 
often too vague to be understood well, and it uses technical 
vocabulary that impedes clarity rather than helps it. We return to 
this subject in Section 6. 

Figure 3 shows another example. The program at the top of the 
figure was the first of a sequence of programs that each triggered 
the same error message. What follows are the student’s first four 
attempts to correct the problem. The student never identifies the 
actual problem, which is a missing open parenthesis before the 
cond.  The entire sequence lasts 10 minutes, until the end of the 
lab session. A few weeks later, the student participated in this 
study's interviews and mentioned how frustrating the experience 
had been. 

Even with our years of experience teaching with DrScheme, the 
state of the programs we collected was often surprising, if not 

(a) 

 

 

(b) 

 

Figure 2. (a) A student's program and its error message,  

(b) The student's response to the error message 

(define (string-one-of? check-for-match stringOne stringTwo stringThree) 

   cond [(and (string=? check-for-match stringOne))] 

        [(and (string=? check-for-match stringTwo))]) 

 define: expected only one expression for the function body, but 

found at least one extra part  

 

 

(define (string-one-of? check-for-match stringOne stringTwo stringThree) 

   cond [(string=? check-for-match stringOne)] 

        [(and (string=? check-for-match stringTwo))] 

        [(and (string=? check-for-match stringThree))]) 

 

 

(define (string-one-of? check-for-match stringOne stringTwo stringThree) 

   cond [and ((string=? check-for-match stringOne))] 

        [(and (string=? check-for-match stringTwo))] 

        [(and (string=? check-for-match stringThree))]) 

 

 

(define (string-one-of? check-for-match stringOne stringTwo stringThree) 

   cond [(string=? check-for-match stringOne)] 

        [(string=? check-for-match stringTwo)] 

        [(string=? check-for-match stringThree)]) 

 

 

(define (string-one-of? check-for-match stringOne stringTwo stringThree) 

   cond [(string=? check-for-match)] 

        [(string=? check-for-match stringTwo)] 

        [(string=? check-for-match stringThree)]) 

 

Figure 3. A sequence of responses to an error message 
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humbling.  Students manage to create quite mangled functions, 
which the error messages must attempt to help them sort out. 

3. METHODOLOGY 
To explore how students respond to error messages, we sought a 
combination of data from a large number of students and in-depth 
data from a handful of students.  In the spring of 2010, we set up a 
study around WPI’s introductory programming course, which 
enrolled 140 students.  Our data gathering had four components: 

1. We assembled records of students’ programming sessions. 
We configured DrScheme to save a copy of each program 
each student tried to run, as well as the error message 
received (if any) plus any keystrokes that the student pressed 
in response to the error message, up to their next attempt at 
running the program. Amongst the 140 students registered 
for the course, 64 agreed to participate in this data collection. 
 
We collected data during the course’s normal lab sessions, 
which ran for an hour per week for six weeks (normal course 
length at WPI is seven weeks, so the data covers the entire 
course).  During labs, students worked on exercises covering 
the last week’s lecture material. We also have data from 
editing sessions that occurred outside the lab from 8 students 
who installed our monitoring software on their laptops. 

2. We interviewed four students about their experience with 
DrScheme’s error messages. These interviews helped us 
interpret the content of the session recordings. These students 
ranged from medium to good (we were not able to attract any 
of the weaker students). Each interview started with a short 
introduction in which we discussed the student’s experience 
in the class, and his general impression of the error 
messages. Then we gave the student erroneous programs 
taken from the session recordings from Lab #1 (some his 
own and some from other students) and asked them to fix the 
proximate error mentioned in the error message. This 
naturally led to a discussion on the strategy the student used 
to respond to error messages and how the error messages 
could be improved. 

3. During the interviews, it became apparent that students often 
struggle with the technical vocabulary that DrScheme uses to 
describe code (see Section 7).   We designed a vocabulary 
quiz to quantify this effect. We identified 15 technical words 
that appear in the 90th-percentile error messages most 
frequently presented to students throughout the semester. 
Each student received a quiz with five words amongst those, 
and was asked to circle one instance of that vocabulary word 
in a short piece of code.  We administered the quiz to 90 
students (self-selected) at WPI.  For calibration, we also 
administered it to Brown University undergraduates who had 
taken a DrScheme-based course the previous semester and to 
freshmen and transfer students in a programming course at 
Northeastern University, Boston. 

4. We asked the three professors of students who participated in 
the vocabulary quiz to describe which vocabulary words they 
used in class. We received thoughtful answers from all three, 
indicating that they had put much effort in maintaining a 
consistent usage of vocabulary throughout their semester. 
They could say with confidence which of the 15 vocabulary 
word they used often, regularly, seldom, or never, in class. 

To date, we have carefully analyzed only the data from the first 
lab week. Students’ initial experiences with programming 
influence their attitudes towards the course and programming in 
general.  For many students, the first week determines whether 
they will drop the course.  Making a good first impression is 
critical for the success of a programming course. 

4. THE DESIGN OF A CODING RUBRIC 
There are many ways one might study the effectiveness of error 
messages.  A common approach in the literature (as reviewed in 
Section 9) is to change the messages or their presentation and 
compare the impact on student grades at the end of the course.  
We are interested in a more fine-grained analysis that determines 
which error messages are effective and in what ways.  There is 
also no single metric for “effectiveness” of an error message.  
Possible metrics include whether students demonstrate learning 
after working with messages or whether the messages help novice 
programmers emulate experts.  We have chosen a narrower 
metric: does the student make a reasonable edit, as judged by an 
experienced instructor, in response to the error message? 

We used two social science techniques to gain confidence that 
both our metric and its application to our data were valid. First, 
we developed a formal rubric for assessing each student edit. 
Then, we subjected the rubric to a test of inter-coder reliability 
[5] (where “coder” is the standard term for one who applies a 
rubric to data).2   Inter-coder reliability tests whether a rubric can 
be applied objectively: multiple coders independently apply the 
rubric to data, then check for acceptable levels of consistency in 
their results. When tackling subjective topics, good inter-coder 
reliability can be quite difficult to achieve.  After describing the 
evolution of our rubric, we present a standard measurement of 
inter-coder reliability and our high scores on this metric. 

Our rubric attempts to distinguish ways in which error messages 
succeed or fail.  Our design starts from a conceptual model of how 
error messages intend to help students: if an error message is 
effective, it is because a student reads it, can understand its 
meaning, and can then use the information to formulate a useful 
course of action. This is a three step sequence: 

Read ���� Understand ���� Formulate 

Students can get stuck at any of these steps.  One interesting 
question is whether students get stuck earlier in the sequence with 
particular kinds of errors.  To explore this, we would ideally like a 
rubric that identifies how far a student successfully went in the 
sequence when responding to a given error message.  This would 
suggest a rubric with at least four categories: failure-on-read, 
failure-on-understand, failure-on-formulate, and fixed-the-error. 
Our initial attempts to distinguish failure-on-read from failure-on-
understand were not successful (in that we could not achieve 
inter-coder reliability).  Our recordings of student editing sessions 
lack attention-based data (such as eye-tracking) that indicate 
where a student looked or reacted when an error occurred; such 
data might have helped distinguish between read- and understand-
failures.  We concluded that a more realistic rubric would 
combine failure-on-read and failure-on-understand into a single 
category separate from failure-on-formulate. 

                                                                 

2 This paper uses “coder” exclusively as a social science term; in 

particular, it does not refer to programmers. 
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Figure 4 presents our final rubric for assessing students’ edits.  
The [UNR] and [PART] codes capture failure-on-read/understand 
and failure-on-formulate, respectively.  All the responses in the 
sequence shown in Figure 3 were coded [UNR], for example, 
since none of the edits tried to change the number of parts in the 
function body position of the define, and nothing else suggested 
that the student had read or understood the message.  

Earlier versions of our rubric attempted to discern two nuances of 
failure-on-understand: failure to understand the text as separate 
from failure to understand what the message really means in 
terms of the code.  An error message can use simple words and 
simple grammar but still be hard to understand because the 
underlying problem is difficult or because the message 
inadequately describes the problem.  Responding to these error 
messages requires students to read beyond the words and 
understand that “when DrScheme says X, it really means Y”.  
Figure 5 shows an example.  On its face, the message contradicts 
the text of the code: there definitely is a parenthesis before the 
and. To understand the message, one has to realize that the 
parenthesis before the and has been attributed to the cond; in the 
parser’s view, the and stands on its own without a parenthesis. 
Predictably, the student failed to formulate a useful response to 
that message (they deleted the parenthesis before the and). Early 
versions of the rubric tried to capture how often students failed to 
formulate a response according to the deep meaning of the 
message (what an expert would understand from the message) 
because they were being misled by its literal meaning. However, 
coders were not sufficiently reliable when making these 
distinctions, and so the final rubric has only one code 
corresponding to a failure to formulate, namely [PART]. 

For the remaining codes in Figure 4, [DEL] captures cases when 
students simply deleted error-inducing code rather than attempting 
to fix it, [DIFF] captures edits that were useful but unrelated to the 
reported error (such as fixing a different error or adding more 
code or test cases), and [FIX] captures successful completion of 
the read/understand/formulate sequence.  These codes and their 
precise wordings reflect several design decisions that arose while 
developing the rubric: 

• The rubric should assess the performance of the error 
messages, not the students.  Consider a situation in which 
a student’s edit corrects a problem that had nothing to do 
with the original error message.  While this is a positive 
outcome, it does not address our primary concern of how 
effective error messages are at guiding students through 
the read/understand/ formulate sequence.  Similarly, 

students may experience difficulties with problem solving 
or program design that should not be attributed to 
shortcomings of the error messages.   To keep our coding 
focused on the error messages, we include the [DIFF] code 
for reasonable edits unrelated to the proximate error.  
Unreasonable edits unrelated to the proximate error are 
coded [UNR].  Our first rubric design had unified [DIFF] 
and [UNR]; we split them after considering when the error 
message could be held accountable.  Sometimes, students 
simply avoid the proximate error by deleting their code 
(for example, deleting a test case that yields an error).  To 
avoid judging the error message (as [UNR] might), we 
introduced the separate [DEL] code for such cases.  When 
deletion is the appropriate action (such as when removing 
an extra function argument) and it is performed on a 
reasonable code fragment, we code it as [PART] or [FIX] 
as appropriate.  Together, [DIFF] and [DEL] attempt to 
characterize situations in which the student’s action 
provides no information about the quality of the error 
message. 

• Coding decisions have to be made narrowly, strictly in 
relation to the proximate error described in the message. 
DrScheme’s error messages always describe one particular 
problem, regardless of other problems that might be 
present. Fixing the problem mentioned in the message 
sometimes makes the overall code worse (for example, a 
student might delete an extra expression rather than add an 
operator to combine it with the rest of the code).  
Frequently a student's edit fixes the error mentioned, while 
leaving other glaring errors in surrounding code 
untouched. We nevertheless code such edits as [FIX]. The 
code [FIX] does not imply mastery on the part of the 
student, nor does it imply oracle-like accuracy on the part 
of the message. Rather, [FIX] means that the student 
formulated a reasonable response to the problem 
mentioned in the message. If the student is as myopic as 
the error message, but no more, they may still receive the 
code [FIX]. The text “though other cringing errors might 
remain” in the [FIX] case remind the coders to take this 
narrow interpretation. In practice, we found that each 
coder needed that reminder explicit in the rubric in order 
to be self-consistent in their use of [FIX]. 

• Coding needs a holistic view of multi-faceted error 
messages.  DrScheme’s error messages have two 
components: text and a highlight.  In assessing whether a 
student had “read” or “understood” an error message, we 
had to decide whether it sufficed for students to edit within 
the highlight component, even if their action showed no 
evidence of considering the text component.  As we 
discuss in Section 6, some students come to glance first at 
the highlight for a quick overview of the error; this should 
be a credit to the error message, even though we have a 
bias towards the text when assessing “understanding”.  At 
the same time, students often made random edits in the 
highlighted code that were arguably unrelated to the 
proximate error.  We ultimately decided that location was 
not sufficient justification for ascribing [PART] or [FIX]. 

As computer scientists, not social scientists, we sometimes found 
the subjective nature of coding uncomfortable, but ultimately 
more successful than decomposing all observations into purely 
objective observations.  For example, we accepted liberally any 
evidence that the student read and understood something from the 
message.  In some cases, making this determination required 

 [DEL] Deletes the problematic code wholesale. 

 [UNR] Unrelated to the error message, and does not help. 

 [DIFF] Unrelated to the error message, but it correctly 

addresses a different error or makes progress in 

some other way. 

 [PART] Evidence that the student has understood the error 

message (though perhaps not wholly) and is trying 

to take an appropriate action (though perhaps not 

well).  

 [FIX]  Fixes the proximate error (though other cringing 

errors might remain). 

Figure 4. Rubric for responses to error messages 
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human judgment or teaching experience, as was the case with the 
“expect a name” example in Figure 2. Because we decided that 
the student probably got the idea of inserting “name” from having 
read the words “expected a name” in the message, we coded that 
response [PART] rather than [UNR].  We found such subjective 
decisions surprisingly consistent across the coders. 

During the design process, we also ruled out ideas that failed to 
survive inter-coder reliability tests or our own evaluation: 

• Distinguishing [FIX] codes based on elapsed time: we 
considered factoring in students’ response time by having 
separate codes for “fixed with hesitation” and “fixed 
without hesitation” (we have timestamp data on all edits, 
and can replay editing sessions at their original pace).  In 
theory, errors to which students respond more slowly 
might be harder for students to process.  We ultimately 
ruled this out for two main reasons. First, response time 
could be affected by corrupting interferences (such as a 
student taking a bathroom break or differences in working 
styles across students).  Second, we lacked a good metric 
for the expected difficulty of each error message; without 
that, we would not be able to identify messages that were 
performing worse than expected. 

• Considering whether the edit yielded a new error message 
as a criterion for [FIX]: this is a corollary to our 
observation about coding narrowly.  In practice, we found 
cases in which the student really did fix the error, but had 
code of such a form that the same error applied after the 
edit.  We chose to ignore this criterion in final coding. 

The rubric as shown in Figure 4 meets standards of inter-coder 
reliability on the data from Lab #1.  We used the standard metric 
of inter-coder reliability [5], κ, which is defined as  

κ � Agreement 
 Expected Agreement
1 
 Expected Agreement  

κ compares the agreement of the human coders to the agreement 
that would be expected by chance according to the marginal 
probabilities. Because of this, it is a more demanding metric than 
the simple proportions of the number of times the coders agreed. 
Values of κ usually lie within 1.0 (meaning perfect agreement) 
and 0.0 (meaning agreement exactly as good as would be 
expected by chance), but values of κ can be negative if the human 
coders perform worse than chance. We executed a test of inter-
coder reliability on each version of the rubric. The final version of 
the rubric (the one shown in Figure 4) was the first version which 
met the κ > 0.8 standard, with κ = 0.84 on 18 different responses. 

5. APPLYING THE RUBRIC 
Our rubric is designed to identify specific error messages that are 
problematic for students.  Given that many error messages are 
variations on the same underlying problem, however, we found it 
more effective to consider messages in thematically-related 
categories, such as “parenthesis matching”, “syntax of define”, 
and “syntax of cond”. The six categories shown in the leftmost 
column of Table 1 cover 423 of the 466 error messages presented 
to students during Lab #1.3 Appendix B lists the specific messages 
that comprise each category. The second column shows the 
number of times students saw an error message of that category. 
The third column shows the number of those responses that we 
coded; the samples were chosen randomly from responses that 
contained at least one keystroke (as opposed to cases in which the 
student simply ran the program again with no edit to their 
program).  The five columns to the right of the vertical line show 
how many samples fell under each rubric code. When running the 
data samples to ascribe codes, we used Köksal’s edit-replay 
software [20].  The Fixed column to the left of the vertical line 
attempts to measure the effectiveness of errors in each category.  
This number is not simply the ratio of the “FIX” column to the 
“Number coded” column.  That computation would be misleading 
in two ways: first, [DEL] and [DIFF] codes should not count 
against the effectiveness of a message; second, it does not account 
for differences in how often students attempt to run their 
programs.  Figure 6 shows the histogram of run attempts in the 

                                                                 

3 All errors in Table 1 are syntax errors in BSL.  The remaining 

errors consisted of 24 run-time errors, 7 syntax errors caused by 

illegal characters (periods, commas, hash marks and such), 7 

caused by the ordering of definitions, 4 regarding the syntax of 

if (which is not taught in the course), and 1 duplicate 

definition. 

Table 1. Coding results for Lab #1 

Category 

Number 

presented 

Number 

coded Fixed DEL UNR DIFF PART FIX 

paren. matching 129 26 76% 0 3 1 3 19 

unbound id. 73 33 84% 1 3 2 2 25 

syntax / define 73 32 50% 2 11 4 4 11 

syntax  / func. call 63 29 36% 1 10 2 7 9 

syntax / cond 61 31 49% 2 12 0 4 13 

arg. count 24 21 52% 1 5 0 8 7 

 

(define (label-near? name bias word1 word2 word3)  

  (cond 

    (and (cond [(string=? name word1) "Name Located"] 

               [(string=? bias word1) "Bias Located"]) 

         (cond [(string=? name word2) "Name Located"] 

               [(string=? bias word2) "Bias Located"]) 

  "Mark") 

)) 

 

 and: found a use of `and' that does not follow an 

open parenthesis 

Figure 5. A counterfactual error message 

 

Figure 6. Histograms, Lab #1 (50 minutes) 
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fewer runs  ���� ���� more runs

18 students

Histogram of runs attempted
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fewer errors  ���� ���� more errors

20 students

Histogram of errors received
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dataset; note its long right-tail.  The mode is 15 to 20 attempts, 
with 18 students in this histogram bucket. This corresponds to 
about one attempt every 3 minutes.  We avoid undue influence of 
frequent runs by first computing the ratio of [FIX] against the 
denominator ����� � ������ � ����� per individual student. 
Specifically, for student s and category c, we compute: 

��,! � �����
����� � ������ � ����� 

Then we take the unweighted average across the n students who 
are represented in the selected samples: 

�! � "# ��,!$ n%  

The column Fixed shows the �! 's. 

The data in the Fixed column show some clear trends.  Error 
messages pertaining to unbound identifiers were easy to fix 
(84%), which is no surprise since most of them arise from simple 
typos. Parenthesis-matching errors were also relatively easy 
(76%), especially when compared to the errors pertaining to the 
syntax of define, function calls, and conditionals. Removing (or 
adding) the right number of parentheses is not as hard as choosing 
which ones to remove. Even though Scheme is often chosen as the 
programming language for introductory courses because of its 
simple syntax, students still struggle with that syntax.  We saw 
many editing sequences in which students struggled to manipulate 
the parentheses so that their expressions ended up in the right 
syntactic locations.  

These results support our claim that even in a project that has 
spent significant design effort in getting error messages right, 
formal human-factors studies are a critical component. Implicitly, 
the results emphasize the challenge in textually describing syntax 
errors to students with a shaky command of the grammar at hand.  
Figuring out how to do this effectively is a promising open 
research question. 

While the data illustrate where students are having difficulties 
with the error messages, they do not suggest concrete changes to 
DrScheme’s error message design.  For that, we turn to 
observations from our one-on-one interviews with students. 

6. SEMANTICS OF THE HIGHLIGHT 
Whenever DrScheme presents an error message, it highlights at 
least one fragment of code that is pertinent to the error message.  
In contrast to the more common combination of line number and 
column number provided by many compilers, highlights are 
presumed clearer for beginners and less likely to be ignored. 

Our interviews with students hinted that their interaction with the 
highlight is less straightforward than we thought. The following 
exchanges were eye-opening. We asked the students about the 
meaning that they attribute to the highlight, and received similar 
answers from three of them. 

Interviewer:  When you get these highlights, what do 
they mean to you? 

Student #1:    The problem is between here and here, 
fix the problem between these two bars. 

 

Interviewer: You were saying that you pattern match 
on the highlight and don't read the 
messages at all. 

Student #2: I think that in the beginning it was more 
true, because the highlight were more or 

less “this is what's wrong,” so when I 
was a beginning programmer that's 
what I saw and that's what I would try to 

fix.  

 

Interviewer: When DrScheme highlights something, 
what does it highlight? 

Student #3: It highlights where the error occurred. 

Interviewer: Do you usually look for fixes inside the 
highlight? 

Student #3: mmm… I think I did at the beginning.  

In retrospect, it makes sense. DrScheme never explicates the 
meaning of its highlight; students are on their own to deduce what 
DrScheme might mean. In fact, the semantics of the highlight 
varies across error messages. By manual inspection, we have 
found five different meanings for DrScheme’s highlights, 
depending on the error message: 

1. This expression contains the error 

2. The parser did not expect to find this 

3. The parser expected to see something after this, but nothing 
is there  

4. This parenthesis is unmatched 

5. This expression is inconsistent with another part of the code 

The students’ interpretation of “edit here” applies in at most two 
of these cases: the first and the fifth (though the correct edit for 
the fifth is often in the other half of the inconsistency).  In the 
second case, the student must edit around the highlighted code, 
perhaps to combine it with another expression.  In the third case, 
the student may need to add code to the right of the highlight or 
adjust parentheses to change the number of expressions within the 
surrounding constructs.   

Interestingly, highlights do provide visually distinctive patterns 
that distinguish certain classes of errors.  Mismatched-parenthesis 
errors highlight a single parenthesis.  Unbound-identifier errors 
highlight a single identifier.  Students quickly learn the 
highlighting semantics of these patterns.  Lacking distinctive 
patterns for the other cases, however, students default to the 
(entirely reasonable) “edit here” interpretation.  This is consistent 
with students treating DrScheme as an authoritative oracle about 
the errors in their programs. 
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During the interviews we observed multiple patterns of behavior 
that can be attributed to the students’ confusion about the meaning 
of the highlight. 

• In the case of inconsistency between a definition and its 
use, DrScheme only highlights one of the two halves of 
the problem, typically the use location. Students had 
greater difficulty fixing these errors if a correction was 
needed in the non-highlighted half of the inconsistency. 
The highlight had an over-focusing effect, blinding the 
students to the possibility that the problem lay in the other 
half. 

• Students often look for a recommended course of action in 
the wording of the error message.  For instance, once the 
error message mentions a missing part, students feel 
prompted to provide the missing part, though this might 
not be the correct fix. This was the case in Figure 2, where 
the student took the expression “expected a name” to mean 
“insert ‘name’ here”, while the actual fix was to add a 
parenthesis. Students who follow the advice of the error 
risk adding further erroneous code to their already broken 
program. Highlighting the location of the missing part 
seems to strengthen this prompting effect, since students 
guess that these highlights mean “add something here”. 

• Once students recognize the visually-distinctive patterns 
described earlier, they seem to develop the habit of 
looking at the highlighting first to see if they recognize the 
error before consulting the text. This puts additional 
responsibility on the highlighting mechanism. 

Most students grow out of these patterns of behavior as they 
progress into the course and gain more familiarity with the error 
messages. But even as they do, their original model still 
influences their approach. The best student we interviewed had 
learned to avoid the over-focusing effect, and would look around 
the highlight for possible causes of the problem. This led to the 
following exchange: 

Interviewer: Which one was more useful, the 

highlight or the message? 

Student #2:  mmm… I would say the message. 

Because then highlight was redirecting 
me to here, but it didn't see anything 
blatantly wrong here. So I read the error 

message, which said that it expected five 
arguments instead of four, so then I 
looked over here. 

Interviewer: Would you say the highlight was 
misleading? 

Student #2: Yeah. Because it didn't bring me directly 
to the source. 

A fix was found outside the highlight, but the student described 
the highlight as wrong, suggesting that the student maintained a 
perception that the intended semantic of the highlight was “the 
bug is here”. The student had simply developed some skepticism 
about the accuracy of the oracle. 

Attempting to explain the different highlighting semantics to 
students in their first week of programming is challenging.  Each 
interpretation has a semantics in terms of the processes that detect 
errors (parsing and run-time checking). However, CS1 students do 
not have knowledge necessary to make sense of this 
interpretation, and they surely cannot be expected to deduce it 
from their observation of DrScheme's behavior. Without a 
systematic way of understanding the messages given to them, 
students learn that programming is a discipline of haphazard 
guessing―the very reverse of our teaching objective. 

Programming texts frequently present formal grammars (through 
syntax diagrams [35] or textual BNF) to help explain language 
syntax; some include exercises on deciphering text through 
grammar rules [2]. Unfortunately, the highlighting is undermining 
this effort by describing syntax rejection in terms of a different 
process (parsing) that the students have not been taught, and 
which they cannot be expected to understand at this early stage of 
their computing education. 

7. VOCABULARY 
DrScheme’s error messages use precise technical vocabulary to 
describe the problem and to refer to the parts of the code that are 
involved in the error. Table 2 shows the 15 technical vocabulary 
words in the 90th-percentile of the most frequently-presented error 
messages over our entire data set (not just Lab #1). 

When we reviewed the text of the error messages, we found that 
DrScheme is mostly accurate and consistent in its usage of its 
technical vocabulary. Yet, throughout all four interviews, we 
noticed that the students had only a weak command of that 
vocabulary. When describing code, the students misused words, 
or used long and inaccurate phrases instead of using the 
corresponding precise technical word. This was perplexing, since 
the interviews occurred after the students had spent 4 to 6 weeks 
reading these technical words in the error messages. Plus, some 
exchanges during the interview suggested that the students' poor 
command of the vocabulary undermined their ability to respond to 
the messages. 

What the student wrote: 

(define (label-near2? label name word-1   

         word-2 word-3))  

What DrScheme Says: 

define: expected an expression for the function body, but 

nothing's there. 

What the Student Sees: 

define: expected only one rigmarole for the blah's foo, but 
nothing's there. 

Figure 7. Message vs perception 

Table 2. Vocabulary words 

Primitive name 

Procedure 

Primitive operator 

Field name 

Procedure application 

 

Predicate 

Defined name 

Type name 

Identifier 

Function body 

Function header 

Argument 

Clause 

Expression 

Selector  
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The following exchange happened after the student had 
and a half minutes trying to formulate a response to the error 
message shown in Figure 7. After observing that the student was 
not making progress, the interviewer decided to provide a hint.

Interviewer:  The error message says “the function 
body.” Do you know what “function 
body” means? 

Student: Nah… The input? Everything 
as a piece of input? 

Interviewer: Actually, it's this. When DrScheme says 
“function body” it means this part.

Student: Oh man! I didn't… 

The student then proceeded to fix the error successfully
the student, it was sufficient to provide a non
meaning for the expression “function body”, by pointing 
function body of a different function. 

To measure students’ command of the vocabulary, we developed 
a short quiz that asked them to circle instances of 
words from Table 2 in a simple piece of code.
contains one version of this quiz.   We administe
three different universities: WPI, Brown, and Northeastern
received 90, 32, and 41 responses respectively. 
university, students had used DrScheme for at least a couple of 
months before taking the quiz. 

The results are roughly similar across all three universities (see 
Figure 8). Some words are harder than others
data are slightly stronger, while WPI’s are slightly weaker. More 
importantly, only four words were correctly identified by more 
than 50% of the students.  These results do not necessarily imply 
that vocabulary underlies students’ difficulties responding to 
errors; students could have conceptual understanding of the 
messages without the declarative understanding of the vocabulary.  

Figure 8. Average percent correct per word

on the vocabulary quiz 

The following exchange happened after the student had spent two 
trying to formulate a response to the error 

. After observing that the student was 
to provide a hint. 

The error message says “the function 
Do you know what “function 

verything that serves 

Actually, it's this. When DrScheme says 
it means this part. 

to fix the error successfully. To help 
the student, it was sufficient to provide a non-definitional 

, by pointing at the 

To measure students’ command of the vocabulary, we developed 
of five vocabulary 

piece of code.  Appendix A 
contains one version of this quiz.   We administered the quiz at 

Northeastern. We 
received 90, 32, and 41 responses respectively.  At each 

for at least a couple of 

The results are roughly similar across all three universities (see 
s.  Northeastern’s 

slightly weaker. More 
were correctly identified by more 

hese results do not necessarily imply 
that vocabulary underlies students’ difficulties responding to 

; students could have conceptual understanding of the 
eclarative understanding of the vocabulary.  

Nonetheless, these results question whether students are able 
make sense of the error messages
anonymous, we were not able to correlate quiz performance to our 
coding data on the recorded editing sessions.

We asked the professors which of the terms from Table 2 
used in class to describe code. Table 3
Whenever a word used by DrScheme was not used in class, the 
professors either elected to use a different wor
was not necessary to introduce the concept in class. For instance, 
the two professors who did not use the term 
term “function” instead.  

Studies frequently use control groups to quantify the effect of an 
intervention.  While we did not create control groups around the 
usage of terms in class, by happenstance 11 of the 15 words were 
used at some universities but not others.  These words formed 
controlled trials (a technical term), in which 
quantify the effect of a word being used in class on the students' 
understanding of that word. To help factor out the effect of 
uninteresting variability, namely the variability in university 
strengths and in word difficulty, we fitted a linear model to the 
data. The model had 17 variables total. The first 14 variables were 
configured to each capture the intrinsic difficulty of one word, 
relative to a fixed 15th word, the next two variables were 
configured to capture relative university strength. The last 
variable was set to capture the influence of a word's use in class. 
The fit on this last variable indicated that using a word in class 
raises its quiz score by 13.8% (95% confidence inte
24.7%), a result which is statistically significant at the 0.05 
(p=0.0147). 

These results raise many interesting research questions

• We know that students struggle to respond to error 
messages. Can we quantify the extent by which this is 
caused by their poor command of the vocabulary?
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• Using a word in class raises the students' understanding of 
the word relatively little. How are they learning the 
vocabulary, then? If they are learning it by reading error 
messages that they do not understand well, what are they 
learning? 

• Some error messages make statements where ev
words are used in a technical sense, such as 
or “parenthesis” (which DrScheme sometime uses to refer 
to a square bracket, since the parser considers them 
equivalent). Are these words a problem as well?

The results also raise pedagogic questions about good approaches 
to teach the technical vocabulary of programming.  Should 
courses use specialized vocabulary training tutors
[28])?  Lecture time is limited, as are homework contact hours
could the error messages help teach the vocabulary? 

All three professors agreed that the mismatch between their 
vocabulary usage and DrScheme's was contrary to their efforts to 
use consistent language in class. Moreover, once the iss
pointed out to them, they all agreed that adjustments were needed.
In general, we suspect professors tend to forget about the content 
of errors and other IDE feedback when designing lectures; the 
connection between curricula and IDEs needs to be ti

8. RECOMMENDATIONS 
The results presented in Sections 5 through 7 point to three broad 
issues: students’ difficulties working with syntax in the first week 
of class, inconsistent semantics of highlighting, and s
command of the vocabulary used in the error messages.  In 
recommending solutions, we considered three key principles

• Many developers contribute to DrScheme.  
message conventions need to be easy for multiple 
developers to follow. 

• Error messages should not propose solutions.
though some errors have likely fixes (missing close 
parentheses in particular places, for example), those 
fixes will not cover all cases.  Given students’ 
tendencies to view DrScheme as an oracle, proposed 
solutions could lead them down the wrong path
error systems designed for experts sometimes follow 
this principle [8].  This principle directly contradicts 
requests of the students we interviewed, w
learned common fixes to common  errors
the messages to propose corrections. 

Figure 9. Colored-coded error message

the students' understanding of 
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). Are these words a problem as well? 

questions about good approaches 
to teach the technical vocabulary of programming.  Should 

lary training tutors (such as FaCT 
ework contact hours; 

vocabulary?   

mismatch between their 
vocabulary usage and DrScheme's was contrary to their efforts to 
use consistent language in class. Moreover, once the issue was 
pointed out to them, they all agreed that adjustments were needed.  
In general, we suspect professors tend to forget about the content 
of errors and other IDE feedback when designing lectures; the 
connection between curricula and IDEs needs to be tighter.   

The results presented in Sections 5 through 7 point to three broad 
issues: students’ difficulties working with syntax in the first week 
of class, inconsistent semantics of highlighting, and students’ poor 
command of the vocabulary used in the error messages.  In 

three key principles: 

Many developers contribute to DrScheme.  Error-
message conventions need to be easy for multiple 

messages should not propose solutions.  Even 
though some errors have likely fixes (missing close 
parentheses in particular places, for example), those 
fixes will not cover all cases.  Given students’ 
tendencies to view DrScheme as an oracle, proposed 

ions could lead them down the wrong path; even 
error systems designed for experts sometimes follow 

.  This principle directly contradicts 
requests of the students we interviewed, who had 
learned common fixes to common  errors and wanted 

• Error messages should not prompt students towards 
incorrect edits.  This is related to, yet distinct from, the 
previous principle. 

The first is particularly pertinent to addressing problems with the 
highlighting semantics.  One could propose changing the color of 
the highlight based on its semantics.  This would violate the first 
constraint, as it requires developers to interpret those semantics 
(additional problems make the proposal a poor choice).  The 
second warns against proposing corrections to syntax errors.  The 
third reminds us to carefully consider how students might 
interpret a highlight. 

With these principles in hand, we have three recommendations:

Simplify the vocabulary in the error messages
messages often try too hard to be thorough, such as
between selectors and predicates in error messages that expect 
functions. The semantic distinctions between these terms are
irrelevant to students, particularly in the early weeks.  We have 
simplified the terminology in Beginner Language messages and 
will be testing it on students in the fall.  If this simplification is 
effective, the DrScheme developers may want to consider 
breaking Beginner Language into sublanguages based on error 
terminology, in addition to provided constructs. 

Help students match terms in error messages to code 
fragments.  Error messages contain many definite 
such as “the function body” or “found one
instructors, we often help students by connecting these 
to the corresponding pieces of code.  Sometimes, DrScheme’s 
highlighting achieves this effect, too (as with unbound identifiers 
or unmatched parentheses). However, message
multiple terms, while DrScheme currently highlights only one 
code fragment. 

Treat error messages as an integral part of course design
IDE developers should apply the common curricular concerns of 
consistency, complexity and learning curv
messages. Professors must ensure their curriculum aligns with the 
content of the error messages, just like math professors ensure 
their notation matches that of the textbook.

The second recommendation suggests a new presentation 
messages: highlight every definite reference
Figure 9 shows a preliminary mockup of this idea.  Each definite 
reference in the message uses color to point to a specific code 
fragment (colors are outlined with different lin
and-white viewing).  This design has several benefits: it resolves 
the ambiguity about highlighting (since highlights correspond 
exactly to terms in the message), it eliminates ambiguous 
references (as seen in Figure 2), and it gives stu
learn the vocabulary by example (in Figure 9, the meaning of the 
word “clause”).  This design naturally highlights both the 
definition and the use on an inconsistency error (since both are 
referred to by the text of the error messages), w
triggering the over-focusing behavior we observed.  
versions of this design heavily influenced our stated principles.  
For example, we briefly considered highlighting indefinite 
references (such as “question” in Figure 9
violated the third principle.  We are currently refining this design 
with intent to deploy it experimentally next year.

 

coded error message 

Error messages should not prompt students towards 
incorrect edits.  This is related to, yet distinct from, the 

nent to addressing problems with the 
highlighting semantics.  One could propose changing the color of 

semantics.  This would violate the first 
constraint, as it requires developers to interpret those semantics 

s make the proposal a poor choice).  The 
second warns against proposing corrections to syntax errors.  The 

reminds us to carefully consider how students might 

With these principles in hand, we have three recommendations: 

fy the vocabulary in the error messages.  DrScheme’s 
messages often try too hard to be thorough, such as distinguishing 
between selectors and predicates in error messages that expect 

The semantic distinctions between these terms are often 
, particularly in the early weeks.  We have 

simplified the terminology in Beginner Language messages and 
will be testing it on students in the fall.  If this simplification is 
effective, the DrScheme developers may want to consider 

Beginner Language into sublanguages based on error 
terminology, in addition to provided constructs.  

Help students match terms in error messages to code 
Error messages contain many definite references, 

found one extra part”.  As 
instructors, we often help students by connecting these references 
to the corresponding pieces of code.  Sometimes, DrScheme’s 

(as with unbound identifiers 
or unmatched parentheses). However, messages often contain 
multiple terms, while DrScheme currently highlights only one 

an integral part of course design.   
IDE developers should apply the common curricular concerns of 
consistency, complexity and learning curves to the design of error 
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content of the error messages, just like math professors ensure 
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reference in the message uses color to point to a specific code 
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about highlighting (since highlights correspond 
exactly to terms in the message), it eliminates ambiguous 
references (as seen in Figure 2), and it gives students a chance to 
learn the vocabulary by example (in Figure 9, the meaning of the 
word “clause”).  This design naturally highlights both the 
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In addition, we intend to develop vocabulary conventions for 
talking about Beginner Student Language code. This convention 
will cover both the needs of the error messages and the needs of 
educators. The convention document will help maintain 
consistency across all the authors of libraries intended to be used 
in BSL, as well as between the classroom and the error messages. 

Our recommendations about color-coded highlights and consistent 
vocabulary are not specific to Scheme. They should apply just as 
well in any other programming language used for teaching, 
including those with graphical syntaxes, to the extent that they 
have error messages. 

9. RELATED WORK 
The principles of HCI frame general discussions on the design of 
pedagogic programming languages [27], as well as on the design 
of error messages specifically [33]. These reflections informed 
our work. 

Alice [23] and BlueJ [13] are two widely used pedagogic IDEs. 
Both environments show students the error messages generated by 
full-fledged Java compilers. In independent evaluations involving 
interviews with students, the difficulty of interpreting the error 
messages fared amongst the students' primary complaints [13] 
[31]. These difficulties have led professors to develop 
supplemental material simply to teach students how to understand 
the error messages [1]. One evaluation of BlueJ asked the students 
whether they found the messages useful [34]. Most did, but it is 
unclear what this means, given that they were not offered an 
alternative. The students we interviewed were similarly 
appreciative of the error messages of DrScheme, despite their 
struggles to respond to them. That said, our study shows that 
DrScheme’s errors are still a long way from helping the students, 
and other recent work [7] also presents evidence of this. 

There are still relatively few efforts to evaluate the learning 
impact of pedagogic IDEs [29]. Gross and Powers survey recent 
efforts [12], including, notably, those on Lego mindstorms [9] and 
on Jeliot 2000 [22]. Unlike these other evaluations, we did not 
evaluate the impact of the IDE as a whole. Rather, we attempted 
to tease out the effect of individual components. 

A number of different groups have tried to rewrite the error 
messages of professional Java compilers to be more suitable for 
beginners. The rewritten error messages of the Gauntlet project 
[11], which have a humorously combative tone, explain errors and 
provide guidance. The design was not driven by any observational 
study; a follow-up study discovered that Gauntlet was not 
addressing the most common error messages [17]. The Karel++ 
IDE adds a spellchecker [3], and STLFilt rewrites the error 
messages of C++; neither has been evaluated formally [36]. 

Early work on the pedagogy of programming sought to classify 
the errors novice programmers make when using assembly [4] or 
Pascal [32]. More recent work along the same lines studies BlueJ 
[30] [18], Gauntlet [17] Eiffel [25], and Helium [14]. Others have 
studied novices’ behavior during programming sessions. This 
brought insight on novices’ debugging strategies [24], cognitive 
inclination [19], and development processes [20]. Our work 
differs in not studying the students' behavior in isolation; rather, 
we focus on how the error messages influence the students' 
behavior. 

Coull [6], as well as Lane and VanLehn [21] have also defined 
subjective rubrics, though they evaluate the students’ 
programming sessions rather than the success of individual error 
messages. In addition, vocabulary and highlighting were not in the 
range of considered factors affecting student responses to errors.  
Coull also added explanatory notes to the error messages of the 
standard Java compiler based on their observations. These notes 
made experimental subjects significantly more likely to achieve 
an ideal solution to short exercises.   

Nienaltowski et al. [26] compared the impact of adding long-form 
explanation to an error message, and of adding a highlight on 
three different error messages, in a short web-based experiment. 
They found that the former has no impact, while the later impairs 
performance slightly. Unfortunately, the experiment’s design has 
many threats to validity, some of which the paper acknowledged. 
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12. APPENDIX A — VOCABULARY QUIZ 
 

Circle one instance of each vocabulary term on the code below.  Label each circle with the question number. For example, the circle labeled Q0Q0Q0Q0    is an 
instance of the term “Return Type”. 

If you do not know what a term means, write a big “X” on it (in the left column).   The right column gives examples of each term as used in 
DrScheme’s error messages.  The errors are irrelevant otherwise. 

Vocabulary term Sample usage 

Q1. Argument >: expects at least 2 arguments, given 1 

Q2. Selector this selector expects 1 argument, here it is provided 0 arguments 

Q3. Procedure  this procedure expects 2 arguments, here it is provided 0 arguments 

Q4. Expression expected at least two expressions after `and', but found only one expression 

Q5. Predicate this predicate expects 1 argument, here it is provided 2 arguments 

 

;; (make-book number string string number number bst bst)  

(define-struct book (isbn title author year copies left right)) 

 

;; this-edition?:  bst number number -> boolean 

;; Consumes a binary search tree, an ISBN number, and a year, and produces true  

;; if the book with the given ISBN number was published in the given year 

(define (this-edition? a-bst isbn-num year) 

  (cond [(symbol? a-bst) false] 

        [(book? a-bst)  

         (cond [(= isbn-num (book-isbn a-bst))  

                (= year (book-year a-bst))] 

               [(< isbn-num (book-isbn a-bst)) 

                (this-edition? (book-left a-bst) isbn-num year)] 

               [else (this-edition? (book-right a-bst) isbn-num year)])])) 

  

Q0Q0Q0Q0 
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13. APPENDIX B — ERROR MESSAGE DETAILS FOR TABLE 1 
 

Read: 

   read: bad syntax `#1\n' 

   read: expected a closing '\"'; newline within string suggests a missing '\"' on line 20 

   read: illegal use of \".\" 

   read: illegal use of backquote 

   read: illegal use of comma 

 

Definitions / duplicate: 

   babel: this name was defined previously and cannot be re-defined 

 

Definitions / ordering: 

  "reference to an identifier before its definition: liberal 

 

Unbound id.: 

  "~a: name is not defined, not a parameter, and not a primitive name 

 

Argument count: 

   and: expected at least two expressions after `and', but found only one expression 

   check-expect: check-expect requires two expressions. Try (check-expect test expected). 

   ~a: this procedure expects 3 arguments, here it is provided 1 argument 

   or: expected at least two expressions after `or', but found only one expression 

   string?: expects 1 argument, given 2: \"bob\" \"m\" 

 

Syntax / function call: 

   =: this primitive operator must be applied to arguments; expected an open parenthesis before the primitive operator name 

   and: found a use of `and' that does not follow an open parenthesis 

   cond: found a use of `cond' that does not follow an open parenthesis 

   function call: expected a defined name or a primitive operation name after an open parenthesis, but found a function argument name 

   function call: expected a defined name or a primitive operation name after an open parenthesis, but found a number 

   function call: expected a defined name or a primitive operation name after an open parenthesis, but found something else 

   function call: expected a defined name or a primitive operation name after an open parenthesis, but nothing's there 

   or: found a use of `or' that does not follow an open parenthesis 

   political-label: this is a procedure, so it must be applied to arguments (which requires using a parenthesis before the name) 

   string-one-of?: this is a procedure, so it must be applied to arguments (which requires using a parenthesis before the name) 

   string=?: this primitive operator must be applied to arguments; expected an open parenthesis before the primitive operator name 

   string?: this primitive operator must be applied to arguments; expected an open parenthesis before the primitive operator name 

   word01: this is a procedure, so it must be applied to arguments (which requires using a parenthesis before the name) 

 

Parenthesis matching: 

   read: expected `)' to close `(' on line 19, found instead `]'; indentation suggests a missing `)' before line 20 

   read: expected `)' to close `(' on line 31, found instead `]' 

   read: expected `)' to close preceding `(', found instead `]' 

   read: expected a `)' to close `(' 

   read: expected a `)' to close `('; indentation suggests a missing `]' before line 20 

   read: expected a `]' to close `[' 

   read: expected a `]' to close `['; indentation suggests a missing `)' before line 20 

   read: missing `)' to close `(' on line 20, found instead `]' 

   read: missing `)' to close `(' on line 39, found instead `]'; indentation suggests a missing `)' before line 41 

   read: missing `)' to close preceding `(', found instead `]' 

   read: missing `)' to close preceding `(', found instead `]'; indentation suggests a missing `)' before line 20 

   read: missing `]' to close `[' on line 21, found instead `)'; indentation suggests a missing `)' before line 22 

   read: missing `]' to close `[' on line 33, found instead `)' 

   read: missing `]' to close preceding `[', found instead `)' 

   read: missing `]' to close preceding `[', found instead `)'; indentation suggests a missing `)' before line 27 

   read: unexpected `)' 

   read: unexpected `]'")) 

 

Syntax / if: 

   if: expected one question expression and two answer expressions, but found 1 expression 

   if: expected one question expression and two answer expressions, but found 2 expressions 

 

Syntax / cond: 

   cond: expected a clause with a question and answer, but found a clause with only one part 

   cond: expected a clause with one question and one answer, but found a clause with 3 parts 

   cond: expected a clause with one question and one answer, but found a clause with 4 parts 

   cond: expected a question--answer clause, but found something else 

   else: not allowed here, because this is not an immediate question in a `cond' clause 

 

Syntax / define: 

   define: expected a function name, constant name, or function header for `define', but found something else 

   define: expected a name for a function, but found a string 

   define: expected a name for a function, but found something else 

   define: expected a name for the function's 1st argument, but found a string 

   define: expected a name for the function's 1st argument, but found something else 

   define: expected an expression for the function body, but nothing's there 

   define: expected at least one argument name after the function name, but found none 

   define: expected only one expression after the defined name label-near?, but found at least one extra part 

   define: expected only one expression after the defined name label-near?, but found one extra part 

   define: expected only one expression for the function body, but found at least one extra part 

   define: expected only one expression for the function body, but found one extra part 

 

Runtime / cond: 

   cond: all question results were false 
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Runtime / type: 

   and: question result is not true or false: \"true\" 

   or: question result is not true or false: \"conservative\" 

   string=?: expects type <string> as 1st argument, given: 'french; other arguments were: 'spanish 

   string=?: expects type <string> as 1st argument, given: 2; other arguments were: 1 1 1 3 

 

  

List of unbound identifiers: 

 

   /1.0 

   == 

   >label-near1? 

   >label-near? 

   Define 

   Edit 

   Ryan 

   Smith 

   activity-type 

   actvity-type 

   bable 

   celsis->fahrenheit 

   celsius->fhrenheit 

   celsius-fahrenheit 

   celsius>fahrenheit 

   celssius->fahrenheit 

   dedfine 

   dfine 

   ele 

   els 

   flase 

   hallo 

   j 

   label-near1 

   label-near? 

   label 

   labelwordwordwordname 

   land 

   liberal 

   love 

   me 

   name1 

   political-label 

   political 

   senate 

   str=? 

   string-locale=? 

   sybol=? 

   symbol-? 

   symbol=2 

   synbol=? 

   temp 

   test-expect 

   to-look-for 

   true 

   ture 

   tv 

   word-to-look-for 

   word1 

   word1orword2orword3 

   word1word2word3 

   word 

   yes 
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Abstract
This article introduces JazzScheme, a development system based
on extending the Scheme programming language and the Gambit
system. JazzScheme includes a module system, hygienic macros,
object-oriented programming, a full-featured cross-platform appli-
cation framework, a sophisticated programmable IDE and a build
system that creates executable binaries for Mac OS X, Windows
and Linux. JazzScheme has been used for more than 10 years to
develop commercial software.

1. Introduction
Lisp has a long tradition of sophisticated programming environ-
ments entirely built in Lisp. This tradition can be traced as far back
as the Lisp Machines [22] that even went to the extent of running
on Lisp-dedicated hardware. At the time, those environments were
a driving force in the industry, pushing the envelope of what a pro-
gramming environment could do.

More recent Lisp environments include Emacs [9], Macintosh
Common Lisp [7] (now Clozure CL [5]), Allegro CL [1], Lisp-
Works [11], Cusp [6] and DrScheme [12] (now DrRacket [13]).
Yet, few of those offer a complete solution to the following needs:

• being open-source
• being entirely built in their own language for fast evolution and

complete integration
• being able to handle large scale enterprise development

In this article we introduce JazzScheme, a Lisp-based develop-
ment system focused on enterprise development, which has been
used for more than 10 years to develop commercial software.

JazzScheme is an open-source development system comprised
of the Jazz platform and the Jedi IDE. The Jazz platform comes
with a programming language that extends Scheme and Gambit [8],
and that includes a module system, hygienic macros and object-
oriented programming. The platform features a cross-platform ap-
plication framework and a build system that creates executable bi-
naries for Mac OS X, Windows and Linux. Jedi is a modern, pro-
grammable Lisp-based IDE with advanced features targeted at the
Lisp family of languages.

This article starts with a personal account by the creator and
main developer of JazzScheme, the first author, on the context of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
2010 Workshop on Scheme and Functional Programming

its birth and evolution. We then provide an overview of the Jazz
platform and the Jedi IDE.

2. History and evolution
This section is written in the first person as it is a personal account
of the history and evolution of JazzScheme by its creator.

The Little Lisper: Love at first sight
What really started this long adventure was a visit to the university
library by a mathematics undergraduate student more than 20 years
ago. At that time I already had a passion for programming but
apart from the pure thrill of it, no language had really touched my
mathematical sensibility. It all changed the day I discovered a tiny
leaflet called The Little Lisper [18]. It was electric. Love at first
sight! From that day, I knew I wanted to do everything necessary to
be able to program and create elegant and complex software using
that language. Many thanks to its authors! Amusingly, it would only
be 20 years later that I would get to write my first pure Scheme line
of code!

Roots
In the years that followed I ended up doing most of my program-
ming in LeLisp [16], ZetaLisp [22] and Common Lisp [21]. Many
JazzScheme concepts can be traced to that heritage:

• Multiple values
• Optional and keyword parameters
• Logical pathnames
• User extensible readtable
• Formatted output
• Sequences
• Restarts
• Object-oriented programming
• Metaclasses
• Generic functions
• Loop iteration macro (more precisely Jonathan Amsterdam’s

iterate macro)

Common Lisp After all those years of writing Common Lisp
code, my dream was still to be able to program in Scheme for its pu-
rity and beautiful concepts. But Common Lisp offered so many fea-
tures I needed, which pushed me into making many naive attempts
to bridge the two worlds. Those attempts ended up deepening my
understanding of the issues but still left me with the unsatisfying
choice of having to choose between Scheme and Common Lisp.

Prisme In 1990 I graduated with a Master’s Degree in mathemat-
ics and started looking for a job as a programmer. By chance, I met
an old friend from the chess world, Renaud Nadeau, who had re-
cently started his own company in Montreal, Micro-Intel, based on
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Prisme, a Scheme-inspired language. Joining the company was ap-
pealing as it offered a dynamic work environment focused on the
production of high-quality multimedia titles. On the other hand,
Prisme, compared to Macintosh Common Lisp (MCL) [7], the de-
velopment system I was using at the time, seemed primitive. In the
end, the prospect of working with a dynamic team won me over
and I joined Micro-Intel.

I then discovered that having complete access to the source code
of the system had enormous benefits. After just a couple of weeks
of intense hacking, I had added to Prisme most of my favorite tools
from MCL.

I also discovered that I thoroughly enjoyed building real-life
concrete applications. Highly graphical applications with real end
users and real needs. This passion would be the guiding light
during all the years that would eventually lead to the creation of
JazzScheme, to have the best possible development system to build
those applications.

Birth of “classic” Jazz
After working with Micro-Intel for 8 years, evolving Prisme, cre-
ating a complete IDE for it called Visual Prisme and writing many
applications with their wonderful team of talented graphic artists,
domain specialists and programmers, I wanted to learn what was
at the time a complete mystery to me: the Information Technology
(IT) world, e.g. systems programming for large corporations. I left
Micro-Intel and became immersed in the world of databases, large-
scale enterprise systems made of many subsystems, legacy code,
distributed computing and languages such as Visual Basic and Java.

This is also the time, in 1998, when I started the Jazz project.
I felt at the time that no other language than Lisp came close to
having the potential to do what I wanted a development system to
do. Many interesting Lisp systems were around but, unfortunately,
open-source was still in its infancy and so they were all closed-
source. The Prisme experience had taught me the incredible flexi-
bility of having access to the source code of every part of a system.

Having no rights to Prisme, I could not reuse the result of all
those years of work. But in the end, starting from a clean slate was
the best thing that could have happened to Jazz.

Visual Basic I was working in Visual Basic at the time and using
Visual Basic’s IDE really made me aware of the productivity gains
that can be achieved by using a feature-rich IDE to code and debug.
I also discovered Visual Basic’s GUI designer, which was one of
the best available at the time. Its property-based approach would
become the seeds of Jazz’s component system.

C++-based At that stage, I made the first and most crucial de-
sign decision so far, that is to write the whole interpreter for the
functional and object-oriented core of the language in C++. The
decision was primarily based on my experience with Prisme, for
which the interpreter was written in C++.

In retrospect, I believe it would have been better to layer the
system in order to minimize the amount of code written in a foreign
language, and probably write only the functional layer in C++,
building the object-oriented system on top of it using macros. This
design decision would cost me many months of hard refactoring
work later on, when Jazz was ported from C++ to Gambit. On the
other hand, being able to write the first version of the system really
quickly by leveraging previous experience in similar systems was a
great gain.

Windowing system One noteworthy design decision was to use
Windows’ common controls, even though their limited functional-
ity was no secret. The decision was made for two reasons:

1. After years of using the sophisticated Lisp IDE characterizing
Prisme, I wanted to shorten as much as possible the time needed

to build a first version of the new IDE in order to be able to do
all my development with it as soon as possible.

2. Even though I wanted to implement the new controls entirely
in Jazz, I knew that implementing a complete windowing sys-
tem in Lisp would put enormous performance pressure on the
language, which would force me to implement parts of the lan-
guage like an optional type system early, diverting work from
the IDE.

In the end, it was a good decision even though a lot of code had
to be rewritten.

Another one joins In 2004, Stéphane Le Cornec joined in as a
part-time contributor to Jazz. This talented individual and strong
believer in the expressivity of Lisp-based languages has made many
contributions to JazzScheme since then.

Jazz becomes open-source
A couple of years later, around 2001, I met Marc Feeley, Gam-
bit’s author (we later discovered that we were both present at the
1990 ACM Conference on LISP and Functional Programming, in
Nice, France, but didn’t know each other). After many interesting
exchanges, Marc suggested porting Jazz from its C++ base to Gam-
bit. The idea fit perfectly with one of my dreams, i.e. to do with-
out the C++ layer. Marc wrote a proof-of-concept implementation
of the core concepts of Jazz in Gambit, and the performance tests
were convincing enough that we deemed the project feasible. At
that time, though, Gambit and Jazz were still closed-source, which
seriously limited the possibilities for collaboration.

In 2006, I decided to make the move to open-source and Marc
had already done a similar move for Gambit some time before. The
stage was set to port Jazz from C++ to Gambit. To reflect the fact
that Jazz would finally be a proper implementation of Scheme, it
was renamed JazzScheme.

The porting begins The first obstacle at that point was that, try as
I may, I couldn’t get Gambit to build on Windows, so I decided to
look for other Scheme systems. This was acceptable as it was a goal
to make JazzScheme as portable as possible across major Scheme
implementations. To make a long story short, during the first six
months, JazzScheme was running on Chicken [4], Bigloo [3] and
PLT Scheme (now Racket [13]) but not Gambit! At that time Marc
sent me a prebuilt version of Gambit for Windows and I was finally
able to start developing JazzScheme for Gambit, the system that I
already liked a lot and have learned to love since then.

I would like to personally thank Marc Feeley for his unwavering
support and availability all those years. He was always prompt to
fix bugs, add missing features to Gambit, and was always available
for intense brainstorming sessions on how to improve those needed
features into great additions to Gambit.

The present version of JazzScheme is Gambit-dependent but the
portable core design remains, so it should be possible to port Jazz-
Scheme to other major Scheme implementations with a moderate
amount of work.

Scheme was just too great! At that point, rewriting the C++
kernel into Scheme made the code so simple and clear that almost
everything I had ever wanted to add to the Jazz language but hadn’t
been able to due to the difficulties of coding in a low-level language
as C++, I was then able to do. The language was progressing by
leaps and bounds.

Unfortunately, JazzScheme ended up to be a radically different,
incompatible language compared to the old Jazz, forcing not only
the implementation of a new language but also the porting of the
3000 or so classes constituting the existing libraries.

Here is a partial list of the incompatible features that were added
to the new language:
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• R5RS [15] conformance
• A new module system
• A new object-oriented syntax enabling tighter integration with

the functional layer

To make the porting effort even more difficult, we started port-
ing JazzScheme’s GUI from being Windows specific to Cairo and
X11; the whole process took two years.

So we ended up having to:

• Port the language from C++ to Gambit
• Port the existing libraries from the old Jazz to the radically

different JazzScheme
• Port all the UI code from being Windows specific to being

multi-platform

Lots of fun!

Lisp’s syntax saves the day What saved the project at that point
was Lisp’s syntax as data and Jedi’s many refactoring tools. When a
change couldn’t be done with a search and replace, it could often be
done thanks to Jedi’s ability to run a textual macro at every found
occurrence. If that didn’t work either, I would then write some
Jazz code that would be run at each found occurrence, analyze the
Scheme expression and output the replacement in the text buffer.

95× slower The first working version of the Gambit-based Jazz-
Scheme turned out to be 95× slower than the old C++-based Jazz.
Even load time was abysmal. A rough projection showed that it
would take forever for Jedi to load completely at that stage. A big
part of the problem was due to the naive quick implementation of
many core features, but even apart from that, the new language was
still immensely slower.

Statprof comes to the rescue Fortunately, Gambit has a statistical
profiling tool called statprof [19] written by Guillaume Germain.

How such a useful tool as statprof could be written in so little
code is remarkable. It is a tribute to Gambit and Scheme’s clean de-
sign around powerful concepts as continuations. Statprof leverages
Gambit’s interrupt-based architecture and continuations to imple-
ment a complete statistical profiler in only 50 lines of Gambit code!

Using statprof, it was easy to identify all the hotspots. Here is a
partial list:

Functions to macros It turned out that function call overhead
was too great to implement the equivalent of the C++ low-level
virtual table dispatch. Fortunately, Gambit offers access to a low-
level unchecked API using ## functions like ##car, ##cdr and
##vector-ref. Most of these functions get compiled into native
Gambit Virtual Machine (GVM) [17] calls that get turned into
simple C code themselves. For instance, a call to ##vector-ref
will end up generating an array indexing operator in C.

To harness this power safely, though, we created an abstract
macro layer on top of it where you could decide at build time if the
macros should call the safe functions or the low-level ones without
having to modify any source code. Those macros are all prefixed
by %%, for example %%car.

More precisely, JazzScheme’s build system was designed to
support multiple configurations where you can specify the safety
level for each configuration:

• core: jazz will generate safe code for every call even internal
implementation calls

• debug: jazz will generate safe user code
• release: jazz will generate unchecked code

C inlining of class-of Statprof also showed that optimizing
class-of was critical. Unfortunately, optimizing class-of us-
ing only Scheme code was not possible. Because Jazz supports
using Scheme native data types in an object-oriented fashion, the
implementation of class-of was forced to use an inefficient cond
dispatch:

(define (jazz.class-of-native expr)
(cond ((%%object? expr) (%%get-object-class expr))

((%%boolean? expr) jazz.Boolean)
((%%char? expr) jazz.Char)
((%%fixnum? expr) jazz.Fixnum)
((%%flonum? expr) jazz.Flonum)
((%%integer? expr) jazz.Integer)
((%%rational? expr) jazz.Rational)
((%%real? expr) jazz.Real)
((%%complex? expr) jazz.Complex)
((%%number? expr) jazz.Number)
((%%null? expr) jazz.Null)
((%%pair? expr) jazz.Pair)
((%%string? expr) jazz.String)
((%%vector? expr) jazz.Vector)
...
))

Using Gambit’s ##c-code C inlining special-form and Marc’s
in-depth knowledge of Gambit’s memory layout for objects, it was
possible to rewrite class-of into the following efficient version:

(jazz.define-macro (%%c-class-of obj)
‘(or (\#\#c-code #<<end-of-c-code

{
___SCMOBJ obj = ___ARG1;
if (___MEM_ALLOCATED(obj))
{

int subtype = (*___UNTAG(obj) & ___SMASK) >> ___HTB;
if (subtype == ___sJAZZ)

___RESULT = ___VECTORREF(obj,0);
else if (subtype == ___sSTRUCTURE)

___RESULT = ___FAL;
else

___RESULT = ___BODY_AS(___ARG2,___tSUBTYPED)[subtype];
}
else if (___FIXNUMP(obj))

___RESULT = ___ARG3;
else if (obj >= 0)

___RESULT = ___ARG4;
else

___RESULT = ___BODY_AS(___ARG5,___tSUBTYPED)[___INT(___FAL - obj)];
}
end-of-c-code
,obj ;; ___ARG1
jazz.subtypes ;; ___ARG2
jazz.Fixnum ;; ___ARG3
jazz.Char ;; ___ARG4
jazz.specialtypes ;; ___ARG5
)

(jazz.structure-type ,obj)))

Gambit based kernel faster than the old C++ kernel In the end,
Gambit performed above all expectations (except maybe Marc’s!)
enabling the conversion of 200,000+ lines of C++ code into about
15,000 lines of Scheme code and improving the general perfor-
mance of JazzScheme by a factor of about 2.

The porting of such a large code base with so many needs also
forced Gambit to evolve during those years, ironing out many bugs
in the process.
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If JazzScheme ever gets ported to other Scheme systems, it
could end up being an interesting large-scale benchmark of all those
systems.

Jazz as a macro over Scheme I would like to elaborate on how all
of this was possible because of Lisp’s ability to extend the language
using macros, which has always been one of its greatest strengths.

Traditionally, a language is implemented using another lower-
level target language. The implementer usually writes a compiler
that generates code in this target language and sometimes goes
through the trouble of creating an interpreter that can be used for
rapid development. Both writing a compiler and an interpreter are
complex tasks which require years of dedicated effort to attain a
high level of maturity. Also, if for simplicity purposes the com-
piler’s target language is higher level and accessed through func-
tion calls, the danger is that the overhead of the function calls in
the compiled code can become prohibitive.

The new Jazz language completely does away with having to
write a compiler and interpreter by being implemented entirely
as a macro over Gambit. This enables complete reuse of all the
efforts dedicated to Gambit over the years and can be done with
no performance overhead. This was by and large the main reason
why the Jazz language implementation went from 200,000+ lines
of C++ code to about 15,000 lines of Scheme code that even
implemented many new features not found in the old Jazz!

I now see Gambit with its minimalist design focusing on key
systems, as a wonderful language creation toolkit. It is the authors’
opinion that Gambit could be used to implement many other lan-
guages using the same approach, even languages outside the Lisp
family.

Object-oriented approach One of the most difficult decisions in
the design of JazzScheme has to be how to implement object-
orientation. Having used Common Lisp for many years, I was
familiar, of course, with CLOS [20] and generic functions. In fact,
I found very attractive how generic functions unify the functional
and object-oriented layers of Common Lisp. On the other hand, the
old Jazz object-orientation being based around class encapsulation,
I was also painfully aware of how class encapsulation, when used
where natural, could help manage a large code base like the old
Jazz’s 3000+ classes.

So, after many unsuccessful attempts at finding a totally satis-
fying solution that would have the advantages of both approaches,
I finally decided that JazzScheme would support both approaches
and that class encapsulation would be used where natural, but that
we would also be able to rely on generic functions for more com-
plex patterns.

A call to an encapsulated method foo on an instance x is
represented using a special ~ syntax:

(foo~ x)

This syntax was chosen to make it as close as possible to a
function call. Internally, it is referred to as a dynamic dispatch
as JazzScheme will dynamically determine the class of x on first
call and cache the offset of the foo method in the class vtable for
efficient dispatch. If the type inference system can determine the
class of x at compile time, it will be used.

Declarative language Another important design decision was to
make JazzScheme a declarative language.

In a production environment, Scheme’s dynamic nature, where
definitions are only known at run time, can hurt greatly as any
reference to an undefined symbol will only be known at run time,
when the program happens to run at that exact place.

JazzScheme was designed to have a declarative structure to
solve that problem. The code walker resolves all symbols at walk

time and reports any unresolved symbol at that time. We say walk
time instead of the more usual compile time as JazzScheme code
can end up being code walked in three different situations:

• when compiling,
• when loading an interpreted module,
• when doing a live evaluation.

The declarative version of Scheme’s define is the definition
special form, which is so unsettling to new JazzScheme users
coming from the Scheme world. There is really nothing strange
about it, it is just a declarative version of define whose access can
be controlled using a modifier such as private or public as in:

(definition public (relate x y)
(cond ((< x y) -1)

((> x y) 1)
(else 0)))

JazzScheme also fully supports the more familiar approach of
explicitly exporting functionality using an export special form as
in:

(export relate)

(define (relate x y)
(cond ((< x y) -1)

((> x y) 1)
(else 0)))

As those two approaches have advantages and supporters, Jazz-
Scheme supports both.

Built entirely in Jazz
Once the porting to Scheme was completed, around 2008, a long-
standing dream had finally been fulfilled, that is to have a complete
Scheme development system written entirely in itself. Indeed, hav-
ing a system written in itself has many advantages:

Development cycle The most obvious advantage is, of course,
the fast development cycle made possible by the use of a high-
level language and IDE. It is not only having access to high-level
constructs but also having only one language to focus on, both for
implementation and as a user.

In the end, it all boils down to rapid evolution of both the
language and the IDE. For example, often when we see something
which could be improved in Jedi, we just do it live inside the IDE
itself, test, correct, test and commit without restarting the IDE. With
this fast development cycle, it is not uncommon to see 20+ commits
per day on the JazzScheme repository with few developers.

Can be run fully interpreted In terms of the development cycle,
great efforts were dedicated to the development of JazzScheme to
make sure everything could be run interpreted without having to go
through the slow process of compiling. Even such low-level parts
of the system as the module system, the code walker and even the
kernel can all be run 100% interpreted. For instance, even when
adding new features to the module system, we often just modify the
code, test, modify, test, ... and only when everything works do we
build the system, which makes for a very fast development cycle.

Debugging Another advantage from the switch to Gambit was
having access to a high-level debugger. The contrast between the
C++ world and the Gambit world was never as sharp as when facing
a difficult crash to debug. Developing the old Jazz Windows UI was
a painful process, full of crashes, trying to reproduce the problem
in the C++ debugger, and then hunting down arcane C++ structures
far from the user code. The first time the Gambit debugger popped
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up instead of what would have been a crash in the old system, with
a high-level view of the stack, display of frames, ... the bug was
solved in minutes. What a contrast!

Nowadays it is rare to end up in the Gambit debugger as Jazz-
Scheme’s remote debugger handles almost all cases. It still happens
sometimes that an internal bug ends up crashing the remote debug-
ger, but then Gambit is still there to catch the problem and offer a
convenient debugging environment.

Openness to the community The aforementioned language,
Prisme, only had an interpreter. Because of that, a large propor-
tion of the code (even parts as high-level as the text editor) was
written in C. This was always one of the sorest points for the team
of developers. Not having easy access to the source code and see-
ing an opaque C frame in the debugger made their work a lot
harder. It also stopped them from being able to contribute fixes.
This was especially painful because at that time, they were in ex-
cellent position to debug the problem. That realization influenced
greatly JazzScheme’s design to make it a language that could be
compiled efficiently. With the porting of the C++ kernel to Gambit,
JazzScheme users now have access to 100% of the code used to
implement the system.

This can have far reaching implications:

• Learning: New users get access to a vast library of high-quality
code to learn.

• Contributing: Contributing is easy as there is no “other” lan-
guage and development system to learn.

• Debugging: Having access to all source code can improve de-
bugging greatly.

• Deployment: Deployment can be made more modular as the
system does not have to include a large kernel. This is especially
important when working on large-scale projects.

Live by your word Dissatisfaction is one of the greatest driving
forces in development. But how can you be dissatisfied with your
language or IDE if they are not the tools you’re using to develop
them, like Visual Basic being coded in C. Using JazzScheme and
Jedi to develop JazzScheme is a great driving force behind its
development. There is rarely a single day where we do not improve
JazzScheme or Jedi in some way.

Tribute to Lisp Above all other factors, building everything in
JazzScheme is I think the greatest tribute to this extraordinary
language that is Lisp!

Emacs
Lets relate the influence which Emacs had on Jedi over the years.

Emacs is one of the greatest development environments avail-
able, especially for Lisp languages. As such, almost everyone who
has come to work with Jedi over the years comes from an Emacs
background. Over and over these individuals have forced Jedi to
evolve to meet Emacs’s high standards of Lisp editing. In its lat-
est version, Jedi now supports almost all Emacs core features and
bindings, but there is no doubt that the next programmer who starts
using Jedi will find tons of Emacs features he’d like to be added!
Many thanks to Emacs and its dedicated team of maintainers.

The present: Auphelia
Last year, at the Montreal Scheme Lisp User Group (MSLUG), I
met Christian Perreault an open-minded entrepreneur who had been
looking for more than 10 years for a new technology which would
enable him to create the next generation of his Enterprise Resource
Planning (ERP) software. Was it a match made in heaven? After
many intense discussions and evaluations lasting well over a month,
Christian finally decided to use JazzScheme for the ERP backend,

but reserved his decision on the UI frontend between QT and Jazz-
Scheme. Since then, the decision has been made to use JazzScheme
across the whole system both for the backend and the UI frontend.

Also, I always had the dream to set up a work environment
which would attract talented individuals from the Lisp world to
work together on fun and challenging projects, and ultimately show
the world what a Lisp-based development system could do. With
Auphelia [2] this dream is actually coming true! Here is a quick
presentation of the talented individuals who have already collabo-
rated with us in the context of Auphelia:

Marc Feeley Marc Feeley is the author of Gambit, the Scheme
system which JazzScheme is built upon. Being dedicated to the
evolution of Gambit, Marc hasn’t contributed directly to Jazz-
Scheme but he is always a great source of information and insight
in intense brainstorming sessions about difficult issues.

Alex Shinn Alex Shinn is the well-known author of the IrRegex
library [10] implementing regular expressions in pure Scheme. He
is also the author of many other useful Scheme libraries and also
recognized for his deep understanding of the intricacies of hygiene
in a functional language such as Scheme.

Alex ported his IrRegex library to JazzScheme and integrated
it into Jedi. He also added hygienic macro support to the module
system and to the language in general.

The team Apart from those part-time collaborators, Auphelia in-
cludes at the time of writing this article a team of five programmers
working full-time on the project. From that team, one to sometimes
up to three work full-time on evolving open-source JazzScheme to
support the various needs of the project.

3. Overview of the Jazz platform
JazzScheme is a language and development system based on ex-
tending Scheme and the Gambit system. Here is a brief overview
of Gambit and the Jazz platform.

3.1 Gambit
JazzScheme is entirely built using Gambit-C, a high-performance,
state-of-the-art R5RS-compliant Scheme implementation. Gambit
offers a rich library including an API for accessing the compiler and
interpreter. It conforms to the IEEE Scheme standard and imple-
ments 16 of the Scheme Requests for Implementation (SRFI) [14].

Our experience working with Gambit has confirmed its high
level of reliability. As extensive as our use of it was, very few bugs
were found over the past three years, and the few ones we came
across were promptly addressed by its maintainer.

Gambit has shown it has all the essential features to make it the
ideal platform for implementing a development system like Jazz-
Scheme. The ability to load compiled or interpreted code inter-
changeably is key to the fast development cycle promoted by Jazz.
Gambit’s capability to report errors in a precise and configurable
manner allowed us in the debugger to present the frames in a way
which closely matches the Jazz source code, abstracting away the
artifacts of the macro expansion of Jazz into Scheme.

Implementing a responsive GUI-based application like an IDE
is demanding in terms of performance and Gambit was up to the
challenge. In particular, Gambit’s efficient cooperative thread sys-
tem was key to implementing a smooth user experience in the IDE.
Also, porting JazzScheme and the UI framework to Linux / X11
showed that Gambit’s implementation of all those features was
highly portable.

3.2 JazzScheme
JazzScheme is a development system based on extending Scheme
which includes a module system, hygienic macros, object-oriented
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programming, a full-featured cross-platform application frame-
work, and a build system which creates executable binaries for
Mac OS X, Windows and Linux.

JazzScheme’s object-oriented system supports single-inheritance
with multiple interfaces, similar to Java, generic multi-dispatch
functions à la Common Lisp, and metaclasses.

From the start, JazzScheme was designed to support highly
interactive development:

• JazzScheme supports run-time redefinition of functions, meth-
ods, classes, etc. In Jedi, pressing Ctrl-Enter will send the se-
lected block of code to the currently focused process for evalu-
ation.

• Interpreted and compiled code can be loaded interchangeably.
The JazzScheme kernel will automatically load a compiled
version when one is up-to-date and load the code interpreted
otherwise. The build system compiles each unit into a loadable
object (i.e. a dynamic/shared library). Alternatively, the build
system is capable of linking multiple units into a single loadable
library, thus improving application load time.

The Jazz platform is comprised of a rich set of libraries, includ-
ing:

• a sophisticated component system,
• an extensive, cross-platform UI library,
• full access to Cairo 2D graphics,
• a Lisp-based markup language,
• regular expressions,
• database access,
• networking,
• remoting,
• a crash handler in case of unrecoverable exceptions

4. Overview of the Jedi IDE
Jedi is a modern, programmable Lisp-based IDE with advanced
features. Jedi is written entirely in JazzScheme and is one of the
most complex applications built with JazzScheme.

Jedi has a code editor which supports a number of languages.
Although Jedi is at its best while editing Jazz code, it also supports
other Lisp dialects (Scheme, obviously, and Common Lisp), as well
as C/C++, Java, JavaScript, TEX and others. For Lisp languages,
Jedi supports syntax highlighting, Emacs-style editing [9], source
code tabulation, customizable symbol completion and much more.

Common Lisp users will be happy to know that Jedi is soon to
implement Emacs’ Swank protocol for remote debugging, making
it a full-fledged Common Lisp IDE.

Jedi supports rich editing modes and functions (Section 4.1),
and integrates a number of useful tools for interacting with Jazz
processes such as a remote debugger (Section 4.2) and profiler
(Section 4.3), as well as a number of reflection tools (Section 4.4).

4.1 Jedi basics
Workspaces Jedi’s user interface is customizable through the
concept of workspaces which define the structure of the UI com-
ponents and determines which tools are presented to the user.
Workspaces are groups of related windows, tools, etc., that are
activated together. Jedi includes a primary workspace for editing
text, as well as a debugger workspace (shown in Figure 5). There is
also a groupware workspace to compare and merge files and direc-
tories, and a designer workspace to design graphical user interfaces
for Jazz applications. At the right-hand-side of the IDE’s toolbar is
a set of buttons used to switch between workspaces. Workspaces
are specified in a declarative sub-language of Jazz which allows

the user to conveniently customize the IDE by changing the con-
tainment structure and properties of tool panels, splitter windows,
etc.

Projects and files Projects and their source files are displayed
in the workbench, appearing in the left-most panel of the IDE.
A project is an entity that Jedi can build and run, possibly under
control of the debugger. Projects are workbench entities that con-
tain source files and resources. For every project, Jedi will build
a full cross-reference database (its catalog) of every source file in
that project. Note that projects can contain source code from any
language, and Jedi will only catalog the source files that it knows
about.

Cross-references Jedi maintains a database of cross-references in
the code. This is particularly useful for exploring code. In Jedi, by
placing the caret on a particular symbol in the code you can:

• Go to the symbol’s definition (by pressing F12). The definition
is opened in the editor; if multiple definitions of the symbol
are found (e.g. a method with the same name can be found in
different classes), they are listed in the search results window,
as shown in Figure 1.

• Find references to this symbol (by pressing Shift-F12). Again,
if only one reference is found, this reference is opened in the
editor, otherwise the references/call sites are listed in the search
results window.

Editing code
In addition to the cross-reference database, Jedi offers a rich set of
code navigation facilities, allowing the user to:

• Browse the code by chapters (where chapters and sections are
indicated by comments in the source code) or by following the
hierarchy of declarations.

• Navigate backward/forward in the browsing history.
• Browse the class hierarchy.
• Perform an incremental search. Jedi has extensive search-and-

replace capabilities with regular expressions support and textual
macro recording for custom replace actions (cf. Section 4.5).

Code evaluation Jedi has a number of features for editing Lisp
code that can enhance programmer productivity. In particular, you
can evaluate code by pressing Ctrl-Enter in the text, and the expres-
sion where your cursor is will be evaluated in the focused process.
You can evaluate a method, and the effect is to update the method’s
definition in the run-time system. The next time the method will be
called, the new definition will be applied.

Text manipulations Jedi has extra text editing features familiar
to Emacs users, such as the clipboard ring. You can copy multiple
values to the clipboard (with Ctrl-C, applied repeatedly). Alt-V
cycles in the clipboard ring and pastes, while Ctrl-V is the normal
paste operation, which pastes the value at the current position in the
clipboard ring.

4.2 Debugger
Jedi has a remote debugger with full source-level information. An
advantage of remote debugging is that you are debugging your
application exactly as itself with all its features: windows, menus,
connections, ports, threads, ... instead of simulating inside the IDE
its various features.

The debugger reports exceptions occurring in the remote pro-
cesses and can display detailed information about their execution
stack including the state of all variables in all active frames. The
user can browse the individual frames and evaluate expressions in
their context, and the IDE will highlight call sites in the code. Jedi’s
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debugger workspace (Figure 5) is composed of four panels at the
top of the IDE which show, respectively:

1. The list of processes connected to the debugger. By default the
Jedi process is connected to its own debugger, so if an exception
occurs in Jedi, it will be presented in the debugger. There is also
a distinguished process called the focused process which will be
used when you evaluate code with Ctrl-Enter.

2. The list of threads in the focused process, with an icon indicat-
ing the thread’s state. You can restart a thread stopped in an ex-
ception by right-clicking the thread and selecting a restart such
as “Resume event loop”.

3. The list of frames in the execution stack of the selected thread,
as well as any exception on which the thread is stopped. This
panel will also propose all available restarts in that thread (sim-
ilar to the concept of restart in Common Lisp) when displaying
an exception or break point.

4. The variables in the selected frame and their values. The state
of structured objects is presented in a tree-like fashion as this
pane is an instance of the object explorer (cf. Section 4.4)

Process snapshots The state of a Jazz process can be saved to a
snapshot file, which can later be loaded into Jedi’s debugger. Jazz
applications actually have a crash handler which generates a pro-
cess snapshot in case an unrecoverable exception occurs. Process
snapshots once loaded in the debugger are presented in the same
manner as for live processes, the only limitation being that objects
can only be explored to some user-controlled depth.

4.3 Profiler
Jedi supports a remote profiler that is controlled using start/stop
buttons that activate the profiler in the focused process, and presents
the profile results as shown in Figure 2. When selecting an entry in
the results list, Jedi automatically shows the call site in the source
code. The profile results shown were collected by statprof [19], a
statistical profiler for Gambit. The profiler distributes the running
time according to the top n frames of the execution stack, so that
you can identify not only which functions were called most often,
but also what function called them, to a user-controlled depth.

4.4 Reflection tools
View explorer In Jedi (or other Jazz applications), if you are cu-
rious about what a particular widget does or how it is implemented,
you can quickly find out using the view explorer, which gives in-
formation about a graphical component such as its class and prop-
erties. When the view explorer is activated (by pressing F8), you
drag the cursor over the views in a window to select a view. Af-
ter a second, a tooltip displaying information on a particular view
is popped, as shown in Figure 3. You can then also get information
on the enclosing components in the hierarchy by pressing the up ar-
row which selects the parent component. This way you can quickly
find out about the structure of a complex user interface window and
browse its implementation.

Object inspector The inspector tool used in the debugger allows
the user to inspect the state of any object of a debuggee process.
The inspector presents a list of the slots and properties of an object
with their associated values. Object slots bound to jazz objects are
recursively shown as trees. Structured values such as lists and vec-
tors are shown as trees with their individual components divided.
Note that the inspector creates the tree in a lazy fashion, so as to
even out response time and avoid excessive overhead in memory.

4.5 Search and replace
It is not uncommon that a symbol such as a class name or method
needs to be changed across the entire code base of Jazz which

consists of about 1500+ files of Jazz and Scheme code. To support
tasks like these, Jedi offers many search and replace functionalities
accessed using the widget shown in Figure 4. It supports many
modes and functions to specify custom replace actions and control
the scope of the search.

You can specify multiple search/replace pairs that will be ap-
plied simultaneously. The search string can be an arbitrary regular
expression (when the “Regexp” mode is selected), and you can re-
fer to parts of the matching expression in the replace string. More-
over you can specify custom replace actions by selecting the “Play
recording” mode, in which case the textual macro will be applied
with the search string as the current selection.

By default, the scope of the search is limited to the text dis-
played in the active window, but can be set to span all the Jazz
or Scheme files registered in the workbench, or to all the files in a
given directory and/or the files with a given extension. It is also pos-
sible to search for definitions or references in specific projects of
the workbench; for instance, you can find all text-related UI classes
in Jazz by selecting the project jazz.ui and entering Text as search
key.

5. Conclusion
In conclusion, JazzScheme has evolved from a dream to be able
to use Lisp in everyday work to create fun, complex and engaging
software to a mature Lisp-based development system used to build
industrial software such as an Enterprise Resource Planning (ERP)
application.

It is the authors’ hope that JazzScheme ends up playing a small
part in advancing the awareness to this incredible gem called Lisp
which Lispers have been using for more than 50 years now. Not
by telling about Lisp but by making it possible to create complex
high-quality software so easily and rapidly that the programming
community will ultimately and naturally be drawn to it.
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Figure 1. References to a program symbol shown in the Search Results pane.

Figure 2. Profiler results.

Figure 3. View explorer.

Figure 4. Search and replace.
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Figure 5. Debugger workspace.
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Abstract
We report on experience implementing a functional image library
designed for use in an introductory programming course. Designing
the library revealed subtle aspects of image manipulation, and led
to some interesting design decisions. Our new library improves
on the earlier Racket library by adding rotation, mirroring, curves,
new pen shapes, some new polygonal shapes, as well as having a
significantly faster implementation of equal?.

Keywords functional image library, image equality

1. Introduction
This paper reports on Racket’s (Flatt and PLT June 7, 2010) latest
functional image library, 2htdp/image. The library supports 2D
images as values with a number of basic image-building functions
for various shapes like rectangles and ellipses, as well as combina-
tions like images overlaid on each other, rotated images, and scaled
images. The image library is designed to be used with How to De-
sign Programs, starting from the very first exercises, while still be-
ing rich enough to create sophisticated applications.

An earlier, unpublished version of Racket’s image library had a
number of weaknesses that this library overcomes.

• Image equality testing was far too slow.
• Overlaying images off-center was sometimes unintuitive to be-

ginners.
• Rotation and reflection were not supported.

When images are regarded as immutable values (rather than
a side-effect of drawing routines), then unit tests are easier to
create, and the question of equality plays a particularly promi-
nent role. For example, when writing a video game (using the
2htdp/universe library (Felleisen et al. 2009)) one might
write a function draw-world : world → image and create
unit tests similar to:

(check-expect
(draw-world (move-left initial-world))
(overlay/xy player -5 0 initial-image))

For beginners using DrRacket, any poor performance of image
equality in unit tests becomes apparent, since the test cases are in-
cluded in the source code and are evaluated with each update to
their code. One teacher reported that a student’s test-cases for a tic-
tac-toe game took approximately 90 seconds with the previous ver-
sion of the library. Improvements to the library helped considerably,
achieving (in that particular case) approximately a five-hundred-
fold speedup.

2. The 2htdp/image Library API

The 2htdp/image library’s primary functions consist of:

• constructors for basic images:
> (rectangle 60 30 "solid" "blue")

> (triangle 50 "solid" "orange")

> (text "Hello World" 18 "forest green")

dlroW olleH

> (bitmap icons/plt-small-shield.gif)

• operations for adding lines and curves onto images:
> (add-curve

(rectangle 200 50 "solid" "black")
10 40 30 1/2
190 40 -90 1/5
(make-pen "white" 4

"solid" "round" "round"))

(Lines are specified by end points; curves are specified by
end points each augmented with an angle to control the initial
direction of the curve at that point, and, intuitively, a “pull”
to control how long the curve heads in that direction before
turning towards the other point. More precisely, the angle and
pull denote a vector: the difference between the endpoint and
its adjacent control point for a standard Bezier curve.)

• an operation for rotating shapes:
> (rotate 30 (square 30 "solid" "blue"))

60



• operations for overlaying shapes relative to their bounding
boxes:

> (overlay
(rectangle 40 10 "solid" "red")
(rectangle 10 40 "outline" "red"))

> (overlay/align
"middle" "top"
(rectangle 100 10

"solid" "seagreen")
(circle 20 "solid" "silver"))

• putting images above or beside each other:
> (beside (circle 10 "solid" "red")

(circle 20 "solid" "blue"))

> (above/align "left"
(circle 10 "solid" "red")
(circle 20 "solid" "blue"))

• cropping shapes to a rectangle:
> (crop 0 0 40 40

(circle 40 "solid" "pink"))

• flipping and scaling images:
> (above

(star 30 "solid" "firebrick")
(scale/xy

1 1/2
(flip-vertical

(star 30 "solid" "gray"))))

• and equality testing:
> (equal?

(rectangle 40 20 "outline" "red")
(rotate

90
(rectangle 20 40 "outline" "red")))

#t

The library includes many additional, related functions for deal-
ing with pen styles, colors, framing images, width, height, and (for
drawing text) baseline of images, as well as a number of differ-
ent kinds of polygons (triangles, regular polygons, star polygons,
rhombuses, etc). The full 2htdp/image API is a part of the
Racket documentation (The PLT Team 2010).

3. From htdp/image to 2htdp/image
For those familiar with the earlier library htdp/image of Racket
(formerly PLT Scheme), this section gives a brief overview of the
conceptual changes and a rationale for them. The new version
can largely be seen as simply adding features: a few more prim-
itive shapes, as well as some more combinators such as over-
lay/align, rotate, functions for scaling and flipping. How-
ever, the original library did include two concepts which the new
version has jettisoned: pinholes, and scenes. Also, the new library
changes the semantics of overlay.

3.1 No More Pinholes

An image’s pinhole is a designated point used by the original li-
brary to align images when overlaying them. Imagine sticking a
push-pin through the images, with the pin passing through each pin-
hole. The pinhole can be interpreted as each image’s local origin.
The primitive image constructors (mostly) created images whose
pinhole was at their center, so the original (overlay img1
img2) tended to act as the new version’s (overlay/align
img1 "center" "center" img2).

Sometimes this default method of overlaying was intuitive to
students (e.g. when overlaying concentric circles or concentric rect-
angles), but sometimes it wasn’t (e.g. when trying to place images
next to each other, or aligned at an edge). While this was a teaching
moment for how to calculate offsets, in practice these calculations
were cluttered; many calls to overlay/xy would either include
verbose expressions like (- (/ (image-height img1) 2)
(/ (image-height img2) 2)), repeated again for the width,
or more likely the student would just include a hard-coded approx-
imation of the correct offset. While functions to retrieve and move
an image’s pinhole were provided by the library, most students
found these less intuitive than calling overlay/xy.

Pinholes are not included in our new library, although they
might make a comeback in a future version as an optional attribute,
so that beginners could ignore them entirely.

3.2 No More Scenes

The original library had attempted to patch over the pinhole diffi-
culties by providing the notion of a scene—an image whose pin-
hole is at its northwest corner. The library had one constructor for
scenes, empty-scene; the overlay function place-image re-
quired its second image to be a scene, and itself returned a scene.
This often led to confusing errors for students who weren’t at-
tuned to the subtle distinction between scenes and ordinary images
(and thought that place-image and overlay/xy were inter-
changeable). Part of the confusion stemmed from the fact that an
image’s pinhole was invisible state. The new library dispenses with
notion of scenes, and includes overlay/align to make image
placement natural for many common cases.

3.3 Changes to overlay

In htdp/image, the arguments to overlay were interpreted
as “the first image is overlaid with the second.” Students were
repeatedly confused by this, taking it to mean “the first image
is overlaid onto the second;” we changed overlay to match
the latter interpretation, and provided a new function underlay
for the natural task of placing images onto a background (see
Section 4).
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4. Other API Considerations
We discuss the rationale for other decisions made about what to
(not) include in the API, several involving issues in overlaying
images.

• coordinates for overlay/xy There are several ways to com-
bine two images in 2htdp/image, including:

overlay/align lets the caller to specify how the images
are aligned, and is sufficient for several common cases.

The default version overlay uses the center of each im-
age.

When more precise placement is required, overlay/xy
specifies how to align the images using image-relative coor-
dinates.

There was discussion of whether overlay/xy should con-
sider each image’s origin to be the northwest corner with in-
creasing y coordinates moving down, (consistent with most
computer graphics libraries), or the center of each image with
increasing y coordinates moving up (avoiding a privileged cor-
ner, consistent with overlay’s default assumption, and ar-
guably in closer harmony with mathematics).
The final decision was to have indeed have overlay/xy use
the northwest corner. Even in a pedagogic setting where we
strive to strengthen the connection between math and program-
ming, it was felt we also have some duty to teach the conven-
tions ubiquitous in computing, such as this coordinate system.
Note that another related function, place-image, is also pro-
vided; it differs from overlay/xy in two ways: (place-
image img1 dx dy img2) first places the center of img1
offset from the img2’s northwest corner by dx,dy. Second, it
crops the result so that the resulting bounding box is the same
as img2’s. (See Figure 1 below.) The function place-image
is intended for the common case where the second image argu-
ment is regarded as a background or a window for an object of
interest. This asymmetry of purpose is reflected in the asymme-
try of the alignment conventions.

• underlay vs. overlay The new library includes both un-
derlay and overlay functions, which do the same thing
but take their arguments in different order: (overlay img1
img2) is equivalent to (underlay img2 img1).
Providing both overlay and its complement underlay
initially seems a bit redundant; after all the library provides
above and beside yet no complements such as below or
beside/right (which would only differ in swapping the
order of their arguments). The reason underlay is included
is that (overlay/xy img1 dx dy img2) (which over-
lays img1’s coordinate dx,dy on top of img2’s origin), would
require negative coordinates for the common task of “place
img1’s origin on top of img2’s coordinate (dx,dy),” in ad-
dition to swapping the order of its arguments. (See Figure 1.)
This situation was deemed common enough that it was decided
to provide both versions.

• rotate needs no center of rotation It was suggested by
several contributors and helpers that rotate must specify the
point of rotation. However, this doesn’t actually fit the model
of images as values: images are images without any enclosing
frame-of-reference; rotating about the lower-left is the same as
rotating about the center. (Of course, when the implementation
is rotating a composed image, we rotate each sub-part and then
worry about how to re-compose them.)

> (overlay (square 15 "solid" "orange")
(square 20 "solid" "blue"))

> (overlay/xy (square 15 "solid" "orange")
0 7
(square 20 "solid" "blue"))

> (underlay/xy (square 15 "solid" "orange")
0 7
(square 20 "solid" "blue"))

> (place-image (square 15 "solid" "orange")
0 7
(square 20 "solid" "blue"))

Figure 1: overlay/xy, and a motivation for underlay/xy

5. Implementation
We discuss the implementation of the image library, focusing on
unexpected difficulties and issues, as well as the rationale for cer-
tain choices. We present the data representations used, then the al-
gorithm for implementing equality, and finish with assorted issues
involving rotation and cropping.

5.1 Internal Representation
Internally, an image is represented by a pair of a bounding box
and a shape. A shape is a tree where the leaf nodes are the various
basic shapes and the interior nodes are overlaid shapes, translated
shapes, scaled shapes, and cropped shapes. In the notation of Typed
Scheme (Tobin-Hochstadt 2010; Tobin-Hochstadt and Felleisen
2008) (where “U” denotes a union of types, and “Rec” introduces
a name for a recursive type), this is the type for images:
(image

(bounding-box width height baseline)
(Rec Shape

(U Atomic-Shape ; includes ellipses,
; text, bitmaps, etc

Polygon-Shape ; includes rectangles,
; lines, curves, etc

(overlay Shape Shape)
(translate dx dy Shape)
(scale sx sy Shape)
(crop (Listof point) Shape))))

where the various record constructors (image, bounding-box,
overlay, point, etc) are not shown. The crop’s (Listof
point) always form a rectangle.

5.2 Defining Equality
Checking whether two shapes are equal initially seems straight-
forward: just check whether they are the same type of shape, and
have the same arguments. However, upon reflection, there are many
cases where differently-constructed shapes should still be consid-
ered equal. Recognizing and implementing these was a significant
source of effort and revision.

Intuitively, two images should be equal when no operations on
the images can produce images that behave differently. That is, the
two images should be observationally equivalent. In our case, this
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means that the images should draw the same way after any amount
of rotation or scaling, or after any amount of overlays with equal
images.

A natural technique for implementing this form of equality is to
represent the shapes as (say) a tree of constructor calls (or perhaps
a sequence of translated, rotated primitive shapes), and implement
equality as a recursive traversal of the shapes. However, there
were quite a few difficulties encountered with this simple-seeming
approach.

For polygons, there are a number of different ways to represent
the same shape. For example, these four images should be equal:

• (rectangle 10 20 "outline" "blue")

• (rotate 90
(rectangle 20 10 "outline" "blue"))

• a polygon connecting (0,0), (10,0), (10,20), (0,20)
• four entirely disjoint line segments rotated and placed above or

beside each other to achieve the same rectangle.

One could take this as an indication that all polygon shapes should
be represented as a collection of line segments where ordering is
only relevant if the line segments overlap (and are different colors).

Worse, our image library supports shapes that can have a zero
width or a zero height. One might imagine that the image equality
can simply ignore such images but, in the general case, they can
contribute to the bounding box of the overall image. For example,
consider a 10 × 10 square with a 20 × 0 rectangle next to it.
The bounding box of this shape is 20 × 10 and thus the overlay
operations behave differently for this shape than they do for just
the 10 × 10 square alone.

Even worse, consider a 10× 10 black square overlayed onto the
left half of a 20 × 10 red rectangle, as opposed to a 10 × 10 red
square overlayed onto the right half of a 20 × 10 black rectangle.
Or, overlaying a small green figure top of a larger green figure in
such a way that the small green figure makes no contribution to the
overall drawn shape.

One might conclude from these examples that the overlay op-
eration should remove the intersections of any overlapping shapes.
We did briefly consider adding a new operation to pull apart a com-
pound shape into its constituent shapes, thereby adding a new sort
of “observation” with which to declare two shapes as different, un-
der the notion of observational equivalence.

Yet even worse, the ability to crop an ellipse and to crop a curve
means that we must be able to compute equality on some fairly
strange shapes. It is not at all obvious whether or not two given
curves are equal to one curve that has been cropped in such a way
as to appear to be two separate curves.

While these obstacles all seem possible to overcome with a suf-
ficient amount of work, we eventually realized that the students will
have a difficult time understanding why two shapes are not equal
when they do draw the same way at some fixed scale. Specifically,
students designing test cases may write down two expressions that
evaluate to images that appear identical when drawn as they are,
but are different due to the reasons above. The right, pedagogically
motivated choice is to define equality based on how the two im-
ages draw as they are, and abandon the idea of fully observationally
equivalent images.1

1 A related point has to do with fonts, specifically ligatures. A sophisticated
user might expect the letters “fi”, when drawn together, to look different
than an image of the letter “f” placed beside an image of the letter “i”,
due to the ligature. Since we expect this would confuse students, should
they stumble across it, we use the simpler conceptual model, and break the
text into its constitutent letters and draw them one at a time, defeating the
underlying GUI platform’s ligatures (and possibly the font’s kerning). If
this ends up surprising the sophisticated, it would not be difficult to add a

There are still two other, subtle points regarding image equal-
ity where images that look very similar are not equal?. The first
has to do with arithmetic. When shapes can be rotated, the com-
putations of the verticies typically requires real numbers which,
of course, are approximated by IEEE floating point numbers in
Racket. This means that rotating a polygon by 30 degrees 3 times
is not always the same as rotating it by 45 degrees twice. To ac-
comodate this problem, the the image library also supports an ap-
proximate comparison where students can specify a tolerance and
images are considered the same if corresponding points in the nor-
malized shapes are all within the tolerance of each other.

The second issue related to equality is the difference between
empty space in the image and space that is occupied but drawn in
white. For example, a 20 × 10 white rectangle looks the same as a
20 × 0 rectangle next to a 10 × 10 white rectangle when drawn on
a white background, but not on any other color. We decided not to
consider those images equal, so the equality comparison first draws
the two images on a red background and then draws the two images
on a green background. If they look different on either background,
they are considered different.

5.3 Implementing Equality
Unfortunately, defining equality via drawing the images means that
equality is an expensive operation, since it has to first render the
images to bitmaps and then compare those bitmaps, which takes
time proportional to the square of the size of the image (and has a
large constant factor when compared to a structural comparison).

Since students used this library for writing video games, unit-
testing their functions could easily involve screen-sized bitmaps;
this slow performance was noticeable enough that it discouraged
students from writing unit tests. Slow performance was especially
painful for students who have a single source file which includes
their unit tests, since the tests are re-interpreted on each change to
their program, even if the change does not affect many of the tested
functions.

Ultimately, we settled on a hybrid solution. Internally, we nor-
malize shapes so that they are represented as Normalized-
Shapes, according to this type definition (“CN” for “cropped,
normalized”):

(Rec Normalized-Shape
(U (overlay Normalized-Shape CN-Shape)

CN-Shape))
(Rec CN-Shape

(U (crop (Listof point)
Normalized-Shape)

(translate num num Atomic-Shape)
Polygon-Shape))

Note that the overlay of two other overlays is “linearized” so that
the second shape is not an (immediate) overlay2. A non-translated
Atomic-Shape is represented with a translation of (0,0). This
normalization happens lazily, before drawing or checking equal-
ity (not at construction, or else we wouldn’t have constant-time
overlay, etc).

Once the shapes are normalized, the equality checker first tries
a “fast path” check to see if the two shapes have the same normal-
ized form. If they do, then they must draw the same way so we do
not have to actually do the drawing. If they do not, then the equality
test creates bitmaps and compares them. While this only guarantees

new text-constructing operation that does not do this, and thus would have
proper ligatures (and kerning).
2 At first blush, it seems that if two overlaid shapes don’t actually overlap, it
shouldn’t matter which order they are stored in, internally. Surprisingly this
is not the case, for our definition of observationally equivalent: If the entire
image is scaled down to a single pixel, then the color of one of the two
shapes might be considered to “win” to determine the color of that pixel.
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Library Time Speedup
Original library 9346 msec
2htdp/image library, without fast path 440 msec 21x
2htdp/image library, with fast path 18 msec 509x

Figure 2: Timing a student’s final submission, run on a Mac Pro 3.2
GHz machine running Mac OS X 10.6.5, Racket v5.0.0.1

equality at the particular scale the bitmap is created, using the nor-
malized form means that simple equalities are discovered quickly.
For example, two shapes that are overlaid and then rotated will be
equal to the two shapes that are rotated individually and then over-
laid.

Overall, the image equality comparison in 2htdp/image is
significantly faster than in the previous version of the library, for
two reasons. First, it offloads drawing of the bitmaps to the graphics
card (via the underlying OS) instead of doing computations on the
main cpu via Racket, and second the fast-path case of checking
the normalized forms frequently allows for a quick result in many
situations (specifically, when the majority of a student’s test cases
build the expected-result in the same way that their code builds the
actual result, and the test succeeds). Figure 2 shows the speedup
for a program from a student of Guillaume Marceau’s when he was
at the Indian Institute of Information Technology and Management
in Kerala (where their machines appear to have been significantly
slower than the machine the timing tests were run on so these
optimizations would be even more appreciated). Those timings,
involving image-equality tests for drawing a tic-tac-toe board, are
not representative of a general benchmark (since they don’t involve
any user bitmaps), but do illustrate a real-world case that motivated
part of the library re-design.

5.4 Implementing Scaling and Rotation

When scaling or rotating most types of atomic shapes, the appro-
priate transformations are applied to the shape’s defining vertices,
and a new shape is returned.

However, scaling and rotation of bitmaps and ellipses are han-
dled differently from other atomic shapes: if a bitmap is repeat-
edly re-sampled for repeated rotation or scaling, significant artifacts
easily accrue. Instead, we just store the original bitmap with its
“cumulative” scale factor and rotation (implementing, in essence,
the bookkeeping sometimes done by a client’s program in some
side-effecting graphics libraries). Each time the bitmap is actually
rendered, one rotation and scaling is computed, and cached. This
approach avoids accumulating error associated with re-sampling a
bitmap, at the cost of doubling the memory (storing the original
and rotated bitmap).

5.5 rotate’s Time Complexity is Linear, Not Constant

While developing the library, one goal was to keep operations
running in constant time. This is easy for overlay, scale, and
crop that just build a new internal node in the shape tree. We do
not know, however, how to rotate in constant time3.

In particular, consider constructing a shape involving n alter-
nating rotates and overlays: The overlay functions require
knowing a bounding box of each child shape, but to rotate a com-
pound shape we re-compute the bounding box of each sub-shape,
which recursively walks the entire (tree) data structure, taking lin-
ear time. As an example, see Figure 3, where a sequence of calls to
rotate and above gives a figure whose bounding box is difficult
to determine.

3 Even disregarding the time to rotate a bitmaps, where it is reasonable to
require time proportional to its area.

> (define r (rectangle 20 10 "solid" "red"))
> (define (rot-above p)

(above (rotate 30 p) r))
> (rot-above

(rot-above
(rot-above

(rot-above
(rot-above

r)))))

Figure 3: A difficult bounding box to compute, since each above
wants to know the bounding box of each of its sub-shapes to find
the relative (horizontal) centers. (Note that each new rectangle is
added on the bottom.)

5.6 Don’t Push Cropping to the Leaves

Scaling or rotating a compound shape involves pushing the scale/rotation
to each of the children shapes. As seen in the definition of nor-
malized shapes above (Section 5.3), overlays and crops are left
as interior nodes in the shape (whose coordinates get scaled and
rotated).

For a while during development, cropping was handled like ro-
tating and scaling: When cropping an overlaid-shape, the crop was
pushed down to each primitive shape. Thus, a shape was essentially
a list of overlaid primitive shapes (each of which possibly rotated,
scaled, or cropped). However, since two successive crops can’t be
composed into a single crop operation (unlike rotations and scales),
repeatedly cropping a list of shapes would end up replicating the
crops in each leaf of the tree. For example, normalizing

(crop
r1
(crop

r2
(crop

r3
(overlay s1 s2))))

resulted in
(overlay

(crop r1
(crop r2

(crop r3 s1)))
(crop r1

(crop r2
(crop r3 s2))))

To remove the redundancy, we modified the data definition of a
normalized shape so that it is now a tree where the leaves are still
primitive shapes but the nodes are overlay or crop operations.

5.7 Pixels, Coordinates, and Cropping

Coordinates do not live on pixels, but instead live in the infinitesi-
mally small space between between pixels. For example, consider
the (enlarged) grid of pixels show in Figure 4 and imagine building
a 3 × 3 square. Since the coordinates are between the pixels, and
we want to draw 9 pixels, we should make a polygon that has the
verticies (0,0), (0,3), (3,3), and (3,0). Despite the apparent off-by-
one error in those verticies, these coordinates do enclose precisely
9 pixels. Using these coordinates means that scaling the square is
a simple matter of multiplying the scale factor by the verticies. If
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(3,3)

(0,0)

Figure 4: Pixels and coordinates

we had counted pixels instead of the edges between them, then we
might have had the the polygon (0,0), (0,2), (2,2), and (2,0), which
means we have to do add one before we can scale (and then sub-
tract one after scaling) and, even worse, rotation is significantly
more difficult, if not impossible (assuming we use a simple list-of-
verticies representation for polygons).

While this convention for pixel-locations works well for solid
shapes, drawing outlines becomes a bit more problematic. Specif-
ically, if we want to draw a line around a rectangle, we have to
actually pick particular pixels to color, as we cannot color between
the pixels. We opted to round forward by 1/2 and then draw with a
1-pixel wide pen, meaning that the upper row and left-most row of
the filled square are colored, as well as a line of pixels to the right
and below the shape.

5.8 Bitmap Rotations: a Disappearing Pixel

Rotating a bitmap was tricky at the edges. The general approach,
when creating the new bitmap, is to calculate where the new pixel
“came from” (its pre-image – presumably not an exact grid point),
and taking the bilinear interpolation from the original. At the bor-
ders, this includes points which are outside the original’s bounding
box, in which case it was treated as a transparent pixel (α = 0).

However, although large bitmaps seemed to rotate okay, there
was a bug: a 1x1 bitmap would disappear when rotated 90 degrees.
The reason stemmed from treating a pixel as a sample at a grid-
point rather than the center of a square. The grid-point (0,0) of the
new bitmap originates from (0,-1) of the original bitmap, which
is transparent. The solution we used was to treat pixels as not as
a sample at a grid point (x,y) (as advised in (Smith 1995), and as
done in most of the image library), but rather as a sample from the
center of the grid square, (x+0.5, y+0.5).

6. Related Work
There are a large number of image libraries that build up im-
ages functionally, including at least Functional Pictures (Henderson
1982), PIC (Kernighan 1991), MLGraph (Chailloux and Cousineau
1992), CLIM (Son-Bell et al. 1992), Functional PostScript (Sae-
Tan and Shivers 1996), FPIC (Kamin and Hyatt Oct 1997), Pic-
tures (Finne and Peyton Jones July 1995), and Functional Im-
ages (Elliot 2003). These libraries have operators similar to our
2htdp/image library, but to the best of our knowledge they are
not designed for teaching in an introductory programming course,
and they do not support an equality operation.

SICP (Abelson and Sussman 1996)’s picture language (Soe-
gaard 2007) is designed for an introductory computer science
course, but does not support image equality (since test cases and
unit testing do not seem to be a significant emphasis).

Stephen Bloch’s extension of htdp/image (Bloch 2007) in-
spired our exploration into adding rotation to this library. Since his
library is based on htdp/image, the rotation operator is bitmap-
based, meaning it is does not produce images that are as clear.
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Abstract
Libraries and top-level programs are the basic units of portable
code in the language defined by the Revised6 Report on Scheme.
As such, they are naturally treated as compilation units, with source
optimization and certain forms of compile-time error checking oc-
curring within but not across library and program boundaries. This
paper describes a library-group form that can be used to turn a
group of libraries and optionally a top-level program into a single
compilation unit, allowing whole programs to be constructed from
groups of independent pieces and enabling cross-library optimiza-
tion and compile-time error checking. The paper also describes the
implementation, which is challenging partly because of the need to
support the use of one library’s run-time exports when another li-
brary in the same group is compiled. The implementation does so
without expanding any library in the group more than once, since
doing so is expensive in some cases and, more importantly, se-
mantically unsound in general. While described in the context of
Scheme, the techniques presented in this paper are applicable to
any language that supports both procedural macros and libraries,
and might be adaptable to dependently typed languages or tem-
plate meta-programming languages that provide full compile-time
access to the source language.

1. Introduction
A major difference between the language defined by the Revised6

Report on Scheme (R6RS) and earlier dialects is the structuring
of the language into a set of standard libraries and the provision
for programmers to define new libraries of their own [31]. New li-
braries are defined via a library form that explicitly names its
imports and exports. No identifier is visible within a library unless
explicitly imported into or defined within the library, so each library
essentially has a closed scope that, in particular, does not depend
on an ever-changing top-level environment as in earlier Scheme di-
alects. Furthermore, the exports of a library are immutable, both in
the exporting and importing libraries. The compiler (and program-
mer) can thus be certain that if cdr is imported from the standard
base library, it really is cdr and not a variable whose value might
change at run time. This is a boon for compiler optimization, since
it means that cdr can be open coded or even folded, if its arguments
are constants.

Another boon for optimization is that procedures defined in a li-
brary, whether exported or not, can be inlined into other procedures
within the library, since there is no concern that some importer of
the library can modify the value. For the procedures that a compiler
cannot or chooses not to inline, the compiler can avoid construct-

∗ Copyright c© 2010 Andrew Keep and R. Kent Dybvig. This research was
facilitated in part by a National Physical Science Consortium Fellowship
and by stipend support from the National Security Agency

ing and passing unneeded closures, bypass argument-count checks,
branch directly to the proper entry point in a case-lambda, and
perform other related optimizations [12].

Yet another benefit of the closed scope and immutable bindings
is that the compiler can often recognize most or all calls to a
procedure from within the library in which it is defined and verify
that an appropriate number of arguments is being passed to the
procedure, and it can issue warnings when it determines this is not
the case. If the compiler performs some form of type recovery [29],
it might also be able to verify that the types of the arguments are
correct, despite the fact that Scheme is a latently typed language.

The success of the library form can be seen by the number of
libraries that are already available [3]. Part of the success can be
traced to the portable library implementations produced by Van
Tonder [34] and Ghuloum and Dybvig [21]. The portable library
implementations form the basis for at least two R6RS Scheme
implementations [9, 19], and Ghuloum’s system is available on a
variety of R5RS Scheme implementations [18].

The library mechanism is specifically designed to allow sepa-
rate compilation of libraries, although it is generally necessary to
compile each library upon which a library depends before compil-
ing the library itself [17, 21]. Thus, it is natural to view each library
as a single compilation unit, and that is what existing implemen-
tations support. Yet separate compilation does not directly support
three important features:

• cross-library optimization, e.g., inlining, copy propagation,
lambda lifting, closure optimizations, type specialization, and
partial redundancy elimination;

• extension of static type checking across library boundaries; and
• the merging of multiple libraries (and possibly an application’s

main routine) into a single object file so that the distributed
program is self-contained and does not expose details of the
structure of the implementation.

This paper introduces the library-group form to support these
features. The library-group form allows a programmer to spec-
ify a set of libraries and an optional program to be combined as
a single compilation unit. Each library contained within the group
might or might not depend on other libraries in the group, and if
an application program is also contained within the group, it might
or might not depend on all of the libraries. In particular, additional
libraries might be included for possible use (via eval) when the
application is run. It does not require the programmer to restructure
the code. That is, the programmer can continue to treat libraries and
programs as separate entities, typically contained in separate files,
and the libraries and programs remain portable to systems that do
not support the library-group form. The library-group form
merely serves as a wrapper that groups existing libraries together
for purposes of analysis and optimization but has no other visible
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effect. Even though the libraries are combined into a single object
file, each remains visible separately outside of the group.

For most languages, such a form would be almost trivial to im-
plement. In Scheme, however, the implementation is complicated
significantly by the fact that the compilation of one library can in-
volve the actual use of another library’s run-time bindings. That
is, as each library in a library group is compiled, it might require
another in the same group to be compiled and loaded. This need
arises from Scheme’s procedural macros. Macros are defined by
transformers that are themselves coded in Scheme. Macro uses are
expanded at compile time or, more precisely, expansion time, which
precedes compilation. If a macro used in one library depends on the
run-time bindings of another, the other must be loaded before the
first library can be compiled. This need arises even when libraries
do not export keyword (macro) bindings, although the export of
keywords can cause additional complications.

As with libraries themselves, the library-group implementa-
tion is entirely handled by the macro expander and adds no ad-
ditional burdens or constraints on the rest of the compiler. This
makes it readily adaptable to other implementations of Scheme and
even to implementations of other languages that support procedural
macros, now or in the future.

The rest of this paper is organized as follows. Section 2 provides
background about the library form and Ghuloum’s library imple-
mentation, which we use as the basis for describing our implemen-
tation. Section 3 introduces the library-group form, discusses
what the expander produces for a library group, and describes how
it does so. Section 4 illustrates when cross-library optimization is
be helpful. Sections 5 and 6 discuss related and future work, and
Section 7 presents our conclusions.

2. Background
This section describes R6RS libraries and top-level programs,
which are the building blocks for our library groups. It also covers
those aspects of Ghuloum’s implementation of libraries that are
relevant to our implementation of library groups.

2.1 Libraries and top-level programs
An R6RS library is defined via the library form, as illustrated by
the following trivial library.

(library (A)
(export fact)
(import (rnrs))
(define fact
(lambda (n)
(if (zero? n) 1 (* n (fact (- n 1)))))))

The library is named (A), exports a binding for the identifier fact,
and imports from the (rnrs) library. The (rnrs) library exports
bindings for most of the identifiers defined by R6RS, including
define, lambda, if, zero?, *, and -, which are used in the
example. The body of the library consists only of the definition
of the exported fact.

For our purposes1, library names are structured as lists of iden-
tifiers, e.g., (A), (rnrs), and (rnrs io simple). The import
form names one or more libraries. Together with the definitions in
the library’s body, the imported libraries determine the entire set
of identifiers visible within the library’s body. A library’s body can
contain both definitions and initialization expressions, with the def-
initions preceding the expressions. The identifiers defined within a

1 This description suppresses several details of the syntax, such as support
for library versioning, renaming of imports or exports, identifiers exported
indirectly via the expansion of a macro, and the ability to export other kinds
of identifiers, such as record names.

library are either run-time variables, defined with define, or key-
words, defined with define-syntax.

Exports are simply identifiers. An exported identifier can be
defined within the library, or it can be imported into the library
and reexported. In Scheme, types are associated with values, not
variables, so the export form does not include type information,
as it typically would for a statically typed language. Exported
identifiers are immutable. Library import forms cannot result in
cyclic dependencies, so the direct dependencies among a group of
libraries always form a directed acyclic graph (DAG).

The R6RS top-level program below uses fact from library (A)
to print the factorial of 5.

(import (rnrs) (A))
(write (fact 5))

All top-level programs begin with an import form listing the li-
braries upon which it relies. As with a library body, the only
identifiers visible within a top-level program’s body are those im-
ported into the program or defined within the program. A top-level-
program body is identical to a library body2.

The definitions and initialization expressions within the body of
a library or top-level program are evaluated in sequence. The defini-
tions can, however, be mutually recursive. The resulting semantics
can be expressed as a letrec*, which is a variant of letrec that
evaluates its right-hand-side expressions in order.

2.1.1 Library phasing
Figures 1, 2, and 3 together illustrate how the use of macros can
lead to the need for phasing between libraries. The (tree) library
implements a basic set of procedures for creating, identifying, and
modifying simple tree structures built using a tagged vector. Each
tree node has a value and list of children, and the library provides
accessors for getting the value of the node and the children. As with
library (A), (tree) exports only run-time (variable) bindings.

Library (tree constants) defines a macro that can be used
to create constant (quoted) tree structures and three variables bound
to constant tree structures. The quote-tree macro does not simply
expand into a set of calls to make-tree because that would create
(nonconstant) trees at run time. Instead, it directly calls make-tree
at expansion time to create constant tree structures. This sets up a
compile-time dependency for (tree constants) on the run-time
bindings of (tree).

Finally, the top-level program shown in Figure 3 uses the ex-
ports of both (tree) and (tree constants). Because it uses
quote-tree, it depends upon the run-time exports of both libraries
at compile time and at run time.

The possibility that one library’s compile-time or run-time ex-
ports might be needed to compile another library sets up a library
phasing problem that must be solved by the implementation. We
say that a library’s compile-time exports (i.e., macro definitions)
comprise its visit code, and its run-time exports (i.e., variable def-
initions and initialization expressions) comprise its invoke code.
When a library’s compile-time exports are needed (to compile an-
other library or top-level program), we say the library must be vis-
ited, and when a library’s run-time exports are needed (to compile
or run another library or top-level program), we say the library must
be invoked.

In the tree example, library (tree) is invoked when library
(tree constants) is compiled because the quote-tree forms
in (tree constants) cannot be expanded without the run-time
exports of (tree). For the same reason, library (tree) is in-

2 Actually, definitions and initialization expressions can be interleaved in a
top-level-program body, but this is a cosmetic difference of no importance
to our discussion.
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(library (tree)
(export make-tree tree? tree-value
tree-children)

(import (rnrs))
(define tree-id #xbacca)
(define make-tree
(case-lambda
[() (make-tree #f ’())]
[(v) (make-tree v ’())]
[(v c) (vector tree-id v c)]))

(define tree?
(lambda (t)
(and (vector? t)

(eqv? (vector-ref t 0) tree-id))))
(define tree-value
(lambda (t) (vector-ref t 1)))

(define tree-children
(lambda (t) (vector-ref t 2))))

Figure 1. The (tree) library, which implements a tree data struc-
ture.

(library (tree constants)
(export quote-tree t0 t1 t2)
(import (rnrs) (tree))
(define-syntax quote-tree
(lambda (x)
(define q-tree-c
(lambda (x)
(syntax-case x ()
[(v c* . . .)
(make-tree #’v
(map q-tree-c #’(c* . . .)))]

[v (make-tree #’v)])))
(syntax-case x ()
[( ) #’(quote-tree #f)]
[(quote-tree v c* . . .)
#‘’#,(make-tree #’v

(map q-tree-c #’(c* . . .)))])))
(define t0 (quote-tree))
(define t1 (quote-tree 0))
(define t2 (quote-tree 1 (2 3 4) (5 6 7))))

Figure 2. The (tree constants) library, which defines a mech-
anism for creating constant trees and a few constant trees of its
own.

(import (rnrs) (tree) (tree constants))
(define tree->list
(lambda (t)
(cons (tree-value t)

(map tree->list (tree-children t)))))
(write (tree->list t0))
(write (tree->list t1))
(write (tree-value (car (tree-children t2))))
(write (tree->list (quote-tree 5 (7 9))))

Figure 3. A program using the (tree) and (tree constants)
libraries.

voked when the top-level program in Figure 3 is compiled. Library
(tree constants) is visited when the top-level program is com-
piled, because of the use of quote-tree. Finally, both libraries are
invoked when the top-level program is run because the run-time
bindings of both are used.

The tree example takes advantage of implicit phasing [21].
R6RS also allows an implementation to require explicit phase dec-
larations as part of the import syntax. The library-group form
described in this paper, and its implementation, are not tied to either
phasing model, so this paper has no more to say about the differ-
ences between implicit and explicit phasing.

2.2 Library implementation
The compiled form of a library consists of metadata, compiled
visit code, and compiled invoke code. The metadata represents
information about the library’s dependencies and exports, among
other things. The compiled visit code evaluates the library’s macro-
transformer expressions and sets up the bindings from keywords to
transformers. The compiled invoke code evaluates the right-hand-
sides of the library’s variable definitions, sets up the bindings from
variables to their values, and evaluates the initialization expres-
sions.

When the first import of a library is seen, a library manager lo-
cates the library, loads it, and records its metadata, visit code, and
invoke code in a library record data structure as illustrated for li-
braries (tree) and (tree constants) in Figure 4. The metadata
consists of the library’s name, a unique identifier (UID), a list of ex-
ported identifiers, a list of libraries that must be invoked before the
library is visited, and a list of libraries that must be invoked before
the library is invoked. The UID uniquely identifies each compila-
tion instance of a library and is used to verify that other compiled
libraries and top-level programs are built against the same com-
pilation instance. In general, when a library or top-level program
is compiled, it must be linked only with the same compilation in-
stance of an imported library. An example illustrating why this is
necessary is given in Section 3.3.

Subsequent imports of the same library do not cause the library
to be reloaded, although in our implementation, a library can be
reloaded explicitly during interactive program development.

Once a library has been loaded, the expander uses the library’s
metadata to determine the library’s exports. When a reference to
an export is seen, the expander uses the metadata to determine
whether it is a compile-time export (keyword) or run-time export
(variable). If it is a compile-time export, the expander runs the
library’s visit code to establish the keyword bindings. If it is a run-
time export, the expander’s action depends on the “level” of the
code being expanded. If the code is run-time code, the expander
merely records that the library or program being expanded has
an invoke requirement on the library. If the code is expand-time
code (i.e., code within a transformer expression on the right-hand-
side of a define-syntax or other keyword binding form), the
expander records that the library or program being expanded has
a visit requirement on the library, and the expander also runs the
library’s invoke code to establish its variable bindings and perform
its initialization.

Since programs have no exports, they do not have visit code and
do not need most of the metadata associated with a library. Thus, a
program’s representation consists only of invoke requirements and
invoke code, as illustrated at the top of Figure 4. In our implemen-
tation, a program record is never actually recorded anywhere, since
the program is invoked as soon as it is loaded.

As noted in Section 2.1, library and top-level program bodies
are evaluated using letrec* semantics. Thus, the invoke code
produced by the expander for a library or top-level program is
structured as a letrec*, as illustrated below for library (tree),
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invoke code: <code>
    (tree constants)
invoke req: (rnrs), (tree),

Invoke
Code

name: (tree)
uid: <uid 3>

invoke code: <code>
visit code: <code>
invoke req: (rnrs)
visit req: (rnrs)

exports: make−tree, tree?,
    tree−value, tree−children

name: (tree constants)
uid: <uid 4>

invoke code: <code>
visit code: <code>

visit req: (rnrs), (tree)
invoke req: 

    t2
exports: quote−tree, t0, t1,

Invoke
Code

Invoke
Code

Figure 4. Library records for the (tree) and (tree constants) libraries and a program record for our program.

with used to represent the definition right-hand-side expressions,
which are simply expanded versions of the corresponding source
expressions.

(letrec* ([make-tree ]
[tree? ]
[tree-value ]
[tree-children ])

(set-top-level! $make-tree make-tree)
(set-top-level! $tree? tree?)
(set-top-level! $tree-value tree-value)
(set-top-level! $tree-children tree-children))

If the library contained initialization expressions, they would ap-
pear just after the letrec* bindings. If the library contained unex-
ported variable bindings, they would appear in the letrec* along
with the exported bindings.

We refer to the identifiers $make-tree, $tree?, $tree-value,
and $tree-children as library globals. These are the handles by
which other libraries and top-level programs are able to access the
exports of a library. In our system, library globals are implemented
as ordinary top-level bindings in the sense of the Revised5 Report
on Scheme [23]. To avoid name clashes with other top-level bind-
ings and with other compilation instances of the library, library
globals are actually generated symbols (gensyms). In fact, the list
of exports is not as simple as portrayed in Figure 4, since it must
identify the externally visible name, e.g., make-tree, whether the
identifier is a variable or keyword, and, for variables, the generated
name, e.g., the gensym represented by $make-tree.

It would be possible to avoid binding the local names, e.g.,
make-tree, and instead directly set only the global names, e.g.,
$make-tree. Binding local names as well as global names enables
the compiler to perform the optimizations described in Section 1
involving references to the library’s exported variables within the
library itself. Our compiler is not able to perform such optimiza-
tions when they involve references to top-level variables, because
it is generally impossible to prove that a top-level variable’s value
never changes even with whole-program analysis due to the po-
tential use of eval. We could introduce a new class of immutable
variables to use as library globals, but this would cause problems
in our system if a compiled library is ever explicitly reloaded. It

is also easier to provide the compiler with code it already knows
how to optimize than to teach it how to deal with a new class of
immutable top-level variables.

3. The library-group form
Having now a basic understanding of how libraries work and how
they are implemented, we are ready to look at the library-group
form. This section describes the form, its usage, what the expander
should produce for the form, and how the expander does so. It also
describes a more portable variation of the expansion.

3.1 Usage
Both the (tree) and (tree constants) libraries are required
when the top-level program that uses them is run. If the program is
an application to be distributed, the libraries would have to be dis-
tributed along with the program. Because the libraries and program
are compiled separately, there is no opportunity for the compiler to
optimize across the boundaries and no chance for the compiler to
detect ahead of time if one of the procedures exported by (tree)
is used improperly by the program. The library-group form is
designed to address all of these issues.

Syntactically, a library-group form is a wrapper for a set of
library forms and, optionally, a top-level program. Here is how
it might look for our simple application, with used to indicate
portions of the code that have been omitted for brevity.

(library-group
(library (tree) )
(library (tree constants) )
(import (rnrs) (tree) (tree constants))
(define tree->list
(lambda (t)
(cons (tree-value t)

(map tree->list (tree-children t)))))
(write (tree->list t0))
(write (tree->list t1))
(write (tree-value (car (tree-children t2))))
(write (tree->list (quote-tree 5 (7 9)))))

The following grammar describes the library-group syntax:
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library-group −→ (library-group lglib* lgprog)
| (library-group lglib*)

lglib −→ library | (include filename)
lgprog −→ program | (include filename)

where library is an ordinary R6RS library form and program is
an ordinary R6RS top-level program. A minor but important twist is
that a library or the top-level program, if any, can be replaced by an
include form that names a file containing that library or program3.
In fact, we anticipate this will be done more often than not, so
the existing structure of a program and the libraries it uses is not
disturbed. In particular, when include is used, the existence of the
library-group form does not interfere with the normal library
development process or defeat the purpose of using libraries to
organize code into separate logical units. So, our simple application
might instead look like:

(library-group
(include "tree .sls")
(include "tree/constants .sls")
(include "app .sps"))

In the general case, a library-group packages together a pro-
gram and multiple libraries. There are several interesting special
cases. In the simplest case, the library-group form can be empty,
with no libraries and no program specified, in which case it is com-
piled into nothing. A library-group form can also consist of
just the optional top-level program form. In this case, it is sim-
ply a wrapper for the top-level program it contains, as library is
a wrapper for libraries. Similarly, the library-group form can
consist of a single library form, in which case it is equivalent to
just the library form by itself. Finally, we can have just a list of
library forms, in which case the library-group form packages
together libraries only, with no program code.

A library-group form is not required to encapsulate all of the
libraries upon which members of the group depend. For example,
we could package together just (tree constants) and the top-
level program:

(library-group
(include "tree/constants .sls")
(include "app .sps"))

leaving (tree) as a separate dependency of the library group.
This is important since the source for some libraries might be
unavailable. In this case, a library group contains just those libraries
for which source is available. The final distribution can include
any separate, binary libraries. Conversely, a library-group form
can contain libraries upon which neither the top-level program (if
present) nor any of the other libraries explicitly depend, e.g.:

(library-group
(include "tree .sls")
(include "tree/constants .sls")
(include "foo .sls")
(include "app .sps"))

Even for whole programs packaged in this way, including an ad-
ditional library might be useful if the program might use eval to
access the bindings of the library at run time. This supports the
common technique of building modules that might or might not be
needed into an operating system kernel, web server, or other pro-
gram. The advantage of doing so is that the additional libraries be-
come part of a single package and they benefit from cross-library
error checking and optimization for the parts of the other libraries

3 An included file can actually contain multiple libraries or even one or more
libraries and a program, but we anticipate that each included file typically
contains just one library or program.

they use. The downside is that libraries included but never used
might still have their invoke code executed, depending on which
libraries in the group are invoked. This is the result of combining
the invoke code of all the libraries in the group. The programmer
has the responsibility and opportunity to decide what libraries are
profitable to include.

Apart from the syntactic requirement that the top-level program,
if present, must follow the libraries, the library-group form also
requires that each library be preceded by any other library in the
group that it imports. So, for example:

(library-group
(include "tree/constants .sls")
(include "tree .sls")
(include "app .sps"))

would be invalid, because (tree constants) imports (tree).
One or more appropriate orderings are guaranteed to exist because
R6RS libraries are not permitted to have cyclic import dependen-
cies.

The expander could determine an ordering based on the import
forms (including local import forms) it discovers while expanding
the code. We give the programmer complete control over the order-
ing, however, so that the programmer can resolve dynamic depen-
dencies that arise from invoke-time calls to eval. Another solution
would be to reorder only if necessary, but we have so far chosen
not to reorder so as to maintain complete predictability.

Libraries contained within a library-group form behave like
their standalone equivalents, except that the invoke code of the
libraries is fused4. Fusing the code of the enclosed libraries and
top-level program facilitates compile-time error checking and op-
timization across the library and program boundaries. If compiled
to a file, the form also produces a single object file. In essence,
the library-group form changes the basic unit of compilation
from the library or top-level program to the library-group form,
without disturbing the enclosed (or included) libraries or top-level
programs.

A consequence of fusing the invoke code is that the first time
a library in the group is invoked, the libraries up to and including
that library are invoked as well, along with any side effects doing so
might entail. In cases where all of the libraries in the group would
be invoked anyway, such as when a top-level program that uses
all of the libraries is run, this is no different from the standalone
behavior.

Fusing the invoke code creates a more subtle difference between
grouped and standalone libraries. The import dependencies of a
group of R6RS libraries must form a DAG, i.e., must not involve
cycles. An exception is raised at compile time for static cyclic
dependencies and at run time for dynamic cyclic dependencies that
arise via eval. When multiple libraries are grouped together, a
synthetic cycle can arise, just as cycles can arise when arbitrary
nodes in any DAG are combined. We address the issue of handling
dynamic cycles in more depth in the next subsection.

3.2 Anticipated expander output
This section describes what we would like the expander to produce
for the library-group form and describes how the expander deals
with import relationships requiring one library’s run-time exports
to be available for the expansion of another library within the group.

As noted in Section 2, the explicit import dependencies among
libraries must form a directed acyclic graph (DAG), and as shown
in Section 2.2, the invoke code of each library expands indepen-
dently into a letrec* expression. This leads to an expansion of
library-group forms as nested letrec* forms, where each li-

4 Visit code is not fused as there is no advantage in doing so.
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(letrec* ([tree-id ]
[make-tree ]
[tree? ]
[tree-value ]
[tree-children ])

(set-top-level! $make-tree make-tree)
(set-top-level! $tree? tree?)
(set-top-level! $tree-value tree-value)
(set-top-level! $tree-children tree-children)
(letrec* ([t0 ]

[t1 ]
[t2 ])

(set-top-level! $t0 t0)
(set-top-level! $t1 t1)
(set-top-level! $t2 t2)
(letrec* ([tree->list

(lambda (t)
(cons ($tree-value t)
(map tree->list
($tree-children t))))])

(write (tree->list $t0))
(write (tree->list $t1))
(write (tree-value

(car (tree-children $t2))))
(write (tree->list (quote tree constant))))))

Figure 5. A nested letrec* for our library group, with indi-
cating code that has been omitted for brevity.

brary expands to a letrec* form containing the libraries following
it in the group. The code for the top-level program is nested inside
the innermost letrec* form. Libraries are nested in the order pro-
vided by the programmer in the library-group form.

Figure 5 shows the result of this nesting of letrec* forms
for the first library group defined in Section 3.1. This is a good
first cut. The references to each library global properly follows
the assignment to it, which remains properly nested within the
binding for the corresponding local variable. Unfortunately, this
form does not allow the compiler to analyze and optimize across
library boundaries, because the inner parts of the letrec* nest
refer to the global rather than to the local variables.

To address this shortcoming, the code must be rewired to refer to
the local variables instead, as shown in Figure 6. With this change,
the invoke code of the library group now forms a single compilation
unit for which cross-library error checking and optimization is
possible.

Another issue remains. Loading a library group should not au-
tomatically execute the shared invoke code. To address this issue,
the code is abstracted into a separate procedure, p, called from the
invoke code stored in each of the library records. Rather than run-
ning the embedded top-level-program code, p returns a thunk that
can be used to run that code. This thunk is ignored by the library
invoke code, but it is used to run the top-level program when the
library group is used as a top-level program. The procedure p for
the tree library group is shown in Figure 7.

Unfortunately, this expansion can lead to synthetic cycles in the
dependency graph of the libraries. Figure 8 shows three libraries
with simple dependencies: (C) depends on (B) which in turn
depends on (A).

We could require the programmer to include library (B) in the
library group, but a more general solution that does not require this
is preferred. The central problem is that (B) needs to be run after
the invoke code for library (A) is finished and before the invoke
code for library (C) has started. This can be solved by marking

(letrec* ([tree-id ]
[make-tree ]
[tree? ]
[tree-value ]
[tree-children ])

(set-top-level! $make-tree make-tree)
(set-top-level! $tree? tree?)
(set-top-level! $tree-value tree-value)
(set-top-level! $tree-children tree-children)
(letrec* ([t0 ]

[t1 ]
[t2 ])

(set-top-level! $t0 t0)
(set-top-level! $t1 t1)
(set-top-level! $t2 t2)
(letrec* ([tree->list

(lambda (t)
(cons (tree-value t)
(map tree->list
(tree-children t))))])

(write (tree->list t0))
(write (tree->list t1))
(write (tree-value

(car (tree-children t2))))
(write (tree->list (quote tree constant))))))

Figure 6. A nested letrec* for our library group, with library-
global references replaced by local-variable references.

(lambda ()
(letrec* ([tree-id ]

[make-tree ]
[tree? ]
[tree-value ]
[tree-children ])

(set-top-level! $make-tree make-tree)
(set-top-level! $tree? tree?)
(set-top-level! $tree-value tree-value)
(set-top-level! $tree-children tree-children)
(letrec* ([t0 ]

[t1 ]
[t2 ])

(set-top-level! $t0 t0)
(set-top-level! $t1 t1)
(set-top-level! $t2 t2)
(lambda ()
(letrec* ([tree->list

(lambda (t)
(cons (tree-value t)
(map tree->list
(tree-children t))))])

(write (tree->list t0))
(write (tree->list t1))
(write (tree-value

(car (tree-children t2))))
(write (tree->list

(quote tree constant))))))))

Figure 7. The final invoke code expansion target.
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(library (A)
(export x)
(import (rnrs))
(define x 5))

(library (B)
(export y)
(import (rnrs) (A))
(define y (+ x 5)))

(library (C)
(export z)
(import (rnrs) (B))
(define z (+ y 5)))

Figure 8. Three simple libraries, with simple dependencies

(library-group (library (A) ) (library (C) ))

Figure 9. A library-group form containing (A) and (C)

(lambda ()
(letrec* ([x 5])
(set-top-level! $x x)
($mark-invoked! ’A)
($invoke-library ’(B) ’() ’B)
(letrec* ([z (+ y 5)])
(set-top-level! $z z)
($mark-invoked! ’C))))

Figure 10. Expansion of library group marking (A) as invoked
and invoking (B)

(lambda (uid)
(letrec* ([x 5])
(set-top-level! $x x)
($mark-invoked! ’A)
(let ([nested-lib

(lambda (uid)
($invoke-library ’(B) ’() ’B)
(letrec* ([z (+ y 5)])
(set-top-level! $z z)
($mark-invoked! ’C)
(let ([nested-lib values])
(if (eq? uid ’C)

nested-lib
(nested-lib uid)))))])

(if (eq? uid ’A)
nested-lib
(nested-lib uid)))))

Figure 11. Final expansion for correct library groups

library (A) as invoked once its invoke code is complete and ex-
plicitly invoking (B) before (C)’s invoke code begins. Figure 10
shows what this invoke code might look like.

This succeeds when (A) or (C) are invoked first, but results in
a cycle when (B) is invoked first. Effectively, the library group
invoke code should stop once (A)’s invoke code has executed.
Wrapping each library in a lambda that takes the UID of the library
being invoked accomplishes this. When a library group is invoked,
the UID informs the invoke code where to stop and returns any
nested library’s surrounding lambda as the restart point. Figure 11
shows this corrected expansion of the library group containing (A)
and (C). The invoke code for an included program would replace
the innermost nested-lib, and be called when #f is passed in
place of the UID.

(let
([p (let

([proc
(lambda (uid)

(letrec* ([tree-id ]
[make-tree ]
[tree? ]
[tree-value ]
[tree-children ])

(set-top-level! $make-tree make-tree)

($mark-invoked! ’tree)
(let ([nested-lib

(lambda (uid)
(letrec* ([t0 ]

[t1 ]
[t2 ])

(set-top-level! $t0 t0)

($mark-invoked! ’constants)
(let ([nested-lib

(lambda (uid)
($invoke-library

’(tree constants)
’() ’constants)

($invoke-library
’(tree) ’() ’tree)

(letrec*
([tree->list ])

))])
(if (eq? uid ’constants)

nested-lib
(nested-lib uid)))))])

(if (eq? uid ’tree)
nested-lib
(nested-lib uid)))))])

(lambda (uid) (set! proc (proc uid))))])
($install-library ’(tree) ’() ’tree

’(#[libreq (rnrs) (6) $rnrs]) ’() ’()
void (lambda () (p ’tree)))

($install-library ’(tree constants) ’() ’constants
’(#[libreq (tree) () tree]

#[libreq (rnrs) (6) $rnrs])
’(#[libreq (tree) () tree]) ’()
(lambda ()

(set-top-level! $quote-tree ))
(lambda () (p ’constants)))

(p #f))

Figure 13. Final expansion of the tree library group

Beyond the issues in the invoke code, we would also like to en-
sure that libraries in the group are properly installed into the library
manager. For the most part, libraries in the group can be handled
like standalone libraries. Metadata and visit code is installed into
the library manager as normal. The invoke code is the only twist.
We would like to ensure that each library in the library group is
invoked only once, the first time it or one of the libraries below
it in the group is invoked. Thus, each library is installed with the
shared invoke procedure described above. Figure 12 shows how
our library records are updated from Figure 4 to support the shared
invoke code. Figure 13 shows this final expansion for our tree li-
brary group. If the optional program were not supplied, the call to
the p thunk at the bottom would be omitted. When the optional
program is supplied, it always executes when the library group is
loaded. Programmers wishing to use the library group separately
can create two versions of the library group, one with the top-level
program and one without.
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shared
invoke
code

name: (tree)
uid: <uid 3>

invoke code: <code>
visit code: <code>
invoke req: (rnrs)
visit req: (rnrs)

exports: make−tree, tree?,
    tree−value, tree−children

invoke code: <code>
    (tree constants)
invoke req: (rnrs), (tree),

name: (tree constants)
uid: <uid 4>

invoke code: <code>
visit code: <code>

visit req: (rnrs), (tree)
invoke req: 

    t2
exports: quote−tree, t0, t1,

Figure 12. Library and program records for the library group, showing the shared invoke code run when either of the libraries are invoked
or when the top-level program is run.

3.3 Implementation
A major challenge in producing the residual code shown in the
preceding section is that the run-time bindings for one library might
be needed while compiling the code for another library in the
group. A potential simple solution to this problem is to compile
and load each library before compiling the next in the group.
This causes the library (and any similar library) to be compiled
twice, but that is not a serious concern if the compiler is fast or
if the library-group form is used only in the final stage of an
application’s development to prepare the final production version.

Unfortunately, this simple solution does not work because the
first compilation of the library may be fatally incompatible with the
second. This can arise for many reasons, all having to do ultimately
with two facts. First, macros can change much of the nature of
a library, including the internal representations used for its data
structures and even whether an export is defined as a keyword or
as a variable. Second, since macros can take advantage of the full
power of the language, the transformations they perform can be
affected by the same things that affect run-time code, including, for
example, information in a configuration file, state stored elsewhere
in the file system by earlier uses of the macro, or even a random
number generator.

For example, via a macro that flips a coin, e.g., checks to see
if a random number generator produces an even or odd answer,
the (tree) library might in one case represent trees as tagged
lists and in another as tagged vectors. If this occurs, the constant
trees defined in the (tree constants) library and in the top-
level program would be incompatible with the accessors used at
run time. While this is a contrived and whimsical example, such
things can happen and we are obligated to handle them properly

in order to maintain consistent semantics between separately com-
piled libraries and libraries compiled as part of a library group.

On the other hand, we cannot entirely avoid compiling the code
for a library whose run-time exports are needed to compile another
part of the group if we are to produce the run-time code we hope
to produce. The solution is for the expander to expand the code
for each library only once, as it is seen, just as if the library were
compiled separately from all of the other libraries. If the library
must be invoked to compile another of the libraries or the top-level
program, the expander runs the invoke code through the rest of the
compiler and evaluates the result. Once all of the libraries and the
top-level program have been expanded, the expander can merge and
rewrite the expanded code for all of the libraries to produce the
code described in the preceding section, then allow the resulting
code to be run through the rest of the compiler. Although some of
the libraries might be put through the rest of the compiler more than
once, each is expanded exactly once. Assuming that the rest of the
compiler is deterministic, this prevents the sorts of problems that
arise if a library is expanded more than once.

In order to perform this rewiring, the library must be abstracted
slightly so that a mapping from the exported identifiers to the
lexical variables can be maintained. With this information the code
can be rewired to produce the code in Figure 13.

Since a library’s invoke code might be needed to expand an-
other library in the group, libraries in the group are installed as
standalone libraries during expansion and are then replaced by the
library group for run time. This means that the invoke code for a
library might be run twice in the same Scheme session, once dur-
ing expansion and once during execution. Multiple invocations of
a library are permitted by the R6RS. Indeed, some implementa-
tions always invoke a library one or more times at compile time
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and again at run time in order to prevent state set up at compile
time from being used at run time.

This implementation requires the expander to walk through
expanded code converting library-global references into lexical-
variable references. Expanded code is typically in some compiler-
dependent form, however, that the expander would not normally
need to traverse, and we might want a more portable solution to this
problem. One alternative to the code walk is to wrap the expanded
library in a lambda expression with formal parameters for each
library global referenced within the library.

4. Empirical Evaluation
One of the goals of the library-group form is to enable cross-
library optimizations to take place. Optimizations like procedure
inlining are known to result in significant performance bene-
fits [36]. By using the library-group form, a program enables a
compiler that supports these optimizations to apply them across li-
brary boundaries. This section characterizes the types of programs
we expect to show performance benefits. Even when there are no
performance benefits, programs still benefit from the single binary
output file and cross-library compile-time error checking.

In general, programs and libraries with many cross-library pro-
cedure calls are expected to benefit the most. As an example, imag-
ine a compiler where each pass is called only once and is defined
in its own library. Combining these libraries into a library group is
unlikely to yield performance benefits, since the number of cross-
library procedure calls is relatively small. If the passes of this com-
piler use a common record structure to represent code, however,
and a library of helpers for decomposing and reconstructing these
records, combining the compiler pass libraries and the helper li-
brary into a single library group can benefit compiler performance
significantly.

To illustrate when performance gains are expected, we present
two example libraries, both written by Eduardo Cavazos and tested
in Chez Scheme Version 8.0 [12]. The first program [8] imple-
ments a set of tests for the “Mathematical Pseudo Language” [10,
11] (MPL), a symbolic math library. The second uses a library
for indexable sequences [7] to implement a matrix multiply algo-
rithm [13].

Many small libraries comprise the MPL library. Each basic
mathematical function, such as +, /, and cos, uses pattern matching
to decompose the mathematical expression passed to it to select
an appropriate simplification, if one exists. The pattern matcher,
provided by another library [14], avoids cross-library calls, since it
is implemented entirely as a macro. Thus, most of the work for each
function is handled within a single library. The main program tests
each algorithm a handful of times. Compiling the program with
the library-group form showed only a negligible performance
gain. This example typifies programs that are unlikely to improve
performance with the library-group form. Since computation is
mostly performed within libraries, the optimizer has little left to
optimize across the library boundaries.

The matrix multiply example uses a vector-for-each func-
tion providing the loop index to its procedure argument, from
the indexable-sequence library. The library abstracts standard data
structure iteration functions that provide constructors, accessors,
and a length function. The matrix multiply function makes three
nested calls to vector-for-each-with-index resulting in many
cross-library calls. Combining matrix multiply with the indexable-
sequence library allows the optimizer to inline these cross-library
procedure calls. A test program calls matrix multiply on 50 x 50,
100 x 100, and 500 x 500 matrices. Using the library-group
form results in a 30% speed-up over the separately compiled ver-
sion.

In both of our example programs the difference in time between
compiling the program as a set of individual libraries and as a single
library-group is negligible.

5. Related work
Packaging code into a single distributable is not a new problem, and
previous dialects of Scheme needed a way to provide a single bi-
nary for distribution. Our system, PLT Scheme, and others provide
mechanisms for packaging up and distributing collections of com-
piled libraries and programs. These are packaging facilities only
and do not provide the cross-library optimization or compile-time
error checking provided by the library-group form.

Ikarus [19] uses Waddell’s source optimizer [35, 36] to perform
some of the same interprocedural optimizations as our system. In
both systems, these optimizations previously occurred only within
a single compilation unit, e.g., a top-level expression or library. The
library-group form allows both to perform cross-library and
even whole-program optimization. The Stalin [30] Scheme com-
piler supports aggressive whole-program optimization when the
whole program is presented to it, but it does not support R6RS li-
braries or anything similar to them. If at some point it does support
R6RS libraries, the library-group form would be a useful addi-
tion. MIT Scheme [22] allows the programmer to mark a procedure
inlinable, and inlining of procedures so marked occurs across file
boundaries. MIT Scheme does not support R6RS libraries, and in-
lining, while important, is only one of many optimizations enabled
when the whole program is made available to the compiler. Thus, as
with Stalin, if support for R6RS libraries is added to MIT Scheme,
the library-group form would be a useful addition.

Although the library-group mechanism is orthogonal to the
issue of explicit versus implicit phasing, the technique we use to
make a library’s run-time bindings available both independently at
compile time and as part of the combined library-group code is
similar to techniques Flatt uses to support separation of phases [16].

Outside the Scheme community several other languages, such
as Dylan, ML, Haskell, and C++, make use of library or module
systems and provide some form of compile-time abstraction fa-
cility. Dylan is the closest to Scheme, and is latently typed with
a rewrite-based macro system [27]. Dylan provides both libraries
and modules, where libraries are the basic compilation unit and
modules are used to control scope. The Dylan community also rec-
ognizes the benefits of cross-library inlining, and a set of common
extensions allow programmers to specify when and how functions
should be inlined. By default the compiler performs intra-library in-
lining, but may-inline and inline specify the compiler may try
to perform inter-library inlining or that a function should always be
inlined even across library boundaries.

The Dylan standard does not include procedural macros, so
run-time code from a Dylan library does not need to be made
available at compile time, but such a facility is planned [15] and at
least one implementation exists [5]. When this feature is added to
existing Dylan implementations, an approach similar to that taken
by the library-group might be needed to enable cross-library
optimization.

ML functors provide a system for parameterizing modules
across different type signatures, where the types needed at compile
time are analogous to Scheme macros. The MLton compiler [37]
performs whole program compilation for ML programs and uses
compile-time type information to specialize code in a functor. Since
this type information is not dependent on the run-time code of other
modules, it does not require a module’s run-time code to be avail-
able at compile time. If the type system were extended to support
dependent types, however, some of the same techniques used in the
library-group form may be needed. Additionally, MetaML [32]
adds staging to ML, similar to the phasing in Scheme macros. Since
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MetaML does not allow run-time procedures to be called in its tem-
plates though, it does not have the same need to make a module’s
run-time code available at compile time.

The Glasgow Haskell Compiler [1] (GHC) provides support
for cross-module inlining [33] as well as compile-time meta-
programming through Template Haskell [28]. Thus, GHC achieves
some of the performance benefits of the library-group form in
a language with similar challenges, without the use of an explicit
library-group form. A Haskell version of the library-group
form would still be useful for recognizing when an inlining can-
didate is singly referenced and for enabling other interprocedural
optimizations. It would likely be simpler to implement due to the
lack of state at compile time.

The template system of C++ [2, 4] provides a Turing-complete,
compile-time abstraction facility, similar to the procedural macros
found in Scheme. The language of C++ templates is distinct from
C++, and run-time C++ code cannot be used during template ex-
pansion. If the template language were extended to allow C++ tem-
plates to call arbitrary C++ code, compilation might need to be han-
dled similar to the way the library-group form is handled.

Another approach to cross-library optimizations is link-time op-
timization of object code. Several different approaches to this tech-
nique exist and are beginning to be used in compilers like GCC [26]
and compiler frameworks like LLVM [24]. Instead of performing
procedure inlining at the source level, these optimizers take object
code produced by the compiler and perform optimization when the
objects are linked. The GOld [6] link-time optimizer applies similar
techniques to optimize cross-module calls when compiling Gambit-
C Scheme code into C. Our decision to combine libraries at the
source level is motivated by the fact that our system and others al-
ready provide effective source optimizers that can be leveraged to
perform cross-library optimization.

6. Future work
The library-group form is designed to allow programmers the
greatest possible flexibility in determining which libraries to in-
clude in a library group and the order in which they should be in-
voked. This level of control is not always necessary, and we en-
vision a higher-level interface to the library-group form that
would automatically group a program with its required libraries and
automatically determine an appropriate invocation order based only
on static dependencies.

The library-group form ensures that all exports for libraries
in the library group are available outside the library group. In cases
where a library is not needed outside the library group, we would
like to allow their exports to be dropped, so that the compiler can
eliminate unused code and data. This would help reduce program
bloat in cases where a large utility library is included in a program
and only a small part of it is needed. We envision an extended ver-
sion of the library-group form that specifies a list of libraries
that should not be exported. The compiler should still, at least op-
tionally, register unexported libraries in order to raise an exception
if they are used outside the library group.

Our current implementation of the library-group form can
lead to libraries being invoked that are not required, based on the or-
dering of libraries in the group. It is possible to invoke libraries only
as they are required by using a more intricate layout of library bind-
ings, similar to the way letrec and letrec* are currently han-
dled [20]. This expansion would separate side-effect free expres-
sions in a library from those with side-effects, running the effectful
expressions only when required. This approach would require other
parts of the compiler be made aware of the library-group form,
since the expander does not have all the information it needs to
handle this effectively.

7. Conclusion
The library-group form builds on the benefits of R6RS libraries
and top-level programs, allowing a single compilation unit to be
created from a group of libraries and an optional top-level program.
Packaging the run-time code in a single compilation unit and wiring
the code together so that each part of the library group references
the exports of the others via local variables allows the compiler to
perform cross-library optimization and extends compile-time error
checking across library boundaries. It also allows the creation of
a single output binary. The implementation is designed to deliver
these benefits without requiring the compiler to do any more than
it already does. In this way it represents a non-invasive feature that
can be more easily incorporated into existing Scheme compilers.

While this work was developed in the context of Scheme, we
expect the techniques described in this paper will become useful as
other languages adopt procedural macro systems. The PLOT lan-
guage [25], which shares an ALGOL-like syntax with Dylan al-
ready provides a full procedural macro system, and a similar sys-
tem has been proposed for Dylan [15]. The techniques described in
this paper might also be useful for languages with dependent-type
systems that allow types to be expressed in the full source language
or template meta-programming systems that allow templates to be
defined using the full source language.
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Abstract
The Scheme standardization process has produced several Scheme
revisions, the most recent one being R6RS. The R7RS standardiza-
tion process is underway with an amended charter. The new char-
ter has introduced two language levels, Small Scheme and Large
Scheme, succinctly described as “lightweight” and “heavyweight”,
respectively. We analyze this new charter and propose some mod-
ifications to it that we believe would help the standardization of
Scheme, and in particular steer it towards greater use by the soft-
ware developer community. We suggest that the Steering Commit-
tee establish guiding requirements for the two Scheme levels. We
discuss some examples of concrete guiding requirements to include
in the standardization process for maintenance and debugging. We
also discuss the need for an additional general principle for Small
Scheme and suggest that, besides the general principle of a small
language specification, the notion of efficiency of execution is also
at the core of Small Scheme.

1. Introduction
In 1975, when first introduced by Sussman and Steele, Scheme
was presented as based on the lambda calculus and as a dialect
of Lisp [10, 9]. Over a period of 35 years, Scheme has undergone
several revisions under a standardization process described in its
charter. Table 1 presents the revisions that were done over the last
35 years from Scheme inception in 1975 until now (circa 2010).

Revision Year Ratified Authors
or published

Scheme 1975 Sussman and Steele
R1RS 1978 Steele and Sussman
R2RS 1985 Clinger
R3RS 1986 Clinger and Rees
R4RS 1991 Clinger and Rees
R5RS 1998 Kelsey et al.
R6RS 2007 Sperber et al.
R7RS 201x

Table 1. The Scheme revisions from its creation in 1975 until
now (circa 2010). The 7th revision is underway and the exact
date of its ratification is unknown.

For the R7RS standardization process, the Steering Committee
introduced two language levels, “small” and “large” [3]. Eventu-
ally, these levels will be given new names. In this paper, we will
simply call them Small and Large. Large will be an extension of
Small in the sense that any program executing without error on a
conforming implementation of Small must run properly and give
the same result as executing it on a conforming implementation of
Large.

Two working groups will define these two levels. As of June
2010, the working group 1, to define Small, is composed of 16
members, including the chair; the working group 2, to define Large,
has 11 members, including the chair. The charter expects these two
groups to interact with each other to fulfill the goal of compatibility
of the two levels.

The two-level approach was also used for the definition of
EuLisp. The two levels are called level-0 and level-1 [8]. Eu-
scheme [4] is a Scheme implementation of level-0. EuLisp was
developed to be less minimalist than Scheme (R4RS) and less com-
plex than Common Lisp. The working groups, as well as the Steer-
ing Committee, could gain valuable insight from these previous
language designs.

The charter states a few guiding requirements for the working
groups, but their description is very short with no specific details.
This weak guiding approach of the Steering Committee is similar to
the previous revisions, but we believe that this should be changed.

So, our main observation is that the Steering Committee has a
role that is too weak to effectively guide the two groups in definite
directions. We propose the following general amendments to the
current standardization process:

1. The Steering Committee should define (and eventually update)
a set of detailed guiding requirements for the design of the
language levels. These requirements should be created using
an iterative process based on the rationales provided by the
working groups. This iteration cycle should be short enough to
enable timely adjustments of the requirements.

2. A priority mechanism should be put in place to resolve conflict-
ing requirements.

3. The working groups should follow the requirements and their
priorities defined by the Steering Committee to support their de-
cisions. They also provide rationales to further support their de-
cisions when current requirements are not sufficient. For some
guiding requirements (e.g., efficiency, simplicity of implemen-
tation), implementation details need also to be provided by the
working groups.
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4. One major guiding principles for Small, besides a minimalist
approach, should be the efficiency of implementation of the
features of Large.

In the following sections we analyze the R7RS charter and
show that the proposed amendments would be beneficial to the
standardization process.

2. The Current Standardization Process
In August 2009, the Scheme Steering Committee published an
amended charter for theR7RS standardization process (see docu-
ments at [2]).

The major modification, from the previous charters, was the
introduction of two working groups, one for each Scheme level.

2.1 Steering Committee Position Statement and Charters
A Steering Committee published a position statement accessible on
the Web [3]. That document makes the following general statement
(we have kept the formatting almost intact):

A programming language is a notation that’s supposed to
help programmers to construct better programs in better
ways:

1. quickly
2. easily
3. robustly
4. scalably
5. correctly

A language that doesn’t enable programmers to program is,
in the end, doomed to irrelevance.

The goals of the Steering Committee are succinctly stated as

• we don’t standardise or otherwise define the language;
• rather, we oversee the process of its definition.
• ...and, when necessary, we may steer the effort a bit.

That is, we enable the Scheme community to prosecute
the development of the language—its definition, growth,
extension, standardisation and implementation. Our chief
mechanism is by granting charters to various committees
that will carry out the actual tasks, and stamping the results
of these efforts with our imprimatur.

Two charters were also defined by the Steering Committee, one
for each working group. Both charters have a succinct section on
“goals and requirements”. In Charter 1, for working group 1, the
general goal is to be compatible with and the same size as R5RS.
In Charter 2, the specified general goal is to be compatible with
a subset of R6RS, essentially taking into account the language
features introduced in the latest revision.

Do such criteria form enough guidance in the standardization
process? It is a starting point but it does not form a set of guiding
requirements on which to base future design decisions. These goals
and mechanisms are currently too undirected to make the process
efficient and to reach the overall goal of a Scheme language usable
by the software developer community.

So what do we propose?
Essentially, that the Steering Committee would gain in defining

in much greater details guiding requirements that would be used
in their decision for imprimatur. In essence, these requirements
are pre-defined rationales that the working groups must consider.
To be practical, the definitions of the guiding requirements could
be refined based on the working groups rationales. This implies
a healthy iterative standardization process on which the Steering
Committee can build a stronger consensus.

3. Two Guiding Requirements
It is not the aim of this paper to give a list of guiding requirements
that would ensure the success of a Scheme design. That would
be a far reaching goal. Instead, we suggest two general guiding
requirements that we believe are often considered peripheral in a
programming language—and certainly has been the case for the
previous Scheme standardization processes— but which ought to
be considered in the design of a programming language to make
it successful in the software developer community: maintainability
and debugging capabilities.

We first analyze a maintainability case scenario: patching code.
In Subsection 3.2, we succinctly discuss the advantage of adding
debugging as a guiding requirement .

3.1 Maintainability
We present an example of applying a guiding requirement to direct
the design of two features of Scheme: optional named parameter
and multiple values. We will show that software maintainability
supports well the need for these language features with some spe-
cific semantics. We do not claim that only the following semantics
are possible for these features, based on the requirement of soft-
ware maintainability, but show that there is a need for such basic
principle to help guide the semantics.

We first introduce a concrete scenario as part of the maintain-
ability requirement and then discuss the design of two features of
Scheme related to this scenario.

3.1.1 Patching Code
As part of the evolution and maintenance of software it is useful
to provide software updates that can be downloaded and installed
without the intervention of a user. Imagine a software already in-
stalled on thousands of computers and needing the correction of a
serious defect. The defect requires the modification of a procedure
that should behave differently for some callees and return a value
of a different type in such a case. The modifications to the proce-
dure should not modify the callees unaffected by the defect. We
believe that the simplest mechanisms to correct such a defect is to
introduce an optional named parameter and an “optional returned
value”, which is essentially a multiple values language feature with
a semantics that allow such optional returned value.

We analyzed what already exist in the current Scheme imple-
mentations and comment on their design based on this scenario and
language features.

3.1.2 Optional Named Parameters
In SRFI 89, titled “Optional positional and named parameters,”
authored by Marc Feeley, the notion of optional named parameters
is rationalized, in part, by the following text:

In the software development process it is common to add pa-
rameters to a procedure to generalize its function [sic]. The
new procedure is more general because it can do everything
the old procedure does and more. As the software matures
new features and parameters are added at each refinement
iteration. This process can quickly lead to procedures with
a high number of parameters.

The process of refinement or extension of programs, via pro-
cedure modifications, is a maintenance issue: programs are modi-
fied with a backward compatibility goal. New parameters are intro-
duced to generalize a procedure.

The implementation of SRFI 89 depends on SRFI 88, which for
its efficient implementation requires the modifications of the lexical
parser, which is definitely a low level aspect for about any Scheme
implementation. In terms of language level, it can be argued that
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SRFI 88 belongs to Small if we assume that Small has, as one of its
primary goal, the efficient implementation of language features.

3.1.3 Multiple Values
The multiple values feature was introduced in R5RS. It is based
on two procedures: values, which generates multiple values, and
call-with-values, which consumes multiple values via a proce-
dure. In R5RS, it is an error if the number of values generated do
not match the number of values consumed; in particular, it is an er-
ror if the consumer accepts only one value and more than one value
is generated. The rationale for raising an error is not given, but one
can conjecture that it is a simple approach that catches common
type of errors.

One can argue, though, that such an enforcement makes the use
of multiple values too cumbersome. In Common Lisp, it is not
an error when the number of generated values do not match the
number of consumed values. Also, in contrast to Scheme, many
primitives of Common Lisp generate multiple values. For example,
the function parse-integer parses a string to extract an integer
and returns two values: the integer value and the index of the
characters in the string after the parsing completed. It would be very
cumbersome for programmers to always have to specify a context
of two values for such a function as parse-integer since in most
cases only the first value is used.

The multiple values semantics of R5RS is not well suited for
the patching scenario since if a function that was returning a single
value needs to be modified to return multiple values, to correct a
defect, an error will be raised for all callees that are still expecting
a single value. If a guiding requirement in defining R5RS existed
that promoted debugging, it could be argued that the Common Lisp
semantics is preferable.

The R6RS standardization process delivered a rationale docu-
ment [1] for the design of Scheme version 6, in particular for the
semantics of its multiple values feature (Section 11.9.3). In R6RS,
it is undetermined if passing the wrong number of values to a con-
tinuation is a violation or not. It is left to the implementer to decide
between two possible semantics: raising an error if the number of
values do not match its continuation or never raise an error in such
cases, in particular to use the first value in the case of a contin-
uation accepting a single value. This position is even worse than
the R5RS, as far as the patching scenario suggests, since it compli-
cates program portability—which is certainly another guiding re-
quirement cherished by the software developer community. What
is more, the R6RS rationale document does not really provide a ra-
tionale but only shows the apparent difficulty of the working group
to decide between two possible semantics. No rationales, as given
above about the cumbersome use of multiple values returned by
functions in Common Lisp, are given for either of the two possible
semantics. We believe that this a sign of a lack of guiding require-
ments that R7RS ought to avoid.

3.2 Debugging Capabilities
In 1973, Hoare [6] introduced his main ideas on language design
by stating that

This paper (Based on a keynote address presented at the
SIGACT/SIGPLAN Symposium on Principles of Program-
ming Languages, Boston, October 1-3, 1973) presents the
view that a programming language is a tool which should
assist the programmer in the most difficult aspects of his art,
namely program design, documentation, and debugging.

Debugging has never ceased to be a necessary task for program-
mers, simply because programs are like mathematical proofs, they
are rarely created without defects or shortcomings.

Debugging is a common programming activity. It spans many
types of tasks from simply correcting compilation errors to cor-
recting erroneous results. Almost all language specifications do not
include any details about the debugging capabilities that could be
provided by an implementation. Debugging capabilities are typi-
cally considered as part of a development environment.

We believe this is an error on which the Scheme community
could show a distinctive attitude by embedding in the description
of its language (at the low level) a set of primitives that enable
portable debugging environments to be implemented. The higher
level would provide more advanced debugging capabilities based
on the low level primitives. We do not advocate the specification,
in the standard, of any complex interactive debugging environment.
Implementations would provide the complex programmer interac-
tive environment. These could be graphical or text oriented envi-
ronment, but that would be outside the scope of the language spec-
ification.

For some programming languages (e.g., Perl, Python) the de-
bugging capabilities are somehow specified as part of the language
as the (unique) implementation of these languages form a de facto
standard. But Scheme has no such de facto standard; this is an indi-
rect weakness of Scheme on which these languages take advantage.

Designing a set of efficient and correct primitives to enable the
implementation of useful and precise debugging capabilities is not
a trivial task [5]. Depending on the programming language features
used, e.g., lazy evaluation, the debugging approach might also rely
on quite different techniques [7].

During the last Scheme revision of R6RS, some members of
the Scheme community have pointed out that the lost of the load
primitive and the REPL top level interactive facility impeded on
providing a useful (simple) debugging environment. If a require-
ment for debugging had been part of the standardization process, a
strong argument could have been made to keep the REPL.

Essentially, the Scheme standardization process would benefit
by seriously considering the mundane task of debugging as an
essential part of a programming language. Moreover, it should be
recognized that some essential features of R5RS implicitly depends
on the requirement of some debugging facility. This requirement
should be made explicit by the Steering Committee to ease the
standardization process.

4. Efficiency and Separation of Small and Large
In the R7RS charter, Small is described as “lightweight” and Large
as “Heavyweight”. The Steering Committee makes it clear that
Small R7RS should follow the main precept that directed previous
Scheme revisions:

Programming languages should be designed not by piling
feature on top of feature, but by removing the weaknesses
and restrictions that make additional features appear nec-
essary. Scheme demonstrates that a very small number of
rules for forming expressions, with no restrictions on how
they are composed, suffice to form a practical and efficient
programming language that is flexible enough to support
most of the major programming paradigms in use today.

This general guiding requirement, besides other more specific
requirements regarding compatibility with R5RS, would benefit by
considering efficiency of execution. Some design decisions from
past revisions were probably also based on efficiency, but this
guiding principle was never stated explicitly.

Efficiency consideration is made more important with the two-
level approach since some language features might not belong to
Large but to Small base on the observation that their implemen-
tation requires some low level details that only Small can handle
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efficiently. For example, the efficiency observations mentioned in
Subsection 3.1.2 for SRFI 88 show that these language features be-
long to Small and not to Large if we take efficiency as a primary
guiding principle.

On the other hand, some language design decisions from pre-
vious Scheme revisions were probably influenced by efficiency but
they were not proven to be true or at least not supported by any
concrete implementation details.

For example, Waddell et al. [11] shows that the R5RS letrec
construct can be implemented efficiently even if the “letrec restric-
tion” is detected and reported. On the other hand, the R5RS specifi-
cation does not state that an error should be reported. This decision
was probably based on efficiency consideration but this fact is un-
documented and would need to be revised if it were so.

In summary, only detailed implementation considerations can
draw the line between the correct level (Small or Large) to use to
implement the language features. Acknowledging this fact in the
guiding requirements of the charter would benefit the 2010 Scheme
standardization process.

5. Conclusion
The Scheme standardization process has reached an evolutionary
point today where there is a need for more rationalization to support
its design decisions. We believe that these rationalizations must
play a vital role in the form of guiding requirements defined and
revised by the Steering Committee.

The R7RS definition process have taken an approach to satisfy
two communities of users/programmers with a two-level approach.
We have argued that the Steering Committee would benefit by pro-
viding more written guidance to define these two levels. This guid-
ance should come in the form of guiding requirements defined to
meet the needs of the software developer community. These re-
quirements are essentially pre-defined rationales that the working
groups could not ignore in writing their own rationales. The guiding
requirements should be iteratively defined, by the Steering Com-
mittee, through an iterative standardization process based on the
working groups rationales.

We believe that efficiency is at the core of the separation be-
tween Small and Large, besides the main Small intrinsic precept of
lightweight. It would be beneficial if this separation were supported
by concrete arguments based on compiler and run-time technolo-
gies during the R7RS standardization process.
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Invited Talk: Contracts in Racket

Robert Bruce Findler

Northwestern University

Abstract
Adding contracts to a full-fledged implementation of a programming language reveals a number of subtle issues
that studying small, focused calculi cannot. In particular, our experience with Racket alerted us to issues with
proper blame assignment, interference between the contracts and the program, and how supporting contracts for
advanced programming-language constructs leads to new, interesting challenges.

In this talk I will report on contracts in Racket, showing how these issues came up and how we resolved them.
The talk will be structured around a number of real-world examples, showing how Racket responds to a series
of increasingly complex interactions between modules with contracts. The talk draws on work and experience
from several PLT institutions, including Northwestern, Northeastern, Utah, Brown, and BYU.
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