
Meta-Meta-Programming
Generating C++ Template Metaprograms with Racket Macros

Michael Ballantyne
University of Utah

mballant@cs.utah.edu

Chris Earl
University of Utah
cwearl@cs.utah.edu

Matthew Might
University of Utah
might@cs.utah.edu

Abstract
Domain specific languages embedded in C++ (EDSLs) often
use the techniques of template metaprogramming and ex-
pression templates. However, these techniques can require
verbose code and introduce maintenance and debugging
challenges. This paper presents a tool written in Racket for
generating C++ programs, paying particular attention to the
challenges of metaprogramming. The code generator uses
Racket’s macros to provide syntax for defining C++ meta-
functions that is more concise and offers more opportunity
for error checking than that of native C++.

1. Introduction
Embedded domain specific languages (EDSLs) in C++ have
proven to be an effective way to introduce new programming
abstractions to fields like scientific computing. implement-
ing C++ EDSLs with a popular technique known as expres-
sion templates [16] requires many similar function defini-
tions and operator overloads. The code below shows part of
the implementation for the operators + and * from one such
EDSL.

template<typename LHS, typename RHS>

typename BinExprRetType<SumOp, LHS, RHS>::result

operator+(const LHS & lhs, const RHS & rhs) {

return binExpr<SumOp>(lhs, rhs);

}

template<typename LHS, typename RHS>

typename BinExprRetType<MultOp, LHS, RHS>::result

operator*(const LHS & lhs, const RHS & rhs) {

return binExpr<MultOp>(lhs, rhs);

}

The details of these implementations are beyond the
scope of this paper, but we need to produce this kind of
function for each operator in our EDSL, and they’re all quite
similar. In this case, each differs only by the symbol for the
operator (+, *) and the name of the class that implements it
(SumOp, MultOp). Expression template EDSL implementa-
tions often use C preprocessor macros to reduce this dupli-
cation [9, 15]. However, as we discuss in Section 3.4, pre-

processor macros scale poorly as our code generation needs
become more complex.

For the implementation of Nebo, an EDSL we’ve pub-
lished on previously [4, 5], we instead chose to implement
a code generator for C++ in Racket. It allows us to describe
the implementation of the interface functions once and sub-
sequently generate the C++ code for many operators. For ex-
ample, we write the following to generate both the interface
functions and expression template objects for the operators
+, *, and others besides:

(build-binary-operator ’SumOp ’+

(add-spaces ’operator ’+))

(build-binary-operator ’ProdOp ’*

(add-spaces ’operator ’*))

(build-binary-logical-operator ’AndOp ’&&

(add-spaces ’operator ’&&))

(build-unary-logical-function ’NotOp ’!

(add-spaces ’operator ’!))

(build-extremum-function ’MaxFcn ’> ’max)

Note that our EDSL provides several types of operator, each
with different syntactic rules. Our code generator allows
these operators to cleanly share much of their implementa-
tion.

Given that we use our code generator to eliminate repetion
in interface functions, it would be natural to also generate
other components of our EDSL implementation for which
the C++ code is difficult to understand and maintain. For
example, to provide syntax checking for our EDSL we use
template metaprogramming [14] to compute functions from
types to types, known as metafunctions. The C++ imple-
mentation of one such metafunction is shown in Figure 1.
Racket’s metaprogramming abilities allow us to write the
same metafunction through the following code:

(define/meta (join-location l1 l2)

[(’SingleValue ’SingleValue) ’SingleValue]

[(’SingleValue l) l]

[(l ’SingleValue) l]

[(l l) l])

This paper discusses the design and implementation of
our code generator. Specifically, our contributions are:

template<typename L1, typename L2 >

struct JoinLocation;

template< >

struct JoinLocation<SingleValue, SingleValue > {

SingleValue typedef result;

};

template<typename L >

struct JoinLocation<SingleValue, L > {

L typedef result;

};

template<typename L >

struct JoinLocation<L, SingleValue > {

L typedef result;

};

template<typename L >

struct JoinLocation<L, L > {

L typedef result;

};

Figure 1. C++ metafunction

• A strategy for generating C++ EDSL implementations
with a Racket code generator (Section 3). Our code gen-
erator is publicly available at https://github.com/
michaelballantyne/fulmar. It allows EDSL devel-
opers to use Racket as an expressive metaprogramming
language while EDSL users continue to write in C++. We
show that this approach makes iterative development of
EDSLs easier (Section 3.3).

• A EDSL in Racket that corresponds to C++ metafunc-
tions, with concise syntax and integration with our code
generation approach (Section 4). Syntactic correctness of
the definition and use of the metafunctions is checked at
Racket runtime as the C++ implementation of the EDSL
is generated. (Section 4.5). The syntax of the EDSL in
Racket elucidates the relationship between Scheme-style
pattern matching and C++ template metaprogramming
(Section 4.3).

• Discussion of the tradeoffs of using the Racket-based
code generator as opposed to preprocessor macros in
the context of expression template based C++ EDSLs
(Section 3.4).

2. Expression Templates
C++ provides limited means to transform code at compile
time through preprocessor macros and the template system.
While the template system was originally designed as a
generic programming mechanism, C++ programmers have
devised ways to use the object system and compile-time spe-

rhs <<= divX(interpX(alpha) * gradX(phi))

+ divY(interpY(alpha) * gradY(phi));

phi <<= phi + deltaT * rhs;

phi <<= cond(left, 10.0)

(right, 0.0)

(top || bottom, 5.0)

(phi);

Figure 2. Iteration of the solution to the 2D heat equation
with Nebo

cialization of generic code to achieve more general program
transformations. [16]. C++ objects can be used to implement
the abstract syntax tree of an embedded domain specific lan-
guage, while functions and overloaded operators that con-
struct those tree elements define its grammar and type sys-
tem. This technique is referred to as expression templates
(ET) for reasons we’ll see shortly.

2.1 Deforestation
As an example, consider pointwise addition of vectors:

std::vector<int> a, b, c, d;

d = a + b + c;

A straightforward way to implement such syntax in C++
would be to overload the + operator to loop over the vectors
it receives as arguments and construct a new vector with the
result. Given more than one instance of such an operator on
the right hand side of an assignment, however, this approach
allocates memory proportional to the size of the vectors for
each operator call.

Instead, each + operator call can construct an object with
an eval(int i) method that evaluates the operation at a
single index. The object is an instance of a templated class
parameterized by the types of its arguments, which may
be either std::vector or themselves represent parts of a
computation like the type of a + b above. The loop over
indices doesn’t happen until the = assignment operator is
invoked; it calls the eval method on the right hand side for
each index in turn and updates the vector on the left hand
side.

The templated classes for the objects representing a com-
putation are referred to as expression templates. This par-
ticular use of the delayed evaluation they offer corresponds
to the deforestation optimizations that Haskell compilers use
to remove temporaries from composed list functions [8]. Be-
cause the C++ compiler lacks such optimizations, C++ pro-
grammers pursuing high performance achieve the same ef-
fect with expression templates.

2.2 Accelerator Portability with Nebo
Another application of expression templates allows compi-
lation of a single code base for multiple architectures, in-

cluding accelerators like GPUs and Intel’s Xeon Phi [2]. Our
C++ EDSL, Nebo, is of this variety [4]. Figure 2 shows a
simple use of Nebo. Client code using Nebo is compiled with
variants for both CPU and GPU execution, with the decision
of which to use being delayed until runtime.

To implement accelerator portability, expression tem-
plate objects have parallel objects implementing the com-
putation on each device. For the deforestation example the
EDSL implementation might include SumOpEvalCPU and
SumOpEvalGPU classes. The initial expression template ob-
ject constructed by operators and representing the abstract
operator has methods that construct these parallel trees.
Once the assignment operation has selected a device on
which to execute the expression, it calls such a method to
obtain the appropriate code variant.

Expression templates for accelerator portability form an
extension of the technique used for deforestation. Use of an
EDSL handling deforestation might be limited to those com-
putations that most benefit from the optimization. When con-
sidering accelerator portability, however, the significant cost
of data transfer between accelerator devices and the CPU
means it is important to run every calculation on the acceler-
ator. Resultantly, the EDSL must be expressive enough to de-
scribe all the performance sensitive calculations in an appli-
cation. Such EDSLS need many syntactic objects and rules
to describe their combination. These rules are encoded in
the types of the interface functions or overloaded operators.
To extend the deforestation example to allow users to add
scalar values to vectors, we’d need to add additional over-
loads of the + operator for each ordering of types: int and
SumOp, SumOp and int, int and vector, and vector and
int. Combined with the variants we already had we’d need
as many as six implementations of the operator.

We also need many similar classes for the expression tem-
plate objects. Each different type of operator, like binary ex-
pressions of numbers, unary expressions of numbers, binary
expressions of booleans, or comparisons of numbers, re-
quires objects for the abstract operator that lacks knowledge
of its evaluation architecture, CPU evaluation, and GPU
evaluation, among others. The objects needed for each cate-
gory are similar but meaningfully different.

Implementing these variants becomes overwhelming in a
EDSL with many operators and many types of subexpres-
sions. Some elements of this repetitious code can be ab-
stracted away with C++ template metaprogramming, but for
a general solution we’ll turn to code generation in another
language with strong metaprogramming support: Racket.

3. Code Generation for C++ EDSLs
Generating code with Racket means we can use a full fea-
tured functional programming language for parts of our
metaprogramming, with first-class functions, pattern match-
ing, variadic functions, and a rich set of data structures we
missed when working with C preprocessor macros.

Code generation for our C++ EDSL presents a unique
set of requirements. The purpose of the EDSL is to offer
programmers new abstractions within C++ by transform-
ing the expressions they provide at C++ compile time, so
we can only use the code generator to produce the imple-
mentation of the language. Users of the language are deliv-
ered C++ header files containing the template metaprograms
that operate on expressions written the EDSL. Furthermore,
the EDSL integrates with runtime support code for mem-
ory management and threading maintained by C++ program-
mers. The C++ we generate needs to be human readable so
those programmers can understand and debug the interaction
of the EDSL with the code they maintain.

Because we’re generating C++ source code, we’re re-
sponsible for:

• Source code formatting for each C++ construct we gener-
ate. We need the resulting C++ to be readable, so we need
to carefully insert whitespace and line breaks to match
programmers’ expectations for what well-formatted code
looks like. We tried several C++ pretty-printers, but
found that when generating code from scratch it worked
best to implement this ourselves.

• A well-thought-out representation of each piece of C++
syntax we use. We’d like the code we write with our
tool to be high level and easy to understand, so we build
syntax constructors as a tower of little languages, with
specialized constructors for each complex pattern in our
C++ code.

To fill these needs, our implementation builds applica-
tion and language specific constructs on top of a mostly
language-agnostic core for pretty printing based on specu-
lative string concatenation.

3.1 Pretty Printer
Our pretty printer transforms a tree of structures to a string.
We call the structures in the tree “chunks”. Our algorithm
is based on speculative concatenation: the speculative chunk
gives a default way of constructing a string from its sub-
elements along with an alternate that allows added line
breaks. If the string resulting from the default concatena-
tion doesn’t exceed the maximum line width, it’s accepted.
Otherwise the concatenator tries the alternate.

The pretty printer also needs to keep track of indention.
Because the pretty printer is composed of mutually recursive
functions, we use Racket’s parameterize to keep track of
the indention state in a particular subtree via dynamically
scoped variables. It is also slightly language specific in order
to handle block comments and indention within them, again
with dynamic scope tracking the state within a subtree of
chunks.

Our algorithm gets the job done, but it isn’t ideal. In some
cases a long series of default and alternate concatenations are
attempted to complete a single line. We’d like to investigate

(define (constructor name

params assigns . chunks)

(concat

name

(paren-list params)

(if-empty

assigns

(immediate space)

(surround

new-line

(constructor-assignment-list assigns)))

(apply body chunks)))

Figure 3. Implementation of constructor chunk

using the ideas of Wadler’s “A prettier printer” [17] in the
future.

3.2 Chunk Constructors
Chunk constructors construct trees of chunks for a particu-
lar textual or syntactic construct of the target language. For
example sur-paren surrounds its arguments in parenthe-
ses. Next, paren-list builds on top of sur-paren, comma
separating its arguments and placing them within parenthe-
ses. Finally constructor handles a constructor definition
inside a C++ class, and uses paren-list to handle the list
of constructor arguments. Figure 3 shows the implementa-
tion of constructor as an example. Each of the functions
called in the definition is a more basic chunk constructor.

3.3 Iterative Development
The C++ implementing Nebo is generated by the highest
level chunk constructors, and they abstract the patterns found
throughout the EDSL implementation to make sure we don’t
repeat ourselves. For example, each type of EDSL syntax
requires implementations of the parallel objects discussed
earlier: abstract operator, CPU execution, GPU execution,
etc. The set of objects required for each ET is centrally
defined in one chunk constructor. As a result, adding a new
architectural target for all ET objects has a limited impact on
the code base.

The impact of changes to the core C++ interfaces is sim-
ilarly limited. When the arguments to the eval methods
shared by every ET object need to change, the change can
be made once rather than once for each class. This frees us
to make larger changes to the structure of our EDSL imple-
mentation more quickly as requirements evolve.

3.4 Comparison with Preprocessor Macros
Most C++ EDSLs use function-like C preprocessor macros
to satisfy some of the same needs our code generator fills.
Each choice has tradeoffs.

One feature of our EDSL needed variants of an ET object
for each arity of function we support, and we were look-
ing at supporting functions of up to 10 arguments. Our so-

lution was initially implemented with preprocessor macros
and we had a function-like macro implementing the basic
ET interface that took 35 arguments, each being a code frag-
ment. Crucially, C preprocessor macros lack lambda expres-
sions and scope for macro names. The Boost Preprocessing
library [1] offers a more complete language by building an
interpreter inside the preprocessor language. However, our
requirements didn’t tie us to the preprocessor so we’re hap-
pier with Racket.

Our approach is also in some ways limiting. We’re adding
an unfamiliar language to learn and a new tool to run for
our EDSL developers, which has limited the accessibility
of Nebo’s codebase for programmers trained only in C++.
At the same time, generating well formatted C++ without
a maze of preprocessor directives has improved our imple-
mentation’s readability.

4. Embedding Metafunctions in Racket
When we switched from preprocessor macros to Racket
our use of the code generator mimicked the approach we’d
used with the preprocessor. By taking advantage of Racket’s
macros, we can do better. Other authors have noted that
partial specialization of C++ templates is a form of pattern
matching. In this section we introduce syntax for our code
generator that looks like pattern matching on structure types
but generates C++ metafunctions that use the pattern match-
ing provided by partial specialization.

4.1 Metafunctions and Partial Specialization in C++
C++ metafunctions are a use of C++ templates to per-
form compile-time computation on types [14]. For exam-
ple, the code in Figure 4 performs addition on Peano num-
bers embedded in the type system by struct Zero and
struct Succ.

The first definition of Add is called the base template.
Its template parameters define the number of parameters the
metafunction receives. The remaining definitions are partial
specializations of the base template, where the types given in
angle brackets following the name of the struct specify the
combination of template arguments for which this special-
ization should be used.

A similar form of computation can be implemented with
pattern matching on structures in Racket. Figure 5 shows
zero, successor, and addition constructs implemented in such
a way. When writing metafunctions in our code generator,
we’d like to write syntax similar to Racket’s structure pattern
matching but generate C++ code like that of Figure 4.

4.2 define/meta
We extended our code generator with a new syntactic form,
define/meta. Figure 6 shows Racket code written with
define/meta that generates the C++ shown in Figure 4.

define/meta can be used to define two types of entities:
meta-structs and meta-functions. Meta-structs correspond to

struct Zero {} ;

template <typename N>

struct Succ {} ;

template <typename N, typename M>

struct Add {} ;

template<typename NMinusOne, typename M>

struct Add<Succ<NMinusOne>, M> {

typename Add<NMinusOne,

Succ<M> >::result typedef result;

};

template <typename M>

struct Add<Zero, M> {

M typedef result;

};

Figure 4. Add metafunction in C++

(struct zero () #:transparent)

(struct succ (n) #:transparent)

(define/match (add m n)

[((succ n-minus-one) m) (add n-minus-one

(succ m))]

[((zero) m) m])

Figure 5. Add with Racket structure types

(definitions

(define/meta zero)

(define/meta succ (n))

(define/meta (add m n)

[((succ n-minus-one) m) (add n-minus-one

(succ m))]

[((zero) m) m]))

Figure 6. Add metafunction with define/meta

C++ structures with only a base template and no definitions
in the structure body. These are essentially compile-time
named tuples. Meta-functions correspond to C++ structures
that act as functions from types to types. Our convention is
that such structures indicate their return value by defining
the member result as a typedef, as Add does in Figure 4.

define/meta has three usages to produce these types of
entities:

• (define/meta name)

This form defines a meta-struct with no fields. The name
is converted to a generated identifier appropriate for a

C++ type by capitalizing the first letter of each hyphen-
separated word and removing hyphens.

• (define/meta name (fields ...))

Like the previous form, but for a structure with fields.
The names of the fields are transformed like the meta-
struct name for the generated C++ code.

• (define/meta (name args ...)

[(patterns ...) result-expression]

...)

This form defines a meta-function. Each clause includes
a set of patterns to match against the arguments, and
the result-expression describes the type that will be
given by the result field of the generated C++ struct.
Pattern variables defined as part of the patterns ... in
a clause are bound in the of the result-expression.
Otherwise, the result-expression is a normal expres-
sion context, so any functions or macros defined by our
code generator are available. The next section describes
the rules for pattern matching.

These forms don’t directly generate C++ code, but rather
bind the given name to a Racket struct with information
about the meta-struct or meta-function that can later be used
to generate C++ code for their declaration, definition, or
use. The struct is also directly callable using the procedure
property of Racket structs [6], producing chunks for a ref-
erence to the meta-struct or meta-function. Section 4.4 de-
scribes the definitions syntax used to generate the code
for declarations and definitions. Appendix A provides an im-
plementation of a lambda calculus interpreter in C++ tem-
plates via define/meta and definitions as an extended
usage example.

4.3 Pattern Matching
The format of the patterns used in meta-function definitions
is defined by the following grammar, where structname

is an identifier bound to a meta-struct definition, identifier
is any Racket identifier, symbol is any Racket symbol, and
string is any Racket string.

pattern := (structname pattern1 . . .)

| identifier

| symbol

| string

|

Symbols and strings indicate literal C++ types and match
only a symbol or string with the same string value. Meta-
struct patterns allow further matching in the arguments to
the meta-struct. Finally, identifiers bind pattern variables.
If an identifier appears more than once in the patterns for

a clause, each instance of the identifier refers to the same
pattern variable. The clause will only match for arguments
where the same C++ type would be bound to each use of the
identifier. An underscore indicates a pattern that will match
anything but that does not bind a pattern variable.

Unlike the semantics of match in Racket or other match
forms in Scheme dialects, the order of clauses in a meta-
function definition doesn’t matter. Rather than resolving sit-
uations where more than one pattern matches by selecting
the first, C++ and thus meta-functions choose the most spe-
cific. For the limited C++ we allow in our restricted meta-
functions, we can understand pattern A to be more specific
than pattern B with respect to a particular input if the pattern
for B has non-literal values wherever the pattern for A does,
but the pattern for A has literal values in at least one place B
has non-literal values.

This is only a partial ordering; as such, there may be cases
where there are multiple matching templates with no order
between them. Such a circumstance constitutes a user error
in the definition and use of the template. We don’t yet detect
that error in our code generator, but we expect to be able to
in the future.

4.4 Definitions Syntax
As mentioned before, define/meta doesn’t actually emit
C++ declarations and definitions for meta-structs and meta-
functions. Meta-functions can reference each other, so we
might not have all the information we need to generate
their code until a group of them have been defined. The
definitions syntactic form is responsible for ordering the
declarations and definitions of each meta-function and meta-
struct defined or referenced as a sub-form. Figure 6 includes
a simple example of its use.

definitions is implemented as a macro that uses
Racket’s local-expand to macro expand subforms before
processing [7]. This design choice allows for later syntactic
extension; if an even higher level syntactic form expands to
define/meta forms, it will work with definitions.

4.5 Catching Errors
Our meta-language allows us to catch some errors at code
generation time that we couldn’t previously. Specifically,
if we try to reference an invalid meta-struct in the pattern
match or result-expression, or an invalid meta-function in the
result-expression, we’ll receive an error at Racket runtime
indicating that the identifier is not bound. If we misspell
succ as suc in the pattern on line 5 of Figure 6, Racket will
produce the following error:

suc: unbound identifier in module

in: suc

Similarly, we’ll receive an error if we refer to a meta-
struct or meta-function with the wrong number of argu-
ments. If we replace (succ m) with simply (succ) on line
6 of the same example, we receive this error:

meta-struct Succ: arity mismatch;

the expected number of arguments does

not match the given number

expected: 1

given: 0

arguments:

If we didn’t catch these errors in our code generator
they’d be expressed as template expansion errors at C++
compile time.

5. Related Work
Template metaprogramming and expression templates are
now nearly two decades old, and there have been many
previous efforts to make them more useful and easier to work
with. The Boost MPL and Proto libraries are of particular
note. Boost MPL [10] offers a variety of algorithms and data
structures for template metaprogramming. Boost Proto [12]
builds on MPL to allow users to specify and use expression
template EDSLs based on a grammar, all at compile time.

Porkoláb and Sinkovics [13] developed a compiler for
a subset of Haskell that produces C++ template metapro-
grams. The compiler supports a functional core including
lazy evaluation, currying, recursion, and lambda expres-
sions. It also allows the functions written in Haskell to inter-
operate with metafunctions written directly in C++. While
their approach, like ours, substantially reduces the lines of
code required to implement metafunctions, their choice of
abstractions leads to increased template recursion depth and
compilation time compared to native implementations. In
contrast our code generator improves upon native template
code only in syntax and error checking and not in choice of
abstraction, but doesn’t damage the performance of metapro-
grams. It also integrates into the rest of our code generator
for expression templates.

There have also been a number of approaches to accel-
erator portability with expression templates. Wiemann et al.
[18] present an approach that uses expression templates but
where the ET tree is walked at runtime and the information
within is used to generate CUDA C source code that is then
compiled by runtime use of the compiler. Their use of run-
time code generation was motivated by the limited support
the CUDA C++ compiler offered for templates at that time.
Chen et al. [3] expanded upon this approach. To our knowl-
edge, Nebo is the first EDSL to use expression templates for
portability between accelerators and CPUs without requiring
runtime code generation.

6. Future Work
Much of Nebo is still generated by code written in the style
of the preprocessor macros from which it was ported. Future
work centers around further syntactic extension of our code
generator to improve Nebo’s maintainability and reduce the
cost of developing C++ EDSLs for other domains using the
same techniques.

Some of Nebo’s language features are implemented by
translation to simpler features. For example, Nebo includes
a pointwise cond implemented by transformation to expres-
sion template objects with the functionality of if. We’d like
to be able to express that transformation with syntax akin to
Scheme’s syntax-rules.

We’d also like to further take advantage of our syntax
for template metaprogramming to improve error checking
at C++ compile time. Boost MPL [10] includes metafunc-
tions to make compile-time assertions and ensure that fail-
ure messages, written as type names, are visible in the C++
compiler’s error output. It should be possible to automati-
cally add these static assertions to our metafunction imple-
mentations based on type annotations in the Racket syntax.
Users of our EDSL could receive better error messages when
they misuse syntax without adding an undue burden on us as
EDSL implementors.

More ambitiously, we’d like to generate template metapro-
gramming boilerplate for C++ EDSL implementations from
a high-level specification of the grammar and type rules of
the EDSL.

7. Conclusion
We’ve found that our code generator simplifies the task of
maintaining Nebo. The code generation approach avoids
the choice between twin pitfalls: swaths of repetitive code
or inscrutable preprocessor macros. Whereas preprocessor
macros limited our ability to introduce abstractions, Racket
allows us to create new syntax for frequently recurring pat-
terns. It also lets us produce well-formatted C++ that is (rela-
tively) easy to debug and that integrates well with supporting
library code.

8. Acknowledgements
Many thanks to Will Byrd, Michael Adams, and Celeste Hol-
lenbeck for their helpful feedback on our ideas and extensive
comments on our presentation in earlier drafts.

This material is based upon work supported by the Na-
tional Science Foundation under Grant No. 1337145.

References
[1] Boost preprocessing library. URL http://www.boost.

org/doc/libs/1_56_0/libs/preprocessor/doc/

index.html.

[2] Intel Xeon Phi product family. URL http://www.

intel.com/content/www/us/en/processors/xeon/

xeon-phi-detail.html.

[3] J. Chen, B. Joo, W. Watson, and R. Edwards. Automatic of-
floading C++ expression templates to CUDA enabled GPUs.
In Parallel and Distributed Processing Symposium Workshops
PhD Forum (IPDPSW), 2012 IEEE 26th International, pages
2359–2368, May 2012. doi: 10.1109/IPDPSW.2012.293.

[4] C. Earl. Introspective pushdown analysis and Nebo. PhD
thesis, University of Utah, 2014.

[5] C. Earl and J. Sutherland. SpatialOps documentation,
2014. URL http://minimac.crsim.utah.edu:8080/

job/SpatialOps/doxygen/.

[6] M. Flatt. Creating languages in Racket. Queue, 9(11):21:20–
21:34, Nov. 2011. doi: 10.1145/2063166.2068896.

[7] M. Flatt, R. Culpepper, D. Darais, and R. B. Findler. Macros
that work together. Journal of Functional Programming, 22:
181–216, 3 2012. doi: 10.1017/S0956796812000093.

[8] A. Gill, J. Launchbury, and S. L. Peyton Jones. A short cut to
deforestation. In Proceedings of the Conference on Functional
Programming Languages and Computer Architecture, FPCA
’93, pages 223–232, New York, NY, USA, 1993. ACM. doi:
10.1145/165180.165214.

[9] G. Guennebaud and B. J. and others. Eigen v3.
http://eigen.tuxfamily.org, 2010.

[10] A. Gurtovoy and D. Abrahams. Boost MPL library (2004).

[11] M. Might. C++ templates: Creating a compile-
time higher-order meta-programming language.
http://matt.might.net/articles/c++-template-meta-
programming-with-lambda-calculus/.

[12] E. Niebler. Proto: A compiler construction toolkit for DSELs.
In Proceedings of the 2007 Symposium on Library-Centric
Software Design, pages 42–51. ACM, 2007.

[13] Z. Porkoláb and Á. Sinkovics. C++ template metaprogram-
ming with embedded Haskell. In Proceedings of the 8th Inter-
national Conference on Generative Programming & Compo-
nent Engineering (GPCE 2009), ACM, pages 99–108, 2009.

[14] T. Veldhuizen. Template metaprograms. C++ Report, 7(4):
36–43, 1995.

[15] T. Veldhuizen. Blitz++ users guide, 2006.

[16] T. L. Veldhuizen. Expression templates. C++ Report, 7(5):
26–31, June 1995. ISSN 1040-6042. Reprinted in C++ Gems,
ed. Stanley Lippman.

[17] P. Wadler. A prettier printer. The Fun of Programming,
Cornerstones of Computing, pages 223–243, 2003.

[18] P. Wiemann, S. Wenger, and M. Magnor. CUDA expression
templates. In WSCG Communication Papers Proceedings
2011, pages 185–192, Jan. 2011. ISBN 978-80-86943-82-4.

A. Lambda Calculus Interpreter with define/meta
As a usage example of our Racket EDSL, we adapt the lambda calculus interpreter implemented in C++ templates from Might
[11].

A.1 With define/meta
(definitions

; structs

(define/meta m-lambda (name body))

(define/meta app (fun arg))

(define/meta ref (name))

(define/meta lit (t))

(define/meta emptyenv)

(define/meta binding (name value env))

(define/meta closure (lam env))

; functions

(define/meta (env-lookup name env)

[(name (binding name value env)) value]

[(_ (binding name2 value env)) (env-lookup name env)])

(define/meta (m-eval exp env)

[((lit t) _) t]

[((ref name) _) (env-lookup name env)]

[((m-lambda name body) _) (closure (m-lambda name body) env)]

[((app fun arg) _) (m-apply (m-eval fun env)

(m-eval arg env))])

(define/meta (m-apply proc value)

[((closure (m-lambda name body) env) _)

(m-eval body (binding name value env))])

A.2 Generated C++
template<typename Name, typename Body >

struct MLambda {};

template<typename Fun, typename Arg >

struct App {};

template<typename Name >

struct Ref {};

template<typename T >

struct Lit {};

struct Emptyenv {};

template<typename Name, typename Value, typename Env >

struct Binding {};

template<typename Lam, typename Env >

struct Closure {};

template<typename Name, typename Env >

struct EnvLookup;

template<typename Exp, typename Env >

struct MEval;

template<typename Proc, typename Value >

struct MApply;

template<typename A, typename B >

struct MEqual;

template<typename Name, typename Value, typename Env >

struct EnvLookup<Name, Binding<Name, Value, Env > > { Value typedef result; };

template<typename Gensym7, typename Name2, typename Value, typename Env >

struct EnvLookup<Gensym7, Binding<Name2, Value, Env > > {

typename EnvLookup<Gensym7, Env >::result typedef result;

};

template<typename T, typename Gensym8 >

struct MEval<Lit<T >, Gensym8 > { T typedef result; };

template<typename Name, typename Gensym9 >

struct MEval<Ref<Name >, Gensym9 > {

typename EnvLookup<Name, Gensym9 >::result typedef result;

};

template<typename Name, typename Body, typename Gensym10 >

struct MEval<MLambda<Name, Body >, Gensym10 > {

Closure<MLambda<Name, Body >, Gensym10 > typedef result;

};

template<typename Fun, typename Arg, typename Gensym11 >

struct MEval<App<Fun, Arg >, Gensym11 > {

typename MApply<typename MEval<Fun, Gensym11 >::result,

typename MEval<Arg, Gensym11 >::result >::result typedef

result;

};

template<typename Name, typename Body, typename Env, typename Gensym12 >

struct MApply<Closure<MLambda<Name, Body >, Env >, Gensym12 > {

typename MEval<Body, Binding<Name, Gensym12, Env > >::result typedef result;

};

