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Abstract
Gradual typing is an approach to integrating static and dy-
namic type checking within the same language [Siek and
Taha, 2006]. Given the name “gradual typing”, one might
think that the most interesting aspect is the type system.
It turns out that the dynamic semantics of gradually-typed
languages is more complex than the static semantics, with
many points in the design space [Wadler and Findler, 2009,
Siek et al., 2009] and many challenges concerning effi-
ciency [Herman et al., 2007, Hansen, 2007, Siek and Taha,
2007, Siek and Wadler, 2010, Wrigstad et al., 2010, Rastogi
et al., 2012]. In this distilled tutorial, we write several defi-
nitional interpreters and abstract machines in Scheme, some
of which are new, exploring the meaning of gradual typing
and the challenges to efficient implementation.
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