
Interpretations of the Gradually-Typed Lambda Calculus
(Distilled Tutorial)

Jeremy G. Siek
University of Colorado at Boulder

jeremy.siek@colorado.edu

Abstract
Gradual typing is an approach to integrating static and dy-
namic type checking within the same language [Siek and
Taha, 2006]. Given the name “gradual typing”, one might
think that the most interesting aspect is the type system.
It turns out that the dynamic semantics of gradually-typed
languages is more complex than the static semantics, with
many points in the design space [Wadler and Findler, 2009,
Siek et al., 2009] and many challenges concerning effi-
ciency [Herman et al., 2007, Hansen, 2007, Siek and Taha,
2007, Siek and Wadler, 2010, Wrigstad et al., 2010, Rastogi
et al., 2012]. In this distilled tutorial, we write several defi-
nitional interpreters and abstract machines in Scheme, some
of which are new, exploring the meaning of gradual typing
and the challenges to efficient implementation.

Categories and Subject Descriptors D.3.3 [Language
Constructs and Features]: Procedures, functions, and sub-
routines

General Terms Languages, Theory

Keywords casts, coercions, blame tracking, lambda-calculus,
Scheme

References
L. T. Hansen. Evolutionary programming and gradual typing

in ECMAScript 4 (tutorial). Technical report, ECMA TG1
working group, November 2007.

D. Herman, A. Tomb, and C. Flanagan. Space-efficient
gradual typing. In Trends in Functional Prog. (TFP), page
XXVIII, April 2007.

A. Rastogi, A. Chaudhuri, and B. Hosmer. The ins and outs
of gradual type inference. In Proceedings of the 39th

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Scheme and Functional Programming 2012 September, Copenhagen Denmark.
Copyright c© 2012 ACM [to be supplied]. . . $10.00

annual ACM SIGPLAN-SIGACT symposium on Princi-
ples of programming languages, POPL ’12, pages 481–
494, New York, NY, USA, 2012. ACM. ISBN 978-
1-4503-1083-3. doi: 10.1145/2103656.2103714. URL
http://doi.acm.org/10.1145/2103656.2103714.

J. G. Siek and W. Taha. Gradual typing for functional lan-
guages. In Scheme and Functional Programming Work-
shop, pages 81–92, September 2006.

J. G. Siek and W. Taha. Gradual typing for objects.
In ECOOP 2007, volume 4609 of LCNS, pages 2–27.
Springer Verlag, August 2007.

J. G. Siek and P. Wadler. Threesomes, with and with-
out blame. In POPL ’10: Proceedings of the 37th an-
nual ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 365–376, New York,
NY, USA, 2010. ACM. ISBN 978-1-60558-479-9.

J. G. Siek, R. Garcia, and W. Taha. Exploring the design
space of higher-order casts. In European Symposium on
Programming, March 2009.

P. Wadler and R. B. Findler. Well-typed programs can’t be
blamed. In European Symposium on Programming, 2009.

T. Wrigstad, F. Z. Nardelli, S. Lebresne, J. Östlund, and
J. Vitek. Integrating typed and untyped code in a script-
ing language. In POPL ’10: Proceedings of the 37th an-
nual ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 377–388, New York,
NY, USA, 2010. ACM. ISBN 978-1-60558-479-9.

