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Abstract

We present relational interpreters written in the miniKanren
relational (logic programming) language for several subsets
of Scheme, demonstrate these interpreters running “back-
wards,” and show how the interpreters can trivially gen-
erate quines (programs that evaluate to themselves). We
demonstrate how to transform environment-passing inter-
preters written in Scheme into relational interpreters writ-
ten in miniKanren. We show how three extensions to core
miniKanren (disequality constraints and symbol/number
type-constraints) can be used to avoid tagging expressions
in the languages being interpreted, simplifying the inter-
preters, eliminating the need for parsers/unparsers, and
allowing shadowing of core forms.

We provide four appendices to make the code in the paper
completely self-contained. Three of these appendices contain
new code: the complete implementation of core miniKanren
extended with the new constraints; an extended relational
interpreter capable of running factorial and doing list pro-
cessing; and a simple pattern matcher that uses Dijkstra
guards. The other appendix presents our preferred version of
code that has been presented elsewhere: the miniKanren re-
lational arithmetic system used in the extended interpreter.

Categories and Subject Descriptors D.1.6 [Program-
ming Techniques]: Logic Programming; D.1.1 [Program-
ming Techniques]: Applicative (Functional) Programming

General Terms Languages

Keywords quines, Scheme, miniKanren, relational pro-
gramming, logic programming, interpreters, tagging

1. Introduction

A quine is a program that evaluates to itself (Hofstadter
2000; Thompson II); the simplest Scheme quines are self-
evaluating literals, such as numbers and booleans. Here is a
classic, and much more interesting, quine (Thompson II):

(define quine1
’((lambda (x)

(list x (list (quote quote) x)))
(quote
(lambda (x)

(list x (list (quote quote) x))))))

We can easily verify that quine1 evaluates to itself:

(equal? (eval quine1 ) quine1 ) ⇒ #t

For decades programmers have amused themselves by
writing quines in countless programming languages. Some
quines, such as those featured in the International Obfus-
cated C Code Contest (Broukhis et al.), are intentionally
baroque. Here we demonstrate a disciplined approach to the
problem: we show how to translate a typical environment-
passing interpreter from Scheme into the miniKanren rela-
tional (logic programming) language (Byrd 2009; Friedman
et al. 2005), then show how this relational interpreter can
be used, without modification, to trivially generate quines.1

We also show how to generate twines (twin quines), which
are programs p and q that evaluate to each other (where p
and q are not equal).

While generating quines is fun and interesting, our ap-
proach also illustrates advanced techniques of relational pro-
gramming, such as translating functional programs into re-
lational programs, and using constraints to avoid having
to tag the expressions being interpreted. This last point is
especially important, as tagging implies the need to write
parsers and unparsers, and, most importantly, because tag-
ging the application line of the interpreter greatly compli-
cates the handling of quote and list . Our approach to avoid-
ing tagging also has the important benefit of properly han-
dling shadowing of language forms, such as list , quote, and
lambda.

Our approach requires adding several constraint opera-
tors to core miniKanren. We have previously presented dis-
equality constraints in cKanren (Alvis et al. 2011), a gen-
eral constraint logic programming (Apt 2003) framework in-
spired by miniKanren; the symbol o and number o constraints
we introduce are also straight-forward to implement in cK-
anren. However, we have found that core miniKanren aug-
mented with these three constraints is sufficient for imple-
menting a wide variety of interesting programs, including

1 For readers already familiar with miniKanren, the punchline of
the paper can be summarized by the one-liner:

(equal? (run1 (q) (eval-exp o q ’() q)) ‘(,quine1 )) ⇒ #t
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interpreters and inferencers. This extended miniKanren is
conceptually simpler than cKanren, and its implementation
is easier to understand and modify. Programmers needing
to use domain-specific constraints, such as arithmetic over
finite domains (CLP(FD)), will find that the techniques de-
scribed here, up to and including quine generation, work
equally well in cKanren.

Our paper makes the following contributions:

• We extend the miniKanren core language with three
constraint operators: the disequality constraint 6≡; and
type constraints symbol o and number o, which are similar
in spirit to Scheme’s symbol? and number? predicates
(section 2.2). These operators are extremely useful when
writing logic programs, especially interpreters and type
inferencers.
• We describe and demonstrate our methodology for trans-

lating interpreters from Scheme to miniKanren (section
3). This technique can also be used for translating type
inferencers from Scheme to miniKanren.
• We show how 6≡, symbol o, and number o can be used

when writing an interpreter (or type inferencer) to avoid
tagging expressions in the language being interpreted
(section 3).
• We present relational interpreters for three subsets

of Scheme: the call-by-value λ-calculus (section 3); λ-
calculus extended with list and quote (section 4); and
an extended language supporting pairs, conditionals,
and arithmetic operators, and capable of running fac-
torial (appendix A). The relational arithmetic system
(appendix D) used in the third interpreter was first
presented in Friedman et al. (2005); we include it for
completeness.
• We demonstrate these interpreters running “backwards”

(generating input expressions from the expected output),
and show how the interpreters supporting list and quote
can be used to trivially generate quines (section 4 and
appendix A).
• We provide a complete, concise, and easily modifiable

implementation of core miniKanren extended with 6≡,
symbol o, and number o constraints (appendix B).
• We provide a generalized version of the pmatch pattern

matcher first presented in Byrd and Friedman (2007); the
updated pmatch (appendix C), now called dmatch, is
based on Dijkstra guards (Dijkstra 1975), and handles
quote expressions, which are necessary for writing evalu-
ators and reducers.

We begin by introducing the extended miniKanren lan-
guage we will use to write the relational interpreters.

2. The Extended miniKanren Language

In this section we briefly review the core miniKanren
language (section 2.1), then introduce the 6≡, symbol o,
and number o constraint operators used in the relational
interpreters (section 2.2). Readers already familiar with
miniKanren can safely skip to section 2.2 to learn about the
new constraint operators, while those wishing to learn more
about miniKanren should see Byrd (2009), Byrd and Fried-
man (2006) (from which this subsection has been adapted),
and Friedman et al. (2005).

2.1 miniKanren Refresher

Our code uses the following typographic conventions. Lexi-
cal variables are in italic, forms are in boldface, and quoted

symbols are in sans serif. By our convention, names of rela-
tions end with a superscript o—for example any o, which is
entered as anyo. Some relational operators do not follow this
convention: ≡ (entered as ==), conde (entered as conde),
and fresh. Similarly, (run5 (q) body) and (run∗ (q) body)
are entered as (run 5 (q) body) and (run* (q) body), re-
spectively.2

miniKanren extends Scheme with three operators: ≡,
fresh, and conde (three new operators, 6≡, symbol o, and
number o, are introduced in section 2.2). There is also run,
which serves as an interface between Scheme and miniKan-
ren, and whose value is a list.

fresh, which syntactically looks like lambda, introduces
into scope new lexical variables bound to new (logic) vari-
ables; ≡ unifies two terms. Thus

(fresh (x y z ) (≡ x z ) (≡ 3 y))

would associate x with z and y with 3. This, however, is not
a legal miniKanren program—we must wrap a run around
the entire expression.

(run1 (q) (fresh (x y z ) (≡ x z ) (≡ 3 y))) ⇒ ( 0)

The value returned is a list containing the single value 0 ;
we say that 0 is the reified value of the unbound variable q
and thus can be any value. q also remains unbound in

(run1 (q) (fresh (x y) (≡ x q) (≡ 3 y))) ⇒ ( 0)

Of course we can get back other values, representing
bound variables.

(run1 (y)
(fresh (x z )

(≡ x z )
(≡ 3 y)))

(run1 (q)
(fresh (x z )

(≡ x z )
(≡ 3 z )
(≡ q x )))

(run1 (y)
(fresh (x y)

(≡ 4 x )
(≡ x y))

(≡ 3 y))

Each of these examples returns (3); in the rightmost ex-
ample, the y introduced by fresh is different from the y
introduced by run. A run expression can also evaluate to
the empty list. This indicates that there does not exist any
value of the variable bound by the run expression that can
cause its body to succeed.

(run1 (x ) (≡ 4 3)) ⇒ ()

We use conde to get several values. Syntactically, conde

looks like cond but without ⇒ or else. For example,

(run2 (q)
(fresh (w x y)

(conde

((≡ ‘(,x ,w ,x ) q)
(≡ y w))

((≡ ‘(,w ,x ,w) q)
(≡ y w))))) ⇒ (( 0 1 0) ( 0 1 0))

Although the two conde lines are different, the values re-
turned are identical. This is because distinct reified unbound
variables are assigned distinct subscripts, increasing from
left to right—the numbering starts over again from zero
within each value, which is why the reified value of x is

0 in the first value but 1 in the second value. The super-

2 It is conventional in Scheme for the names of predicates to
end with the ‘?’ character. We have therefore chosen to end the
names of miniKanren goals with a superscript o, which is meant
to resemble the top of a ?. The superscript e in conde stands for
‘every,’ since every conde clause may contribute answers.
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script 2 in run denotes the maximum length of the resultant
list. If the superscript ∗ is used, then there is no maximum
imposed. This can easily lead to infinite loops:

(run∗ (q)
(let loop ()

(conde

((≡ #f q))
((≡ #t q))
((loop))))) ⇒ ⊥

Had ∗ been replaced by a natural number n, then an
n-element list of alternating #f’s and #t’s would be returned.
The conde succeeds while associating q with #f, which ac-
counts for the first value. When getting the second value,
the second conde line is tried, and the association made
between q and #f is forgotten—we say that q has been re-
freshed. In the third conde line, q is refreshed again.

We now look at several interesting examples that rely on
any o, which tries g an unbounded number of times.

(define any o

(lambda (g)
(conde

(g)
((any o g)))))

Consider the first example,

(run∗ (q)
(conde

((any o (≡ #f q)))
((≡ #t q))))

which does not terminate because the call to any o succeeds
an unbounded number of times. If ∗ were replaced by 5,
then we would get (#t #f #f #f #f). (The user should not be
concerned with the order in which values are returned.)

Now consider

(run10 (q)
(any o

(conde

((≡ 1 q))
((≡ 2 q))
((≡ 3 q))))) ⇒ (1 2 3 1 2 3 1 2 3 1)

Here the values 1, 2, and 3 are interleaved; our use of any o

ensures that this sequence is repeated indefinitely.
Even if some conde lines loop indefinitely, other conde

lines can contribute to the values returned by a run ex-
pression. However, we are not concerned with expressions
looping indefinitely. For example,

(run3 (q)
(let ((never o (any o (≡ #f #t))))

(conde

((≡ 1 q))
(never o)
((conde

((≡ 2 q))
(never o)
((≡ 3 q)))))))

returns (1 2 3); replacing run3 with run4 would cause
divergence since there are only three values and never o

would loop indefinitely looking for the fourth.

2.2 Additional Constraint Operators

We extend core miniKanren with three constraint opera-
tors: the disequality constraint 6≡ (previously described in
the context of the cKanren constraint logic programming
framework (Alvis et al. 2011)); and type constraints symbol o

and number o, which can be thought of as the miniKanren
equivalent of Scheme’s symbol? and number? type predi-
cates.

Consider the run expression

(run1 (q) (symbol o q))

which evaluates to (( 0 (sym 0))). This answer indicates
that q remains unbound, but also that q can only be as-
sociated with a symbol, as demonstrated by the failure of
these programs:

(run2 (q)
(symbol o q)
(≡ 4 q)) ⇒ ()

and

(run3 (q)
(symbol o q)
(number o q)) ⇒ ()

If we were to replace symbol o by number o in the run1

and run2 examples, the first answer would contain the num
tag rather than the sym tag, while the second example would
produce the answer (4) rather than failing.

Now consider an example illustrating the disequality con-
straint 6≡.

(run1 (p) (6≡ p 1)) ⇒ (( 0 ( 6≡ (( 0 . 1)))))

The answer states that p remains unbound, but cannot be
associated with 1. Of course, violating the constraint leads
to failure:

(run1 (p)
( 6≡ 1 p)
(≡ 1 p)) ⇒ ()

Next, consider a slightly more complicated example: a
disequality constraint between lists.

(run1 (q)
(fresh (p r)

( 6≡ ’(1 2) ‘(,p ,r))
(≡ ‘(,p ,r) q))) ⇒ ((( 0 1) (6≡ (( 0 . 1) ( 1 . 2)))))

The answer states that p and r are unbound, and that if p is
associated with 1, r cannot be associated with 2 (and that
if r is associated with 2, p cannot be associated with 1).

We would get the same behavior if we were to replace

(6≡ ’(1 2) ‘(,p ,r))

by

(6≡ ’((1) (2)) ‘((,p) (,r)))

or even

(6≡ ‘((1) (,r)) ‘((,p) (2))).

Now consider the run1 expression

(run1 (q)
(fresh (p r)

( 6≡ ’(1 2) ‘(,p ,r))
(≡ 1 p)
(≡ ‘(,p ,r) q))) ⇒ (((1 0) (6≡ (( 0 . 2)))))

If we also associate r with 2, the run1 expression fails.
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(run1 (q)
(fresh (p r)

( 6≡ ’(1 2) ‘(,p ,r))
(≡ 1 p)
(≡ 2 r)
(≡ ‘(,p ,r) q))) ⇒ ()

Finally, we consider what happens when (≡ 2 r) is re-
placed by (symbol o r) in the previous example. Then the
run1 expression succeeds with the answer (((1 0) (sym 0)))
which states that r can only be associated with a symbol.
The reified constraint (6≡ (( 0 . 2))) (stating that r cannot
be associated with 2) is not included in the answer, since it
is subsumed by the constraint that r must be a symbol.

3. Translating an Interpreter from
Scheme to miniKanren

In this section we start with a standard environment-passing
interpreter for the call-by-value λ-calculus, then show how
the interpreter can be translated into miniKanren in order
to run “backwards.”

We begin by defining variable lookup in an environment
represented as an association list.

(define lookup
(lambda (x env)

(dmatch env
(() #f)
(((,y . ,v) . ,rest) (guard (eq? y x ))
v)

(((,y . ,v) . ,rest) (guard (not (eq? y x )))
(lookup x rest)))))

lookup uses dmatch (appendix C), a simple pattern matcher
with guards in the style of Dijkstra’s Guarded Commands
(Dijkstra 1975). dmatch ensures that the patterns and op-
tional guards of different clauses do not overlap.3 This non-
overlapping property ensures that the ordering of the clauses
does not matter, and is required for writing correct relational
programs (Byrd 2009). By ensuring the non-overlapping
property holds in the Scheme version of the interpreter, we
simplify the translation to miniKanren.

Now that we have defined lookup, we can write our simple
interpreter using dmatch.

(define eval-exp
(lambda (exp env)

(dmatch exp
((,rator ,rand)
(let ((proc (eval-exp rator env))

(arg (eval-exp rand env)))
(dmatch proc

((closure ,x ,body ,env2 )
(eval-exp body ‘((,x . ,arg) . ,env2 ))))))

((lambda (,x ) ,body)
(guard (not-in-env ’lambda env))
‘(closure ,x ,body ,env))

(,x (guard (symbol? x )) (lookup x env)))))

(define not-in-env
(lambda (x env)

(dmatch env
(() #t)
(((,y . ,v) . ,rest) (guard (eq? y x ))

3 For this reason dmatch does not support else, since the always-
true test of the else clause overlaps with the patterns and guards
of all other clauses.

#f)
(((,y . ,v) . ,rest) (guard (not (eq? y x )))
(not-in-env x rest)))))

With dmatch we have the liberty of ordering our clauses in
any way we want. The guard for the λ clause,

(not-in-env ’lambda env),

ensures that eval-exp will correctly evaluate programs in
which the keyword lambda is shadowed (that is, programs
containing a variable named lambda, which results in the
symbol lambda being bound in the environment).

Here are two examples showing eval-exp in action (the
empty list passed as the second argument represents the
empty environment):

(eval-exp
’(((lambda (x)

(lambda (y) x))
(lambda (z) z))

(lambda (a) a))
’()) ⇒ (closure z z ())

and

(eval-exp
’((lambda (x)

(lambda (y) x))
(lambda (z) z))

’()) ⇒ (closure y x ((x . (closure z z ()))))

No set of examples of the untyped λ-calculus would
be complete without self application, which demonstrates
shadowing of the lambda keyword.

(define Ω
’((lambda (lambda) (lambda lambda))

(lambda (lambda) (lambda lambda))))

(eval-exp Ω ’()) ⇒ ⊥
We now have a working λ-calculus interpreter in Scheme;

our next task is to translate this version directly into
miniKanren. We start again with environment lookup—a
faithful translation of lookup into lookup o might be:

(define lookup o

(lambda (x env t)
(conde

((≡ ’() env) fail)
((fresh (y v rest)

(≡ ‘((,y . ,v) . ,rest) env) (≡ y x )
(≡ v t)))

((fresh (y v rest)
(≡ ‘((,y . ,v) . ,rest) env) (6≡ y x )
(lookup o x rest t))))))

lookup o takes a third argument, t , which corresponds to
the value returned by the Scheme function lookup. That is,
t represents the term associated with variable x in substitu-
tion env .

(run∗ (q) (lookup o ’y ’((x . foo) (y . bar)) q)) ⇒ ((y . bar))

If x is not bound in env , a call to lookup o will reach the base
case and fail4, rather than returning #f as in lookup.

(run∗ (q) (lookup o ’w ’((x . foo) (y . bar)) q)) ⇒ ()

Each conde clause in lookup o corresponds to a dmatch
clause in loookup. Instead of pattern matching against env ,
lookup o uses unification, where env is one of the argu-
ments to ≡. The goal (6≡ y x ) is equivalent to the guard

4 fail can be defined as (define fail (≡ #f #t)).
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(not (eq? y x )) in lookup. As with dmatch, the order of
clauses does not affect the meaning of a conde expression
(but may affect its performance). Unlike with dmatch, the
order of expressions within a conde clause is unimportant—
there are no patterns or guards within a conde clause, only
goals that succeed or fail.5

We can simplify lookup o by removing the first conde

clause (which always fails), and by lifting the unification
of env .

(define lookup o

(lambda (x env t)
(fresh (rest y v)

(≡ ‘((,y . ,v) . ,rest) env)
(conde

((≡ y x ) (≡ v t))
((6≡ y x ) (lookup o x rest t))))))

With lookup o defined, we can now write eval-exp o,
which in turn relies on not-in-env o. Since there is no no-
tion of a guard in miniKanren, we must translate each
guard into a goal expression. This we do below, translat-
ing the guard (not-in-env ’lambda env) into the equivalent
call (not-in-env o ’lambda env).

(define eval-exp o

(lambda (exp env val)
(conde

((fresh (rator rand x body env2 a)
(≡ ‘(,rator ,rand) exp)
(eval-exp o rator env ‘(closure ,x ,body ,env2 ))
(eval-exp o rand env a)
(eval-exp o body ‘((,x . ,a) . ,env2 ) val)))

((fresh (x body)
(≡ ‘(lambda (,x ) ,body) exp)
(≡ ‘(closure ,x ,body ,env) val)
(not-in-env o ’lambda env)))

((symbol o exp) (lookup o exp env val)))))

(define not-in-env o

(lambda (x env)
(conde

((≡ ’() env))
((fresh (y v rest)

(≡ ‘((,y . ,v) . ,rest) env)
( 6≡ y x )
(not-in-env o x rest))))))

Here are the first five programs whose values are α-
equivalent to the closure from the last terminating example:

(run5 (q)
(eval-exp o q ’() ’(closure y x ((x . (closure z z ()))))))

⇒
(((lambda (x) (lambda (y) x)) (lambda (z) z))
((lambda (x) (x (lambda (y) x))) (lambda (z) z))
(((lambda (x) (lambda (y) x))

((lambda ( 0) 0) (lambda (z) z)))
(sym 0))

((((lambda ( 0) 0) (lambda (x) (lambda (y) x)))
(lambda (z) z))

(sym 0))
(((lambda ( 0) 0)

((lambda (x) (lambda (y) x)) (lambda (z) z)))
(sym 0)))

And, of course, we can generate expression/value pairs.

5 Recall from section 2.1 that all goals within a conde clause must
succeed for the entire clause to succeed.

(run5 (q)
(fresh (e v)

(eval-exp o e ’() v)
(≡ ‘(,e ⇒ ,v) q)))

This run5 expression generates five λ-expressions, and the
closures to which they evaluate. The 6≡ tags in the answers
indicate disequality constraints between variables and the
values they cannot assume. The last answer states that 1

cannot be the symbol lambda and that 0 must be a symbol.

(((lambda ( 0) 1) ⇒ (closure 0 1 ()))
((((lambda ( 0) 0) (lambda ( 1) 2))
⇒
(closure 1 2 ()))
(sym 0))

((((lambda ( 0) (lambda ( 1) 2)) (lambda ( 3) 4))
⇒
(closure 1 2 (( 0 closure 3 4 ()))))
( 6≡ (( 0 . lambda))))

((((lambda ( 0) ( 0 0)) (lambda ( 1) 1))
⇒
(closure 1 1 ()))
(sym 0 1))

((((lambda ( 0) ( 0 0))
(lambda ( 1) (lambda ( 2) 3)))
⇒
(closure 2 3 (( 1 closure 1 (lambda ( 2) 3) ()))))
( 6≡ (( 1 . lambda)))
(sym 0)))

4. Generating Quines

We have an interpreter that is capable of running backwards,
but we cannot yet generate quines. In fact, our interpreter
cannot evaluate quine1 from section 1, even when running
forward. We must first add support for quote and list .

4.1 Extending the Interpreter

Adding quote to the Scheme interpreter is relatively simple.
Since quote means “do not evaluate the argument,” we
simply have to return the argument unmodified. Thus, we
can support quote by adding this clause to our interpreter:

((quote ,v) v)

However, in order to handle shadowing correctly, we must
allow the user to override the quote form. As with the λ
clause, we handle this by calling not-in-env within a guard:

((quote ,v) (guard (not-in-env ’quote env)) v)

Unfortunately, quote introduces a new problem: it is
possible for quoted data to conflict with our representation
of closures. For example, in the context of our interpreter,
the following two programs are equivalent:

((lambda (x) x) (lambda (y) y)))

and

((quote (closure x x ())) (lambda (y) y))

The problem is that (quote (closure x x ())) and (lambda (x) x)
both evaluate to (closure x x ()). We circumvent this issue
by declaring that the closure tag is a unique symbol that
cannot be typed by the user (in effect, a gensym).

We can add quote to the miniKanren interpreter as
follows.

((fresh (v)
(≡ ‘(quote ,v) exp)
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(not-in-env o ’quote env)
(not-closureo o v)))

We have now explicitly forbidden the symbol closure from
appearing in the quoted datum. In the Scheme version, we
could assume that the user could not type the unique closure
tag, but here we are interested in running our interpreter
backwards; miniKanren has no compunction against gen-
erating expressions that include a symbol the user cannot
type.

With quote added to our interpreters, we turn our at-
tention to list . For the Scheme interpreter, list is simply a
matter of mapping recursive calls to eval-exp over the argu-
ments:

((list . ,a∗) (guard (not-in-env ’list env))
(map (lambda (e) (eval-exp e env)) a∗))

Similarly, we can add list to the miniKanren interpreter:

((fresh (a∗)
(≡ ‘(list . ,a∗) exp)
(not-in-env o ’list env)
(not-closureo o a∗)
(proper-list o a∗ env val)))

Once again, we use the not-closureo o constraint to prevent
miniKanren from generating list expressions that contain
closures. (Of course, a list expression containing lambda-
expressions will evaluate to a list containing closures, but
the expression being evaluated must not contain closures.)

As with the other tagged clauses, we handle shadowing
through a call to not-in-env o. The disequality constraints
that allow the interpreter to handle shadowing of list and
quote correctly also serve another purpose. Without these
constraints, the expression (list x ) would be recognized both
as a procedure application (of whatever procedure might
be bound to the variable list), and as a use of the built-in
primitive list .

The list clause relies on proper-list o to ensure a∗ is a
proper list:

(define proper-list o

(lambda (exp env val)
(conde

((≡ ’() exp)
(≡ ’() val))

((fresh (a d t-a t-d)
(≡ ‘(,a . ,d) exp)
(≡ ‘(,t-a . ,t-d) val)
(eval-exp o a env t-a)
(proper-list o d env t-d))))))

Our final definition of eval-exp is

(define eval-exp
(lambda (exp env)

(dmatch exp
((quote ,v) (guard (not-in-env ’quote env)) v)
((list . ,a∗) (guard (not-in-env ’list env))
(map (lambda (e) (eval-exp e env)) a∗))

(,x (guard (symbol? x )) (cdr (lookup x env)))
((,rator ,rand)
(guard (rator? rator env))
(let ((proc (eval-exp rator env))

(arg (eval-exp rand env)))
(dmatch proc

((closure ,x ,body ,env)
(eval-exp body ‘((,x . ,arg) . ,env))))))

((lambda (,x ) ,body)
(guard (not-in-env ’lambda env))

‘(closure ,x ,body ,env)))))

where rator? is defined as

(define rator?
(lambda (x env)

(dmatch x
((,a . ,d) #t)
(,x (guard (symbol? x ))

(valid-name? x env)))))

(define valid-name?
(lambda (f-name env)

(dmatch env
(((,x . ,v) . ,rest)
(cond

((eq? x f-name))
((not (eq? x f-name))
(valid-name? f-name rest))))

(() (not-op-name? f-name op-names)))))

(define not-op-name?
(lambda (x op-names)

(dmatch op-names
((,y . ,rest)
(cond

((eq? y x ) #f)
((not (eq? y x )) (not-op-name? x rest))))

(() #t))))

(define op-names ’(lambda quote list))

The predicate, rator? special cases when the rator is a
symbol. In the case that the symbol is in the environment,
we know we have a valid name, even if it is an operand name.
But, if it is not in the environment, but is an operator name,
then the name is invalid. This means that

(rator? ’lambda)

returns #f unless the symbol lambda is in scope, as it is in
the Ω example above. Why did we not need to use rator? in
the definition of eval-exp in section 3? Each of the three ex-
pressions have defferent shapes: applications are represented
by lists of length two, abstractions are represented by lists
of length three, and variables are represented by symbols.
Therefore there is no overlap, which makes it acceptable to
dmatch.

In the definition of eval-exp o, below, we can drop the test
to determine if a rator is valid, since we know that each name
that might be considered will fail if not-in-env o fails. Thus
if the expression is (quote (lambda (x) x)), and the variable
quote is in scope, then eval-exp o will treat the expression
as a procedure application, rather than a use of Scheme’s
quote form.

(define eval-exp o

(lambda (exp env val)
(conde

((fresh (v)
(≡ ‘(quote ,v) exp)
(not-in-env o ’quote env)
(not-closureo o v)
(≡ v val)))

((fresh (a∗)
(≡ ‘(list . ,a∗) exp)
(not-in-env o ’list env)
(not-closureo o a∗)
(proper-list o a∗ env val)))

((symbol o exp) (lookup o exp env val))
((fresh (rator rand x body envˆ a)
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(≡ ‘(,rator ,rand) exp)
(eval-exp o rator env ‘(closure ,x ,body ,envˆ))
(eval-exp o rand env a)
(eval-exp o body ‘((,x . ,a) . ,envˆ) val)))

((fresh (x body)
(≡ ‘(lambda (,x ) ,body) exp)
(not-in-env o ’lambda env)
(≡ ‘(closure ,x ,body ,env) val))))))

4.2 Quines

After much work, we are finally ready to put eval-exp o to
work, and generate a quine. The call to eval-exp o is trivial—
we want to find a Scheme expression q that, when evaluated
in the empty environment, returns itself.

(run1 (q) (eval-exp o q ’() q))
⇒
((((lambda ( 0) (list 0 (list ’quote 0)))

’(lambda ( 0) (list 0 (list ’quote 0))))
(6≡ (( 0 . list)) (( 0 . quote)))
(not-closure 0)
(sym 0)))

Sure enough, this is our old friend, quine1 .
We can push things further by attempting to generate

twines, also known as “twin quines” or “double quines. That
is, we want to find programs p and q such that (eval p)⇒ q
and (eval q) ⇒ p. According to this definition every quine
is trivially a twine, so we add the additional restriction that
p and q are not equal.

(run1 (q)
(fresh (x y)

( 6≡ x y)
(eval-exp o x ’() y)
(eval-exp o y ’() x )
(≡ ‘(,x ,y) q)))

⇒
(((’((lambda ( 0)

(list ’quote (list 0 (list ’quote 0))))
’(lambda ( 0) (list ’quote (list 0 (list ’quote 0)))))

((lambda ( 0) (list ’quote (list 0 (list ’quote 0))))
’(lambda ( 0) (list ’quote (list 0 (list ’quote 0))))))

( 6≡ (( 0 . list)) (( 0 . quote)))
(not-closure 0)
(sym 0)))

5. Conclusion

Quines have a long and interesting history: the term “quine”
was coined by Douglas Hofstadter (Hofstadter 2000) in
honor of the logician Willard van Orman Quine, but the
concept goes back to Kleene’s recursion theorems (Rogers
1987).

In section 3 we describe how disequality constraints
can be used to distinguish general procedure application
from uses of built-in primitives, and how this approach
correctly handles shadowing of primitives. Howerver, there
are other ways to distinguish between application and uses
of primitives. Our first efforts involved tagging procedure
applications—that is, the Scheme expression (e1 e2) would
be written in the interpreted language as (app e1 e2). Al-
though this works, it is problematic in that generated pro-
grams are not quite Scheme programs. The tagging of ap-
plication is especially problematic in the presence of quote,
which becomes most obvious when attempting to generate
and interpret quines. A special “unparser” could be used
to remove the app tags, making the answers readable. The

tagless approach, however, allows the results of running the
interpreter backwards to be pasted directly into the Scheme
REPL and run without modification, while also allowing
built-in forms to be shadowed.
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A. An Extended Interpreter

Here we present a full interpreter for a uncurried Scheme
with arithmetic operators, conditionals, and pairs that al-
lows us to still generate quines, but perhaps a little slower.

Instead of using Scheme numbers, eval-exp o uses the rela-
tional arithmetic (and relational number) system described
in appendix D, (and first presented in Kiselyov et al. (2008)
and Friedman et al. (2005)).6

(define eval-exp o

(lambda (exp env val)
(conde

((fresh (v)
(≡ ‘(quote ,v) exp)
(not-in-env o ’quote env)
(not-closureo o v)
(not-into v)
(≡ v val)))

((fresh (a∗)
(≡ ‘(list . ,a∗) exp)
(not-in-env o ’list env)
(not-closureo o a∗)
(not-into a∗)
(proper-list o a∗ env val)))

((prim-exp o exp env val))
((symbol o exp) (lookup o exp env val))
((fresh (rator x∗ rands body envˆ a∗ res)

(≡ ‘(,rator . ,rands) exp)
(eval-exp o rator env ‘(closure ,x∗ ,body ,envˆ))
(proper-list o rands env a∗)
(ext-env ∗o x∗ a∗ envˆ res)
(eval-exp o body res val)))

((fresh (x∗ body)
(≡ ‘(lambda ,x∗ ,body) exp)
(not-in-env o ’lambda env)
(≡ ‘(closure ,x∗ ,body ,env) val))))))

(define ext-env ∗o

(lambda (x∗ a∗ env out)
(conde

((≡ ’() x∗) (≡ ’() a∗) (≡ env out))
((fresh (x a dx∗ da∗ env2 )

(≡ ‘(,x . ,dx∗) x∗)
(≡ ‘(,a . ,da∗) a∗)
(≡ ‘((,x . ,a) . ,env) env2 )
(ext-env ∗o dx∗ da∗ env2 out))))))

The primitive notions are booleans, numbers, pairs, and
operations over them. The goal prim-exp o processes these
notions independently. but the primitive operations, cons,
car , cdr , not , sub1 , zero? , and ∗ rely on one or more
mutually-recursive calls to eval-exp o.

(define prim-exp o

(lambda (exp env val)
(conde

((boolean-prim o exp env val))
((number-primo exp env val))
((sub1-prim o exp env val))
((zero?-prim o exp env val))
((*-prim o exp env val))
((cons-prim o exp env val))
((car-prim o exp env val))
((cdr-prim o exp env val))

6 Since the relational arithmetic system uses a special representa-
tion of numbers, we allow the use of quoted arabic numerals, but
they cannot be used in arithmetic.
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((not-prim o exp env val))
((if-prim o exp env val)))))

(define boolean-prim o

(lambda (exp env val)
(conde

((≡ #t exp) (≡ #t val))
((≡ #f exp) (≡ #f val)))))

(define cons-prim o

(lambda (exp env val)
(fresh (a d v-a v-d)

(≡ ‘(cons ,a ,d) exp)
(≡ ‘(,v-a . ,v-d) val)
(not-closureo o val)
(not-into val)
(not-in-env o ’cons env)
(eval-exp o a env v-a)
(eval-exp o d env v-d))))

(define car-prim o

(lambda (exp env val)
(fresh (p a d)

(≡ ‘(car ,p) exp)
(≡ a val)
(6≡ ’into val)
(not-in-env o ’car env)
(eval-exp o p env ‘(,a . ,d)))))

(define cdr-prim o

(lambda (exp env val)
(fresh (p a d)

(≡ ‘(cdr ,p) exp)
(≡ d val)
(6≡ ’into val)
(not-in-env o ’cdr env)
(eval-exp o p env ‘(,a . ,d)))))

(define not-prim o

(lambda (exp env val)
(fresh (e b)

(≡ ‘(not ,e) exp)
(conde

((≡ #t b) (≡ #f val))
((≡ #f b) (≡ #t val)))

(not-in-env o ’not env)
(eval-exp o e env b))))

(define number-primo
(lambda (exp env val)

(fresh (n)
(≡ ‘(numo ,n) exp)
(≡ ‘(into ,n) val)
(not-in-env o ’numo env))))

(define sub1-prim o

(lambda (exp env val)
(fresh (e n n-1 )

(≡ ‘(sub1 ,e) exp)
(≡ ‘(into ,n-1 ) val)
(not-in-env o ’sub1 env)
(eval-exp o e env ‘(into ,n))
(−o n ’(1) n-1 ))))

(define zero?-prim o

(lambda (exp env val)
(fresh (e n)

(≡ ‘(zero? ,e) exp)
(conde

((zero o n) (≡ #t val))
((pos o n) (≡ #f val)))

(not-in-env o ’zero? env)
(eval-exp o e env ‘(into ,n)))))

(define *-prim o

(lambda (exp env val)
(fresh (e1 e2 n1 n2 n3)

(≡ ‘(∗ ,e1 ,e2) exp)
(≡ ‘(into ,n3) val)
(not-in-env o ’∗ env)
(eval-exp o e1 env ‘(into ,n1))
(eval-exp o e2 env ‘(into ,n2))
(∗o n1 n2 n3))))

(define if-prim o

(lambda (exp env val)
(fresh (e1 e2 e3 t)

(≡ ‘(if ,e1 ,e2 ,e3) exp)
(not-in-env o ’if env)
(eval-exp o e1 env t)
(conde

((≡ #t t) (eval-exp o e2 env val))
((≡ #f t) (eval-exp o e3 env val))))))

Next we consider several examples using eval-exp o. Con-
sider this run expression, which returns the first 8 expres-
sions whose values are six.
(run 8 (q) (eval-exp o q ’() ‘(into ,(build-num 6)))) ⇒
((numo (0 1 1))
(sub1 (numo (1 1 1)))
((lambda () (numo (0 1 1))))
(((lambda ( .0) (numo (0 1 1))) ’ .1)
( 6≡ (( .0 . numo)))
(not-closure .1)
(not-into .1))

(∗ (numo (1)) (numo (0 1 1)))
(∗ (numo (0 1 1)) (numo (1)))
(∗ (numo (0 1)) (numo (1 1)))
(((lambda ( .0) (numo (0 1 1))) (list))
( 6≡ (( .0 . numo)))))

The 7th value in this list is
(∗ (numo (0 1)) (numo (1 1)))

And, if we look at the first 500 answers,

(run500 (q) (eval-exp o q ’() (build-num 6)))

we discover
(sub1 (sub1 (sub1 (numo (1 0 0 1)))))
is the 240th value.

Next, we calculate the factorial of five, using “The Poor-
man’s Y Combinator.”

(define rel-fact5
‘((lambda (f)

((f f) ,(build-num 5)))
(lambda (f)

(lambda (n)
(if (zero? n)

,(build-num 1)
(∗ n ((f f) (sub1 n))))))))

(run∗ (q) (eval-exp o rel-fact5 ’() q))
⇒ ((numo (0 0 0 1 1 1 1)))

Now that we know our interpreter works, we are ready
to generate quines in our extended language:
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(run10 (q) (eval-exp o q ’() q))
⇒
(#t
#f
(((lambda ( 0) (list 0 (list ’quote 0)))

’(lambda ( 0) (list 0 (list ’quote 0))))
( 6≡ (( 0 . list)) (( 0 . quote)))
(not-closure 0)
(not-into 0)
(sym 0))

(((lambda ( 0) (list 0 (list (car ’(quote . 1)) 0)))
’(lambda ( 0) (list 0 (list (car ’(quote . 1)) 0))))

( 6≡ (( 0 . car)) (( 0 . list)) (( 0 . quote)))
(not-closure 0 1)
(not-into 0 1)
(sym 0))

(((lambda ( 0)
(list (list ’lambda ’( 0) 0) (list ’quote 0)))

’(list (list ’lambda ’( 0) 0) (list ’quote 0)))
( 6≡ (( 0 . list)) (( 0 . quote)))
(not-closure 0)
(not-into 0)
(sym 0))

(((lambda ( 0) (list (car 0) (list ’quote 0)))
’((lambda ( 0) (list (car 0) (list ’quote 0))) . 1))

( 6≡ (( 0 . car)) (( 0 . list)) (( 0 . quote)))
(not-closure 0 1)
(not-into 0 1)
(sym 0))

(((lambda ( 0) (list 0 (list (cdr ’( 1 . quote)) 0)))
’(lambda ( 0) (list 0 (list (cdr ’( 1 . quote)) 0))))

( 6≡ (( 0 . cdr)) (( 0 . list)) (( 0 . quote)))
(not-closure 0 1)
(not-into 0 1)
(sym 0))

(((lambda ( 0) (cons 0 (list (list ’quote 0))))
’(lambda ( 0) (cons 0 (list (list ’quote 0)))))

( 6≡ (( 0 . cons)) (( 0 . list)) (( 0 . quote)))
(not-closure 0)
(not-into 0)
(sym 0))

(((lambda ( 0) ((lambda () (list 0 (list ’quote 0)))))
’(lambda ( 0) ((lambda () (list 0 (list ’quote 0))))))

( 6≡ (( 0 . lambda)) (( 0 . list)) (( 0 . quote)))
(not-closure 0)
(not-into 0)
(sym 0))

(((lambda ( 0)
(list

(list ’lambda ’( 0) 0)
(list (car ’(quote . 1)) 0)))

’(list
(list ’lambda ’( 0) 0)
(list (car ’(quote . 1)) 0)))

( 6≡ (( 0 . car)) (( 0 . list)) (( 0 . quote)))
(not-closure 0 1)
(not-into 0 1)
(sym 0)))

Not surprisingly, booleans are quines, since they are self-
evaluating literals. The other answers are more interesting—
we encourage the reader to look for patterns in the generated
answers.

B. miniKanren Implementation

Our miniKanren implementation comprises two kinds of
operators: the interface operators run; and run∗ and goal
constructors ≡, 6≡, symbol o, number o, conde, and fresh,
which take a package implicitly.

A package is a list of three values, each of which is,
or contains, an association list of variables to values. The
first value in a package is a substitution, s, which associates
values with variables. The second value in a package is a list
of association lists, c∗; each association list, c, represents
a disequality constraint. The last value in a package is an
association list, t , that associates variables with symbols.
If a variable, say x , is associated with the tag sym, then we
know that x may only be associated in the substitution with
either a fresh variable or a symbol. Any attempt to associate
x with any other kind of value leads to failure.

(define a�s (lambda (a) (car a)))
(define a�c∗ (lambda (a) (cadr a)))
(define a�t (lambda (a) (caddr a)))

A goal g is a function that maps a package a to an ordered
sequence a∞ of zero or more packages. (For clarity, we notate
lambda as λG when creating such a function g .)

(define-syntax λG

(syntax-rules (:)
(( (a) e) (lambda (a) e))
(( (a : s c∗ t) e)
(lambda (a)

(let ((s (a�s a)) (c∗ (a�c∗ a)) (t (a�t a)))
e)))))

Because a sequence of packages may be infinite, we rep-
resent it not as a list but as an a∞ , a special kind of stream
that can contain either zero, one, or more packages (Hinze
2000; Wadler 1985). We use #f to represent the empty stream
of packages. If a is a package, then a itself represents the
stream containing just a.

(define mzero (lambda () #f))
(define unit (λG (a) a))
(define choice (lambda (a f ) (cons a f )))

To represent a stream containing multiple packages, we
use (choice a f ), where a is the first package in the stream,
and where f is a thunk that, when invoked, produces the
remainder of the stream. (For clarity, we notate lambda
as λF when creating such a function f .) To represent an
incomplete stream, we use (inc e), where e is an expression
that evaluates to an a∞—thus inc creates an f .

(define-syntax λF

(syntax-rules () (( () e) (lambda () e))))

(define-syntax inc
(syntax-rules () (( e) (λF () e))))

(define empty-f (λF () (mzero)))

A singleton stream a is the same as (choice a empty-f ). For
goals that return only a single package, however, using this
special representation of a singleton stream avoids the cost of
unnecessarily building and taking apart pairs, and creating
and invoking thunks.

To ensure that the values produced by these four kinds
of a∞ ’s can be distinguished, we assume that a package is
never #f, a function, or a pair whose cdr is a function. To
discriminate among these four cases, we define case∞ .

(define-syntax case∞

(syntax-rules ()
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(( e (() e0) ((f̂) e1) ((â) e2) ((a f ) e3))
(let ((a∞ e))

(cond
((not a∞) e0)

((procedure? a∞) (let ((f̂ a∞)) e1))
((not (and (pair? a∞)

(procedure? (cdr a∞))))
(let ((â a∞)) e2))

(else (let ((a (car a∞)) (f (cdr a∞)))
e3)))))))

If the first argument to take is #f, then take returns the
entire stream of reified values as a list, thereby providing the
behavior of run∗. The and expressions within take detect
this #f case.

(define take
(lambda (n f )

(cond
((and n (zero? n)) ’())
(else
(case∞ (f )

(() ’())
((f ) (take n f ))
((a) (cons a ’()))
((a f ) (cons a (take (and n (− n 1)) f ))))))))

The interface operator run uses take to convert an f to an
even stream (MacQueen et al. 1998). The definition of run
places an artificial goal at the tail of g0 g ... This artificial
goal invokes reify (section 2.1) on the variable x using the
final package a produced by running all the goals in the
empty package empty-a.

(define empty-a ’(() () ()))

(define-syntax run
(syntax-rules ()

(( n (x ) g0 g . . . )
(take n

(λF ()
((fresh (x ) g0 g . . .

(λG (final-a)
(choice ((reify x ) final-a) empty-f )))

empty-a))))))

(define-syntax run∗

(syntax-rules ()
(( (x ) g . . . ) (run #f (x ) g . . . ))))

B.1 Goal Constructors

To take the conjunction of goals, we define fresh, a goal
constructor that first lexically binds variables built by var
(below) and then combines successive goals using bind∗.

(define-syntax fresh
(syntax-rules ()

(( (x . . . ) g0 g . . . )
(λG (a)

(inc
(let ((x (var ’x)) . . . )

(bind∗ (g0 a) g . . . )))))))

bind∗ is short-circuiting, since the empty stream is rep-
resented by #f. bind∗ relies on bind (Moggi 1991; Wadler
1992), which applies the goal g to each element in the stream
a∞ . The resulting a∞ ’s are then merged using mplus, which
combines an a∞ and an f to yield a single a∞ .

(define-syntax bind∗

(syntax-rules ()

(( e) e)
(( e g0 g . . . ) (bind∗ (bind e g0) g . . . ))))

(define bind
(lambda (a∞ g)

(case∞ a∞

(() (mzero))
((f ) (inc (bind (f ) g)))
((a) (g a))
((a f ) (mplus (g a) (λF () (bind (f ) g)))))))

(define mplus
(lambda (a∞ f )

(case∞ a∞

(() (f ))

((f̂) (inc (mplus (f ) f̂)))
((a) (choice a f ))

((a f̂) (choice a (λF () (mplus (f ) f̂)))))))

To take the disjunction of goals we define conde, a
goal constructor that combines successive conde lines using
mplus∗, which in turn relies on mplus. We use the same
implicit package a for each conde line. To avoid unwanted
divergence, we treat the conde lines as a single inc stream.

(define-syntax conde

(syntax-rules ()
(( (g0 g . . . ) (g1 ĝ . . . ) . . . )
(λG (a)

(inc
(mplus∗

(bind∗ (g0 a) g . . . )
(bind∗ (g1 a) ĝ . . . ) . . . ))))))

(define-syntax mplus∗

(syntax-rules ()
(( e) e)
(( e0 e . . . ) (mplus e0

(λF () (mplus∗ e . . . ))))))

The function make-tag is the helper that is called from
symbol o and number o and contains the essence of what those
two operators accomplish. Elements of t act as daemons,
making certain that associations are added to the substitu-
tion that violate the constraints in t . In addition, c∗ may
contain a disequality constraint bwteen, say, a variable y
and 3; if we also know that y must be a symbol, then the
disequality constraint is subsumed by the symbol constraint
on y , and can be discarded.

(define make-tag
(lambda (tag pred)

(letrec ((rec
(lambda (u)

(λG (a : s c∗ t)
(let ((u (if (var? u) (walk u s) u)))

(cond
((pair? u)
(cond

((pred u)
((fresh ()

(rec (car u))
(rec (cdr u)))

a))
(else (mzero))))

((not (var? u))
(cond

((pred u) (unit a))
(else (mzero))))
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((ext-t u tag t s) ⇒
(lambda (t0)

(cond
((not (eq? t0 t))
(let ((t̂ (list (car t0))))

(let ((c∗ (subsume t̂ c∗)))
(unit ‘(,s ,c∗ ,t0)))))

(else (unit a)))))
(else (mzero))))))))

rec)))

(define tag�pred
(lambda (tag)

(case tag
((sym) symbol? )
((num) number? )
((not-closure) not-closure? )
((not-into) not-into? )
(else (error ’tag�pred "unknown tag ˜s" tag)))))

(define ext-t
(lambda (x tag t̂ s)

(let ((x (walk x s)))
(let loop ((t t̂))

(cond
((null? t) (cons (cons x tag) t̂))
((not (eq? (walk (lhs (car t)) s) tag)) (loop (cdr t)))
((eq? (rhs (car t)) tag) t̂)
((works-together? (rhs (car t)) tag)
(loop (cdr t)))

(else #f))))))

(define subsume
(lambda (t c∗)

(remp
(lambda (c) (exists (subsumed-pr? t) c))
c∗)))

(define subsumed-pr?
(lambda (t)

(lambda (pr-c)
(let ((u (rhs pr-c)))

(and (not (var? u))
(cond

((assq (lhs pr-c) t) ⇒
(lambda (pr-t)

(not ((tag�pred (rhs pr-t)) u))))
(else #f)))))))

Here is the implementation of the remaining interface
operators.

(define bool o

(lambda (x )
(conde

((≡ #f x ))
((≡ #t x )))))

(define symbol o (make-tag ’sym symbol? ))

(define number o (make-tag ’num number? ))

(define not-closure?
(lambda (x )

(not (eq? x ’closure))))

(define not-closureo o

(make-tag ’not-closure not-closure? ))

(define not-into?

(lambda (x )
(not (eq? x ’into))))

(define not-into
(make-tag ’not-into not-into? ))

(define works-together?
(lambda (t1 t2)

(cond
((and (eq? t1 ’sym) (eq? t2 ’num)) #f)
((and (eq? t1 ’num) (eq? t2 ’sym)) #f)
(else #t))))

The definitions of 6≡ and ≡ both use unify (section B.3).
But, when we succeed by invoking unit, we pass a different
substitution. In the ≡ case, we pass the (possibly) extended
substitution, however, in the 6≡ case, we pass the original
substitution. So what happens in the 6≡ case? The actual
extension, here called the prefix, is a constraint. We can
take the constraint and make sure that t is okay with each
association in the prefix. Those associations that are not
dropped from the prefix and the surviving associations are
added as a new constraint to c∗. (There is a subtlety in the
simplicity of the definition of prefix-s: we know that if we
keep taking cdrs starting at s0 , assuming that s0 and s are
not eq?, we will eventually arrive at s. This eq? is not strictly
necessary, since we are basically trying to determine if the
lengths of the two lists are the same but more efficiently.)

(define 6≡
(lambda (u v)

(λG (a : s c∗ t)
(cond

((unify u v s) ⇒
(lambda (s0)

(cond
((eq? s0 s) (mzero))
(else
(let ((p∗ (list (prefix-s s0 s))))

(let ((p∗ (subsume t p∗)))
(let ((c∗ (append p∗ c∗)))

(unit ‘(,s ,c∗ ,t)))))))))
(else (unit a))))))

(define prefix-s
(lambda (s0 s)

(cond
((eq? s0 s) ’())
(else (cons (car s0)

(prefix-s (cdr s0) s))))))

Just as 6≡ checked t before extendeding c∗, ≡ must check
c∗ and t (both of which might change) before it can succeed.

(define ≡
(lambda (u v)

(λG (a : s c∗ t)
(cond

((unify u v s) ⇒
(lambda (s0)

(cond
((eq? s0 s) (unit a))
((verify-c∗ c∗ s0) ⇒
(lambda (c∗)

(cond
((verify-t t s0) ⇒
(lambda (t)

(let ((c∗ (subsume t c∗)))
(unit ‘(,s0 ,c∗ ,t)))))

(else (mzero)))))

12



(else (mzero)))))
(else (mzero))))))

(define verify-c∗

(lambda (c∗ s)
(cond

((null? c∗) ’())
((verify-c∗ (cdr c∗) s) ⇒
(let ((s0 (unify∗ (car c∗) s)))

(lambda (c∗)
(cond

(s0 (and (not (eq? s0 s))
(cons (prefix-s s0 s) c∗)))

(else c∗)))))
(else #f))))

(define verify-t
(lambda (t s)

(cond
((null? t) ’())
((verify-t (cdr t) s) ⇒
(let∗ ((tag (rhs (car t)))

(pred (tag�pred tag)))
(letrec ((rec

(lambda (u)
(let ((u (if (var? u) (walk u s) u)))

(lambda (t)
(cond

((var? u) (ext-t u tag t s))
((pair? u)
(cond

(((rec (car u)) t) ⇒
(lambda (t)

((rec (cdr u)) t)))
(else #f)))

(else (and (pred u) t))))))))
(rec (lhs (car t))))))

(else #f))))

(define #s (≡ #f #f))

(define fail (≡ #f #t))

B.2 miniKanren Helpers

(define var (lambda (dummy) (vector dummy)))
(define var? (lambda (x ) (vector? x )))
(define lhs (lambda (pr) (car pr)))
(define rhs (lambda (pr) (cdr pr)))

This definition of walk assumes that its first argument is
a variable.

(define walk
(lambda (x s)

(let ((a (assq x s)))
(cond

(a (let ((u (rhs a)))
(if (var? u) (walk u s) u)))

(else x )))))

(define walk∗

(lambda (v s)
(let ((v (if (var? v) (walk v s) v)))

(cond
((var? v) v)
((pair? v)
(cons (walk∗ (car v) s) (walk∗ (cdr v) s)))

(else v)))))

B.3 The Unifier

Below is unify, which uses triangular substitutions (Baader
and Snyder 2001) instead of the more common idempotent
substitutions. After possibly walking the first two arguments
to get a representative, the two-pairs case is treated. Other-
wise, if there are not two pairs, Then unify-nonpair gets the
two representatives, which might extend the substitution.
There is no explicit recursion in unify-nonpair , but valid?
calls a recursive function, occurs

√
.

(define unify
(lambda (u v s)

(let ((u (if (var? u) (walk u s) u))
(v (if (var? v) (walk v s) v)))

(cond
((and (pair? u) (pair? v))
(let ((s (unify (car u) (car v) s)))

(and s
(unify (cdr u) (cdr v) s))))

(else (unify-nonpair u v s))))))

(define unify-nonpair
(lambda (u v s)

(cond
((eq? u v) s)
((var? u)
(and (or (not (pair? v)) (valid? u v s))

(cons ‘(,u . ,v) s)))
((var? v)
(and (or (not (pair? u)) (valid? v u s))

(cons ‘(,v . ,u) s)))
((equal? u v) s)
(else #f))))

(define valid?
(lambda (x v s)

(not (occurs
√

x v s))))

(define occurs
√

(lambda (x v s)
(let ((v (if (var? v) (walk v s) v)))

(cond
((var? v) (eq? v x ))
((pair? v)
(or (occurs

√
x (car v) s)

(occurs
√

x (cdr v) s)))
(else #f)))))

B.4 The Reifier

The role of reify is to make the relevant information that
is stored in the final state final-a (see run) as accessible
as possible. Realizing that there might be a lot of relevant
information about the variables in the final value of the vari-
able created in run makes it essential that much care goes
into writing the reifier. Specifically, we insist on a kind of
Church-Rosser property (Barendregt 1984). Regardless of
how a program is written, if it terminates it should be equal
to a semantically equivalent program. For example, swap-
ping conjuncts in a fresh should not change the appearance
of the answers. But this equality must hold for c∗ and t ,
which is why we sort lexicographically.

reify-s is the heart of the reifier. reify-s takes an arbitrary
value v , and returns a substitution that maps every distinct
variable in v to a unique symbol. The trick to maintaining
left-to-right ordering of the subscripts on these symbols is
to process v from left to right, as can be seen in the pair?
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cond clause, below. When reify-s encounters a variable, it
determines if we already have a mapping for that entity.
If not, reify-s extends the substitution with an association
between the variable and a new, appropriately subscripted
symbol built using reify-name.

(define reify-s
(lambda (v)

(let reify-s ((v v) (r ’()))
(let ((v (if (var? v) (walk v r) v)))

(cond
((var? v)
(let ((n (length r)))

(let ((name (reify-name n)))
(cons ‘(,v . ,name) r))))

((pair? v)
(let ((r (reify-s (car v) r)))

(reify-s (cdr v) r)))
(else r))))))

(define reify-name
(lambda (n)

(string�symbol
(string-append " " "." (number�string n)))))

(define reify
(lambda (x )

(λG (a : s c∗ t)
(let ((v (walk∗ x s)))

(let ((r (reify-s v)))
(reify-aux r v

(let ((c∗ (remp
(lambda (c)

(anyvar? c r))
c∗)))

(rem-subsumed c∗))
(remp

(lambda (pr)
(var? (walk (lhs pr) r)))

t)))))))

(define reify-aux
(lambda (r v c∗ t)

(let ((v (walk∗ v r))
(c∗ (walk∗ c∗ r))
(t (walk∗ t r)))

(let ((c∗ (sorter (map sorter c∗)))
(p∗ (sorter

(map sort-t-vars
(partition∗ t)))))

(cond
((and (null? c∗) (null? p∗)) v)
((null? c∗) ‘(,v . ,p∗))
(else ‘(,v ( 6≡ . ,c∗) . ,p∗)))))))

(define sorter
(lambda (ls)

(sort lex6? ls)))

(define sort-t-vars
(lambda (pr-t)

(let ((tag (car pr-t))
(x∗ (sorter (cdr pr-t))))

‘(,tag . ,x∗))))

The definition of lex6? along with datum�string uses the
effectful operator display , The functional version is tedious,
because of the number of different built-in Scheme types,
and we have opted to use this version instead.

(define lex6?
(lambda (x y)

(string6? (datum�string x ) (datum�string y))))

(define datum�string
(lambda (x )

(call-with-string-output-port
(lambda (p) (display x p)))))

(define anyvar?
(lambda (c r)

(cond
((pair? c)
(or (anyvar? (car c) r)

(anyvar? (cdr c) r)))
(else (var? (walk c r))))))

(define rem-subsumed
(lambda (c∗)

(let rem-subsumed ((c∗ c∗) (cˆ∗ ’()))
(cond

((null? c∗) cˆ∗)
((or (subsumed? (car c∗) (cdr c∗))

(subsumed? (car c∗) cˆ∗))
(rem-subsumed (cdr c∗) cˆ∗))

(else (rem-subsumed (cdr c∗)
(cons (car c∗) cˆ∗)))))))

(define subsumed?
(lambda (c c∗)

(cond
((null? c∗) #f)
(else

(let ((ĉ (unify∗ (car c∗) c)))
(or

(and ĉ (eq? ĉ c))
(subsumed? c (cdr c∗))))))))

(define unify∗

(lambda (c s)
(unify (map lhs c) (map rhs c) s)))

(define part
(lambda (tag t x∗ y∗)

(cond
((null? t)
(cons ‘(,tag . ,x∗) (partition∗ y∗)))

((eq? (rhs (car t)) tag)
(let ((x (lhs (car t))))

(let ((x∗ (cond
((memq x x∗) x∗)
(else (cons x x∗)))))

(part tag (cdr t) x∗ y∗))))
(else
(let ((y∗ (cons (car t) y∗)))

(part tag (cdr t) x∗ y∗))))))

(define partition∗

(lambda (t)
(cond

((null? t) ’())
(else
(part (rhs (car t)) t ’() ’())))))

B.5 Impure Control Operators

For completeness, we define three additional miniKanren
goal constructors: project, which can be used to access the
values of variables, and conda and condu, which can be
used to prune the search tree of a program. The examples
from Thin Ice of The Reasoned Schemer (Friedman et al.
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2005) demonstrate how conda and condu can be useful
and the pitfalls that await the unsuspecting reader. Also,
we have included an additional operator once o, defined in
terms of condu, which forces the input goal to succeed at
most once.

(define-syntax project
(syntax-rules ()

(( (x . . . ) g g∗ . . . )
(λG (a : s c∗ t)

(let ((x (walk∗ x s)) . . . )
((fresh () g g∗ . . . ) a))))))

(define-syntax conda

(syntax-rules ()
(( (g0 g . . . ) (g1 ĝ . . . ) . . . )
(λG (a)

(inc
(if a ((g0 a) g . . . )

((g1 a) ĝ . . . ) . . . ))))))

(define-syntax if a

(syntax-rules ()
(( ) (mzero))
(( (e g . . . ) b . . . )
(let loop ((a∞ e))

(case∞ a∞

(() (if a b . . . ))
((f ) (inc (loop (f ))))
((a) (bind∗ a∞ g . . . ))
((a f ) (bind∗ a∞ g . . . )))))))

(define-syntax condu

(syntax-rules ()
(( (g0 g . . . ) (g1 ĝ . . . ) . . . )
(λG (a)

(inc
(ifu ((g0 a) g . . . )

((g1 a) ĝ . . . ) . . . ))))))

(define-syntax ifu

(syntax-rules ()
(( ) (mzero))
(( (e g . . . ) b . . . )
(let loop ((a∞ e))

(case∞ a∞

(() (ifu b . . . ))
((f ) (inc (loop (f ))))
((a) (bind∗ a∞ g . . . ))
((a f ) (bind∗ (unit a) g . . . )))))))

(define once o (lambda (g) (condu (g))))

C. Generalized Pattern Matcher

This appendix gives a definition of dmatch that is more
general in several ways than Oleg Kiselyov’s pmatch, which
appeared in Byrd and Friedman (2007). It improves error
reporting, since now it is possible to associate a name with
each appearance of dmatch, as in the use of example in
h below. We get more generality by not handling quote
specially, which allows for certain common patterns to be
specified that were previously not possible. Finally, there
is no else clause and the order of the clauses is arbitrary,
but only one pattern (plus guard) can succeed for each
invocation of dmatch. Here is an example of dmatch using
guards.

(define h

(lambda (x y)
(dmatch ‘(,x . ,y) example

((,a . ,b)
(guard (number? a) (number? b))
(+ a b))

((,a ,b ,c)
(guard (number? a) (number? b) (number? c))
(+ a b c)))))

(list (h 1 2) (apply h ‘(1 (3 4)))) ⇒ (3 8)

In this example, a dotted pair is matched against two differ-
ent kinds of patterns. In the first pattern, the value of x is
lexically bound to a and the value of y is lexically bound to
b. Before the pattern match succeeds, however, an optional
guard (no side-effects allowed in guards) is run within the
scope of a and b. The guard succeeds only if x and y are
numbers; if so, then the sum of x and y is returned.

The second pattern matches against a pair (a three-
element list), provided that the optional guard succeeds. The
value of x is 1 and the value of y is (3 4). Then a matches
against 1, b matches against 3, and c matches against 4.
They are all numbers, so both calls to h succeed.

The overall syntax of dmatch looks like this:

match := (dmatch exp clause . . .)

| (dmatch exp name clause . . .)

clause := (pattern guard exp . . .)

guard := (guard boolean-exp . . .) | ε
pattern := , var

| exp

| (pattern1 pattern2 . . .)

| (pattern1 . pattern2)

Now we examine the implementation of dmatch. The main
dmatch macro simply handles the optional name that we
can provide, and passes off control to the auxiliary helpers
which do most of the extra work. Our auxiliary macros will
give us a package list which is then processed by the run-a-
thunk procedure.

(define-syntax dmatch
(syntax-rules ()

(( v (e . . . ) . . . )
(let ((pkg∗ (dmatch-remexp v (e . . . ) . . . )))

(run-a-thunk ’v v #f pkg∗)))
(( v name (e . . . ) . . . )
(let ((pkg∗ (dmatch-remexp v (e . . . ) . . . )))

(run-a-thunk ’v v ’name pkg∗)))))
In our case we want to represent a package comprising the
clause and a thunk. We use the following for our package
abstraction.

(define pkg (lambda (cls thk) (cons cls thk)))
(define pkg-clause (lambda (pkg) (car pkg)))
(define pkg-thunk (lambda (pkg) (cdr pkg)))

The first step in processing a dmatch expression is to ensure
that we only evaluate the input expression once, which is
what the dmatch-remexp ensures.

(define-syntax dmatch-remexp
(syntax-rules ()

(( (rator rand . . . ) cls . . . )
(let ((v (rator rand . . . )))
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(dmatch-aux v cls . . . )))
(( v cls . . . ) (dmatch-aux v cls . . . ))))

At each expansion of dmatch-aux, we want to create a
package list of some type. We have three cases: two recursive
cases and a single base case. If we have a pattern without
a guard and the pattern matches, we want to add its clause
along with its thunk to the package list. In the case where
we have a guard, we want to conditionally add the clause
and thunk to the package list only if the guard also succeeds.

(define-syntax dmatch-aux
(syntax-rules (guard)

(( v) ’())
(( v (pat (guard g . . . ) e0 e . . . ) cs . . . )
(let ((fk (lambda () (dmatch-aux v cs . . . ))))

(ppat v pat
(if (not (and g . . . ))

(fk)
(cons (pkg ’(pat (guard g . . . ) e0 e . . . )

(lambda () e0 e . . . ))
(fk)))

(fk))))
(( v (pat e0 e . . . ) cs . . . )
(let ((fk (lambda () (dmatch-aux v cs . . . ))))

(ppat v pat
(cons (pkg ’(pat e0 e . . . )

(lambda () e0 e . . . ))
(fk))

(fk))))))

To do the heavy lifting, we abstract the actual pattern
matching into another helper macro ppat that does the
check on the pattern and then expands into one of two forms.
The consequent expression is the result of the expansion of
ppat if the pattern matches, and the alternate expression
otherwise. In all cases, the alternate is just another dmatch-
aux macro that drops the first pattern and continues the
recursive expansion. To encode the alternative, we build a
thunk, which avoids expanding the same expression multiple
times.

Now we consider how matching occurs using ppat, and
leverage the syntax-rules pattern matcher to do most of
the work. We need to do a bit of tree recursion on our
expansion in the pair case to match the car and cdr cases.
Since we may have vectors or other data we want to handle,
we use equal? instead of eq?.

(define-syntax ppat
(syntax-rules (unquote)

(( v (unquote var) kt kf ) (let ((var v)) kt))
(( v (x . y) kt kf )
(if (pair? v)

(let ((vx (car v)) (vy (cdr v)))
(ppat vx x (ppat vy y kt kf ) kf ))

kf ))
(( v lit kt kf ) (if (equal? v (quote lit)) kt kf ))))

If there is no match, the error is reported using no-
matching-pattern. If there is an overlap between two or
more patterns/guards, then we report this error using
overlapping-patterns/guards. Otherwise, if there is no over-
lap, then we invoke the thunk in the singleton package list.

(define run-a-thunk
(lambda (v-expr v name pkg∗)

(cond
((null? pkg∗)
(no-matching-pattern name v-expr v))

((null? (cdr pkg∗))

((pkg-thunk (car pkg∗))))
(else
(ambiguous-pattern/guard name v-expr v pkg∗)))))

(define no-matching-pattern
(lambda (name v-expr v)

(if name
(printf "dmatch ˜d failed˜n˜d ˜d˜n"

name v-expr v)
(printf "dmatch failed˜n˜d ˜d˜n"

v-expr v))
(error ’dmatch "match failed")))

(define overlapping-patterns/guards
(lambda (name v-expr v pkg∗)

(if name
(printf "dmatch ˜d overlapping matching clauses˜n"

name)
(printf "dmatch overlapping matching clauses˜n"))

(printf "with ˜d evaluating to ˜d˜n" v-expr v)
(printf " ˜n")
(for-each pretty-print (map pkg-clause pkg∗))))

Here is the definition of h (without the second clause) after
macro expansion.

(lambda (x y)
(let ((pkg∗

(let ((v (cons x y)))
(let ((fk (lambda () . . . )))

(if (pair? v)
(let ((vx (car v)) (vy (cdr v)))

(let ((a vx ))
(let ((b vy))

(if (not (if (number? a) (number? b) #f))
(fk)
(cons

(pkg
’((,a . ,b)

(guard
(number? a)
(number? b))

(+ a b))
(lambda () (+ a b)))

(fk))))))
(fk))))))

(run-a-thunk ’‘(,x . ,y) (cons x y) ’example pkg∗)))
There are two kinds of improvements that should be resolved
by the compiler. First, vx and vy are not needed, so they
should not get bindings. The lexical variable a and b could
have replaced vx and vy , respectively. Second, a and b
should be parallel let bindings.

D. A Relational Arithmetic System

To make the paper self-contained, we present the relational
arithmetic system used in the extended interpreter of ap-
pendix A. Variants of this arithmetic system have been de-
scribed in Kiselyov et al. (2008), Byrd (2009), and Friedman
et al. (2005)—please see these references for a detailed de-
scription of the code, and Kiselyov et al. (2008) for termi-
nation proofs for the individual operators.

A note on typography: +o is entered as pluso, −o is
entered as minuso, ∗o is entered as *o, and ÷o is entered as
/o.
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D.1 Relational Arithmetic

Relational arithmetic allows for answers to questions such
as ‘what are five triples of positive integers x, y, and z for
which x+ y = z?’, and ‘for which natural numbers x and y
does x∗y = 24 hold?’, which can be expressed in miniKanren
as

(run5 (q)
(fresh (x y z )

(+o x y z )
(≡ ‘(,x ,y ,z ) q)))

and

(run∗ (q)
(fresh (x y)

(∗o x y (build-num 24))
(≡ ‘(,x ,y ,(build-num 24)) q)))

respectively.
In order to understand the answers to these runs, it

is necessary to know how we represent numbers. Ground
numbers are represented in “little endian” style using lists of
bits, with the restriction that the most significant bit cannot
be 0; this restriction is to ensure each number has a unique
representation. Zero is therefore represented by the empty
list rather than (0), since that would violate the never-
terminated-by-0 constraint. The number one is represented
by (1), the number two by (0 1), etc. But, we are doing
relational programming, so numbers need not be ground;
however, there is still the constraint that no number ends
with a 0.

For example, ‘(1 . ,x ) represents any odd natural number,
while ‘(0 . ,x ) represents any positive even number (with the
condition that x must be positive, which we shall assume
in the rest of this description). There are opportunities to
replace bits by variables, so (0 0 0 1) represents the number
8, but ‘(0 0 0 . ,x ) represents multiples of 8. So, if x is (1),
the multiple is just 8. If x is (0 1), the multiple of 8 is 16, and
so forth. We can even have ‘(0 ,y 0 . ,x ), which represents
multiples of 8 if y is 0, and numbers of the form 8x+ 2 if y
is 1.

Here are the answers to the run expressions above:

(( 0 () 0)
(() ( 0 . 1) ( 0 . 1))
((1) (1) (0 1))
((1) (0 0 . 1) (1 0 . 1))
((1) (1 1) (0 0 1)))

and

(((1) (0 0 0 1 1) (0 0 0 1 1))
((0 0 0 1 1) (1) (0 0 0 1 1))
((0 1) (0 0 1 1) (0 0 0 1 1))
((0 0 1) (0 1 1) (0 0 0 1 1))
((0 0 0 1) (1 1) (0 0 0 1 1))
((1 1) (0 0 0 1) (0 0 0 1 1))
((0 1 1) (0 0 1) (0 0 0 1 1))
((0 0 1 1) (0 1) (0 0 0 1 1)))

It is relatively simple to interpret the answers to the second
example, but in the first example we need to understand how
to read the answers. For example, the first answer states that
the sum of a natural number n and zero is n. The second
answer states that the sum of zero and a positive integer m
is m. The fourth answer states that one plus all the positive
even numbers is all the odd numbers starting at 3.

Our system includes other relational arithmetic opera-
tors: −o, which subtracts one number from another leading

to a result, ÷o and logo, each of which has two results, one
of which is a remainder, and expo, which is derived from
logo.

D.2 Core Arithmetic Operators

This subsection contains arithmetic operators used in the
extended interpreter in appendix A.

(define build-num
(lambda (n)

(cond
((odd? n)
(cons 1

(build-num (÷ (− n 1) 2))))
((and (not (zero? n)) (even? n))
(cons 0

(build-num (÷ n 2))))
((zero? n) ’()))))

(define zero o

(lambda (n)
(≡ ’() n)))

(define pos o

(lambda (n)
(fresh (a d)

(≡ ‘(,a . ,d) n))))

(define >1o

(lambda (n)
(fresh (a ad dd)

(≡ ‘(,a ,ad . ,dd) n))))

(define full-adder o

(lambda (b x y r c)
(conde

((≡ 0 b) (≡ 0 x ) (≡ 0 y) (≡ 0 r) (≡ 0 c))
((≡ 1 b) (≡ 0 x ) (≡ 0 y) (≡ 1 r) (≡ 0 c))
((≡ 0 b) (≡ 1 x ) (≡ 0 y) (≡ 1 r) (≡ 0 c))
((≡ 1 b) (≡ 1 x ) (≡ 0 y) (≡ 0 r) (≡ 1 c))
((≡ 0 b) (≡ 0 x ) (≡ 1 y) (≡ 1 r) (≡ 0 c))
((≡ 1 b) (≡ 0 x ) (≡ 1 y) (≡ 0 r) (≡ 1 c))
((≡ 0 b) (≡ 1 x ) (≡ 1 y) (≡ 0 r) (≡ 1 c))
((≡ 1 b) (≡ 1 x ) (≡ 1 y) (≡ 1 r) (≡ 1 c)))))

(define adder o

(lambda (d n m r)
(conde

((≡ 0 d) (≡ ’() m) (≡ n r))
((≡ 0 d) (≡ ’() n) (≡ m r)
(pos o m))

((≡ 1 d) (≡ ’() m)
(adder o 0 n ’(1) r))

((≡ 1 d) (≡ ’() n) (pos o m)
(adder o 0 ’(1) m r))

((≡ ’(1) n) (≡ ’(1) m)
(fresh (a c)

(≡ ‘(,a ,c) r)
(full-adder o d 1 1 a c)))

((≡ ’(1) n) (gen-adder o d n m r))
((≡ ’(1) m) (>1o n) (>1o r)
(adder o d ’(1) n r))

((>1o n) (gen-adder o d n m r)))))

(define gen-adder o

(lambda (d n m r)
(fresh (a b c e x y z )

(≡ ‘(,a . ,x ) n)
(≡ ‘(,b . ,y) m) (pos o y)
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(≡ ‘(,c . ,z ) r) (pos o z )
(full-adder o d a b c e)
(adder o e x y z ))))

(define +o

(lambda (n m k)
(adder o 0 n m k)))

(define −o

(lambda (n m k)
(+o m k n)))

(define ∗o
(lambda (n m p)

(conde

((≡ ’() n) (≡ ’() p))
((pos o n) (≡ ’() m) (≡ ’() p))
((≡ ’(1) n) (pos o m) (≡ m p))
((>1o n) (≡ ’(1) m) (≡ n p))
((fresh (x z )

(≡ ‘(0 . ,x ) n) (pos o x )
(≡ ‘(0 . ,z ) p) (pos o z )
(>1o m)
(∗o x m z )))

((fresh (x y)
(≡ ‘(1 . ,x ) n) (pos o x )
(≡ ‘(0 . ,y) m) (pos o y)
(∗o m n p)))

((fresh (x y)
(≡ ‘(1 . ,x ) n) (pos o x )
(≡ ‘(1 . ,y) m) (pos o y)
(odd-∗o x n m p))))))

(define odd-∗o
(lambda (x n m p)

(fresh (q)
(bound-∗o q p n m)
(∗o x m q)
(+o ‘(0 . ,q) m p))))

(define bound-∗o
(lambda (q p n m)

(conde

((≡ ’() q) (pos o p))
((fresh (a0 a1 a2 a3 x y z )

(≡ ‘(,a0 . ,x ) q)
(≡ ‘(,a1 . ,y) p)
(conde

((≡ ’() n)
(≡ ‘(,a2 . ,z ) m)
(bound-∗o x y z ’()))

((≡ ‘(,a3 . ,z ) n)
(bound-∗o x y z m))))))))

D.3 Additional Arithmetic Operators

This subsection contains useful arithmetic operators, beyond
those used in the extended interpreter in appendix A.

(define =l o

(lambda (n m)
(conde

((≡ ’() n) (≡ ’() m))
((≡ ’(1) n) (≡ ’(1) m))
((fresh (a x b y)

(≡ ‘(,a . ,x ) n) (pos o x )
(≡ ‘(,b . ,y) m) (pos o y)
(=l o x y))))))

(define <l o

(lambda (n m)
(conde

((≡ ’() n) (pos o m))
((≡ ’(1) n) (>1o m))
((fresh (a x b y)

(≡ ‘(,a . ,x ) n) (pos o x )
(≡ ‘(,b . ,y) m) (pos o y)
(<l o x y))))))

(define 6l o

(lambda (n m)
(conde

((=l o n m))
((<l o n m)))))

(define <o

(lambda (n m)
(conde

((<l o n m))
((=l o n m)
(fresh (x )

(pos o x )
(+o n x m))))))

(define 6o

(lambda (n m)
(conde

((≡ n m))
((<o n m)))))

(define ÷o

(lambda (n m q r)
(conde

((≡ r n) (≡ ’() q) (<o n m))
((≡ ’(1) q) (=l o n m) (+o r m n)
(<o r m))

((<l o m n)
(<o r m)
(pos o q)
(fresh (nh nl qh ql qlm qlmr rr rh)

(split o n r nl nh)
(split o q r ql qh)
(conde

((≡ ’() nh)
(≡ ’() qh)
(−o nl r qlm)
(∗o ql m qlm))

((pos o nh)
(∗o ql m qlm)
(+o qlm r qlmr)
(−o qlmr nl rr)
(split o rr r ’() rh)
(÷o nh m qh rh))))))))

(define split o

(lambda (n r l h)
(conde

((≡ ’() n) (≡ ’() h) (≡ ’() l))
((fresh (b n̂)

(≡ ‘(0 ,b . ,n̂) n)
(≡ ’() r)
(≡ ‘(,b . ,n̂) h)
(≡ ’() l)))

((fresh (n̂)
(≡ ‘(1 . ,n̂) n)
(≡ ’() r)
(≡ n̂ h)
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(≡ ’(1) l)))
((fresh (b n̂ a r̂)

(≡ ‘(0 ,b . ,n̂) n)
(≡ ‘(,a . ,r̂) r)
(≡ ’() l)
(split o ‘(,b . ,n̂) r̂ ’() h)))

((fresh (n̂ a r̂)
(≡ ‘(1 . ,n̂) n)
(≡ ‘(,a . ,r̂) r)
(≡ ’(1) l)
(split o n̂ r̂ ’() h)))

((fresh (b n̂ a r̂ l̂)
(≡ ‘(,b . ,n̂) n)
(≡ ‘(,a . ,r̂) r)

(≡ ‘(,b . ,l̂) l)

(pos o l̂)

(split o n̂ r̂ l̂ h))))))

(define logo

(lambda (n b q r)
(conde

((≡ ’(1) n) (pos o b) (≡ ’() q) (≡ ’() r))
((≡ ’() q) (<o n b) (+o r ’(1) n))
((≡ ’(1) q) (>1o b) (=l o n b) (+o r b n))
((≡ ’(1) b) (pos o q) (+o r ’(1) n))
((≡ ’() b) (pos o q) (≡ r n))
((≡ ’(0 1) b)
(fresh (a ad dd)

(pos o dd)
(≡ ‘(,a ,ad . ,dd) n)
(exp2 o n ’() q)
(fresh (s)

(split o n dd r s))))
((fresh (a ad add ddd)

(conde

((≡ ’(1 1) b))
((≡ ‘(,a ,ad ,add . ,ddd) b))))

(<l o b n)
(fresh (bw1 bw nw nw1 ql1 ql s)

(exp2 o b ’() bw1 )
(+o bw1 ’(1) bw)
(<l o q n)
(fresh (q1 bwq1 )

(+o q ’(1) q1)
(∗o bw q1 bwq1 )
(<o nw1 bwq1 ))

(exp2 o n ’() nw1 )
(+o nw1 ’(1) nw)
(÷o nw bw ql1 s)
(+o ql ’(1) ql1 )
(6l o ql q)
(fresh (bql qh s qdh qd)

(repeated-mul o b ql bql)
(÷o nw bw1 qh s)
(+o ql qdh qh)
(+o ql qd q)
(6o qd qdh)
(fresh (bqd bq1 bq)

(repeated-mul o b qd bqd)
(∗o bql bqd bq)
(∗o b bq bq1 )
(+o bq r n)
(<o n bq1 ))))))))

(define exp2 o

(lambda (n b q)

(conde

((≡ ’(1) n) (≡ ’() q))
((>1o n) (≡ ’(1) q)
(fresh (s)

(split o n b s ’(1))))
((fresh (q1 b2)

(≡ ‘(0 . ,q1) q)
(pos o q1)
(<l o b n)
(append o b ‘(1 . ,b) b2)
(exp2 o n b2 q1)))

((fresh (q1 nh b2 s)
(≡ ‘(1 . ,q1) q)
(pos o q1)
(pos o nh)
(split o n b s nh)
(append o b ‘(1 . ,b) b2)
(exp2 o nh b2 q1))))))

(define repeated-mul o

(lambda (n q nq)
(conde

((pos o n) (≡ ’() q) (≡ ’(1) nq))
((≡ ’(1) q) (≡ n nq))
((>1o q)
(fresh (q1 nq1 )

(+o q1 ’(1) q)
(repeated-mul o n q1 nq1 )
(∗o nq1 n nq))))))

(define expo

(lambda (b q n)
(logo n b q ’())))
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