
cKanren
miniKanren with Constraints

Claire E. Alvis, Jeremiah J. Willcock, Kyle M. Carter,
William E. Byrd, Daniel P. Friedman

{calvis, jewillco, kylcarte, webyrd, dfried}@cs.indiana.edu

School of Informatics and Computing
Indiana University, Bloomington

October 23, 2011

Overview

1. Introduction to Logic Programming/miniKanren

2. Introduction to Constraints

3. Examples

4. Implementation Overview

miniKanren

Logic programming language extending Scheme

Three important operators: ≡, fresh, and conde

Intuition:
The goal (== 5 5) succeeds while (== 5 6) fails

(fresh (x)
(conde
((== x 5))
((== x 6))))

unifies x with 5 or 6

miniKanren

Logic programming language extending Scheme

Three important operators: ≡, fresh, and conde

Intuition:
The goal (== 5 5) succeeds while (== 5 6) fails

(fresh (x)
(conde
((== x 5))
((== x 6))))

unifies x with 5 or 6

miniKanren

Logic programming language extending Scheme

Three important operators: ≡, fresh, and conde

Intuition:
The goal (== 5 5) succeeds while (== 5 6) fails

(fresh (x)
(conde
((== x 5))
((== x 6))))

unifies x with 5 or 6

miniKanren

Logic programming language extending Scheme

Three important operators: ≡, fresh, and conde

Intuition:
The goal (== 5 5) succeeds while (== 5 6) fails

(fresh (x)
(conde
((== x 5))
((== x 6))))

unifies x with 5 or 6

miniKanren

Logic programming language extending Scheme

Uses run as an interface operator

(run1 (y)
(fresh (x z)

(== x z)
(== 3 y)))

⇒ (3)

(run1 (y)
(fresh (x z)
(== x z)
(== 3 z)
(== y x)))

⇒ (3)

(run1 (y)
(fresh (y)
(conde
((== y 4))
((== y 5))))

(== 3 y))

⇒ (3)

miniKanren

Logic programming language extending Scheme

Uses run as an interface operator

(run1 (y)
(fresh (x z)

(== x z)
(== 3 y)))

⇒ (3)

(run1 (y)
(fresh (x z)
(== x z)
(== 3 z)
(== y x)))

⇒ (3)

(run1 (y)
(fresh (y)
(conde
((== y 4))
((== y 5))))

(== 3 y))

⇒ (3)

miniKanren

Logic programming language extending Scheme

Uses run as an interface operator

(run1 (y)
(fresh (x z)

(== x z)
(== 3 y)))

⇒ (3)

(run1 (y)
(fresh (x z)
(== x z)
(== 3 z)
(== y x)))

⇒ (3)

(run1 (y)
(fresh (y)
(conde
((== y 4))
((== y 5))))

(== 3 y))

⇒ (3)

Constraints

Imposing a certain restriction on a variable or set of variables
Find a solution such that every constraint is satisfied

Examples: Set of equations

x + y + z = h

h + 3 = m − x

y − 7 = h + z

Constraints

Imposing a certain restriction on a variable or set of variables
Find a solution such that every constraint is satisfied

Examples: Set of equations

x + y + z = h

h + 3 = m − x

y − 7 = h + z

Constraints

Imposing a certain restriction on a variable or set of variables
Find a solution such that every constraint is satisfied

Examples: Set of equations, Tree Disequality

’oak 6≡ ’pine

’((1 x) y 7) 6≡ ’(z 5 w)

Constraints

Imposing a certain restriction on a variable or set of variables
Find a solution such that every constraint is satisfied

Examples: Set of equations, Tree Disequality

’oak 6≡ ’pine

’((1 x) y 7) 6≡ ’(z 5 w)

Constraints

Imposing a certain restriction on a variable or set of variables
Find a solution such that every constraint is satisfied

Examples: Set of equations, Tree Disequality, N-Queens

Send More Money

Find the correct letter values to satisfy the following equation:

S E N D
+ M O R E

M O N E Y

Each letter represents a different digit in the range 0 through 9

Motivation

I miniKanren does not use mathematical reasoning to rule out
unrealizable values

I Performs very slowly on standard constraint problems

I Extensions to miniKanren are incompatible with each other

Motivation

I miniKanren does not use mathematical reasoning to rule out
unrealizable values

I Performs very slowly on standard constraint problems

I Extensions to miniKanren are incompatible with each other

Motivation

I miniKanren does not use mathematical reasoning to rule out
unrealizable values

I Performs very slowly on standard constraint problems

I Extensions to miniKanren are incompatible with each other

Motivation

I miniKanren does not use mathematical reasoning to rule out
unrealizable values

I Performs very slowly on standard constraint problems

I Extensions to miniKanren are incompatible with each other

cKanren

I A framework for defining constraint systems on top of
miniKanren

I Retains all miniKanren functionality

I Includes two constraint systems:
finite domains and tree disequality

I Easy to add or compose additional constraints systems

cKanren

I A framework for defining constraint systems on top of
miniKanren

I Retains all miniKanren functionality

I Includes two constraint systems:
finite domains and tree disequality

I Easy to add or compose additional constraints systems

cKanren

I A framework for defining constraint systems on top of
miniKanren

I Retains all miniKanren functionality

I Includes two constraint systems:
finite domains and tree disequality

I Easy to add or compose additional constraints systems

cKanren

I A framework for defining constraint systems on top of
miniKanren

I Retains all miniKanren functionality

I Includes two constraint systems:
finite domains and tree disequality

I Easy to add or compose additional constraints systems

Constraints Over Finite Domains

We can associate a domain with a variable x

We consider only finite domains of natural numbers
such as x ∈ {1, 2, 3, 7, 8, 9}

... but there are others (interval domains, boolean domains, etc.)

Constraints Over Finite Domains

We can associate a domain with a variable x

We consider only finite domains of natural numbers
such as x ∈ {1, 2, 3, 7, 8, 9}

... but there are others (interval domains, boolean domains, etc.)

Constraints Over Finite Domains

New operators:

I (domfd x n∗)

I (≤fd u v)

I (+fd u v w)

I (6≡fd u v)

I (all-diff fd v∗)
Derived goals:

I infd to assign multiple variables a single initial domain

I (<fdu v)

Constraints Over Finite Domains

New operators:

I (domfd x n∗)
I (≤fd u v)

I (+fd u v w)

I (6≡fd u v)

I (all-diff fd v∗)
Derived goals:

I infd to assign multiple variables a single initial domain

I (<fdu v)

Constraints Over Finite Domains

New operators:

I (domfd x n∗)
I (≤fd u v)

I (+fd u v w)

I (6≡fd u v)

I (all-diff fd v∗)
Derived goals:

I infd to assign multiple variables a single initial domain

I (<fdu v)

Constraints Over Finite Domains

New operators:

I (domfd x n∗)
I (≤fd u v)

I (+fd u v w)

I (6≡fd u v)

I (all-diff fd v∗)
Derived goals:

I infd to assign multiple variables a single initial domain

I (<fdu v)

Constraints Over Finite Domains

New operators:

I (domfd x n∗)
I (≤fd u v)

I (+fd u v w)

I (6≡fd u v)

I (all-diff fd v∗)

Derived goals:

I infd to assign multiple variables a single initial domain

I (<fdu v)

Constraints Over Finite Domains

New operators:

I (domfd x n∗)
I (≤fd u v)

I (+fd u v w)

I (6≡fd u v)

I (all-diff fd v∗)
Derived goals:

I infd to assign multiple variables a single initial domain

I (<fdu v)

Constraints Over Finite Domains

New operators:

I (domfd x n∗)
I (≤fd u v)

I (+fd u v w)

I (6≡fd u v)

I (all-diff fd v∗)
Derived goals:

I infd to assign multiple variables a single initial domain

I (<fdu v)

Example

(run* (q)
(fresh (x y z)

(domfd x ’(7 8 9 10))
(domfd y ’(4 5 8 9 12))
(domfd z ’(1 2 12 16))
...))

x ∈ {7, 8, 9, 10}
y ∈ {4, 5, 8, 9, 12}
z ∈ {1, 2, 12, 16}

Example

(run* (q)
(fresh (x y z)

(domfd x ’(7 8 9 10))
(domfd y ’(4 5 8 9 12))
(domfd z ’(1 2 12 16))
...))

x ∈ {7, 8, 9, 10}
y ∈ {4, 5, 8, 9, 12}
z ∈ {1, 2, 12, 16}

Example

(run* (q)
(fresh (x y z)

(domfd x ’(7 8 9 10))
(domfd y ’(4 5 8 9 12))
(domfd z ’(1 2 12 16))
(<=fd x y)
...))

x ∈ {7, 8, 9, 10}
y ∈ {8, 9, 12}
z ∈ {1, 2, 12, 16}

Example

(run* (q)
(fresh (x y z)

(domfd x ’(7 8 9 10))
(domfd y ’(4 5 8 9 12))
(domfd z ’(1 2 12 16))
(<=fd x y)
(+fd x y z)
...))

x ∈ {7, 8}
y ∈ {8, 9}
z ∈ {16}

Example

(run* (q)
(fresh (x y z)

(domfd x ’(7 8 9 10))
(domfd y ’(4 5 8 9 12))
(domfd z ’(1 2 12 16))
(<=fd x y)
(+fd x y z)
(=/=fd x y)
...))

x ∈ {7}
y ∈ {9}
z ∈ {16}

Example

(run* (q)
(fresh (x y z)
(domfd x ’(7 8 9 10))
(domfd y ’(4 5 8 9 12))
(domfd z ’(1 2 12 16))
(<=fd x y)
(+fd x y z)
(=/=fd x y)
(== q ‘(,x ,y ,z))))

⇒ ((7 9 16))

Example

(run* (q)
(fresh (x y z)
(<=fd x y)
(domfd x ’(7 8 9 10))
(+fd x y z)
(=/=fd x y)
(== q ‘(,x ,y ,z))
(domfd y ’(4 5 8 9 12))
(domfd z ’(1 2 12 16))))

⇒ ((7 9 16))

Disequality Over Trees

New operator 6≡ (more general than 6≡fd)

(run* (q)
(fresh (x y)
(conde

((== x 1) (== y 1))
((== x 2) (== y 2))
((== x 1) (== y 2))
((== x 2) (== y 1)))

(== q ‘(,x ,y))))

⇒ ((1 1) (2 2) (1 2) (2 1))

Disequality Over Trees

New operator 6≡ (more general than 6≡fd)

(run* (q)
(fresh (x y)
(conde

((== x 1) (== y 1))
((== x 2) (== y 2))
((== x 1) (== y 2))
((== x 2) (== y 1)))

(== q ‘(,x ,y))))

⇒ ((1 1) (2 2) (1 2) (2 1))

Disequality Over Trees

New operator 6≡ (more general than 6≡fd)

(run* (q)
(fresh (x y)
(conde

((== x 1) (== y 1))
((== x 2) (== y 2))
((== x 1) (== y 2))
((== x 2) (== y 1)))

(== q ‘(,x ,y))))

⇒ ((1 1) (2 2) (1 2) (2 1))

Disequality Over Trees

New operator 6≡ (more general than 6≡fd)

(run* (q)
(fresh (x y)
(conde

((== x 1) (== y 1))
((== x 2) (== y 2))
((== x 1) (== y 2))
((== x 2) (== y 1)))

(=/= ‘(,x ,y) ‘(,y ,x))
(== q ‘(,x ,y))))

⇒ ((1 2) (2 1))

Disequality Over Trees

New operator 6≡ (more general than 6≡fd)

(run* (q)
(fresh (x y)
(conde

((== x 1) (== y 1))
((== x 2) (== y 2))
((== x 1) (== y 2))
((== x 2) (== y 1)))

(=/= ‘(,x ,y) ‘(,y ,x))
(== q ‘(,x ,y))))

⇒ ((1 2) (2 1))

Implementation Overview

Data Structures

cKanren uses a package to store information

Substitution
Example: ((x . 1) (y . #t) (z . x))

Domain store
Example: ((x . (7 8 9)) (y . (2 3 4 5)))

Constraint store
Example: ((proc ≤fd y x) (proc all-diff fd ’(x z h 7)))

Data Structures

cKanren uses a package to store information

Substitution
Example: ((x . 1) (y . #t) (z . x))

Domain store
Example: ((x . (7 8 9)) (y . (2 3 4 5)))

Constraint store
Example: ((proc ≤fd y x) (proc all-diff fd ’(x z h 7)))

Data Structures

cKanren uses a package to store information

Substitution
Example: ((x . 1) (y . #t) (z . x))

Domain store
Example: ((x . (7 8 9)) (y . (2 3 4 5)))

Constraint store
Example: ((proc ≤fd y x) (proc all-diff fd ’(x z h 7)))

Data Structures

cKanren uses a package to store information

Substitution
Example: ((x . 1) (y . #t) (z . x))

Domain store
Example: ((x . (7 8 9)) (y . (2 3 4 5)))

Constraint store
Example: ((proc ≤fd y x) (proc all-diff fd ’(x z h 7)))

Framework

1. ≡
2. Fixpoint algorithm

3. Consistency checks

4. reify

Equivalence

≡
I Only constraint that is not kept in the constraint store

I Uses miniKanren unification

Equivalence

≡
I Only constraint that is not kept in the constraint store

I Uses miniKanren unification

Fixpoint Algorithm

No constraints directly interact with one another

A framework function reruns constraints on newly ground variables

Example:

(run* (q)
(fresh (x)
(infd x q ’(1 2 3))
(+fd x 1 q)
...
(== x 2)
...))

Fixpoint Algorithm

No constraints directly interact with one another

A framework function reruns constraints on newly ground variables

Example:

(run* (q)
(fresh (x)
(infd x q ’(1 2 3))
(+fd x 1 q)
...
(== x 2)
...))

Fixpoint Algorithm

No constraints directly interact with one another

A framework function reruns constraints on newly ground variables

Example:

(run* (q)
(fresh (x)
(infd x q ’(1 2 3))
(+fd x 1 q)
...
(== x 2)
...))

Fixpoint Algorithm

1. Receives variables x∗
For example, x from previous slide, after being unified with 2

2. Grabs current constraint store
Constraint store (... (proc +fd x 1 q) ...)

3. Run every constraint involving any variables in x∗ again
... but only if the constraint is still in the store

Reruns +fd constraint with new information that x is 2.

Fixpoint Algorithm

1. Receives variables x∗
For example, x from previous slide, after being unified with 2

2. Grabs current constraint store
Constraint store (... (proc +fd x 1 q) ...)

3. Run every constraint involving any variables in x∗ again
... but only if the constraint is still in the store

Reruns +fd constraint with new information that x is 2.

Fixpoint Algorithm

1. Receives variables x∗
For example, x from previous slide, after being unified with 2

2. Grabs current constraint store
Constraint store (... (proc +fd x 1 q) ...)

3. Run every constraint involving any variables in x∗ again
... but only if the constraint is still in the store

Reruns +fd constraint with new information that x is 2.

Consistency

Programs with irrelevant but unsatisfiable constraints will fail

(run* (q)
(fresh (x y z)
(infd x y z ’(1 2))
(all-difffd ‘(,x ,y ,z))
(== q 5)))

⇒ ()

Before returning anything to the user, each variable with finite
domain constraints is re-evaluated, to guarantee that there is
at least one acceptable value for each constrained variable.

Consistency

Programs with irrelevant but unsatisfiable constraints will fail

(run* (q)
(fresh (x y z)
(infd x y z ’(1 2))
(all-difffd ‘(,x ,y ,z))
(== q 5)))

⇒ ()

Before returning anything to the user, each variable with finite
domain constraints is re-evaluated, to guarantee that there is
at least one acceptable value for each constrained variable.

Consistency

Programs with irrelevant but unsatisfiable constraints will fail

(run* (q)
(fresh (x y z)
(infd x y z ’(1 2))
(all-difffd ‘(,x ,y ,z))
(== q 5)))

⇒ ()

Before returning anything to the user, each variable with finite
domain constraints is re-evaluated, to guarantee that there is
at least one acceptable value for each constrained variable.

Reification

reify

I Produces the final result returned to the user

I Constraint store may need consolidation or reformatting

(run* (q) (=/= q 5))

⇒ ((0 : (=/= ((0 . 5)))))

Reification

reify

I Produces the final result returned to the user

I Constraint store may need consolidation or reformatting

(run* (q) (=/= q 5))

⇒ ((0 : (=/= ((0 . 5)))))

Reification

reify

I Produces the final result returned to the user

I Constraint store may need consolidation or reformatting

(run* (q) (=/= q 5))

⇒ ((0 : (=/= ((0 . 5)))))

Parameters

process-prefix
Can rerun constraints for the variables with new associations

enforce-constraints
Consistency checks before reification

reify -constraints
Builds a Scheme data structure that packages the constraint
information in a way that is readable to the user

Parameters

process-prefix
Can rerun constraints for the variables with new associations

enforce-constraints
Consistency checks before reification

reify -constraints
Builds a Scheme data structure that packages the constraint
information in a way that is readable to the user

Parameters

process-prefix
Can rerun constraints for the variables with new associations

enforce-constraints
Consistency checks before reification

reify -constraints
Builds a Scheme data structure that packages the constraint
information in a way that is readable to the user

Parameters

process-prefix
Can rerun constraints for the variables with new associations

enforce-constraints
Consistency checks before reification

reify -constraints
Builds a Scheme data structure that packages the constraint
information in a way that is readable to the user

Composition

Having multiple constraint systems in the same session is tricky, as
parameter definitions will overwrite each other

(let ((ls (run* (q) (n-queens q 8))))
(run* (s) (all-diffo ls)))

Implementor must define parameters in a way that makes sense

Composition

Having multiple constraint systems in the same session is tricky, as
parameter definitions will overwrite each other

(let ((ls (run* (q) (n-queens q 8))))
(run* (s) (all-diffo ls)))

Implementor must define parameters in a way that makes sense

Future Work

I Performance

I Specialized operators

I Adding αKanren

I Using different domains? Simulaneously?

Questions?

