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3. Examples

4. Implementation Overview



miniKanren

Logic programming language extending Scheme
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Intuition:
The goal (== 5 5) succeeds while (== 5 6) fails
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(conde
((== x 5))
((== x 6))))

unifies x with 5 or 6
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Find a solution such that every constraint is satisfied

Examples: Set of equations

x + y + z = h

h + 3 = m − x

y − 7 = h + z



Constraints

Imposing a certain restriction on a variable or set of variables
Find a solution such that every constraint is satisfied

Examples: Set of equations

x + y + z = h

h + 3 = m − x

y − 7 = h + z



Constraints

Imposing a certain restriction on a variable or set of variables
Find a solution such that every constraint is satisfied

Examples: Set of equations, Tree Disequality

’oak 6≡ ’pine

’((1 x) y 7) 6≡ ’(z 5 w)



Constraints

Imposing a certain restriction on a variable or set of variables
Find a solution such that every constraint is satisfied

Examples: Set of equations, Tree Disequality

’oak 6≡ ’pine

’((1 x) y 7) 6≡ ’(z 5 w)



Constraints

Imposing a certain restriction on a variable or set of variables
Find a solution such that every constraint is satisfied

Examples: Set of equations, Tree Disequality, N-Queens



Send More Money

Find the correct letter values to satisfy the following equation:

S E N D
+ M O R E

M O N E Y

Each letter represents a different digit in the range 0 through 9
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unrealizable values

I Performs very slowly on standard constraint problems
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Derived goals:

I infd to assign multiple variables a single initial domain
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Framework

1. ≡
2. Fixpoint algorithm

3. Consistency checks

4. reify
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... but only if the constraint is still in the store

Reruns +fd constraint with new information that x is 2.
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domain constraints is re-evaluated, to guarantee that there is
at least one acceptable value for each constrained variable.
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Composition

Having multiple constraint systems in the same session is tricky, as
parameter definitions will overwrite each other

(let ((ls (run* (q) (n-queens q 8))))
(run* (s) (all-diffo ls)))

Implementor must define parameters in a way that makes sense
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Future Work

I Performance

I Specialized operators

I Adding αKanren

I Using different domains? Simulaneously?



Questions?


