
A Unified Approach to Polyvariance in Abstract Interpretations ∗

Thomas Gilray
University of Utah
tgilray@cs.utah.edu

Matthew Might
University of Utah
might@cs.utah.edu

Abstract
We describe an approach to exploring polyvariance in ab-
stract interpretations by exposing the allocation of abstract
bindings as an analysis parameter. This allocation policy is a
method for selecting abstract addresses based on the current
state of execution. As addresses are chosen from a finite set,
the allocation policy is responsible for determining the exact
degree of merging which occurs between different values at
a given point in the analysis. This approach allows us to se-
lect any kind of polyvariance desired through the selection
of an abstract allocation function. We show how this can be
done for an intermediate representation of Scheme, imple-
menting a sound parametric framework for such analyses.
We distinguish three disparate interpretations of the k-CFA
hierarchy and compare them, instantiating each within our
framework and motivating our approach.

Keywords Abstract Interpretation, Allocation, Polyvari-
ance

1. Introduction
The goal of static analysis is to make guarantees about the
behavior of a program based only on its source text. Ab-
stract interpretation is a general framework for static anal-
ysis which draws a formal correspondance between a lan-
guage’s concrete semantics and an abstract semantics. This
correspondance ensures the latter is a computable approxi-
mation of the former. Analyses can be made which are sound
and time-bounded by following a standard process for ab-
stracting a given concrete semantics [5] [6] [16]. Abstract-
ing Abstract Machines by Van Horn and Might presents this
process especially well and would serve as a good introduc-
tion to the change in our semantics between Section 2 and
Section 3 [30].

An abstract interpretation produces an upper bound for
the behavior of its target program by conservatively track-
ing all possible values that flow to any particular variable.
These flow-sets propagate through a bounded set of abstract
machine addresses until a fixed-point is reached over the
abstract transition relation. Polyvariant analyses are those
which allocate multiple abstract addresses for each syntactic
point of interest, differentiating their possible values based

∗ Copyright c© 2013 Thomas Gilray and Matthew Might.

on a previously selected notion of program context. Take for
example the following snippet of Scheme code:

(let ((f (lambda (x) (g x))))

(f 5)

(f #t))

The polymorphic function f is called twice with very differ-
ent inputs. In a monovariant analysis, a single address would
be used to store all possible values bound to x in all con-
texts. A polyvariant call-sensitive analysis on the other hand,
would use a limited amount of call-history to differentiate
multiple addresses for x and thus multiple flow-sets. In this
case we produce an address “x after callsite (f 5)” and an
address “x after callsite (f #t)” which improves the pre-
cision of our results at the cost of juggling these additional
individualized flow-sets.

Recent work by Might and Manolios provides a proof that
any conceivable function producing abstract addresses for a
given machine state (i.e. analysis context) can be justified
a posteriori as having a sound mapping back to concrete
addresses [21]. As a result, any notion of context, reasonable
or unreasonable, can be used to structure the polyvariance of
an abstract interpretation. This insight motivated our work
to factor out the allocation policy from the rest of a working
analysis framework. We then show how trivial it becomes to
parameterize our framework with an allocation policy and
tune its polyvariance arbitrarily with minimal modifications
to our code.

1.1 Three flavors of call-sensitivity
In Olin Shivers’ seminal paper on control-flow analysis of
Scheme, he presents a hierarchy of increasingly polyvariant
analyses called k-CFA. Shivers’ hierarchy distinguishes all
abstract bindings by a string of k call-sites called a contour,
a timestamp, a context, or a history. These are described
as being the last k call-sites which execution has passed
through. As a complication, since the analysis was originally
presented for CPS-converted Scheme, all return-points have
been reified as syntactic lambdas and are thus analyzed as
call-sites. This means the set of program points which might
be included in an abstract timestamp depends on whether
you follow the original description or implementation of k-
CFA [25] [26] [17].



An analysis sensitive to calling context could be imple-
mented as using the last k call-sites (as k-CFA was origi-
nally described), using the last k call-sites or return-points
(as originally implemented), or using the top k stack frames.
We distinguish these three kinds of call-sensitivity and, in
doing so, motivate our approach to a unified framework for
polyvariance by instantiating our analysis to implement each
of the three.

1.2 Contributions
We introduce a simple higher-order language and its con-
crete semantics. We perform a minimal abstraction of these
semantics to obtain a computable approximation. By taking
care to define our analysis mechanics in terms of an arbi-
trary allocation function, we produce a framework for this
language where different kinds of polyvariance, in all their
subtlety, can be expressed as a simple configuration of the
allocation policy. We then precisely distinguish the three fla-
vors of call-sensitivity described and give a number of poly-
variant allocation functions corresponding to novel or previ-
ously known static analyses.

2. Concrete Semantics
For simplicity, we target the λ-calculus in Administrative
Normal Form extended with primitive operations and set!.
As this is a good intermediate representation for compil-
ers, our implementation naturally supports partially com-
piled Scheme benchmarks. This choice makes our analyses
immediately applicable to a variety of real languages.

ANF centers expression-nesting around the let-form so
that the order of operations becomes explicit. Where other-
wise two expressions might be arbitrarily nested one within
the other, in ANF this is only achieved by let-binding the
result of the intermediate expression to a variable. Because
all arguments to call-sites and primitive operations must first
be let-bound, they can be evaluated atomically, reducing the
complexity of our semantics.

We develop a concrete small-step interpreter based on the
CESK machine of Felleisen and Friedman [8]. There are two
kinds of machine states in our concrete state-space (defined
in Figure 2). Most states contain a control-expression e,
binding environment ρ, value-store σ, current continuation
κ, and a timestamp t.

i .e. (e, ρ, σ, κ, t)

The binding environment maps variables to addresses, while
the store maps addresses to values. The current continuation
contains a variable which receives the return-value of the
control-expression once evaluated, a binding environment to
use once a value is returned, a control-expression to transi-
tion to, and a parent continuation for this new expression.
The current timestamp is incremented between bindings so
multiple bindings of the same variable are unique.

A special kind of state is differentiated from the normal
“Eval” states. These “Apply” states are produced when a

e ∈ El ::= (let (x e) e)

| (ae ae . . .)
| (if ae e e)
| (prim op ae . . .)

| (set! x ae)
| ae

ae ∈ AEl ::= lam

| x
| c

lam ∈ Lam ::= (λ (x . . .) e)

c ∈ Const ::= set of program constants

x ∈ Var ::= set of program variables

op ∈ OP ::= set of primitive operations

l ∈ Label ::= set of unique labels

Figure 1. Our target language: An ANF Scheme

function is invoked. It succeeds an eval state with a call-
site as its control-expression. In place of a call-site, these
states contain a closure to apply, a list of values to bind in its
environment, and a label for the generating call-site. Apply
states are themselves always succeeded by an eval state for
the body of the invoked closure. They are factored out to
ensure the generality of the framework.

Before introducing our concrete transition relation, there
are two auxilliary helper functions which its rules de-
pend upon: an atomic-expression evaluator and a primitive-
operation evaluator.
A transforms an atomic-expression, in the context of a

state, into a value.

A : AE× State ⇀ V alue

A(false, (e, ρ, σ, κ, t)) = FALSE

A(void, (e, ρ, σ, κ, t)) = VOID

. . .

A(x, (e, ρ, σ, κ, t)) = σ(ρ(x))

A(lam, (e, ρ, σ, κ, t)) = 〈lam, ρ〉

The primitive-operation evaluator takes the name of an
operation and a list of values. It returns the result of a primi-
tive operation or externally defined function.

δ : OP× V alue∗ ⇀ V alue

For example δ(+, (2 3)) would return 5 and δ(append, ((1 2) (3)))
would return (1 2 3).



ς ∈ State = Eval +Apply

Eval = E× Env × Store×Kont× Time
Apply = V alue× V alue∗ × Label

× Env × Store×Kont× Time
ρ ∈ Env = Var ⇀ Addr

σ ∈ Store = Addr ⇀ V alue

κ ∈ Kont = (kont x ρ e κ) | (halt)
t ∈ Time = N
a ∈ Addr = Var × Time
v ∈ V alue = Lam× Env + {FALSE, VOID, . . .}

Figure 2. Concrete state-space

We proceed by defining a small-step operational seman-
tics; specifically, a transition relation (⇒) which maps each
possible machine state to a single successor, or none if com-
putation has ended.

Let A new continuation is pushed onto the stack and the
old continuation is nested inside it. When a prim-op, set! or
atomic-expression is eventually encountered in e1, the stack
is popped and its value is returned to the variable x placed
inside the continuation. Execution will then continue at e2
within the saved environment extended with a binding for x.

((let (x e1) e2), ρ, σ, κ, t) ⇒ (e1, ρ, σ, κ
′, t)

where κ′ = (kont x ρ e2 κ)

Call: Eval → Apply Invocation has been broken into two
distinct kinds of states, Eval and Apply. This first half of the
call-site transition evaluates the function to be called and the
arguments to be sent. These values are placed inside a special
Apply state, which then completes the process and produces
a new Eval state. The Apply state’s label is included and will
be used once we abstract.

((aef ae1 . . .)
l, ρ, σ, κ, t)︸ ︷︷ ︸
ς

⇒ (vf , (v1 . . .), l, ρ, σ, κ, t)

where vf = A(aef , ς)
vi = A(aei, ς)

Call: Apply→ Eval With a specific closure to invoke, and
the argument values evaluated, the call can be completed
by transitioning to the lambda’s body and performing the
required argument bindings. An incremented timestamp is

created for these bindings so each new binding is unique to
each new call.

(vf , (v1 . . . vj), l, ρ, σ, κ, t) ⇒ (e, ρ′, σ′, κ, t′)

where vf = 〈(λ (x1 . . . xj) e), ρλ〉
ρ′ = ρλ[xi 7→ ai]

σ′ = σ[ai 7→ vi]

ai = (xi, t
′)

t′ = t+ 1

If Control flows to one of two sub-expressions based on
the value of the conditional expression.

v = A(ae, ς) v 6= FALSE

((if ae et ef ), ρ, σ, κ, t)︸ ︷︷ ︸
ς

⇒ (et, ρ, σ, κ, t)

v = A(ae, ς) v = FALSE

((if ae et ef ), ρ, σ, κ, t)︸ ︷︷ ︸
ς

⇒ (ef , ρ, σ, κ, t)

AE These final three cases (ae, prim op, and set!) contain
no sub-expressions. Each pops the stack and returns a value
to the continuation’s variable xκ. In this case: the atomic-
expression is evaluated, its value placed in the store at an
address bound in the continuation’s binding environment ρκ.
A new timestamp is produced as it was for lambda-bindings
and a transition is made to the continuation-expression eκ
within the nested continuation κκ.

ς︷ ︸︸ ︷
(ae, ρ, σ, κ, t) ⇒ (eκ, ρ

′, σ′, κκ, t
′)

where κ = (kont xκ ρκ eκ κκ)

ρ′ = ρκ[xκ 7→ ax]

σ′ = σ[ax 7→ A(ae, ς)]
ax = (xκ, t

′)

t′ = t+ 1

Prim A return-value is obtained by evaluating the argu-
ments to the primitive-operation and passing them to δ.

ς︷ ︸︸ ︷
((prim op ae1 . . . aej), ρ, σ, κ, t) ⇒ (eκ, ρ

′, σ′, κκ, t
′)



where κ = (kont xκ ρκ eκ κκ)

ρ′ = ρκ[xκ 7→ ax]

σ′ = σ[ax 7→ v]

ax = (xκ, t
′)

v = δ(op, (A(ae1, ς) . . . A(aej , ς)))
t′ = t+ 1

Set! An additional change is made to the store in this case.
The current address of the variable xset is obtained from the
environment ρ and set to the value of ae. The return-value
for set! is always VOID.

ς︷ ︸︸ ︷
((set! xset ae), ρ, σ, κ, t) ⇒ (eκ, ρ

′, σ′, κκ, t
′)

where κ = (kont xκ ρκ eκ κκ)

ρ′ = ρκ[xκ 7→ ax]

σ′ = σ[ρ(xset) 7→ A(ae, ς)][ax 7→ VOID]

ax = (xκ, t
′)

t′ = t+ 1

A concrete interpretation can now be performed by com-
puting the transitive closure over the transition relation (⇒)
starting with a ς0, obtained by injecting a program into a
starting state which contains an appropriate final continua-
tion. I is a function for producing this starting state given a
program e:

I(e) = (e, [], [], (kont r [] r (halt)), 0)

The return value of the program is captured in a variable (e.g.
r) and the continuation (halt) cannot be transitioned from,
so execution may terminate.

3. Abstract Semantics
We store-allocate nested continuations, allowing us to per-
form a structural abstraction bounding the machine’s address-
space to create a computable approximation of our concrete
semantics [16] [30]. Notice that our abstract semanics in
Figure 3 contain three global changes from their concrete
counterparts. Continuations now contain an address for their
parent continuation and have been extended with a times-
tamp. Timestamps themselves have been redefined as lists
of labels. The purpose of this transformation is fundamen-
tally to achieve computability by making our state-space
finite.

By store-allocating continuations, we have introduced
merging between different continuations for the same let,
and bounded the stack. This is the first crucial change we’ve

made as it threads the last source of recursion in the state-
space through the store, and puts the complexity of our anal-
yses entirely in the hands of the machine’s address-space.
The next crucial change is to replace timestamps with lists
of labels which can be truncated to a fixed length to en-
sure computability. Instead of incrementing a number that
ensures each new binding we create is unique, we use a
summary of the program’s history which can be shortened
to any approximation we would like. In the case of 0-CFA,
we always use the empty list, which merges all values for
like-named variables together.

In order to support this merging, we replace concrete
values with flow-sets of abstract values D̂. Using a finite
number of abstract values is a simple way to ensure these
flow-sets will eventually reach > if repeatedly extended.

Our framework is parameterized by an abstract atomic-
expression evaluator, a timestamp allocation function, and a
primitive-operation evaluator.
Â transforms an atomic-expression, in the context of an

abstract state, into a flow-set.

Â : AE× Ŝtate ⇀ D̂

For most of the analyses we might consider, this function
looks up variables and combines lambdas with the current
environment:

Â(false, (e, ρ̂, σ̂, κ̂, t̂)) = {FALSE}
Â(void, (e, ρ̂, σ̂, κ̂, t̂)) = {VOID}

. . .

Â(x, (e, ρ̂, σ̂, κ̂, t̂)) = σ̂(ρ̂(x))

Â(lam, (e, ρ̂, σ̂, κ̂, t̂)) = {〈lam, ρ̂〉}

Closures are now shown with ellipsis to indicate that these
functions may by modified to extend closures with addtional
fields if necessary.

The abstract allocation function is the sum of all times-
tamp manipulations which have been factored out of the
main abstract semantics. It provides a simple interface for
controling the method of polyvariance throughout the anal-
ysis.

âlloc : Ŝtate ⇀ T̂ ime

For a monovariant analysis like 0-CFA, this function always
returns the empty timestamp:

âlloc(ς̂) = ()

The abstract prim-op evaluator takes an operation and
a list of flow-sets to produce a flow-set of possible output
values for these inputs.

δ̂ : OP× D̂∗ ⇀ D̂



ς̂ ∈ Ŝtate = Êval + Âpply

Êval = E× Ênv × Ŝtore× K̂ont× T̂ ime

Âpply = V̂ alue× D̂∗ × Label

× Ênv × Ŝtore× K̂ont× T̂ ime

ρ̂ ∈ Ênv = Var ⇀ Âddr

σ̂ ∈ Ŝtore = (Âddr ⇀ D̂) + (K̂Addr ⇀ K̂ont)

κ̂ ∈ K̂ont = (kont x ρ̂ e âκ t̂) | (halt)

t̂ ∈ T̂ ime = Label∗

â ∈ Âddr = Var × T̂ ime

âκ ∈ K̂Addr = Var

d̂ ∈ D̂ = P(V̂ alue)

v̂ ∈ V̂ alue = Lam× Ênv + {FALSE, VOID, . . .}

Figure 3. Abstract state-space for 0-CFA

Let The current continuation is store-allocated, and a new
continuation is produced which references it. A return times-
tamp is placed in the continuation which gives an analy-
sis the ability to exploit knowledge of both the current his-
tory and this previous history when returning. The allocation
function is used to factor out the work of producing the saved
timestamp.

ς̂︷ ︸︸ ︷
((let (x e1) e2), ρ̂, σ̂, κ̂, t̂) ≈> (e1, ρ̂, σ̂

′, κ̂′, t̂)

where κ̂ = (kont xκ ρ̂κ eκ âκ t̂κ)

κ̂′ = (kont x ρ̂ e2 xκ t̂
′
κ)

σ̂′ = σ̂ t [xκ 7→ κ̂]

t̂′κ = âlloc(ς̂)

Call: Eval→Apply This first half of the call-site transition
evaluates the function to be called non-deterministically and
transitions to an apply state for each appropriate closure.
The allocation function is given the option of modifying or
replacing the current continuation’s saved timestamp.

〈(λ (x1 . . . xj) e), . . .〉 ∈ Â(aef , ς̂)
((aef ae1 . . .)

l, ρ̂, σ̂, κ̂, t̂)︸ ︷︷ ︸
ς̂

≈> (v̂, (d̂1 . . .), l, ρ̂, σ̂, κ̂′, t̂)

where v̂ = 〈(λ (x1 . . . xj) e), . . .〉
d̂i = Â(aei, ς̂)
κ̂ = (kont xκ ρ̂κ eκ âκ t̂κ)

κ̂′ = (kont xκ ρ̂κ eκ âκ t̂
′
κ)

t̂′κ = âlloc(ς̂)

Call: Apply→ Eval A new timestamp is produced for this
call and our argument flow-sets are bound to their variables
under this new history.

ς̂︷ ︸︸ ︷
(v̂, (d̂1 . . . d̂j), l, ρ̂, σ̂, κ̂, t̂) ≈> (e, ρ̂′, σ̂′, κ̂, t̂′)

where v̂ = 〈(λ (x1 . . . xj) e), ρ̂λ, . . .〉
ρ̂′ = ρ̂λ[xi 7→ âi]

σ̂′ = σ̂ t [âi 7→ d̂i]

âi = (xi, t̂
′)

t̂′ = âlloc(ς̂)

If Conditionals transition to their nested expressions as
appropriate.

v̂ ∈ Â(ae, ς̂) v̂ 6= FALSE

((if ae et ef ), ρ̂, σ̂, κ̂, t̂)︸ ︷︷ ︸
ς̂

≈> (et, ρ̂, σ̂, κ̂, t̂)

v̂ ∈ Â(ae, ς̂) v̂ = FALSE

((if ae et ef ), ρ̂, σ̂, κ̂, t̂)︸ ︷︷ ︸
ς̂

≈> (ef , ρ̂, σ̂, κ̂, t̂)

AE The top of the continuation stack is popped and each
of the referenced store-allocated continuations are restored.
The expression in the current continuation is transitioned to
at a new timestamp selected by the allocation function. The
return flow-set for ae is placed at an address for xκ under the
new timestamp in the continuation’s binding environment
ρ̂κ.

κ̂′ ∈ σ̂(âκ)
(ae, ρ̂, σ̂, κ̂, t̂)︸ ︷︷ ︸

ς̂

≈> (eκ, ρ̂′, σ̂′, κ̂′, t̂′)

where κ̂ = (kont xκ ρ̂κ eκ âκ t̂κ)

ρ̂′ = ρ̂κ[xκ 7→ âx]

σ̂′ = σ̂ t [âx 7→ Â(ae, ς̂)]
âx = (xκ, t̂

′)

t̂′ = âlloc(ς̂)



Prim The return flow-set of a primitive operation is com-
puted using the δ̂ function.

κ̂′ ∈ σ̂(âκ)
((prim op ae1 . . . aej), ρ̂, σ̂, κ̂, t̂)︸ ︷︷ ︸

ς̂

≈> (eκ, ρ̂′, σ̂′, κ̂′, t̂′)

where κ̂ = (kont xκ ρ̂κ eκ âκ t̂κ)

ρ̂′ = ρ̂κ[xκ 7→ âx]

σ̂′ = σ̂ t [âx 7→ d̂]

âx = (xκ, t̂
′)

d̂ = δ̂(op, (Â(ae1, ς̂) . . . Â(aej , ς̂)))

t̂′ = âlloc(ς̂)

Set! The flow-set for xset is extended in the current envi-
ronment before returning {VOID} to xκ.

κ̂′ ∈ σ̂(âκ)
((set! xset ae), ρ̂, σ̂, κ̂, t̂)︸ ︷︷ ︸

ς̂

≈> (eκ, ρ̂′, σ̂′, κ̂′, t̂′)

where κ̂ = (kont xκ ρ̂κ eκ âκ t̂κ)

ρ̂′ = ρ̂κ[xκ 7→ âx]

σ̂′ = σ̂ t [âx 7→ {VOID}]
t [ρ̂(xset) 7→ Â(ae, ς̂)]

âx = (xκ, t̂
′)

t̂′ = âlloc(ς̂)

An analysis in this framework is computed by finding the
transitive closure over the abstract transition relation (≈>)
starting with a ς̂0, obtained by injecting a program into a
starting state which contains an appropriate final continua-
tion. A function for producing this starting state given a pro-
gram e could look like:

Î(e) = (e, [], [halt 7→ (halt)], (kont r [] r halt ()), ())

The return values of the program are captured in a variable
(e.g. r) and the continuation (halt) cannot be transitioned
from.

4. Tuning
The power of this framework, and our approach in general,
lies in distingushing our auxilliary functions Â and âlloc,
describing the constraints under which they can be soundly
reimagined, and giving them the maximum power these con-
straints allow to tune the analysis for precisely the polyvari-
ance desired.

We are now able to modify these functions in isolation
in order to instantiate various desired analyses with different
polyvariant behaviors.

4.1 Call sensitivity
This first analysis is our implementation of k-CFA as de-
scribed in Shivers’ seminal paper. For a fixed natural number
k, this analysis differentiates bound variables by an abstract
history comprised of the last k call-sites. We can define these
first three analyses, using the atomic-expression evaluator as
defined for 0-CFA. The allocation function alone is sufficient
for implementing this kind of polyvariance.

During function application, we prefix our current times-
tamp with the latest call and keep at most k labels:

âlloc((v̂, (d̂ . . .), l, ρ̂, σ̂, κ̂, t̂)) = take−left(k, l : t̂)

We define take−left as returning the maximum left-most
sublist which is at-most length k. This restriction enforces
the bound on history length which makes the analysis com-
putable.

When we return, we leave the current timestamp as-is,
continuing its life into the continuation. The next two anal-
yses will take return-points into consideration, but for now
the current timestamp is carried through:

âlloc(((prim op ae . . .), ρ̂, σ̂, κ̂, t̂)) = t̂

âlloc(((set! x ae), ρ̂, σ̂, κ̂, t̂)) = t̂

âlloc((ae, ρ̂, σ̂, κ̂, t̂)) = t̂

Because we are not changing our time-stamp when we re-
turn, there is no need to store or manipulate the continua-
tion’s timestamp:

âlloc(((let (x e1) e2), ρ̂, σ̂, κ̂, t̂)) = ()

âlloc(((ae . . .), ρ̂, σ̂, κ̂, t̂)) = ()

4.2 Call+Return sensitivity
This analysis is k-CFA as implemented in Shivers’ seminal
paper. For a fixed natural number k, this analysis differen-
tiates bound variables by an abstract history comprised of
the last k call-sites or return-points. While k is described as
being the number of call-sites stored, once CPS-converted,
return-points in the original direct-style program become rei-
fied as syntactic lambdas in CPS. Thus, return-points are ef-
fectively considered in the abstract histories of such an anal-
ysis.

At function application, we extend our current timestamp
as we did in the previous analysis:

âlloc((v̂, (d̂ . . .), l, ρ̂, σ̂, κ̂, t̂)) = take−left(k, l : t̂)



When a value is returned however, we also extend the current
timestamp with the return-point:

âlloc(((prim op ae . . .)l, ρ̂, σ̂, (kont . . . t̂κ), t̂))

= take−left(k, l : t̂)

âlloc(((set! x ae)l, ρ̂, σ̂, (kont . . . t̂κ), t̂))

= take−left(k, l : t̂)

âlloc((ael, ρ̂, σ̂, (kont . . . t̂κ), t̂))

= take−left(k, l : t̂)

4.3 Stack sensitivity
A quite different interpretation of k is as the top-k stack
frames. This analysis differentiates bound variables by an
abstract history comprised of the call-site labels for the top-
k stack frames.

At function application, we extend our current timestamp
as we did in both previous analyses:

âlloc((v̂, (d̂ . . .), l, ρ̂, σ̂, κ̂, t̂)) = take−left(k, l : t̂)

Then we can simply reinstate it when a value is returned:

âlloc(((prim op ae . . .), ρ̂, σ̂, (kont . . . t̂κ), t̂)) = t̂κ

âlloc(((set! x ae), ρ̂, σ̂, (kont . . . t̂κ), t̂)) = t̂κ

âlloc((ae, ρ̂, σ̂, (kont . . . t̂κ), t̂)) = t̂κ

4.4 Cartesian Product Algorithm
The Cartesian Product Algorithm (CPA), is an analysis for
performing type inference which deals in whole tuples of
arguments as opposed to accumulating types (abstract values
in our case) within flow-sets individually. It assigns each
function a flow-set of type-tuples, as opposed to a tuple of
flow-sets containing individual types. [1]

The authors’ motivating example is a polymorphic max
function:

max(a, b) = if a > b then a else b

Here, the only constraint for an input to max is that it support
comparison, so a call max(“abc′′, “xyz′′) makes as much
sense as a call max(3, 5). However, if both these calls are
made with a sufficient amount of obfuscating call-history
behind them, merging will cause the flow sets for a and b
to each include both int and string regardless of the length
of call-histories used. This is imprecise because it implies
that max(“hello”, 9) is possible when it is not.

The solution proposed with CPA is to store entire tu-
ples of types, preserving inter-argument patterns, and avoid-
ing spurious concrete variants. In essense, this differentiates
each argument binding with the entire tuple of types sent in
that call. This suggests a format for abstract histories as a list
of types:

T̂ ime = T̂ ype
∗

T̂ ype = Lam+ {FALSE, VOID, . . .}

In addition to the innate advantages of defining these types
separately from abstract values, it is necessary in the case
of closures. An abstract closure includes a binding environ-
ment, which would introduce recursion into the state-space
should these bindings themselves include closures. A syn-
tactic lambda is precise enough to represent a type, and re-
moving environments from their closures, we reduce each
abstract value in a given flow-set to its type using a new
function T̂ :

T̂ : D̂ → P(T̂ ype)

Function application produces a timestamp for its bindings
comprising the full list of evaluated arguments, each reduced
to their types:

âlloc((v̂, (d̂1 . . . d̂j), l, ρ̂, σ̂, κ̂, t̂)) = (T̂ (d̂1) . . . T̂ (d̂j))

When a flow-set is returned its binding is differentiated by a
timestamp containing the types of the returned flow-set:

âlloc(((prim op ae1 . . . aej), ρ̂, σ̂, (kont . . . t̂κ), t̂))

= (T̂ (δ̂(op, (Â(ae1, ρ̂, σ̂) . . . Â(aej , ρ̂, σ̂)))))

âlloc(((set! x ae), ρ̂, σ̂, (kont . . . t̂κ), t̂))

= ({VOID})

âlloc((ae, ρ̂, σ̂, (kont . . . t̂κ), t̂))

= (T̂ (Â(ae, ρ̂, σ̂)))

There is no need for continuations to contain a saved times-
tamp:

âlloc(((let (x e1) e2), ρ̂, σ̂, κ̂, t̂)) = ()

âlloc(((ae . . .), ρ̂, σ̂, (kont . . . t̂κ), t̂)) = ()

4.5 Polymorphic Splitting
Polymorphic splitting is a kind of compromise between 0-
CFA and k-CFA where the length of each timestamp varies
on a per-function basis. Lambdas which have been let-bound
are analyzed with a history length 1-greater than that of their
parent expression. Because the number of nested let-forms
possible is bounded by the length of the program, k is also
bounded. We again define timestamps as lists of labels:

t̂ ∈ T̂ ime = Label∗

In polymorphic-splitting, let-bound expressions are ana-
lyzed with the current timestamp, appended with a label
unique to the let-expression. When a closure is produced,
the current timestamp is included, so a let-bound lambda
will carry with it the timestamp of the let-form appended
with a label referencing that point in the program. When a
let-bound variable is referenced, any timestamps returned
have this let-form label changed for a label specific to the
exact syntactic variable reference. In this way, a let-bound



lambda referenced 3 times will be analyzed 3 times with val-
ues contours specific to each of these points of reference. By
contrast, an inline or lambda-bound lambda will be analyzed
at the timestamp in its closure, without any labels being re-
placed. This causes it to inherit the timestamp at its closure
creation. [31]

To achieve this heuristic for timestamp-length in our se-
mantics we modify both the atomic-expression evaluator and
the allocation function.

Â(x, (e, ρ̂, σ̂, κ̂, t̂)) = σ̂(ρ̂(x))

Â(lam[let], (e
l, ρ̂, σ̂, κ̂, t̂)) = {〈lam, ρ̂, t̂ : l〉}

Â(lam, (e, ρ̂, σ̂, κ̂, t̂)) = {〈lam, ρ̂, t̂〉}

Here, lam[let] indicates that lam is let-bound in the program.
Closures are modified upon access to differentiate based on
the lexical point of reference.

Â(x[let], (el, ρ̂, σ̂, κ̂, t̂))
= {〈elλλ , ρ̂λ, t̂λ[lλ/l]〉 | 〈e

lλ
λ , ρ̂λ, t̂λ〉 ∈ σ̂(ρ̂(x))}

∪ {b̂asic | b̂asic ∈ σ̂(ρ̂(x))}

b̂asic ∈ B̂asic = {TRUE, FALSE, VOID, . . .}

Functions are analyzed using the context stored in their clo-
sure.

âlloc((〈(λ (x1 . . .) e), ρ̂λ, t̂λ〉, (d̂1 . . .), l, ρ̂, σ̂, κ̂, t̂))
= t̂λ

The previous timestamp can be resurrected when we return.

âlloc(((let (x e1) e2), ρ̂, σ̂, κ̂, t̂)) = t̂

âlloc(((ae . . .), ρ̂, σ̂, (kont . . . t̂κ), t̂)) = t̂κ

âlloc(((prim op ae . . .), ρ̂, σ̂, (kont . . . t̂κ), t̂)) = t̂κ

âlloc(((set! x ae), ρ̂, σ̂, (kont . . . t̂κ), t̂)) = t̂κ

âlloc((ae, ρ̂, σ̂, (kont . . . t̂κ), t̂)) = t̂κ

4.6 Continuation sensitivity
This analysis is an oddity we implemented while trying to
model call-sensitivity in CPS. While our Call+Return sen-
stitive analysis uses the single return-point, which reflects
the location of the continuation’s callsite in CPS, this anal-
ysis uses the call-sites a value would return through. We
present this analysis as a further demonstration of the ease
with which an analysis designer can capture an idea within
this framework. It remains reflective of the broad applicabil-
ity of an allocation-based approach, even if it does not reflect
the behavior of k-CFA on a CPS language.

At function application, we extend our current timestamp
as we do for call+return sensitivity:

âlloc((v̂, (d̂ . . .), l, ρ̂, σ̂, κ̂, t̂)) = take−left(k, l : t̂)

The difference with this analysis is in the maintainance of
return-points within the continuation’s timestamp. When a
value is returned, we extend the current timestamp with the
stored timestamp and remove all but the first k labels:

âlloc(((prim op ae . . .), ρ̂, σ̂, (kont . . . t̂κ), t̂))

= take−left(k, append(t̂κ, t̂))

âlloc(((set! x ae), ρ̂, σ̂, (kont . . . t̂κ), t̂))

= take−left(k, append(t̂κ, t̂))

âlloc((ae, ρ̂, σ̂, (kont . . . t̂κ), t̂))

= take−left(k, append(t̂κ, t̂))

When a new continuation is created, there are not yet any
return-points we need to cross through before it can be re-
stored, so we give fresh continuations the empty timestamp:

âlloc(((let (x e1) e2), ρ̂, σ̂, κ̂, t̂)) = ()

Each time a function invokation is reached, the timestamp in
the current continuation is extended with a label l−r created
by appending a −r onto the end of the label l:

âlloc(((ae . . .), ρ̂, σ̂, (kont . . . t̂κ), t̂))

= take−left(k, append(t̂κ, l−r))

This is so the new label is denoted as a return through callsite
l and is not confused as a call from l. We right-append
and keep only the first k labels we pass through because
any further callsites are guaranteed to be off the end of our
maximum history once a value is returned.

5. Comparison
Our Racket implementation is a fairly concise module which
accepts already desugared benchmarks for analysis. It is
implemented as a simple worklist algorithm expanding its
search through a program’s abstract state space until a fixed-
point is reached. In addition to what we’ve described the
analysis supports global and per-point widening along with
abstract garbage collection [17] [20]. These additions are
straightforward ways of improving speed and precision
which are entirely orthogonal to the changes we discuss in
this paper.

As it turns out, there are programs which will differen-
tiate our implementations of call-sensitivity to favor any of
the three. For example, given the following program, track-
ing only calls performs better than tracking both calls and
returns. This is because the last callsite (id 123) as opposed
to (id “abc′′) determines the value returned to v. The last
return-point x is the same in both cases and so does not.

(let (id (lambda (x) x))

(let (f (lambda (g)

(let (v (g))

v)))



(let (_ (f (lambda () (id 123))))

(f (lambda () (id "abc"))))))

The following program performs best under the stack-
based model of program context. This is because an interme-
diate call to (addhist) obfuscates our timestamp unneces-
sarily while tracking calls or returns. By contrast, the stack-
based method resurrects the timestamp used just before the
call to (addhist) upon return.

(let (addhist (lambda () (prim void)))

(let (f (lambda (a) (let (_ (addhist))

(let (v a) v))))

(let (_ (f 123))

(f "abc"))))

6. Conclusion
We have presented an approach to producing a factored ab-
stract interpretation that can be tuned for a specific kind of
polyvariance by an abstract allocation policy. We have futher
presented three different interpretations of k-CFA and show
how easily they can be expressed exclusively as a change to
this policy. In general, our approach allows different forms
of polyvariance to be compared and casts light on their re-
spective behaviors. It also exposes a space of sound behav-
iors, ready for exploration.

The ease with which new allocation policies can be ex-
pressed, and new polyvariant analyses implemented, makes
our approach especially appealing. It allows for rapid proto-
typing of novel strategies within an existing framework. New
ideas can be quickly implemented and tested. Widely differ-
ing policies can be used for the same benchmarks and more
directly compared. In the future, our approach may spur in-
novation in this research space by making it easy to examine
novel allocation strategies.

This material is based on research sponsored by DARPA
under agreement number FA8750-12-2-0106 (Automated
Program Analysis for Cyber Security). The U.S. Govern-
ment is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright no-
tation thereon.

References
[1] Agesen, O. The cartesian product algorithm: Simple and pre-

cise type inference of parametric polymorphism. In Proceedings
of ECOOP 1995 (1995), pp. 226.

[2] Besson, F. CPA beats ∞-CFA. Formal Techniques for Java-like
Programs, July 2009. p. 7.

[3] Cousot P. The calculational design of a generic abstract
interpreter. NATO ASI Series F. Broy, M. and Steinbrüggen,
R. (eds.): Calculational System Design. 1999. pp. 421-506.

[4] Cousot P. Types as Abstract Interpretations. Symposium on
Principals of Programming Languages. 1997. pp. 316-331.

[5] Cousot P. and Cousot R. Abstract Interpretation: a unified
lattice model for static analysis of programs by construction

or approximation of fixpoints. Symposium on Principals of
Programming Languages. 1977. pp. 238-252.

[6] Cousot P. and Cousot R. Systematic design of program
analysis frameworks. Symposium on Principals of Programming
Languages. 1979. pp. 269-282.

[7] Felleisen, M., Findler R. and Flatt, M. Semantics Engineering
with PLT Redex. August 2009.

[8] Felleisen, M. and Friedman, D. P. A calculus for assignments
in higher-order languages. Proceedings of the Symposium on
Principles of Programming Languages, page 314. 1987.

[9] Jagganathan, S, and Weeks, S. A Unified Treatment of Flow
Analysis in Higher-Order Languages. ACM Symposium on
Principles of Programming Languages, January 1995. ACM
Press. pp.393-407.

[10] Jones, N.D. A flexible approach to interprocedural data
flow analysis and programs with recursive data structures.
Symposium on Principles of Programming Languages. 1982.
pp. 66-74.

[11] Jones, N.D. and Muchnick, S. Flow analysis of lambda
expressions (preliminary version). Proceedings of the 8th
Colloquium on Automata Languages and Programming. 1981.
pp. 114-128.

[12] Midtgaard, J. Control-Flow Analysis of Functional Programs.
ACM Computing Surveys, Vol. 44. June 2012.

[13] Midtgaard, J. and Jensen, T. A Calculational Approach to
Control-flow Analysis by Abstract Interpretation. SAS, volume
5079 of Lecture notes in Computer Science. 2008. pp. 347-362.

[14] Midtgaard, J. and Van Horn, D. Subcubic Control Flow
analysis Algorithms. Higher-Order and Symbolic Computation.
May 2009.

[15] Midtgaard, J. and Jensen, T. Control-ow analysis of function
calls and returns by abstract interpretation. International
Conference on Functional Programming. 2009.

[16] Might, M. Abstract interpreters for free. Static Analysis
Symposium. 2010. pp. 407-421.

[17] Might, M. Environment Analysis of Higher-Order Languages.
Ph.D. Dissertation. Georgia Institute of Technology. 2007.

[18] Might, M. Logic-Flow Analysis of Higher-Order Programs.
Principals of Programming Langauges. January 2007. pp. 185-
198.

[19] Might, M. and Shivers, O. Environment analysis via ∆CFA.
Symposium on the Principals of Programming Languages.
January 2006. pp. 127-140.

[20] Might, M. and Shivers, O. Improving flow analyses via
ΓCFA: Abstract garbage collection and counting. International
Conference on Functional Programming. September 2006. pp.
13-25.

[21] Might, M. and Manolios, P. A posteriori soundness for
non-deterministic abstract interpretations. 10th International
Conference on Verification, Model Checking and Abstract
Interpretation (VMCAI 2009). Savannah, Georgia, USA.
January, 2009. pp. 260-274.

[22] Milanova, A., Rountev A., and Ryder, B.G. Parameterized ob-



ject sensitivity for points-to analysis for Java. ACM Transaction
on Software Engineering and Methodology. 2005. pp. 1-41.

[23] Nielson, F., Nielson, H.R. and Hankin, C. Principals of
Program Analysis. Springer-Verlang. 1999.

[24] Palsberg, J. and Pavlopoulou, C. From Polyvariant Flow
Information to Intersection and Union Types. Principals of
Programming Languages. 1998. pp. 197-208.

[25] Shivers, O. Control-flow analysis in Scheme. Programming
Language Design and Implementation. June 1988. pp. 164-174.

[26] Shivers, O. Control-Flow Analysis of Higher-Order Lan-
guages. PhD dissertation. School of Computer Science,
Carnegie-Mellon University, Pittsburgh, Pennsylvania, May
1991. Technical Report CMUCS-91-145.

[27] Smaragdakis, Y., Bravenboer M., and Lhotak, O. Pick your
contexts well: understanding object-sensitivity. Proceedings
of the 38th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. New York, NY, USA:
ACM, 2011, pp. 1730.

[28] Van Horn, D. and Mairson, G.H. Deciding k-CFA is com-
plete for EXPTIME. International Conference on Functional
Programming. September, 2008. pp. 275-282.

[29] Van Horn, D. and Mairson, G.H. Flow Analysis, Linearity,
and PTIME. Static Analysis Symposium 2008. pp. 255-269.

[30] Van Horn, D. and Might, M. Abstracting Abstract Machines.
International Conference on Functional Programming 2010.
Baltimore, Maryland. September, 2010. pp. 51-62.

[31] Wright, A. K. and Jagannathan, S. Polymorphic splitting:
An effective polyvariant flow analysis. ACM Transactions on
Programming Languages and Systems. January 1998, pages
166-207.


