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Abstract
We present cKanren, a framework for constraint logic pro-
gramming (CLP) in Scheme. cKanren subsumes miniKan-
ren, a logic programming language embedded in Scheme.
cKanren allows programmers to easily use, define, and com-
bine different kinds of constraints. We provide two example
constraint systems: one over finite domains and one over
trees.

The cKanren framework is designed to encourage an
especially pure style of logic programming in which goals
can be reordered arbitrarily without affecting a program’s
semantics (with an important decidability-related caveat).

We develop the complete implementation of the cKanren
framework, written in R6RS Scheme extended with SRFI 39
parameters. We present the implementation of cKanren’s
finite domain and disequality constraint solvers, and we
provide introductions to miniKanren, cKanren, and numer-
ous example programs, including the Send More Money
cryptarithmetic puzzle and N-Queens.

Categories and Subject Descriptors D.1.6 [Program-
ming Techniques]: Logic Programming; D.1.1 [Program-
ming Techniques]: Applicative (Functional) Programming

General Terms Languages

Keywords CLP, CLP(FD), Scheme, miniKanren, logic
programming, constraint solving, constraint logic program-
ming

1. Introduction
We present a complete implementation of cKanren, a frame-
work for constraint logic programming in Scheme. Tradi-
tional logic programming provides only a single constraint:
equality over terms, which is implemented using unification.
Constraint logic programming (Apt 2003; Jaffar and Maher
1994), also known as CLP, supports additional constraints,
such as constraints over finite domains CLP(FD) and tree
terms CLP(Tree).

The cKanren framework is an extension of miniKanren,
which embeds logic programming in Scheme (Friedman et al.
2005; Byrd and Friedman 2006; Byrd 2009). Unlike previ-
ous extensions to miniKanren, such as αKanren (Byrd and
Friedman 2007), cKanren does not directly add user-level
operators to miniKanren. Rather, cKanren allows program-
mers to use, create, and combine constraint systems. cKan-
ren is implemented in R6RS Scheme (Sperber et al. 2007),
and uses the SRFI-39 parameter mechanism (Feeley 2002)
supported by multiple Scheme implementations (Flatt and
PLT 2010; Dybvig 2010).

In addition to describing the cKanren framework, we
present constraints for finite domains and tree terms. Con-
straints over finite domains allow miniKanren programmers
to declaratively reason about finite sets of values, based on a
restricted set of relational arithmetic operators. Disequality
constraints over tree terms allow miniKanren programmers
to express a limited but useful form of negation: that two
terms are not equal and can never be made equal.

Our paper makes the following contributions:

• We describe the two kinds of constraints implemented
within our cKanren framework: 6fd, +fd, 6≡fd, and all-
diff fd constraints over finite domains (Section 2.1.1), and
6≡ disequality constraints over tree terms (Section 2.1.2).

• We provide examples and exercises (Section 2.1.3) us-
ing both kinds of constraints, including the famous
Send More Money and N-Queens problems, along with
rember o, a program that demonstrates the need for dise-
quality constraints. We present our solutions in Section 4.

• We present complete implementations of the cKanren
constraint framework (Section 3.1), and constraints over
finite domains (Section 3.3) and tree terms (Section 3.5).1

• We demonstrate how to create new kinds of constraints
by composing existing cKanren constraint systems (Sec-
tion 5).

• We describe the “miniKanren philosophy” that informed
the development of cKanren, and discuss several impor-
tant design and implementation goals (Section 6).

• We present cKanren’s helper definitions and an updated
implementation of core miniKanren in the appendices.
These appendices along with the code in the body of the
paper comprise a working implementation.

We begin with an overview of the core miniKanren language.

1 The cKanren implementation can be downloaded from
github.com/calvis/cKanren.
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2. The Language
We present three languages: miniKanren, miniKanren ex-
tended with constraints over finite domains, and miniKanren
extended with tree disequality. cKanren provides a frame-
work for writing constraints and for using those kinds of
constraints within miniKanren programs. We then show the
finite domain and disequality goals in action, through exam-
ples such as Send More Money, N-Queens, and rember o.

2.1 miniKanren

In this section we briefly review the miniKanren language;
readers already familiar with miniKanren can safely skip to
Section 2.1.1, while those wishing to learn more about the
language should see Byrd and Friedman (2007) (from which
the first part of this section has been adapted) and Friedman
et al. (2005).

Our code uses the following typographic conventions.
Lexical variables are in italic, forms are in boldface, and
quoted symbols are in sans serif. By our convention, names of
relations end with a superscript o—for example any o, which
is entered as anyo. Relational operators do not follow this
convention: ≡ (entered as ==), conde (entered as conde),
and fresh (formerly exist). Similarly, (run5 (q) body)
and (run∗ (q) body) are entered as (run 5 (q) body) and
(run* (q) body), respectively.

miniKanren extends Scheme with three operators: ≡,
conde, and fresh. There is also run, which serves as an
interface between Scheme and miniKanren, and whose value
is a list.

fresh, which syntactically looks like lambda, introduces
into scope new lexical variables bound to new (logic) vari-
ables; ≡ unifies two terms. Thus

(fresh (x y z ) (≡ x z ) (≡ 3 y))

would associate x with z and y with 3. This, however, is not
a legal miniKanren program—we must wrap a run around
the entire expression.

(run1 (q) (fresh (x y z ) (≡ x z ) (≡ 3 y))) ⇒ ( 0)

The value returned is a list containing the single value 0 ;
we say that 0 is the reified value of the unbound variable
q and thus can be any value. q also remains unbound in

(run1 (q) (fresh (x y) (≡ x q) (≡ 3 y))) ⇒ ( 0)

We can get back other values, of course.

(run1 (y)
(fresh (x z )

(≡ x z )
(≡ 3 y)))

(run1 (q)
(fresh (x z )

(≡ x z )
(≡ 3 z )
(≡ q x )))

(run1 (y)
(fresh (x y)

(≡ 4 x )
(≡ x y))

(≡ 3 y))

Each of these examples returns (3); in the rightmost ex-
ample, the y introduced by fresh is different from the y
introduced by run. A run expression can also evaluate to
the empty list. This indicates that there does not exist any
value of the variable bound by the run expression that can
cause its body to succeed.

(run1 (x ) (≡ 4 3)) ⇒ ()

We use conde to get several values. Syntactically, conde

looks like cond but without ⇒ or else. For example,

(run2 (q)
(fresh (w x y)

(conde

((≡ ‘(,x ,w ,x ) q)
(≡ y w))

((≡ ‘(,w ,x ,w) q)
(≡ y w))))) ⇒ (( 0 1 0) ( 0 1 0))

Although the two conde lines are different, the values re-
turned are identical. This is because distinct reified unbound
variables are assigned distinct subscripts, increasing from
left to right—the numbering starts over again from zero
within each value, which is why the reified value of x is

0 in the first value but 1 in the second value. The super-
script 2 in run denotes the maximum length of the resultant
list. If the superscript ∗ is used, then there is no maximum
imposed. This can easily lead to infinite loops:

(run∗ (q)
(let loop ()

(conde

((≡ #f q))
((≡ #t q))
((loop)))))

Had ∗ been replaced by a natural number n, then an
n-element list of alternating #f’s and #t’s would be returned.
The conde succeeds while associating q with #f, which ac-
counts for the first value. When getting the second value,
the second conde line is tried, and the association made
between q and #f is forgotten—we say that q has been re-
freshed. In the third conde line, q is refreshed again.

We now look at several interesting examples that rely on
any o, which tries g an unbounded number of times.

(define any o

(λ (g)
(conde

(g)
((any o g)))))

Consider the first example,

(run∗ (q)
(conde

((any o (≡ #f q)))
((≡ #t q))))

which does not terminate because the call to any o succeeds
an unbounded number of times. If ∗ were replaced by 5,
then we would get (#t #f #f #f #f). (The user should not be
concerned with the order in which values are returned.)

Now consider

(run10 (q)
(any o

(conde

((≡ 1 q))
((≡ 2 q))
((≡ 3 q))))) ⇒ (1 2 3 1 2 3 1 2 3 1)

Here the values 1, 2, and 3 are interleaved; our use of any o

ensures that this sequence is repeated indefinitely.
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Even if some conde lines loop indefinitely, other conde

lines can contribute to the values returned by a run ex-
pression. However, we are not concerned with expressions
looping indefinitely. For example,

(run3 (q)
(let ((never o (any o (≡ #f #t))))

(conde

((≡ 1 q))
(never o)
((conde

((≡ 2 q))
(never o)
((≡ 3 q)))))))

returns (1 2 3); replacing run3 with run4 would cause
divergence since there are only three values and never o

would loop indefinitely looking for the fourth.

2.1.1 miniKanren with Finite Domain Constraints

Finite domain constraints allow the user to assign a finite
domain to a variable and to use mathematical relations
between variables such as 6, <, 6=, and +. Termination is
guaranteed when programmers limit themselves to fresh, ≡,
conde, and the finite domain operators, since the domains
are finite (Jaffar and Maher 1994). However, this guarantee
no longer holds when using recursion.

We introduce five goals below, where n∗ denotes a non-
empty list of strictly increasing natural numbers, x denotes a
variable, u, v , and w denote arbitrary values, and v∗ denotes
either a list of values or a variable eventually associated with
a list of values. In finite domains, any non-variable value
should be a natural number.

Names that end with fd and have no subscript like the
ones below comprise the user interface: domfd and four
constraints.

• (domfd x n∗) (entered as domfd) constrains x ∈ n∗.
If n∗ = (n), then (domfd x n∗) is the same as (≡ x n).

• (6fd u v) (entered as <=fd) constrains u 6 v.

• (+fd u v w) (entered as plusfd) constrains u + v = w.

• (6≡fd u v) (entered as =/=fd) constrains u 6= v.

• (all-diff fd v∗) (entered as all-difffd) ensures that all
variables and values found within the flat list v∗ are
different from each other.

The following examples illustrate these constraints. In the
first example, we state that q is never the same as 2. Then,
when we state that q can only be a 1, 2, or 3, we exclude 2
from being a possible value of q .

(run∗ (q)
(6≡fd q 2)
(domfd q (1 2 3))) ⇒ (1 3)

A variable’s domain can be defined at any time within
the variable’s scope. We use the derived goal (a goal that
is defined in terms of other goals) infd which allows for
assigning a domain to several different variables. Associating
a variable with more than one domain, however, assigns the
intersection of those domains to the variable.

(define-syntax infd

(syntax-rules ()
(( x0 x . . . e)
(let ((n∗ e))

(fresh () (domfd x0 n∗) (domfd x n∗) . . . )))))

In the next example below, when we write (≡ x y), we
are stating that x is going to be the same as y in every
answer, so (≡ q ‘(,x ,y ,z )) could have been (≡ q ‘(,x ,x ,z ))
and (infd y ’(3 4 5)) is the same as (infd x ’(3 4 5)).

(run∗ (q)
(fresh (x y z )

(infd z ’(1 3 5 6 7 8))
(≡ x y)
(infd y ’(3 4 5))
(≡ q ‘(,x ,y ,z ))
(infd z ’(5 6 9))
(infd x ’(1 2 3)))) ⇒ ((3 3 5) (3 3 6))

Even if a variable is not bound to a constant by the end
of a program (as is the case with z in the example above),
the variable will be associated with any satisfiable value in
the domain of that variable if it is included in the returned
expression.

We introduce the derived goal <fd along with the very
useful function range, which, given two natural numbers, re-
turns a list of all the numbers between lb and ub, inclusively.

(define <fd

(λ (u v)
(fresh () (6fd u v) (6≡fd u v))))

(define range
(λ (lb ub)

(cond
((< lb ub) (cons lb (range (+ lb 1) ub)))
(else (cons lb ’())))))

The following is a simple example of <fd and range in action.

(run∗ (x )
(6fd x 7)
(<fd 2 x )
(infd x (range 0 10))) ⇒ (3 4 5 6 7)

Variables used with finite domain constraints must have
domains. As a result,

(run∗ (q)
(fresh (x y)

(<fd x y)
(<fd y x )))

signals an error; an alternative would be to fail, which would
be unfriendly to the user.

Unsatisfiable constraints, even when the variables are not
referenced or associated with the run variable in any way,
still result in failure.

(run∗ (q)
(fresh (x y z )

(infd x y z ’(1 2))
(all-diff fd ‘(,x ,y ,z ))
(≡ q 5))) ⇒ ()

3



A variant of this example has a domain of three values.

(run∗ (q)
(fresh (x y z )

(infd x y z ’(1 2 3))
(all-diff fd ‘(,x ,y ,z ))
(≡ q x ))) ⇒ (1 2 3)

Here each element of x ’s domain shows up as a value. But,
consider this expression.

(run∗ (q)
(fresh (x y z )

(infd x y z ’(1 2 3))
(all-diff fd ‘(,x ,y ,z ))
(≡ q ‘(,x ,z )))) ⇒ ((1 2) (1 3) (2 1) (3 1) (2 3) (3 2))

Had (≡ q ‘(,x ,z )) been (≡ q 5), the result would have been
(5), because cKanren ignores domain variables that are not
associated with the variable bound by the run expression.

Here is a simple example of all-diff fd.

(run∗ (q)
(infd q (range 3 6))
(all-diff fd ‘(2 3 ,q))) ⇒ (4 5 6)

We want values for q that satisfy the all-diff fd goal. We
observe that if we choose 3, we will have two occurrences
of 3, so that value is not included in the list of answers
associated with q . But, if we try either 4, 5, or 6, then we
observe that none of them are the same as 2 or 3.

Now, consider this run∗ expression.

(run∗ (q)
(fresh (x y z )

(infd x y z (range 1 5))
(<fd z x )
(+fd y 2 z )
(≡ q ‘(,x ,y ,z )))) ⇒ ((4 1 3) (5 1 3) (5 2 4))

2.1.2 miniKanren with Tree Disequality

We now introduce disequality constraints using 6≡ (entered
as =/=), which works on arbitrary values, using the same
restrictions imposed on miniKanren.

(run∗ (q)
(fresh (x y)

(conde

((≡ x 1) (≡ y 1))
((≡ x 2) (≡ y 2))
((≡ x 1) (≡ y 2))
((≡ x 2) (≡ y 1)))

(6≡ x y)
(≡ q ‘(,x ,y)))) ⇒ ((1 2) (2 1))

The next example relies on all-diff o, a derived goal that
uses 6≡. all-diff o takes a list and succeeds as long as all the
values in the list are different at all points in the program.

(define all-diff o

(λ (l)
(conde

((≡ l ’()))
((fresh (a) (≡ l ‘(,a))))
((fresh (a ad dd)

(≡ l ‘(,a ,ad . ,dd))
(6≡ a ad)
(all-diff o ‘(,a . ,dd))
(all-diff o ‘(,ad . ,dd)))))))

Our final example mimics the last all-diff fd example but
with an unbounded, instead of bounded, result.

(run1 (q) (all-diff o ‘(2 3 ,q)))

⇒ (( 0 : (6≡ (( 0 . 2)) (( 0 . 3)))))

Thus, any value for q suffices, provided it is neither 2 nor
3. This is an unbounded number of answers. Because of the
imposed bound required when using all-diff fd, however, the
number of answers is bounded.

2.1.3 Exercises

• Finite domains can be used to solve standard cryptarith-
metic problems, such as finding the correct letter values
to satisfy the following equation:

S E N D
+ M O R E

M O N E Y

Each letter represents a different digit in the range 0
through 9, and the two leading digits, S and M , should
be nonzero.

• n queens are placed on an n × n chessboard so that no
two queens can attack one another. Of course, we want
to find all the solutions.

• The Reasoned Schemer (Friedman et al. 2005) shows how
to derive recursive relational programs from recursive
functional programs. But, our approach sometimes fails
to work! Consider,

(define rember
(λ (x ls)

(cond
((null? ls) ’())
(else
(let ((a (car ls)) (d (cdr ls)))

(let ((res (rember x d)))
(cond

((equal? a x ) res)
(else ‘(,a . ,res)))))))))

and its derived recursive relation.

(define rember o

(λ (x ls out)
(conde

((≡ ’() ls) (≡ ’() out))
((fresh (a d res)

(≡ ‘(,a . ,d) ls)
(rember o x d res)
(conde

((≡ a x ) (≡ res out))
((≡ ‘(,a . ,res) out))))))))

(run∗ (q) (rember o ’a ’(a b a c) q))
⇒ ((b c) (b a c) (a b c) (a b a c))

Is this the correct answer? The first list removes all
occurrences of a, so it seems so. But then the second list
removes the first occurrence of a; the third list removes
the second occurrence of a; and the last list removes
no occurrences of a. So, we know the last three lists
are wrong. And worse, how can the following example
succeed?

(run∗ (q) (rember o ’a ’(a b c) ’(a b c))) ⇒ ( 0)

Solutions to the exercises can be found on page 12.
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3. Implementation
In this section, we introduce the framework that we use to
implement the constraint systems. Part of understanding the
framework is to get an intuitive feel for how it works in the
presence of any ordering of the goals. That’s the point of
Section 3.1.1. Following that, we show the specifics of each
constraint system. Definitions that are neither in the body
of the paper nor in R6RS are defined in the appendices.

3.1 Framework

The cKanren framework has been designed to be as flexible
as possible, so users can define their own constraints with
ease. We implement operators for unification, constraint
propagation, and satisfiability that can be extended with
user-defined functions.

3.1.1 Core Data Structures

All information is kept in a package a, with three different
stores. First, the substitution s contains all associations di-
rectly resulting from unification. Second, d is a store for all
the domains of variables. This store is a list of (var . domain)
pairs, where domain is a non-empty (ordered small to large,
with no duplicates) list of natural numbers. Finally, the con-
straint store c contains only predefined constraints that have
been encountered, in normalized form. In the first two stores,
s and d , each association is a variable paired with an asso-
ciated value. The constraint store is not an association list;
instead, it contains a list of operator constraints (described
below).

Although there are other approaches for organizing a
package, we have chosen this way for simplicity and read-
ability. Each kind of information is separated so the user
can see organized output for debugging; retrieval functions
have less information to sift through; and there is no need
for dummy indicator values when variables are unassociated
in s, do not have a domain in d , or are unconstrained in c.

We provide a package constructor, and an accessor that
lexically binds variables to each different store.2

(define make-a
(λ (s d c)

(cons s (cons d c))))

(define-syntax λM

(syntax-rules (:)
(( (a : s d c) body)
(λ (a)

(let ((s (car a)) (d (cadr a)) (c (cddr a)))
body)))

(( (a) body) (λ (a) body))))

In addition, we define two related operators. When
identity M is passed as the second argument to composeM,
then (composeM fM f̂M) = fM, since for all a, (and a a) = a.

(define identity M (λM (a) a))

(define composeM

(λ (fM f̂M)
(λM (a)

(let ((a (fM a)))

(and a (f̂M a))))))

2 Variations on λM could generate simpler code when s, d , or c is
not free in body. We propose defining those macros as an exercise
for the reader.

Each store is initially the empty list but can be extended
using specialized functions. ext-s and ext-d simply extend an
association list, whereas ext-c extends the constraint store
provided the new constraint has at least one variable in it.
This ensures that constraints strictly between constants are
not in the constraint store.

Although what is contained within a constraint differs
depending on which constraints are used, all constraints that
reside in c look like ‘(,(opc arg . . . ) opc ,arg . . . ). Each such
constraint has an operator name, opc, which is the name
of the helper function called directly or indirectly from the
associated constraint constructor. In programs, we use the
lexical variable oc to refer to such an “operator constraint.”
Here is the definition of ext-c.

(define ext-c
(λ (oc c)

(cond
((any/var? (oc�rands oc)) (cons oc c))
(else c))))

The implementor’s macro buildoc (page 15) requires that
arg . . . appear twice. This imposes the same kind of let use
that appears in case. We form hygienically-generated lexical
variables, z . . . , leading to

(let ((z arg) . . . )
‘(,(opc z . . . ) opc ,z . . . ))

which is where we set up the code to invoke a helper
function, opc, and where we place the name of the helper
function, opc. If the result is viewed as a dotted pair, then
we get ‘(,(opc z . . . ) . (opc ,z . . . )), whose car, a function
call, has been invoked and whose cdr, a list, describes the
function call.

3.1.2 Watching cKanren Run

We now show how three simple examples run. In the expres-
sions below, we show each step where s, d , or c changes. In
the traces of these examples s contains associations to a nat-
ural number or to a variable; d contains associations to lists
of natural numbers; and c contains the constraints. For ease
of reading, the stored procedure, which would have been the
first item in an oc, has been deleted. Whenever any changes
occur while running the constraints in c, these constraints
compute a fixpoint. The goal expressions within a fresh ex-
pression are presumed to be numbered, in the first example,
from 1 to 5.

For our first example, we show three variants of the
same program, each with the goals in a different order. By
changing the order of goals on the same example, we indeed
get the same answer, but more importantly, these examples
demonstrate how the three stores conspire to produce the
correct answer.

(run∗ (q)
(fresh (x y z )

(infd x z (range 3 5))
(infd y (range 1 4))
(<fd x 5)
(≡ x y)
(≡ q ‘(,y ,z )))) ⇒ ((3 3) (4 3) (3 4) (4 4) (3 5) (4 5))

In the first two goals, we initialize the domains (see d1 and
d2 , below). In the third goal, we restrict x < 5, which is the
same as restricting x 6 5 and x 6= 5 [c3 ]. This removes 5 from
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x ’s domain [d3 ] and revises the two constraints that comprise
the derived constraint <fd (see ĉ3). The next step unifies
x with y , recording that information in the substitution s4.
Once x and y have been unified, their domains become their
common elements [d4]. (Once in the substitution, x loses its
identity and, henceforth, it is only y . That is, each time we
look up x , we find that it would be the same as looking up
y . [c4]) Then we form all possible pairs of values of y and z .

d1 ⇒ ((x . (3 4 5)) (z . (3 4 5)))

d2 ⇒ ((x . (3 4 5)) (y . (1 2 3 4)) (z . (3 4 5)))

c3 ⇒ ((6fd
c x 5) (6≡fd

c x 5))
d3 ⇒ ((x . (3 4)) (y . (1 2 3 4)) (z . (3 4 5)))
ĉ3 ⇒ ((6fd

c x 5))

s4 ⇒ ((x . y))
d4 ⇒ ((x . (3 4)) (y . (3 4)) (z . (3 4 5)))
c4 ⇒ ((6fd

c y 5))

Next, by swapping two goals, we get a slightly different
view.

(run∗ (q)
(fresh (x y z )

(infd x z (range 3 5))
(infd y (range 1 4))
(≡ x y)
(<fd x 5)
(≡ q ‘(,y ,z )))) ⇒ ((3 3) (4 3) (3 4) (4 4) (3 5) (4 5))

We start out with d1 and d2 being the same as in the
previous example. When we unify x and y , we extend the
substitution (see s3), and shrink y to be those values that
are common to x and y [d3 ]. Doing so virtually allows us to
forget about x . We install y in the constraint that is added,
observing that neither x nor y can be 5. The 6≡fd

c constraint
has only constants, so it never gets added to c [c3 ]. Once
again, we form all possible pairs of values of y and z .

d1 ⇒ ((x . (3 4 5)) (z . (3 4 5)))

d2 ⇒ ((x . (3 4 5)) (y . (1 2 3 4)) (z . (3 4 5)))

s3 ⇒ ((x . y))
d3 ⇒ ((x . (3 4)) (y . (3 4)) (z . (3 4 5)))
c3 ⇒ ((6fd

c y 5))

Finally, we move the two infd goals.

(run∗ (q)
(fresh (x y z )

(≡ x y)
(<fd x 5)
(infd z x (range 3 5))
(infd y (range 1 4))
(≡ q ‘(,y ,z )))) ⇒ ((3 3) (4 3) (3 4) (4 4) (3 5) (4 5))

We see that x is the same as y (see s1 , below). The next
goal adds the two predefined constraints from the derived
goal [c2 ]. Thus, the constraints use y instead of x , since x is
just y . Then the first infd goal runs d3), placing values in
the domain, but those domains must be run with respect to
the constraints, which causes y to shrink [d̂3 ]. The second
infd goal runs but makes no changes to the domain, since

y is (3 4), a subset of (3 4 5). However, c changes by first
removing (6≡fd

c y 5), since every value in y ’s domain differs
from 5 [c4], and then changes c again, since every value in
y ’s domain is less than or equal to 5 [ĉ4 ]. As before, we form
all possible pairs of y and z .

s1 ⇒ ((x . y))

c2 ⇒ ((6fd
c y 5) (6≡fd

c y 5))

d3 ⇒ ((y . (3 4 5)) (z . (3 4 5)))

d̂3 ⇒ ((y . (3 4)) (z . (3 4 5)))

c4 ⇒ ((6fd
c y 5))

ĉ4 ⇒ ()

We next consider how all-diff fd and +fd work.

(run∗ (q)
(fresh (w x y z )

(infd w z (range 1 5))
(all-diff fd q)
(≡ q ‘(,x ,y ,z ))
(≡ ‘(,x 2) ‘(1 ,y))
(+fd x y w)
(+fd w y z ))) ⇒ ((1 2 5))

First we associate the two domains in d1 , below. Next,
we run c2 , which creates a placeholder in the constraint
store that acknowledges that we don’t yet know what the
variable q will be associated with. On the very next step,
we discover that q is associated with the list ‘(,x ,y ,z ). This
is acknowledged by changing the kind of constraint (in c3)
to all-diff/fd

c , since we now know that there are two lists: the
unresolved variables and the found values. At this time, we
have not found any values. Step 4 changes all three stores.
First, the substitution grows by two associations. Once we
see that x is 1 and y is 2, then we know that z cannot be
either 1 or 2, so they are dropped from z ’s domain. At the
same time we have found the values of x and y , so x and
y are dropped from the first list in the constraint and the
associated found values are placed, sorted into the second
list. In step 5 we add the constraint that states 1 + 2 = w
which vanishes when we find out that 3 is in w ’s domain.
A similar event happens in step c6 by adding 3 + 2 = z. It
too vanishes when we find out that 5 is in z ’s domain. Just
before reification, we discover that 5 is not a member of the
found list of values.

d1 ⇒ ((z . (1 2 3 4 5)) (w . (1 2 3 4 5)))
c2 ⇒ ((all-diff fd

c q))

s3 ⇒ ((q . (x y z )))
c3 ⇒ ((all-diff/fd

c (z y x ) ()))

s4 ⇒ ((x . 1) (y . 2) (q . (x y z ))))
d4 ⇒ ((z . (3 4 5)) (w . (1 2 3 4 5)))
c4 ⇒ ((all-diff/fd

c (z ) (1 2)))

c5 ⇒ ((+fd
c 1 2 w) (all-diff/fd

c (z ) (1 2)))

c6 ⇒ ((+fd
c 3 2 z ) (all-diff/fd

c (z ) (1 2)))

ĉ6 ⇒ ((all-diff/fd
c (z ) (1 2)))
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The last example shows how 6≡ works.

(run∗ (q)
(fresh (w x z )

(6≡ ‘((1 ,x ) ,q #f) ‘(,z x ,w))
(≡ z ‘(1 ,x ))
(≡ w #f)
(≡ q ’q))) ⇒ (q)

By unifying the two values in the empty substitution, we
create a substitution that means that the three associations
cannot all hold (see c1 below). In s2 , we show that z is as-
sociated with (1 x ). Thus, one of the three associations that
must not hold now holds. If the remaining two hold, then
this expression fails. For the next step, we associate w with
#f. This removes the second of the three constraints that
“must not hold.” The final step associates q with the sym-
bol q, which allows the constraint to be removed because q
can never be the same as the symbol x. This accounts for
the acceptable final substitution. Had the last goal expres-
sion been (≡ q ’x), however, then all three constraints would
have held, leading to failure.

c1 ⇒ (6≡neq
c ((z . (1 x )) (y . x) (w . #f)))

s2 ⇒ ((z . (1 x )))
c2 ⇒ (6≡neq

c ((w . #f) (q . x)))

s3 ⇒ ((w . #f) (z . (1 x )))
c3 ⇒ (6≡neq

c ((q . x)))

s4 ⇒ ((q . q) (w . #f) (z . (1 x )))

So far, we have sketched how substitutions, domains, and
constraints work together. The remainder of this section fills
in specifics.

3.2 Parameters

The functions within cKanren perform correctly when the
three parameters3 process-prefix , enforce-constraints, and
reify-constraints are imported and given new values. Each
parameter is initialized with a dummy value (page 15), so
each kind of cKanren constraint must update each parame-
ter with its own function. Informally, these functions should
present the following interface:

process-prefix This function is sent a prefix of the substitu-
tion, consisting of all the associations newly added after a
unification. In addition, it is sent the current constraints.
This can be an opportunity to rerun constraints for the
variables with new associations but different constraints.

enforce-constraints This function is run immediately before
we reify the constraints and should accept the variable to
be reified. Any checks for consistency or reorganization
of the constraint store can be done here.

reify-constraints This function is run as part of the reifier. It
is responsible for building a Scheme data structure that
represents the information in the constraint store of a
package.

3 As seen in SRFI-39. The same functionality could be captured
with global variables and side effects; however, parameters offer
the cleanest solution. Prolog systems use modules and predicates
with fixed names to allow customization of attribute hooks, rather
than parameters.

Assuming these functions are defined prior to runtime,
cKanren lays the framework for unification, running con-
straints, and running entire miniKanren functions.

3.2.1 goal-construct

Since most constraint operations should be deterministic,
it is often necessary to wrap them in a goal that will
succeed when a new package is returned successfully and
fail otherwise. This function makes such wrapping easy. (See
page 17 for the definition of λG, whose values are goals.)

(define goal-construct
(λ (fM)

(λG (a)
(cond

((fM a) ⇒ unitG)
(else (mzeroG))))))

3.2.2 ≡
≡ unifies two arguments, u and v , and can result in three
different scenarios. If unify (page 18) fails, the result is #f and
causes the goal to fail. If the original substitution is returned
unchanged, no additional action need occur. In the last
case, we obtain new information from unification. That new
information (contained in a prefix of the new substitution)
is retrieved and passed to the function returned by (process-
prefix ) for further examination.

(define ≡
(λ (u v)

(goal-construct (≡c u v))))

(define ≡c

(λ (u v)
(λM (a : s d c)

(cond
((unify ‘((,u . ,v)) s)
⇒ (λ (ŝ)

(cond
((eq? s ŝ) a)
(else
(let ((p (prefix-s s ŝ))

(a (make-a ŝ d c)))
(((process-prefix ) p c) a))))))

(else #f)))))

(define prefix-s
(λ (s ŝ)

(cond
((null? s) ŝ)
(else (let loop ((ŝ ŝ))

(cond
((eq? ŝ s) ’())
(else (cons (car ŝ) (loop (cdr ŝ))))))))))

(define #u (≡ #f #t))

(define #s (≡ #f #f))

3.2.3 run-constraints

When cKanren gets new information about a variable, such
as an additional constraint or a more restricted domain, ear-
lier constraints may be affected. Since we keep all constraint
information in a store, we can recur through the store when
such a change happens to reevaluate constraints.
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A näıve approach is to rerun every constraint in the store
indiscriminately until there are no more changes in the store
(i.e., until a fixpoint is reached).

(define run-constraints0
(λ (x∗-ignored c)

(cond
((null? c) identity M)
(else
(composeM

(oc�proc (car c))
(run-constraints0 x∗-ignored (cdr c)))))))

run-constraints0 performs well on small examples, but this
approach is too costly when the constraint store grows. So, in
a slightly less näıve approach, the procedure receives a list of
variables to look for and runs only those constraints involv-
ing those variables. any-relevant/var? (page 16) searches the
constraint’s list of arguments for a variable in x∗.

(define run-constraints1
(λ (x∗ c)

(cond
((null? c) identity M)
((any-relevant/var? (oc�rands (car c)) x∗)
(composeM

(oc�proc (car c))
(run-constraints1 x∗ (cdr c))))

(else (run-constraints1 x∗ (cdr c))))))

Unfortunately, run-constraints1 still runs some constraints
unnecessarily. Since we run a constraint each time before
the recursive call, the constraint store being processed is
not up to date. It is possible that a constraint in c no longer
exists in the constraint store when the recursion reaches it.

In run-constraints, below, once we have found a con-
straint that contains one or more of the variables we are
looking for, we check to make sure that we still need the
constraint. The current constraint store is pulled in and, if
the constraint is still contained within that store, it is re-
moved and rerun. If the current constraint is not within the
current constraint store, a previous constraint has rendered
it unnecessary (and it should not run again).

(define run-constraints
(λ (x∗ c)

(cond
((null? c) identity M)
((any-relevant/var? (oc�rands (car c)) x∗)
(composeM

(rem/run (car c))
(run-constraints x∗ (cdr c))))

(else (run-constraints x∗ (cdr c))))))

(define rem/run
(λ (oc)

(λM (a : s d c)
(cond

((memq oc c)
(let ((ĉ (remq oc c)))

((oc�proc oc) (make-a s d ĉ))))
(else a)))))

After being run, the constraint might add itself back
into the current constraint store, but only when it still
has variable arguments. If all arguments are constants, the
constraint is not reintroduced.

3.2.4 reify

reify takes a variable x and then runs the two goals within
(fresh () . . . ). The first goal ensures that the most mean-
ingful answers available are sent to the second goal. The
second goal pulls in a package a, then returns the value as-
sociated with x in a (along with any relevant constraints),
first replacing all variables with symbols representing those
entities. A constraint (proc name . rands) is relevant if both
name and rands appear in the value associated with x . We
call this process of turning a cKanren value into a Scheme
value reification.

The first cond line in the definition of reify below returns
only the reified value v associated with x when the rename
substitution is empty. If the rename substitution is not
empty, it is used to rename the variables in v . Then, if there
are no relevant constraints, the renamed value is returned.
The else line returns both the reified value of x and the
reified list of relevant constraints. (The use of choiceG and
empty-f in reify is a subtlety to allow #f as a value, for
example in (run∗ (q) (≡ #f q)) ⇒ (#f).)

(define reify
(λ (x )

(fresh ()
((enforce-constraints) x )
(λG (a : s d c)

(choiceG

(let∗ ((v (walk∗ x s))
(r (reify-s v empty-s)))

(cond
((null? r) v)
(else
(let ((v (walk∗ v r)))

(cond
((null? c) v)
(else
(((reify-constraints) v r) a)))))))

empty-f )))))

3.3 Finite Domain Implementation

We created a domain interface powerful enough to allow
users to switch domain representations without changing
any of the constraint operations. Although we have chosen
a simple domain—finite domains as sorted non-empty lists
(with no duplicates) of natural numbers—we believe this
framework would support a variety of other domains such as
symbols, integers, or lists of sorted, nonoverlapping integer
intervals. The user need only redefine basic functions such
as intersection, difference, and the other simple functions
found in Appendix A.

A variable must be associated with either a finite domain
or a natural number before reification, but this association
can happen at any point in a cKanren program.

While this restriction might cause some programs to be
more verbose (for example, it might seem like the con-
straint (6fd x 5) should automatically bind the domain
(0 1 2 3 4 5) to x ) such overloading of behavior forces a
tradeoff between clean implementation and user conve-
nience; we prefer the former.

3.3.1 The Finite Domain Parameters

We now consider the parameters as broadly described in Sec-
tion 3.2. Recall that to access a parameter, it is necessary to
invoke the parameter as a function of zero arguments. First
we define the three parameters: process-prefixFD, enforce-
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constraintsFD, and reify-constraintsFD. Once these are de-
fined, we proceed to the specific finite domain constraints.

process-prefixFD reconsiders each association that was
added as a result of unification. Consider an association
(x . v), where x is a variable and v is a constant or a vari-
able. The domain of x is intersected with (the domain of) v
and all constraints involving x are rerun. Although doing so
does not directly rerun constraints of v , a singleton inter-
section triggers the constraints of v , as can be seen in the
definition of resolve-storableδ, below.

(define process-prefixFD

(λ (p c)
(cond

((null? p) identity M)
(else

(let ((x (lhs (car p))) (v (rhs (car p))))
(let ((t (composeM

(run-constraints ‘(,x ) c)
(process-prefixFD (cdr p) c))))

(λM (a : s d c)
(cond

((getδ x d)
⇒ (λ (δ)

((composeM (processδ v δ) t) a)))
(else (t a))))))))))

processδ takes as arguments a value v and a domain δ. If v
is a variable, all information is passed to update-varδ. If v is
a domain value in δ, then we return a unchanged.

(define processδ

(λ (v δ)
(λM (a)

(cond
((var? v) ((update-varδ v δ) a))
((memv?δ v δ) a)
(else #f)))))

In update-varδ we intersect the two domains: the one asso-
ciated with v in d and the domain passed into processδ. If
the intersection is a singleton, we extend the substitution.
Otherwise, we extend the domain with the intersection. If
the two domains are disjoint, then we return false. (At this
point, we have wrong information in d , but this is fine, since
we look up variables in d only when they are not in s.)

(define update-varδ

(λ (x δ)
(λM (a : s d c)

(cond
((getδ x d)
⇒ (λ (xδ)

(let ((i (intersectionδ xδ δ)))
(cond

((null?δ i) #f)
(else ((resolve-storableδ i x ) a))))))

(else ((resolve-storableδ δ x ) a))))))

(define resolve-storableδ

(λ (δ x )
(λM (a : s d c)

(cond
((singleton?δ δ)
(let∗ ((n (singleton-elementδ δ))

(a (make-a (ext-s x n s) d c)))
((run-constraints ‘(,x ) c) a)))

(else (make-a s (ext-d x δ d) c))))))

We have chosen to extend the substitution directly, rather
than using ≡ or unify. The presumption is that x has already
been walked (page 18) in the substitution, so we can avoid
that extra unification overhead.

enforce-constraintsFD has two purposes. The value asso-
ciated with x is going to be returned as an answer, so it is
desirable to associate x with a constant whenever possible.
If x is unified with a variable that has domain information,
each realizable domain value should be returned. It is always
possible, however, that there are constrained variables that
are not returned as part of the final answer. While we do not
care about the exact value of every variable, we still need
to be sure there exists at least one value for each variable
such that all constraints are satisfied or the entire program
should fail. force-ans recurs through the list of domain vari-
ables until it succeeds once; it is forced to stop by once o

(page 19) and reification can occur.

(define enforce-constraintsFD

(λ (x )
(fresh ()

(force-ans x )
(λG (a : s d c)

(let ((bound-x∗ (map lhs d)))
(verify-all-bound c bound-x∗)
((once o (force-ans bound-x∗)) a))))))

force-ans takes either a variable or a list of variables. If
the variable is not associated with a constant in s but does
have a domain, map-sum (page 16) attempts to associate
that variable with everything in its domain. If the value is
a pair, the car and cdr are searched for variables as well.
Otherwise, it is already associated with a constant and it
succeeds.

(define force-ans
(λ (x )

(λG (a : s d c)
(let ((x (walk x s)))

((cond
((and (var? x ) (getδ x d))
⇒ (map-sum (λ (v) (≡ x v))))

((pair? x )
(fresh ()

(force-ans (car x ))
(force-ans (cdr x ))))

(else #s))
a)))))

reify-constraintsFD, when invoked, produces an error,
since there are variables in relevant constraints that are
bound neither in s nor in d .

(define reify-constraintsFD

(λ (m r)
(error ’reify-constraintsFD "Unbound vars at end\n")))

We invoke (useFD) in order to use constraints over finite
domains.

(define useFD

(λ ()
(process-prefix process-prefix FD)
(enforce-constraints enforce-constraintsFD)
(reify-constraints reify-constraintsFD)))
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3.4 letδ and c-op

Here, we present two very useful macros: letδ and c-op.
letδ, an implementor’s convenience macro, lexically binds

u to each argument’s current value in the substitution and
uδ to each associated domain, respectively.

(define-syntax letδ

(syntax-rules (:)
(( (s d) ((u : uδ) . . . ) body)
(let ((u (walk u s)) . . . )

(let ((uδ (cond
((var? u) (getδ u d))
(else (makeδ ‘(,u)))))

. . . )
body)))))

c-op is a macro for defining constraint operations that
uses letδ. buildoc (page 15) creates a storable representation
of the constraint, and the constraint store is extended. The
body is run when each argument u has a domain.

(define-syntax c-op
(syntax-rules (:)

(( op ((u : uδ) . . . ) body)
(λM (a : s d c)

(letδ (s d) ((u : uδ) . . . )
(let∗ ((c (ext-c (buildoc op u . . . ) c))

(a (make-a s d c)))
(cond

((and uδ . . . ) (body a))
(else a))))))))

3.4.1 The Goal Constructors

There are five constraint constructors: domfd, 6fd, +fd, 6≡fd,
and all-diff fd.

• The goal (domfd x n∗) constrains x ∈ n∗. The real work
of domfd is done by processδ (page 9).

(define domfd

(λ (x n∗)
(goal-construct (domfd

c x n∗))))

(define domfd
c

(λ (x n∗)
(λM (a : s d c)

((processδ (walk x s) (makeδ n∗)) a))))

• The goal (6fd u v) implies that min(u) 6 max(v),
filtering out ineligible domain elements from u and v .

(define 6fd

(λ (u v)
(goal-construct (6fd

c u v))))

(define 6fd
c

(λ (u v)
(c-op 6fd

c ((u : uδ) (v : vδ))
(let ((umin (minδ uδ))

(vmax (maxδ vδ)))
(composeM

(processδ u
(copy-before (λ (u) (< vmax u)) uδ))

(processδ v
(drop-before (λ (v) (6 umin v)) vδ)))))))

• The goal (+fd u v w) has the meaning u + v = w. Thus
we get two relations:

min(u) + min(v) 6 max(w)

min(w) 6 max(u) + max(v)

(define +fd

(λ (u v w)
(goal-construct (+fd

c u v w))))

(define +fd
c

(λ (u v w)
(c-op +fd

c ((u : uδ) (v : vδ) (w : wδ))
(let ((umin (minδ uδ)) (umax (maxδ uδ))

(vmin (minδ vδ)) (vmax (maxδ vδ))
(wmin (minδ wδ)) (wmax (maxδ wδ)))

(composeM

(processδ w
(range (+ umin vmin) (+ umax vmax)))

(composeM

(processδ u
(range

(− wmin vmax) (− wmax vmin)))
(processδ v

(range
(− wmin umax) (− wmax umin)))))))))

• The goal ( 6≡fd u v) constrains u and v from having the
same values. If the domains of u and v are disjoint, the
constraint can never be violated and so it is ignored. Oth-
erwise, the constraint is kept around until the domains
are equal (which violates the constraint, returning false)
or one domain is reduced to a singleton. Then the single
element is removed from the other argument’s domain
and the constraint is dropped.

(define 6≡fd

(λ (u v)
(goal-construct (6≡fd

c u v))))

(define 6≡fd
c

(λ (u v)
(λM (a : s d c)

(letδ (s d) ((u : uδ) (v : vδ))
(cond

((or (not uδ) (not vδ))
(make-a s d (ext-c (buildoc 6≡fd

c u v) c)))
((and (singleton?δ uδ)

(singleton?δ vδ)
(= (singleton-elementδ uδ)

(singleton-elementδ vδ)))
#f)

((disjoint?δ uδ vδ) a)
(else
(let∗ ((ĉ (ext-c (buildoc 6≡fd

c u v) c))
(a (make-a s d ĉ)))

(cond
((singleton?δ uδ)
((processδ v (diffδ vδ uδ)) a))

((singleton?δ vδ)
((processδ u (diffδ uδ vδ)) a))

(else a)))))))))
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• The goal (all-diff fd v∗) ensures all variables and values in
v∗ differ. all-diff fd could have been written as a derived
constraint of 6≡fd. Instead, this constraint is between a
list of values (either variables or constants), where the
constants are recursively excluded from each variable’s
domain or the argument to all-diff fd might be a single
variable, which eventually becomes such a list of values.

(define all-diff fd

(λ (v∗)
(goal-construct (all-diff fd

c v∗))))

In the first of all-diff fd
c ’s two cond lines, we acknowl-

edge that we have a variable (eventually to become a
list) and we include in c a constraint which means “Keep
trying until the variable has an association in the sub-
stitution.” In the second cond line, we must have a list,
so we partition the list into two pieces: unresolved vari-
ables and the found values, making sure along the way
that the found values are all different. If they are not
different, all-diff fd

c fails.

(define all-diff fd
c

(λ (v∗)
(λM (a : s d c)

(let ((v∗ (walk v∗ s)))
(cond

((var? v∗)
(let∗ ((oc (buildoc all-diff fd

c v∗)))
(make-a s d (ext-c oc c))))

(else
(let-values (((x∗ n∗) (partition var? v∗)))

(let ((n∗ (list-sort < n∗)))
(cond

((list-sorted? < n∗)
((all-diff/ fd

c x∗ n∗) a))
(else #f))))))))))

In all-diff/ fd
c , we are dealing with the unresolved vari-

ables y∗ and the found values n∗. We move a variable
y of y∗ to x∗ unless y is associated with a value in the
substitution, presumably to a single valid value. Then,
we don’t move y to x∗ and instead move y to n∗, which
must stay sorted. When each variable has been processed,
we exclude the final n∗ from the possible choices remain-
ing from each of the domains of x∗. exclude-fromδ (de-
fined below) calls processδ to refine d , and potentially
call run-constraints.

(define all-diff/ fd
c

(λ (y∗ n∗)
(λM (a : s d c)

(let loop ((y∗ y∗) (n∗ n∗) (x∗ ’()))
(cond

((null? y∗)
(let∗ ((oc (buildoc all-diff/fd

c x∗ n∗))
(a (make-a s d (ext-c oc c))))

((exclude-fromδ (makeδ n∗) d x∗) a)))
(else
(let ((y (walk (car y∗) s)))

(cond
((var? y) (loop (cdr y∗) n∗ (cons y x∗)))
((memv?δ y n∗) #f)
(else (let ((n∗ (list-insert < y n∗)))

(loop (cdr y∗) n∗ x∗)))))))))))

(define exclude-fromδ

(λ (δ1 d x∗)
(let loop ((x∗ x∗))

(cond
((null? x∗) identity M)
((getδ (car x∗) d)
⇒ (λ (δ2)

(composeM

(processδ (car x∗) (diffδ δ2 δ1))
(loop (cdr x∗)))))

(else (loop (cdr x∗)))))))

3.5 Disequality Constraints Implementation

The version of disequality defined on finite domains is not
powerful enough to operate on lists, even when those lists
contain finite domain values and variables alone. So, we
describe a more general version of disequality constraints.

This implementation uses unification to uncover exactly
which associations must never be made. For example, the
constraint (6≡ (x 1) (2 y)) means that x cannot be 2 when
y is 1. Conveniently, unification of (x 1) and (2 y) produces
exactly the normalized associations that should never be
true simultaneously: ((x . 2) (y . 1)). This idea has been
formalized by Hubert Comon (1991), who has described this
and other approaches to disequality.

3.5.1 The Disequality Constraints Parameters

We define the same constraint parameters as in Section 3.3.1;
however, the disequality constraint parameters are much
simpler than those of finite domains.

process-prefixNEQ is quite simple, as no domain informa-
tion is stored. The constraints of every variable within the
prefix p are reexamined using run-constraints.

(define process-prefixNEQ

(λ (p c)
(run-constraints (recover/vars p) c)))

Next we consider enforce-constraintsNEQ. Disequality con-
straints fail immediately if they are unsatisfiable. It is not
necessary to check the store again before reification, so
enforce-constraints is merely unitG.

(define enforce-constraintsNEQ (λ (x ) unitG))

reify-constraintsNEQ reifies every relevant constraint in c,
since they are included as part of the reified value; we have
arbitrarily chosen the colon ‘:’ to separate the reified value
from the list of reified constraints.

(define reify-constraintsNEQ

(λ (m r)
(λG (a : s d c)

(let∗ ((c (walk∗ c r))
(p∗ (remp any/var? (map oc�prefix c))))

(cond
((null? p∗) m)
(else ‘(,m : . ((6≡ . ,p∗)))))))))

We invoke (useNEQ) in order to use disequality constraints
over term trees,

(define useNEQ

(λ ()
(process-prefix process-prefixNEQ)
(enforce-constraints enforce-constraintsNEQ)
(reify-constraints reify-constraintsNEQ)))
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3.5.2 The Disequality Goal

We define 6≡ for disequality, which takes two arguments that
must be different. If not, the goal fails.

(define 6≡
(λ (u v)

(goal-construct (6≡c u v))))

(define 6≡c

(λ (u v)
(λM (a : s d c)

(cond
((unify ‘((,u . ,v)) s)
⇒ (λ (ŝ) ((6≡neq

c (prefix-s s ŝ)) a)))
(else a)))))

6≡neq
c operates on a substitution p. If every association

in p is in s, the disequality constraint has been violated.
Otherwise, we get a new non-empty prefix to be stored.
When the initial substitution is empty, ŝ is the prefix.

(define 6≡neq
c

(λ (p)
(λM (a : s d c)

(cond
((unify p s)
⇒ (λ (ŝ)

(let ((p (prefix-s s ŝ)))
(cond

((null? p) #f)
(else ((normalize-store p) a))))))

(else a)))))

If unify does not return false, there is still a possibility
the disequality constraint can be violated. Now ŝ contains
the prefix p that must not become realized.

normalize-store removes any superfluous disequality con-
straints in c. If p is subsumed by any prefix in c, or if p
subsumes any prefix in c, there is redundancy. After the
constraint store has been examined, either a new package
with potentially fewer constraints or the original package
with at most one more constraint is returned.

(define normalize-store
(λ (p)

(λM (a : s d c)
(let loop ((c c) (ĉ ’()))

(cond
((null? c)
(let ((ĉ (ext-c (buildoc 6≡neq

c p) ĉ)))
(make-a s d ĉ)))

((eq? (oc�rator (car c)) ’ 6≡neq
c )

(let∗ ((oc (car c))
(p̂ (oc�prefix oc)))

(cond
((subsumes? p̂ p) a)
((subsumes? p p̂) (loop (cdr c) ĉ))
(else (loop (cdr c) (cons oc ĉ))))))

(else (loop (cdr c) (cons (car c) ĉ))))))))

The substitution p subsumes (page 17) s if unifying p
in the substitution s does not extend s. If any prefix in c
subsumes p, then c is not extended. Furthermore, because p
will be part of the new c, those prefixes in c that p subsumes
are dropped.

4. Solutions to Exercises
Recall from Section 2.1.3 that we left unsolved three prob-
lems: Send More Money, N-Queens, and rember o. We start
with the solution to Send More Money.

4.1 send-more-money o : Solution

In send-more-money o below, we must be certain that each
letter in the puzzle is associated with a different value. Since
we know that s and m cannot be 0 (the leading digit of a
natural number is never 0), their domains start at 1. The
domains of the remaining letters include 0. There are also
three carry variables. (There should have been four, one for
each column, but we know that m must be 1, since the sum
of two digits, even with a carry-in of 1, cannot exceed 19.)
Thus, we use m as the fourth carry variable.). The rest of
send-more-money o does the long addition.

add-digits o performs one step of long addition, adding
two digits together considering a possible carry-in, and
returning the sum with a possible carry-out .

(define send-more-money o

(λ (letters)
(fresh (s e n d m o r y carry0 carry1 carry2)

(≡ letters ‘(,s ,e ,n ,d ,m ,o ,r ,y))
(all-diff fd letters)
(infd s m (range 1 9))
(infd e n d o r y (range 0 9))
(infd carry0 carry1 carry2 (range 0 1))
(add-digits o s m carry2 m o)
(add-digits o e o carry1 carry2 n)
(add-digits o n r carry0 carry1 e)
(add-digits o d e 0 carry0 y))))

(define add-digits o

(λ (augend addend carry-in carry-out digit)
(fresh (partial-sum sum)

(infd partial-sum (range 0 18))
(infd sum (range 0 19))
(+fd augend addend partial-sum)
(+fd partial-sum carry-in sum)
(conde

((<fd 9 sum) (≡ carry-out 1) (+fd digit 10 sum))
((6fd sum 9) (≡ carry-out 0) (≡ digit sum))))))

(run∗ (q) (send-more-money o q)) ⇒ ((9 5 6 7 1 0 8 2))

This answer corresponds to the variable assignments:

S = 9 E = 5 N = 6 D = 7

M = 1 O = 0 R = 8 Y = 2

which indeed satisfy the Send More Money’ puzzle.
There are two interesting facets to this code. First, care-

ful inspection of send-more-money o and add-digits o reveals
that the solution requires no explicit recursion. Second, the
goals of send-more-money o are ordered so that the first and
second arguments to the four goals using add-digits o when
read from top to bottom spell s e n d and m o r e, respec-
tively.

4.2 n-queens o : Solution

Here we solve N-Queens puzzle. Recall that in chess, a queen
is attacking a piece if they are on the same diagonal, the
same row, or the same column, with no interference.
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We define n-queens o recursively. A loop executes n times,
creating n variables, one for each row. When the loop reaches
its base case, the list l contains the newly initialized vari-
ables. Each variable is in a different position in the list l
(since no two queens can occupy the same row); the values
that will be associated with these variables must be all dif-
ferent (since no two queens can occupy the same column);
and no two queens can share the same diagonal. all-diff fd

and diagonals o enforce these last two restrictions.

(define n-queens o

(λ (q∗ n)
(let loop ((i n) (l ’()))

(cond
((zero? i)
(fresh ()

(all-diff fd l)
(diagonals o n l)
(≡ q∗ l)))

(else (fresh (x )
(infd x (range 1 n))
(loop (− i 1) (cons x l))))))))

(define diagonals o

(λ (n r)
(let loop ((r r) (i 0) (s (cdr r)) (j 1))

(cond
((or (null? r) (null? (cdr r))) #s)
((null? s) (loop (cdr r) (+ i 1) (cddr r) (+ i 2)))
(else
(let ((qi (car r)) (qj (car s)))

(fresh ()
(diag o qi qj (− j i) (range 0 (∗ 2 n)))
(loop r i (cdr s) (+ j 1)))))))))

In diagonals o, i keeps track of the position in the list
of queens that we are on and j keeps track of the position
in the list of queens somewhere to the right of i . qi and qj

are two elements of n. Effectively, we check every possible
position for two queens exactly once, as qi will always be
less than qj . For each combination, diag o is called.

As long as the following equations hold (Schrijvers et al.
2009), the queens will not be attacking each other and diag o

will succeed.

qi + d 6= qj

qj + d 6= qi

(define diag o

(λ (qi qj d rng)
(fresh (qi+d qj+d)

(infd qi+d qj+d rng)
(+fd qi d qi+d)
(6≡fd qi+d qj)
(+fd qj d qj+d)
(6≡fd qj+d qi))))

The following expression produces the solution when
n = 8. The run∗ expression evaluates to the list of 92
solutions.

(length (run∗ (q) (n-queens o q 8))) ⇒ 92

4.3 rember o : Solution

Recall that rember o does not give us the results we were
expecting. A simple fix is that once we have found an a, we

demand that we won’t get any more answers from that a as
is shown in the last line of the definition of rember o, below.
This concept becomes particularly important when using
a representation of environments where shadowing exists,
say, in a type inferencer being used as a type inhabiter for
demonstrating the Curry-Howard Isomorphism.

(define rember o

(λ (x ls out)
(conde

((≡ ’() ls) (≡ ’() out))
((fresh (a d res)

(≡ ‘(,a . ,d) ls)
(rember o x d res)
(conde

((≡ a x ) (≡ res out))
((6≡ a x ) (≡ ‘(,a . ,res) out))))))))

(run∗ (q) (rember o ’a ’(a b a c) q)) ⇒ ((b c))

(run∗ (q) (rember o ’a ’(a b c) ’(a b c))) ⇒ ()

5. Composition
In order to compose different kinds of constraints, it is
enough to redefine each parameter according to the seman-
tics desired by the user. For instance, we can combine the
finite domain and disequality constraints by allowing 6≡ to
call 6≡fd in the case of natural number arguments, or using
domain information to eliminate parts of the prefix in 6≡neq

c .
The composite library imports the function definitions from
the finite domain and disequality libraries, and defines the
composite parameters in terms of the domain-specific func-
tions.

With the composite library, examples such as the follow-
ing can be solved.

(run∗ (q)
(infd q (2 3 4))
(all-diff o ‘(apple 3 ,q))) ⇒ (2 4)

Although the two kinds of constraints do not explicitly com-
municate, q ’s domain information can be used in conjunc-
tion with all-diff o. Before reification, q will be unified with
all remaining values in its domain. q ’s only realizable val-
ues are 2 and 4, since all-diff o fails when 3 is tried. (Using
all-diff fd instead of all-diff o would result in an error, since
apple is a symbol rather than a natural number.)

Conflicting constraints cannot be present in the same call
to run∗. Having two kinds of constraints in any environment
would cause conflicting parameter definitions. For example,
assume we wish to verify that the 92 answers returned by
(run∗ (q) (n-queens o q 8)) are actually all unique answers.
We cannot use all-diff fd, since the result is a list of lists,
but finite domain constraints only work on a list of natural
numbers, so, we must use all-diff o.

(define answers (run∗ (q) (n-queens o q 8)))

(run∗ (q) (all-diff o answers)) ⇒ ( 0)

These calls to run∗ leave no opportunity to redefine param-
eters, so we must be sure that the definitions for all parame-
ters work correctly when either finite domain or disequality
constraints are used.

Combining different kinds of constraints that use different
domain representations is more complex. Conveniently, the
user has the power to redefine, extend, or ignore any part of
the existing libraries when making a composition. A tagged
domain store could be implemented simply by redefining
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getδ and ext-d . Basic parts of the implementation frame-
work, like reify, are general and powerful enough to handle
a new kind of constraint, provided there is a reify-constraints
parameter to determine what should be returned.

Each library should have a function devoted to defining
the parameters properly. For finite domains it is useFD, for
disequality constraints it is useNEQ, and for their composition
it might be useFDNEQ. Thus, it is possible to import libraries
without worrying about the values of the parameters: simply
invoke the correct thunk and the definitions will be there.

6. The miniKanren Philosophy
Our development of cKanren has been informed by a design
and implementation philosophy that arose from our work on
miniKanren. The central tenet of this philosophy is that in
a purely declarative miniKanren relation, the order of goals
is unimportant. That is, swapping two conjuncts (or two
disjuncts) should not affect the semantics of the program.
This is true only to a point: a miniKanren query that has no
answers may diverge instead of failing in finite time. For a
query that produces answers, however, reordering subgoals
should not affect the set of possible answers returned.4

6.0.1 Design Philosophy

A consequence of our philosophy is that the programmer
can specify constraints in any order. For example, the finite
domain constraints presented in Section 2.1.1 can be applied
to a variable, even before the variable has been associated
with a finite domain or has been bound in the substitution.

As pointed out on page 8, provided a variable is associ-
ated with either a domain or a natural number before reifi-
cation, the program works correctly. Another consequence of
the miniKanren philosophy is that “extra-logical” operators,
such as Prolog’s var/1, is, or “cut” (!) operators, are not al-
lowed in user-level code. Although not enforced by cKanren,
we hope that implementors of additional constraint libraries
will adhere to this philosophy.

As a result, our solution to Send More Money in Sec-
tion 4.1 does not make assumptions about when variables
become associated with domains or values. Although a less
pure implementation of Send More Money might run faster,
we are convinced that the benefits of declarativeness are too
important to abandon.

6.0.2 Implementation Philosophy

The miniKanren philosophy also guides our implementation
of cKanren. For example, we decided to store a closure in-
dicating progress along with a first-order representation of
constraints in the constraint store. Keeping only a closure
would have severely reduced our ability to recover informa-
tion from the constraint store. A user trying to debug would
not have been able to look at a textual version of the con-
straints. This would make it impossible to see which con-
straints were actually being stored. Also, an implementor
trying to reify the constraints would not have been able to
include meaningful information about the constraints on a
variable. Instead, we have included both a symbol represent-
ing the constraint and its operands, thus giving us the best
of both worlds.

4 See (Byrd 2009) for a detailed discussion of these issues and of
the miniKanren design philosophy.

cKanren’s constraint store is a list of operator con-
straints. Another way to design the constraint store would
be to associate a variable with its relevant constraints. How-
ever, a constraint would then appear once for each variable
it references, resulting in redundancy and complicating the
fixpoint algorithm. With our cKanren framework we can
decide whether a constraint is still relevant with a single
call to memq; the alternative approach would require more
lookups to determine the same information.

We had originally implemented cKanren using attributed
variables (Holzbaur 1992). An attributed variable is one
which calls a user-defined customization point (a “hook”)
when unified, either with a value or another variable. A key
reason we have avoided attributed variables is the change
required to unification. Attribute hooks are called whenever
an attributed variable is unified with anything, requiring
the ability to call cKanren code from ≡, possibly leading
to further unifications and backtracking. Although Prolog
systems with attributed variables do allow backtracking
from attribute hooks, we have chosen to not use attributed
variables to simplify cKanren’s implementation.

7. Conclusion
The field of Constraint Logic Programming is well developed
and its history, along with the more general area of Con-
straint Programming, is described in (Marriott and Stuckey
1998) and (Apt 2003). Extensions to Prolog for Constraint
Logic Programming, such as Prolog II (Colmerauer 1985),
presented disequality constraints over trees. The first theo-
retical work on CLP(X), for different X s, appears in Jaffar
and Lassez (1987).

The CLP language CHIP (Dincbas et al. 1988; Van Hen-
tenryck 1989) introduced finite domain constraints. Jaf-
far (1992) described constraints over real numbers (CLP(R)).
CHIP led to ECLiPSe (Wallace et al. 1997). In the theory
of CLP(X), the substitution store associated with logic pro-
gramming becomes a set of constraints (Jaffar and Lassez
1987). Jaffar and Maher (1994) survey the development of
Constraint Logic Programming.

We have presented cKanren, a simple, concise, and eas-
ily extendable framework for constraint logic programming
in Scheme. cKanren allows programmers to use and define
constraint libraries that extend miniKanren, which itself em-
beds logic programming in Scheme. We have also presented
the implementation of two libraries of constraints: one over
finite domains, and the other over tree terms. We hope oth-
ers will create cKanren libraries of their own, increasing the
expressive power of miniKanren.
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A. cKanren Implementation Helpers

(define process-prefix (make-parameter ’dummy))
(define enforce-constraints (make-parameter ’dummy))
(define reify-constraints (make-parameter ’dummy))
(define empty-d ’())
(define empty-c ’())
(define empty-a (make-a empty-s empty-d empty-c))
(define ext-d (λ (x fd d) (cons ‘(,x . ,fd) d)))
(define makeδ (λ (n∗) n∗))
(define oc�proc (λ (oc) (car oc)))
(define oc�rator (λ (oc) (car (cdr oc))))
(define oc�rands (λ (oc) (cdr (cdr oc))))
(define oc�prefix (λ (oc) (car (oc�rands oc))))

(define-syntax buildoc

(syntax-rules ()
(( op arg . . . )
(build-auxoc op (arg . . . ) () (arg . . . )))))

(define-syntax build-auxoc

(syntax-rules ()
(( op () (z . . . ) (arg . . . ))
(let ((z arg) . . . ) ‘(,(op z . . . ) . (op ,z . . . ))))

(( op (arg0 arg . . . ) (z . . . ) args)
(build-auxoc op (arg . . . ) (z . . . q) args))))

15



(define list-sorted?
(λ (pred ls)

(cond
((or (null? ls) (null? (cdr ls))) #t)
((pred (car ls) (cadr ls)) (list-sorted? pred (cdr ls)))
(else #f))))

(define list-insert
(λ (pred x ls)

(cond
((null? ls) (cons x ’()))
((pred x (car ls)) (cons x ls))
(else (cons (car ls) (list-insert pred x (cdr ls)))))))

(define copy-before
(λ (pred δ)

(cond
((null? δ) ’())
((pred (car δ)) ’())
(else (cons (car δ) (copy-before pred (cdr δ)))))))

(define drop-before
(λ (pred δ)

(cond
((null? δ) ’())
((pred (car δ)) δ)
(else (drop-before pred (cdr δ))))))

(define map-sum
(λ (f )

(letrec
((loop

(λ (ls)
(cond

((null? ls) #u)
(else
(conde

((f (car ls)))
((loop (cdr ls)))))))))

loop)))

getδ looks up a variable’s current domain in d . If a variable
does not currently have a domain, this function returns false.
In order to distinguish between variables without domains,
and values that can never have domains (such as #t or
negative numbers), the argument to getδ must be a variable.

(define getδ
(λ (x d)

(cond
((assq x d) ⇒ rhs)
(else #f))))

Applying conventional operations to domains is efficient
when the lists representing the domains are sorted.

(define value?δ (λ (v) (and (integer? v) (6 0 v))))
(define memv?δ (λ (v δ) (and (value?δ v) (memv v δ))))
(define null?δ (λ (δ) (null? δ)))
(define singleton?δ (λ (δ) (null? (cdr δ))))
(define singleton-elementδ (λ (δ) (car δ)))
(define minδ (λ (δ) (car δ)))

(define maxδ

(λ (δ)
(cond

((null? (cdr δ)) (car δ))
(else (maxδ (cdr δ))))))

(define disjoint?δ

(λ (δ1 δ2)
(cond

((or (null? δ1) (null? δ2)) #t)
((= (car δ1) (car δ2)) #f)
((< (car δ1) (car δ2))
(disjoint?δ (cdr δ1) δ2))

(else (disjoint?δ δ1 (cdr δ2))))))

(define diffδ

(λ (δ1 δ2)
(cond

((or (null? δ1) (null? δ2)) δ1)
((= (car δ1) (car δ2)) (diffδ (cdr δ1) (cdr δ2)))
((< (car δ1) (car δ2))
(cons (car δ1) (diffδ (cdr δ1) δ2)))

(else (diffδ δ1 (cdr δ2))))))

(define intersectionδ

(λ (δ1 δ2)
(cond

((or (null? δ1) (null? δ2)) ’())
((= (car δ1) (car δ2))
(cons (car δ1)

(intersectionδ (cdr δ1) (cdr δ2))))
((< (car δ1) (car δ2))
(intersectionδ (cdr δ1) δ2))

(else (intersectionδ δ1 (cdr δ2))))))

Since x∗ is a list of variables, which is constructed using
var, which is itself, constructed using vector, we must use
memq, when checking for membership in the list. In a purely
functional setting, we would need to build variables in a
different way, probably relying on a monotonically increasing
non-negative integer variable.

(define any/var?
(λ (t)

(cond
((var? t) #t)
((pair? t)
(or (any/var? (car t)) (any/var? (cdr t))))

(else #f))))

(define any-relevant/var?
(λ (t x∗)

(cond
((var? t) (memq t x∗))
((pair? t) (or (any-relevant/var? (car t) x∗)

(any-relevant/var? (cdr t) x∗)))
(else #f))))

(define recover/vars
(λ (p)

(cond
((null? p) ’())
(else

(let ((x (lhs (car p)))
(v (rhs (car p)))
(r (recover/vars (cdr p))))

(cond
((var? v) (ext/vars v (ext/vars x r)))
(else (ext/vars x r))))))))

(define ext/vars
(λ (x r)

(cond
((memq x r) r)
(else (cons x r)))))
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(define verify-all-bound
(λ (c bound-x∗)

(unless (null? c)
(cond

((find (λ (x ) (not (memq x bound-x∗)))
(filter var? (oc�rands (car c))))

⇒ (λ (x )
(error ’verify-all-bound
"Constrained variable ˜s without domain"
x )))

(else (verify-all-bound (cdr c) bound-x∗))))))

(define subsumes?
(λ (p s)

(cond
((unify p s)
⇒ (λ (ŝ) (eq? s ŝ)))

(else #f))))

B. miniKanren Implementation
Our miniKanren implementation comprises three kinds of
operators: the interface operator run; goal constructors ≡,
conde, and fresh, which take a package implicitly ; and func-
tions such as ≡c (page 7), which take a package explicitly.

A goal g is a function that maps a package a to an ordered
sequence a∞ of zero or more packages. (For clarity, we notate
λ as λG when creating such a function g .)

(define-syntax λG

(syntax-rules (:)
(( (a : s d c) body)
(λ (a)

(let ((s (car a)) (d (cadr a)) (c (cddr a)))
body)))

(( (a) body) (λ (a) body))))

Because a sequence of packages may be infinite, we rep-
resent it not as a list but as an a∞ , a special kind of stream
that can contain either zero, one, or more packages (Hinze
2000; Wadler 1985). We use #f to represent the empty stream
of packages. If a is a package, then a itself represents the
stream containing just a.

(define mzeroG (λ () #f))
(define unitG (λG (a) a))
(define choiceG (λ (a f ) (cons a f )))

To represent a stream containing multiple packages, we
use (choiceG a f ), where a is the first package in the stream,
and where f is a thunk that, when invoked, produces the
remainder of the stream. (For clarity, we notate λ as λF

when creating such a function f .) To represent an incom-
plete stream, we use (inc e), where e is an expression that
evaluates to an a∞—thus inc creates an f .

(define-syntax λF

(syntax-rules () (( () e) (λ () e))))

(define-syntax inc
(syntax-rules () (( e) (λF () e))))

(define empty-f (λF () (mzeroG)))

A singleton stream a is the same as (choiceG a empty-f ).
For goals that return only a single package, however, using
this special representation of a singleton stream avoids the
cost of unnecessarily building and taking apart pairs, and
creating and invoking thunks.

To ensure that the values produced by these four kinds
of a∞ ’s can be distinguished, we assume that a package is
never #f, a function, or a pair whose cdr is a function. To
discriminate among these four cases, we define case∞ .

(define-syntax case∞

(syntax-rules ()

(( e (() e0) ((f̂) e1) ((â) e2) ((a f ) e3))
(let ((a∞ e))

(cond
((not a∞) e0)

((procedure? a∞) (let ((f̂ a∞)) e1))
((not (and (pair? a∞)

(procedure? (cdr a∞))))
(let ((â a∞)) e2))

(else (let ((a (car a∞)) (f (cdr a∞)))
e3)))))))

If the first argument to take is #f, then take returns the
entire stream of reified values as a list, thereby providing the
behavior of run∗. The and expressions within take detect
this #f case.

(define take
(λ (n f )

(cond
((and n (zero? n)) ’())
(else
(case∞ (f )

(() ’())
((f ) (take n f ))
((a) (cons a ’()))
((a f ) (cons a (take (and n (− n 1)) f ))))))))

The interface operator run uses take to convert an f to an
even stream (MacQueen et al. 1998). The definition of run
places an artificial goal at the tail of g0 g ... This artificial
goal invokes reify (Section 3.2.4) on the variable x using the
final package a produced by running all the goals in the
empty package empty-a (page 15).

(define-syntax run
(syntax-rules ()

(( n (x ) g0 g . . . )
(take n

(λF ()
((fresh (x ) g0 g . . . (reify x ))
empty-a))))))

(define-syntax run∗

(syntax-rules ()
(( (x ) g0 g . . . ) (run #f (x ) g0 g . . . ))))

B.1 Goal Constructors

The simplest goal constructors are those expanded from
goal-construct (page 7); the goals they create return either
a singleton stream or an empty stream. To take the con-
junction of goals, we define fresh, a goal constructor that
first lexically binds variables built by var and then combines
successive goals using bind∗

G
.

(define-syntax fresh
(syntax-rules ()

(( (x . . . ) g0 g . . . )
(λG (a)

(inc
(let ((x (var ’x)) . . . )

(bind∗
G

(g0 a) g . . . )))))))
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bind∗
G

is short-circuiting: since the empty stream is rep-
resented by #f. bind∗

G
relies on bindG (Moggi 1991; Wadler

1992), which applies the goal g to each element in the stream
a∞ . The resulting a∞ ’s are then merged using mplusG, which
combines an a∞ and an f to yield a single a∞ .

(define-syntax bind∗
G

(syntax-rules ()
(( e) e)
(( e g0 g . . . ) (bind∗

G
(bindG e g0) g . . . ))))

(define bindG

(λ (a∞ g)
(case∞ a∞

(() (mzeroG))
((f ) (inc (bindG (f ) g)))
((a) (g a))
((a f ) (mplusG (g a) (λF () (bindG (f ) g)))))))

(define mplusG

(λ (a∞ f )
(case∞ a∞

(() (f ))

((f̂) (inc (mplusG (f ) f̂)))
((a) (choiceG a f ))

((a f̂) (choiceG a (λF () (mplusG (f ) f̂)))))))

To take the disjunction of goals we define conde, a
goal constructor that combines successive conde lines using
mplus∗

G
, which in turn relies on mplusG. We use the same

implicit package a for each conde line. To avoid unwanted
divergence, we treat the conde lines as a single inc stream.

(define-syntax conde

(syntax-rules ()
(( (g0 g . . . ) (g1 ĝ . . . ) . . . )
(λG (a)

(inc (mplus∗
G

(bind∗
G

(g0 a) g . . . )
(bind∗

G
(g1 a) ĝ . . . )

. . . ))))))

(define-syntax mplus∗
G

(syntax-rules ()
(( e) e)
(( e0 e . . . ) (mplusG e0 (λF () (mplus∗

G
e . . . ))))))

B.2 miniKanren Helpers

(define var (λ (dummy) (vector dummy)))
(define var? (λ (x ) (vector? x )))
(define empty-s ’())
(define ext-s (λ (x v s) (cons ‘(,x . ,v) s)))
(define lhs (λ (pr) (car pr)))
(define rhs (λ (pr) (cdr pr)))

(define walk
(λ (u s)

(cond
((not (var? u)) u)
((assq u s) ⇒ (λ (pr) (walk (rhs pr) s)))
(else u))))

(define walk∗

(λ (w s)
(let ((v (walk w s)))

(cond
((var? v) v)
((pair? v)
(cons (walk∗ (car v) s) (walk∗ (cdr v) s)))

(else v)))))

Below is unify (Marriott and Stuckey 1998) but with tri-
angular (Baader and Snyder 2001) instead of idempotent
substitutions. In the two-pairs case the substitution does not
grow; the equation that had a pair in both sides is dropped
and replaced by two new equations: one that equates their
respective cars (done now) and one that equates their re-
spective cdrs (done later), so e cannot be empty. Otherwise,
there is a recursive call to unify, where either zero or one
new association is added to the substitution. Of course, uni-
fication can fail.

(define unify
(λ (e s)

(cond
((null? e) s)
(else
(let loop ((u (caar e)) (v (cdar e)) (e (cdr e)))

(let ((u (walk u s)) (v (walk v s)))
(cond

((eq? u v) (unify e s))
((var? u)
(and (not (occurs

√
u v s))

(unify e (ext-s u v s))))
((var? v)
(and (not (occurs

√
v u s))

(unify e (ext-s v u s))))
((and (pair? u) (pair? v))
(loop (car u) (car v)

‘((,(cdr u) . ,(cdr v)) . ,e)))
((equal? u v) (unify e s))
(else #f))))))))

(define occurs
√

(λ (x v s)
(let ((v (walk v s)))

(cond
((var? v) (eq-var? v x ))
((pair? v)
(or (occurs

√
x (car v) s) (occurs

√
x (cdr v) s)))

(else #f)))))

reify-s is the heart of the reifier. reify-s takes an arbitrary
value v , and returns a substitution that maps every distinct
variable in v to a unique symbol. The trick to maintaining
left-to-right ordering of the subscripts on these symbols is to
process v from left to right, as can be seen in the pair? cond
line, below. When reify-s encounters a variable, it determines
if we already have a mapping for that entity. If not, reify-s
extends the substitution with an association between the
variable and a new, appropriately subscripted symbol built
using reify-n.

(define reify-s
(λ (v s)

(let ((v (walk v s)))
(cond

((var? v) (ext-s v (reify-n (size-s s)) s))
((pair? v) (reify-s (cdr v) (reify-s (car v) s)))
(else s)))))

(define reify-n
(λ (n)

(string�symbol
(string-append " " "." (number�string n)))))

(define size-s (λ (x ) (length x )))
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B.3 Impure Control Operators

For completeness, we define three additional miniKanren
goal constructors: project, which can be used to access the
values of variables, and conda and condu, which can be
used to prune the search tree of a program. The examples
from Thin Ice of The Reasoned Schemer (Friedman et al.
2005) demonstrate how conda and condu can be useful
and the pitfalls that await the unsuspecting reader. Also,
we have included an additional operator once o, defined in
terms of condu, which forces the input goal to succeed at
most once.

(define-syntax project
(syntax-rules ()

(( (x . . . ) g0 g . . . )
(λG (a : s d c)

(let ((x (walk∗ x s)) . . . )
((fresh () g0 g . . . ) a))))))

(define-syntax conda

(syntax-rules ()
(( (g0 g . . . ) (g1 ĝ . . . ) . . . )
(λG (a)

(inc (if a ((g0 a) g . . . ) ((g1 a) ĝ . . . ) . . . ))))))

(define-syntax if a

(syntax-rules ()
(( ) (mzeroG))
(( (e g . . . ) b . . . )
(let loop ((a∞ e))

(case∞ a∞

(() (if a b . . . ))
((f ) (inc (loop (f ))))
((a) (bind∗

G
a∞ g . . . ))

((a f ) (bind∗
G

a∞ g . . . )))))))

(define-syntax condu

(syntax-rules ()
(( (g0 g . . . ) (g1 ĝ . . . ) . . . )
(λG (a)

(inc (ifu ((g0 a) g . . . ) ((g1 a) ĝ . . . ) . . . ))))))

(define-syntax ifu

(syntax-rules ()
(( ) (mzeroG))
(( (e g . . . ) b . . . )
(let loop ((a∞ e))

(case∞ a∞

(() (ifu b . . . ))
((f ) (inc (loop (f ))))
((a) (bind∗

G
a∞ g . . . ))

((a f ) (bind∗
G

a g . . . )))))))

(define once o (λ (g) (condu (g))))
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