cKanren

miniKanren with Constraints

Claire E. Alvis, Jeremiah J. Willcock, Kyle M. Carter,
William E. Byrd, Daniel P. Friedman

{calvis, jewillco, kylcarte, webyrd, dfried}@cs.indiana.edu

School of Informatics and Computing
Indiana University, Bloomington

October 23, 2011

Overview

Introduction to Logic Programming/miniKanren
Introduction to Constraints

Examples

B

Implementation Overview

miniKanren

Logic programming language extending Scheme

miniKanren

Logic programming language extending Scheme

Three important operators: =, fresh, and cond®

miniKanren

Logic programming language extending Scheme
Three important operators: =, fresh, and cond®

Intuition:
The goal (== 5 5) succeeds while (== 5 6) fails

miniKanren

Logic programming language extending Scheme
Three important operators: =, fresh, and cond®

Intuition:
The goal (== 5 5) succeeds while (== 5 6) fails

(fresh (x)
(conde
((== x 5))
((==x 6))))

unifies x with 5 or 6

miniKanren

Logic programming language extending Scheme

Uses run as an interface operator

(runl (y)
(fresh (x z)
== X z)
== 3 y)))

= (3)

miniKanren

Logic programming language extending Scheme

Uses run as an interface operator

(runl (y)
(run1 (y)

(fresh (x z) (frfih (X)z)
(== x 2) ;; z 2)
R ==y x)))

= (3)

= (3)

miniKanren

Logic programming language extending Scheme

Uses run as an interface operator

(runl (y)
(fresh (x z)
== X z)
== 3 y)))

= (3)

(runl (y)
(fresh (x z)
(== x z)
== 3 z)
==y x)))

= (3)

(runl (y)
(fresh (y)
(conde
((==y 4))
((==y 5)))
(== 3 y))

= (3)

Constraints

Imposing a certain restriction on a variable or set of variables
Find a solution such that every constraint is satisfied

Constraints

Imposing a certain restriction on a variable or set of variables
Find a solution such that every constraint is satisfied

Examples: Set of equations

x+y+z=h
h+3=m—x
y—7T=h+z

Constraints

Imposing a certain restriction on a variable or set of variables
Find a solution such that every constraint is satisfied

Examples: Set of equations, Tree Disequality

Constraints

Imposing a certain restriction on a variable or set of variables
Find a solution such that every constraint is satisfied

Examples: Set of equations, Tree Disequality

'oak #Z 'pine
((Ix)y7)# (25 w)

Constraints

Imposing a certain restriction on a variable or set of variables
Find a solution such that every constraint is satisfied

Examples: Set of equations, Tree Disequality, N-Queens

&

W

W

- N W A

Send More Money

Find the correct letter values to satisfy the following equation:

SEND
+ MORE

MONEY

Each letter represents a different digit in the range 0 through 9

Motivation

Motivation

» miniKanren does not use mathematical reasoning to rule out
unrealizable values

Motivation

» miniKanren does not use mathematical reasoning to rule out
unrealizable values

» Performs very slowly on standard constraint problems

Motivation

» miniKanren does not use mathematical reasoning to rule out
unrealizable values

» Performs very slowly on standard constraint problems

» Extensions to miniKanren are incompatible with each other

cKanren

» A framework for defining constraint systems on top of
miniKanren

cKanren

» A framework for defining constraint systems on top of
miniKanren

» Retains all miniKanren functionality

cKanren

» A framework for defining constraint systems on top of
miniKanren

» Retains all miniKanren functionality

» Includes two constraint systems:
finite domains and tree disequality

cKanren

» A framework for defining constraint systems on top of
miniKanren

» Retains all miniKanren functionality

» Includes two constraint systems:
finite domains and tree disequality

» Easy to add or compose additional constraints systems

Constraints Over Finite Domains

We can associate a domain with a variable x

Constraints Over Finite Domains

We can associate a domain with a variable x

We consider only finite domains of natural numbers
such as x € {1,2,3,7,8,9}

... but there are others (interval domains, boolean domains, etc.)

Constraints Over Finite Domains

New operators:
> (dom™ x nx)

Constraints Over Finite Domains

New operators:
> (dom™ x nx)
> (< uv)

Constraints Over Finite Domains

New operators:
> (dom™ x nx)
> (< uv)

> (+ u v w)

Constraints Over Finite Domains

New operators:

> (dom™ x nx)
> (< uv)
> (+7 uvw)
> (7 uv)

E

Constraints Over Finite Domains

New operators:

> (dom™ x nx)
<fd yv)
+ u v w)
> (£ u)

> (<
> (
> (
> (all-diff vx)

Constraints Over Finite Domains

New operators:
(dom™ x nx)
(Sfd u V)
(+ u v w)
(£4 u v)
(all-diff™ vx)

Derived goals:

vV v. v Vv

v

> in’ to assign multiple variables a single initial domain

Constraints Over Finite Domains

New operators:
(dom™ x nx)
(Sfd u V)
(+ u v w)
(£4 u v)
(all-diff™ vx)

Derived goals:

vV v. v Vv

v

> in’ to assign multiple variables a single initial domain
> (<fuv)

Example

(run* (q)
(fresh (x y 2)
(domfd x ’(7 8 9 10))
(domfd y (4 5 8 9 12))

(domfd z (1 2 12 16))
o))

Example

(run*x (q)
(fresh (x y 2)
(domfd x ’(7 8 9 10)) x € {7,8,9,10}
(domfd y (4 5 8 9 12))

y € {4,5,8,9,12}
(domfd z > (1 2 12 16)) z € {1,2,12,16}
ce))

Example

(run*x (q)
(fresh (x y 2)
(domfd x ’(7 8 9 10))

(domfd y (4 58 9 12)) x € {7,8,9,10}
(domfd z > (1 2 12 16)) y € {8,9,12}
(<=fd x y) z€{1,2,12,16}
o))

Example

(run* (q)
(fresh (x y 2)

(domfd x ’(7 8 9 10))
(domfd y (4 5 8 9 12))
(domfd z (1 2 12 16)) x € {7,8}
(<=fd x y) y € {8,9}
(+fd x y 2) z € {16}
S)

Example

(run* (q)
(fresh (x y 2)
(domfd x °(7 8 9 10))
(domfd y (4 5 8 9 12))
(domfd z ’(1 2 12 16))

(<=fd x y) x e {7}
(+fd x y 2) y € {9}
(=/=fd x y) z € {16}

cel))

Example

(run* (q)
(fresh (x y 2)
(domfd x ’(7 8 9 10))
(domfd y (4 5 8 9 12))
(domfd z ’(1 2 12 16))
(<=fd x y)
(+fd x y 2)
(=/=£fd x y)
(== q ‘Gx ,y ,z)))

= ((7 9 16))

Example

(run*x (q)

(fresh (x y 2)
(<=fd x y)
(domfd x ’(7 8 9 10))
(+fd x y 2)
(=/=fd x y)
(==q ‘(Gx ,y ,2))
(domfd y (4 5 8 9 12))
(domfd z (1 2 12 16))))

= ((7 9 16))

Disequality Over Trees

New operator # (more general than %)

Disequality Over Trees

New operator # (more general than %)

(run* (q)
(fresh (x y)
(conde
((=x1) (==y 1))
((==x2) (==y 2))
(==x1) (==y 2))
((==x2) (==y D))

(==q “Gx ,y))))

Disequality Over Trees

New operator # (more general than %)

(run* (q)
(fresh (x y)
(conde
((=x1) (==y 1))
((==x2) (==y 2))
(==x1) (==y 2))
((==x2) (==y D))

(==q “Gx ,y))))

= (11 (22 (12) (21))

Disequality Over Trees

New operator # (more general than %)

(run*x (q)
(fresh (x y)
(conde
((==x1) (==y 1)
((==x2) (==y 2))
((==x1) (==y 2))

((==x2) (==y3 D)
(=/= ‘(x ,y) ‘Gy ,x))
(==q “Gx ,yN))

Disequality Over Trees

New operator # (more general than %)

(run*x (q)
(fresh (x y)
(conde
((==x1) (==y 1)
((==x2) (==y 2))
((==x1) (==y 2))

((==x2) (==y3 D)
(=/= ‘(x ,y) ‘Gy ,x))
(==q “Gx ,yN))

= ((12) (21)

Implementation Overview

Data Structures

cKanren uses a package to store information

Data Structures

cKanren uses a package to store information

Substitution
Example: ((x . 1) (v . #t) (z . x))

Data Structures

cKanren uses a package to store information

Substitution
Example: ((x . 1) (v . #t) (z . x))

Domain store
Example: ((x. (789)) (v . (2345)))

Data Structures

cKanren uses a package to store information

Substitution
Example: ((x . 1) (v . #t) (z . x))

Domain store
Example: ((x. (789)) (v . (2345)))

Constraint store
Example: ((proc <™ y x) (proc all-diff™® '(x z h 7)))

Framework

. Fixpoint algorithm

. Consistency checks

W e

reify

Equivalence

» Only constraint that is not kept in the constraint store

Equivalence

» Only constraint that is not kept in the constraint store

» Uses miniKanren unification

Fixpoint Algorithm

No constraints directly interact with one another

Fixpoint Algorithm

No constraints directly interact with one another

A framework function reruns constraints on newly ground variables

Fixpoint Algorithm

No constraints directly interact with one another

A framework function reruns constraints on newly ground variables

Example:
(run*x (q)
(fresh (%)
(infd x q (1 2 3))
(+fd x 1 q)
== x 2)

ceu))

Fixpoint Algorithm

1. Receives variables xx
For example, x from previous slide, after being unified with 2

Fixpoint Algorithm

1. Receives variables xx
For example, x from previous slide, after being unified with 2

2. Grabs current constraint store
Constraint store (... (proc +fd x 1 q) ...)

Fixpoint Algorithm

1. Receives variables xx
For example, x from previous slide, after being unified with 2

2. Grabs current constraint store
Constraint store (... (proc +fd x 1 q) ...)

3. Run every constraint involving any variables in x* again
... but only if the constraint is still in the store

Reruns + constraint with new information that x is 2.

Consistency

Programs with irrelevant but unsatisfiable constraints will fail

Consistency

Programs with irrelevant but unsatisfiable constraints will fail

(run*x (q)
(fresh (x y 2)
(infd x y z ’(1 2))
(all-difffd ‘(,x ,y ,2))
(== q 5)))

= ()

Consistency

Programs with irrelevant but unsatisfiable constraints will fail

(run*x (q)
(fresh (x y 2)
(infd x y z ’(1 2))
(all-difffd ‘(,x ,y ,2))
(== q 5)))

= ()

Before returning anything to the user, each variable with finite
domain constraints is re-evaluated, to guarantee that there is
at least one acceptable value for each constrained variable.

Reification

reify

» Produces the final result returned to the user

Reification

reify
» Produces the final result returned to the user

» Constraint store may need consolidation or reformatting

Reification

reify
» Produces the final result returned to the user

» Constraint store may need consolidation or reformatting
(run* (q) (=/=q 5))

= (o : (=/=Uo . 5NN

Parameters

Parameters

process-prefix
Can rerun constraints for the variables with new associations

Parameters

process-prefix
Can rerun constraints for the variables with new associations

enforce-constraints
Consistency checks before reification

Parameters

process-prefix
Can rerun constraints for the variables with new associations

enforce-constraints
Consistency checks before reification

reify-constraints
Builds a Scheme data structure that packages the constraint
information in a way that is readable to the user

Composition

Having multiple constraint systems in the same session is tricky, as
parameter definitions will overwrite each other

Composition

Having multiple constraint systems in the same session is tricky, as
parameter definitions will overwrite each other

(let ((1s (run* (q) (n-queens q 8))))
(runx (s) (all-diffo 1s)))

Implementor must define parameters in a way that makes sense

Future Work

» Performance

» Specialized operators

» Adding aKanren

» Using different domains? Simulaneously?

Questions?

