
Multi-core Parallelization of Abstracted Abstract Machines ∗

Leif Andersen

University of Utah

leif@leifandersen.net

Matthew Might

University of Utah

might@cs.utah.edu

Abstract

It is straightforward to derive well-known higher-order flow

analyses as abstract interpretations of well-known abstract

machines. In this paper, we explore multi-core parallel eval-

uation of one such abstract abstract machine, the CES ma-

chine. The CES machine is a variant of CESK machines

that runs Continuation Passing Style (CPS) λ-calculus. Us-

ing k-CFA, the concrete semantics for a CES machine can be

turned into abstract semantics. Analyzing a program for this

machine is a state graph walk, which can be run in parallel

to increase performance.

1. Introduction

Control Flow Analysis [13] (CFA) is too slow. There are

techniques to increase performance by widening the abstract

semantics of call sites [2]. However, widening comes at the

cost of lost precision. It is natural to ask: can the speed of

CFA be improved without reducing precision. The answer

appears to be yes.

Unlike an abstract machine’s concrete semantics, which

will execute deterministically, an abstract machine’s ab-

stract semantics may branch and execute multiple non-

deterministic paths. Each of these paths are independent,

and unless they later merge into one path, the result of ana-

lyzing one path is distinct from the other. This independence

provides an opportunity to analyze code in parallel.

The execution of a program on an abstract machine can

be represented as a graph, as visualized in Figure 1. Points

where CFA would benefit from parallelization are the places

where the graph follow multiple paths, such as the right half

of Figure 1. Portions of the execution that have no non-

deterministic behavior, such as the left of Figure 1 will have

no benefit.

Figure 1. An abstract state space.

∗ Copyright c©2013 Leif Andersen and Matthew Might.

Due to the chaotic nature of the splits, and the potential

for splits to rejoin, creating a new thread for every split

would lead to a significant overhead. However, a queue with

states to be explored, along with a fixed number of producers

to explore them will cause little overhead.

In Section 2 we discuss what Control Flow Analysis

is, and how Control, Environment, Store, and Continuation

(CESK) machines are used. In section 3 we discus the lan-

guage that will be run. In Section 4, the concrete and abstract

CES machine will be analyzed. Section 5 discusses what can

be run in parallel, and how the changes are made. Section 6

tests the performance of parallel CFA. Section 7 discus re-

lated works. Finally, Section 8 concludes this paper.

2. CESK and Control Flow Analysis

Control, Environment, Store, and Continuation [4] (CESK)

machines can run versions of the λ-calculus. If the continu-

ations are placed in the code itself (resulting in Continuation

Passing Style (CPS) λ-calculus), than the machine need not

store the continuations, thus reducing the machine to a Con-

trol, Environment, and Store (CES) machine. The standard

CES machine is an abstract machine with concrete seman-

tics. However, with a few modification, CES machines can

execute abstract semantics.

For the CES machine to execute a program, it must be in-

serted into the machine. This is done by attaching an empty

environment and store to the program, and setting the control

to evaluate the input. In a CESK machine a halt continuation

would also be required, as the machine would keep track of

where the program would flow next. The explicit continua-

tions are not required for a CES machine, as they are stored

in the program itself.

From there a small step analyzer will evaluate the ex-

pression, modifying the control, environment, and store as

expected. If this process is repeated one of three things

will happen. The program can terminate, at which point a

complete state graph is achieved, alternatively it can loop

infinitely, with one state looping back to a previous state,

where a complete state graph is still achieved. Both of these

outcomes are fine from an analysis standpoint. The final out-

come is that the program will loop infinitely, generating a

new state each iteration. This generates an infinite amount

of states, and thus is impossible to analyze fully. Figure 2

visualizes the third case.

Figure 2. A concrete state space.

The problem with generating an infinite state space with

these concrete semantics is undecidability. An infinite state

space can not be explored. Abstract machines with abstract

semantics fix this problem. While the input for an abstract

machine with abstract semantics is equivalent to its concrete

semantics counterpart, the abstract semantics changes input

such that a small step function will eventually reach a fixed

point, and terminate. In order to do this, the abstract seman-

tics cannot guarantee that every state will produce exactly

one next state or halt. Rather, with the abstract semantics,

every state can produce a finite set of next states, which the

analysis will follow non-deterministically. Figure 1 demon-

strates the program flow through an abstract machine.

When the abstract semantics perfectly resemble the con-

crete semantics, every small step will have exactly one out-

put state. The further the abstract semantics is from properly

representing the concrete semantics, the more states are re-

turned when evaluating each state.

3. The Language

In this section, we start with the continuation passing style

(CPS) variant of the λ-calculus. Figure 3 describes the input

language for the machine.

pr ∈ Prog ::= CExp

v ∈ Var is a set of identifiers

lam ∈ Lam ::= (λ (v1 ... vn) ce)

f,æ ∈ AExp ::= lam

| v

ce ∈ CExp ::= (f æ1 ... æn)

| halt

Figure 3. Syntax for CPS Style λ-Calculus.

The main difference between the language in Figure 3 and

the regular untypedλ-calculus is that atomic expressions (æ)

are not complex expressions (ce), which makes incapable of

returning variables or literals. As every expression requires

an additional expression to be evaluated, halt allows pro-

gram to terminate. Figure 4 demonstrates the identity func-

tion in CPS λ-calculus.

((λ (x) (x x)) (λ (x) halt))

Figure 4. CPS λ-Calculus Expression

4. Abstracting the CES Machine

The first step towards creating a parallel algorithm for CFA

is to specify a concrete semantics. The abstract semantics

will follow. The specific version of CFA that we are using is

k-CFA [11].

4.1 Concrete Semantics

Figure 5 shows the concrete CES machine. A state is com-

prised of an expression as declared in Figure 3, and an envi-

ronment and store which maps variables to closures.

ς ∈ Σ = Exp× Env × Store

ρ ∈ Env = Var → Addr

σ ∈ Store = Addr → D

d ∈ D = Clo + halt

clo ∈ Clo = Lam× Env

a ∈ Addr is an infinite set of addresses

Figure 5. Concrete CES state space.

An inject function as defined below takes the initial pro-

gram and injects it into and empty environment and state.

I : Prog → Σ

I(pr) = (pr , [], [])

Atomic expression evaluation determines the value of an

atomic expression. It takes an expression, environment, and

store. It is defined as:

A : EXP× Env × Store → D

A(v, ρ, σ) = σ(v, ρ(v))

A(lam, ρ, σ) = (lam, ρ)

There is also a transition network that maps every state to

the following state.

(⇒) ⊆ Σ× Σ

The relationship between transitions requires the expres-

sion to be evaluated, as well as the environment and store.

It extends the environment to map the atomic expression to

a fresh address, and the store to map the new address to its

value. It is defined as:

([[(f æ1 . . . æn)]], ρ, σ) ⇒ (ce, ρ′′, σ′)

where ([[(λ (v1 . . . vn) ce)]], ρ
′) = A(f, ρ, σ)

di = A(æi, ρ, σ)

ai is fresh in σ

ρ′′ = ρ′[vi 7→ ai]

σ′ = σ[ai 7→ di]

Explore gives the state graph. It takes an initial state, and

using the transition relation, determines the next state. This

is repeated until the halt state is reached, and there are no

more states to explore. If no halt state occurs, a state may

still loop back to a previous state, which would cause the

evaluation to terminate. Additionally, the explore function

may not terminate, and generate an infinite amount of states.

explore : Σ → P(Σ)

explore(ς) = {ς ′ | ς ⇒∗ ς ′}

To evaluate the expression with the concrete semantics,

the expression will be injected into the initial state space, and

then the graph will be explored, the graph may be infinite in

size.

4.2 Abstract Semantics

Figure 6 shows the abstraction of the CES machine using k-

CFA [11]. To abstract the CES semantics, the store is limited

to a finite amount of addresses. The effect of this change

affects the store. Unlike the concrete semantics where the

store is a mapping between addresses and closures, in the

abstract semantics the store is a mapping between addresses

and sets of closures.

ς ∈ Σ̂ = Exp× Ênv × Ŝtore

ρ ∈ Ênv = Var → Âddr

σ ∈ Ŝtore = Âddr → P(D̂)

d ∈ D̂ = Ĉlo + halt

clo ∈ Ĉlo = Lam× Ênv

a ∈ Âddr is a finite set of addresses

Figure 6. Abstract CES state space.

The abstract semantics also injects the input into an initial

state. The injection works the same as concrete injection, and

is defined below.

I : Prog → Σ̂

I(pr) = (pr , [], [])

The atomic expression evaluation for the abstract seman-

tics is also analogous to the concrete semantics, and is de-

fined as:

A : EXP× Env × Store → D̂

A(v, ρ, σ) = σ(v, ρ(v))

A(lam, ρ, σ) = (lam, ρ)

Like the concrete semantics, the abstract semantics has a

transition relation. Unlike the concrete semantics, each state

generates a set of next states.

(❀) ⊆ Σ× Σ

Evaluation of the states works analogously to the concrete

semantics. They differ in the address space. Rather than

an infinite set of addresses, the abstract semantics has a

finite set of addresses. The store becomes a mapping from

addresses to sets of values. This is what causes each state to

have multiple next states. The abstract semantics are defined

below as:

([[(f æ1 . . . æn)]], ρ, σ) ⇒ (ce, ρ′′, σ′)

where ([[(λ (v1 . . . vn) ce)]], ρ
′) = A(f, ρ, σ)

di = A(æi, ρ, σ)

ai is fresh in σ

ρ′′ = ρ′[vi 7→ ai]

σ′ = σ[ai 7→ di]

Like the concrete semantics, explore gives the state graph.

Explore takes an abstract state, and will return all of the

states that can be reached. This is often achieved using fixed

points. The transition function determines the set of next

states, if all of these states have already been seen, the

explore is finished, otherwise the transition for the next states

is found. This is done until there are no new states to find.

The definition of explore is:

̂explore : Σ̂ → P(Σ̂)

̂explore(ς) = {ς ′ | ς ❀∗ ς ′}

Unlike the concrete semantics, the abstract semantics will

always reach a fixed point. There will be a finite amount of

states to explore. The cause of this is the finite amount of

addresses.

If this were a CESK, rather than only CES, machine, the

continuations would also need to be finitized. However as

the code itself tracks the continuations, this is not required.

5. Parallelization

There are two parts of k-CFA that can be parallelized. The

first is during state transition, and the second is during func-

tion application. In both of these parts, the state graph will

branch non-deterministically, and be independent of other

branches.

In the abstract semantics, transition will map one state, to

a set of next states. Each of these next states can be explored

independent of each other. This is what allows k-CFA to be

parallelizable.

Two branches of states can merge into a single state later

in the state graph. Thus, when a state produces multiple

states, it is inefficient to analyze each state space indepen-

dent of each other. Doing so would lead to a significant

amount of duplicated work.

A better model would be a producer and consumer model.

Figure 7 depicts this model. The initial state is injected into

the queue. One of the producers takes the state off of the

queue, and finds its next states. The state is then placed in

the visited set, and all of the next states that have not already

been visited are added back into the queue. This cycle is

repeated until the queue is empty.

Q u e u e

Producer 1 Producer 2 Producer 3 Producer 4

Explored

s t a t e

s t a t e

s t a t e

s t a t e s t a t e s t a t e s t a t e

s t a t e s t a t e

s t a t e s t a t e

Figure 7. Queue and actor architecture for parallelizing k-

CFA.

Scala’s actors system makes this an easy system to im-

plement [5]. Figure 8 depicts the code that implements the

parallel explore.

def explore(in: Map[State,Set[State]]):

Map[State,Set[State]] = {

var next = in

var producers =

new StateIterator[(State,StateProducer)]

for(i <- in)

getProducers(producers, i._2)

for(i <- producers) {

var tmpStep = Set[State]()

for(j <- i._2.iterator)

tmpStep ++= j

next += (i._1 -> tmpStep)

getProducers(producers, tmpStep)

}

return next

}

Figure 8. Parallel explore function for CES machine in

Scala.

Function application can also be run in parallel. This has

little benefit for the CES machine as function application

contains only atomic members, and thus do not generate new

states. In a full CESK machine functions application would

generate new states. Figure 9 demonstrates this faster version

of function application.

case ApplyState(f, x, s) => {

val tmpProducers =

for(c <- x) yield new EvalProducer(c);

val b = for (c <- tmpProducers) yield {

var tmpSet = Set[Closure]()

for(i <- c.iterator) tmpSet ++= i

tmpSet

}

for(a <- aevalState(f))

yield closureToEval(aapply(a, b, s), s)

}

Figure 9. Parallel function application in Scala.

The code in Figure 9 uses the same queue depicted in

Figure 7, however rather than placing the result back in the

queue, it is kept for the application.

6. Results

Both regular k-cfa and parallel k-cfa compute the same re-

sulting state space. Thus the most important metric is run

time.

Writing benchmark suites directly in the lambda calculus

is impractical. Therefore, we created a richer language to run

the test suites in.

Figure 10 is a richer language than the one in Figure 3.

The language is compiled down into the untyped λ-calculus,

and is then CPS converted, resulting in the same input lan-

guage as described in Figure 3.

We use a factorial program to test the performance of

parallel CFA. Figure 11 shows a sample of the factorial

program calculating the factorial of 5. Similar programs

were also tested for factorial of 0, 10, 15, and 20.

(letrec ((f (λ (n)

(if (= n 0)

1

(* n (f (- n 1)))))))

(f 5))

Figure 11. Factorial of five.

The program was tested on multiple processors, in partic-

ular an Intel i7-3770k, and an Intel i7-3630QM. Both proces-

sors have 4 cores, and both processors have hyper-threading,

which was enabled during the tests.

Table 1 shows the results of running the code on the

Intel i7-3770k. The test is initially ran a few times to allow

any Just In Time (JIT) compiler Scala uses to run, and the

speedup is taken by calculating the average runtime of 20

runs.

pr ∈ Prog ::= exp

v ∈ Var is a set of identifiers

n ∈ Nat is a positive integer

lam ∈ Lam ::= (λ (v1 ... vn) ce)

prim ∈ Prim ::= #t

| #f

| n

ce ∈ CExp ::= (f ce1 ... cen)

| lam

| v

| (if ce ce ce)

| (zero? ce)

| (− ce ce)

| (= ce ce)

| (+ ce ce)

| (∗ ce ce)

| (letrec ((v lam)) ce)

Figure 10. Syntax for a Lisp Subset

Size Speedup

0 6.8

5 8.8

10 9.2

15 9.1

20 8.5

Table 1. Results of parallel CFA analyzing factorial on an

i7-3770k.

This demonstrates that the program is CPU bound. The

average speedup of the parallel algorithm is 8.5 times that

of the naive algorithm. The Scala runtime will create new

actors when there is both work to be done, and unused CPU

cores.

Table 2 runs the same test except on an Intel i7-3630QM.

Like the i7-3770k, it also has four cores and hyper-threading.

It was also released around the same time as the i7-3770k.

Size Speedup

0 4.7

5 8.8

10 7.3

15 7.4

20 7.4

Table 2. Results of parallel CFA analyzing factorial on an

i7-3630QM.

The average speedup of the parallel algorithm to the naive

one is 7.16. This speedup fits the model that the program is

running approximately eight different actors simultaneously.

The program was run on multiple processors to show

that the results of running parallel CFA is not limited to

one computer, but will lead to benefits on any multi-core

platform it is run on.

6.1 A larger example

To further test parallel CFA, we created a Collatz Conjecture

program. The input language in Figure 10 does not contain

many of the functions required to calculate the hailstone

sequence of a number, so many helper functions make it

possible. Figure 12 is the hailstone sequence with 5 as its

input.

(letrec ((even? (λ (n)

(if (= n 0)

#t

(if (= n 1)

#f

(even? (- n 2)))))))

(letrec ((div2* (λ (n s)

(if (= (* 2 n) s)

n

(if (= (+ (* 2 n) 1) s)

n

(div2* (- n 1) s))))))

(letrec ((div2 (λ (n)

(div2* n n))))

(letrec ((hailstone* (λ (n count)

(if (= n 1)

count

(if (even? n)

(hailstone*

(div2 n) (+ count 1))

(hailstone*

(+ (* 3 n) 1)

(+ count 1)))))))

(letrec ((hailstone (λ (n)

(hailstone* n 0))))

(hailstone 5))))))

Figure 12. Collatz Conjecture on a sequence starting with

5.

The code will evaluate to the amount of steps the se-

quence took to complete. Table 3 demonstrates the results of

running the Collatz Conjecture program on an i7-3630QM.

Size Speedup

5 2.3

Table 3. Results of analyzing the Collatz Conjecture on an

i7-3630QM.

The speedup for the Collatz Conjecture is significantly

slower than that of factorial. This can be explain with the

state graph, shown in Figure 13. Only a small portion of the

graph can be run in parallel.

s 1

s 7

s 2 9

s 3 7

s 3 9

s 5 7

s 6 1

s 7 1

s 7 5

s 2 s 7 9

s 3

s 8 2

s 4

s 5 s 1 7

s 6 s 5 0

s 8 s 4 4

s 9 s 1 8 s 1 0 s 1 5

s 1 1 s 2 7

s 1 2

s 5 4

s 1 3 s 8 7

s 1 4 s 6 3 s 6 5

s 1 6 s 8 1

s 9 0

s 1 9

s 2 0 s 7 6s 2 1 s 5 6

s 2 2 s 7 4s 2 3 s 8 9

s 2 4 s 4 7

s 2 5 s 9 9

s 2 6 s 5 9

s 2 8

s 5 8

s 3 0

s 3 1

s 3 2s 3 3 s 3 4

s 3 5

s 3 6

s 3 8

s 4 3

s 6 7

s 7 3

s 6 8

s 4 0 s 4 1

s 4 2

s 8 4

s 8 8

s 4 5 s 6 4

s 4 6 s 5 3

s 4 8

s 6 6

s 4 9 s 6 9

s 1 0 6

s 5 1 s 7 8

s 5 2

s 5 5s 8 6 s 1 0 2

s 6 0

s 9 6

s 6 2

s 9 4

s 7 0

s 9 5

s 7 2

s 9 7

s 7 7

s 8 0

s 1 0 3

s 8 3

s 8 5 s 9 3

s 1 0 4

s 9 1s 9 8 s 9 2

s 1 0 5

s 1 0 1 s 1 0 0

Figure 13. State space for Collatz Conjecture

This demonstrates a limitation in parallel CFA. Not every

state space is highly parallelizable.

6.2 Pathologically Bad Cases

The goal of k-CFA is to model the concrete semantics of a

language as accurately as possible, while still remaining de-

cidable. k-CFA will be an accurate model to varying degrees

for various programs. If it does a perfect job modeling the

program, then it will be a series of sequential states, such as

in Figure 2. This state graph is the worst possible case for

parallel CFA. Each state produces exactly zero or one next

states. Even though one CPU core is kept busy, the remain-

ing ones will remain idle.

Figure 14 demonstrates an example where parallel CFA

will do poorly (the U Combinator applied to itself). No mat-

ter how big the store is allowed to be, one state will always

produce exactly one additional state. Figure 15 demonstrates

this with a relatively small store.

((λ (x) (x x)) (λ (x) (x x)))

Figure 14. Pathologically bad code for parallel CFA.

Figure 15. State space for pathologically bad case.

This means that parallel CFA can not be used as an

optimization to k-CFA for every state space. It does however

serve as a protection when k-CFA has its worst case, when a

state branches into many next state. With parallel CFA, these

results will return fairly quickly.

7. Related Works

The study of interpretation of the λ-calculus with abstract

machines began with Landin’s SECD machine [7], as well as

the POPL papers from Coust and Coust [2, 3]. And Jones’s

static analysis of the λ-calculus [6]. However, combining

abstract machines and interpretation has been a very recent

thing [9, 10].

Analyzing abstract machines in parallel has had very lit-

tle research. However, Prabhu’s, Ramalingam’s, Might’s,

and Hall’s paper [12] on EigenCFA discus accelerating flow

analysis through the use of GPUs. However, EigenCFA can

only run on Two CPS code, which limits the expressiveness

of the input language. Unlike the parallel CFA analyzed

in this paper, it is not trivial to modify the EigenCFA im-

plementation to run on CPS with additional arguments, let

alone code that isn’t CPS at all.

Burtscher, Narse, and Pingali also published [1] a pa-

per using GPUs for general purpose computation. Part of

this general purpose computation was control flow analysis.

Méndez-Lojo, Matthew, and Pingali also published a paper

on analysis in parallel [8]. In this paper they are performing

constraint solving in parallel, while parallel CFA concerns

performing higher order program analysis in parallel.

8. Conclusion

Our goal was to create a parallel version of k-CFA that bal-

ances the concerns of simplicity and scalability. We wanted

to increase the speed at which it runs, while keeping the un-

derlying theory behind k-CFA in tact. While it does not work

for cases like in Figure 15, most programs will have some

speedup. Additionally, we have shown that there significance

speedup for simple programs.

Other possible avenues of research is to run it on a richer

language. If a parallel CESK, rather than a CES, machine is

created, we can analyze the full untyped λ-calculus, rather

than the continuation passing style discussed in this paper.

This work has the potential to speed up k-CFA propor-

tionally to the number of processors that a CPU contains.

This material is based on research sponsored by DARPA

under agreement number FA8750-12-2-0106.The U.S. Gov-

ernment is authorized to reproduce and distribute reprints for

Governmental purposes notwithstanding any copyright nota-

tion thereon.

References

[1] M. Burtscher, R. Nasre, and K. Pingali. A quantitative study

of irregular programs on gpus. In Workload Characterization

(IISWC), 2012 IEEE International Symposium on, pages 141–

151. IEEE, 2012.

[2] P. Cousot and R. Cousot. Abstract interpretation: a unified

lattice model for static analysis of programs by construction

or approximation of fixpoints. In Proceedings of the 4th ACM

SIGACT-SIGPLAN symposium on Principles of programming

languages, pages 238–252. ACM, 1977.

[3] P. Cousot and R. Cousot. Systematic design of program anal-

ysis frameworks. In Proceedings of the 6th ACM SIGACT-

SIGPLAN symposium on Principles of programming lan-

guages, pages 269–282. ACM, 1979.

[4] M. Felleisen. Calculi of lambda-nu-cs conversion: a syntac-

tic theory of control and state in imperative higher-order pro-

gramming languages. Technical report, Indiana Univ., Bloom-

ington (USA), 1987.

[5] P. Haller. Scala actors: A short tutorial, 2008.

[6] N. D. Jones. Flow analysis of lambda expressions. Springer,

1981.

[7] P. J. Landin. The mechanical evaluation of expressions. The

Computer Journal, 6(4):308–320, 1964.

[8] M. Méndez-Lojo, A. Mathew, and K. Pingali. Parallel

inclusion-based points-to analysis. In ACM Sigplan Notices,

volume 45, pages 428–443. ACM, 2010.

[9] J. Midtgaard and T. Jensen. A calculational approach to

control-flow analysis by abstract interpretation. In Static Anal-

ysis, pages 347–362. Springer, 2008.

[10] J. Midtgaard and T. P. Jensen. Control-flow analysis of func-

tion calls and returns by abstract interpretation. ACM Sigplan

Notices, 44(9):287–298, 2009.

[11] M. Might. Environment Analysis of Higher-Order Languages.

PhD thesis, Georgia Institute of Technology, June 2007.

[12] T. Prabhu, S. Ramalingam, M. Might, and M. Hall. Eigencfa:

accelerating flow analysis with GPUs. ACM SIGPLAN No-

tices, 46(1):511–522, 2011.

[13] O. Shivers. Control-flow analysis of higher-order languages.

PhD thesis, Citeseer, 1991.

