
Implementing R7RS on an R6RS Scheme system

Takashi Kato
Bell ID B.V.

t.kato@bellid.com

Abstract
The Scheme language has three major standards; Revised5 Re-
port on the Algorithmic language Scheme (R5RS) standardised
in February 1998, the Revised6 Report on Algorithmic language
Scheme (R6RS) standardised in September 2007 and the Revised7

Report on the Algorithmic language Scheme (R7RS) standardised
in July 2013. R7RS, the latest standard of Scheme focuses on the
R5RS compatibility thus making R5RS implementations compli-
ant with it would not be so difficult. For R6RS implementations it
would be much more difficult; R7RS clearly says it is not a suc-
cessor of the R6RS. This paper describes the major differences be-
tween these two Scheme standards and how we made our Scheme
system, Sagittarius, compliant with both R6RS and R7RS, and
made it able to use both standards’ libraries seamlessly.

Keywords Scheme, R6RS, R7RS

1. Introduction
The Revised6 Report on Algorithmic language Scheme (R6RS) [2]
was completed in September 2007 with many new improvements
and a focus on portability. Some implementations were adopted for
R6RS. Some R6RS compliant implementations were created. In
July 2013, The Revised7 Report on Algorithmic language Scheme
(R7RS) [3] was completed with the focus on the Revised5 Report
on Algorithmic language Scheme (R5RS) [1] compatibility. Both
R6RS and R7RS are R5RS compatible, however these two stan-
dards are not totally compatible. Therefore, these two standards are
not able to share libraries nor scripts.

We have searched repositories on GitHub and Google Code with
keyword “R6RS” and “R7RS”, and repository language “Scheme”
in August 2014. On GitHub, there were 59 repositories related to
R6RS and 12 repositories related to R7RS. On Google Code, there
were 18 repositories related to R6RS and 8 repositories related to
R7RS.

Table 1: Number of Repositories
Keyword GitHub Google Code
R6RS 59 18
R7RS 12 8

[Copyright notice will appear here once ’preprint’ option is removed.]

The search result may contain implementations themselves and
may not contain repositories which do not have the keywords in
their description or searchable locations. So these are not accurate
numbers of repositories that provide libraries. However, it has only
been one year since R7RS standardised so we can expect the num-
bers of R7RS repositories to grow in near future. We have con-
cluded that it is important to support the R7RS on our Scheme sys-
tem, Sagittarius1 which base is R6RS, so that it would be beneficial
for future Scheme users. One of our goals is using R6RS libraries
in R7RS library form and vice versa. The following sections de-
scribe how we implemented the R7RS on top of the R6RS Scheme
system and how both R6RS and R7RS libraries can inter-operate.

2. Incompatibilities
R7RS lists numerous incompatibilities with R6RS. However, in-
compatibilities of procedures or macros are negligible because
both R6RS and R7RS support renaming import and export. So
we only need to define them for R7RS libraries. For example,
the R6RS let-syntax must be sliced into begin however
the R7RS one must create a scope. If an implementation has the
R6RS style let-syntax, then it is easy to implement the R7RS
style one with it. A possible implementation of the R7RS style
let-syntax would look something like the following:

Listing 1: R7RS style let-syntax

;; R7RS style let-syntax
(import

(rename (rnrs)
(let-syntax r6rs:let-syntax)))

(define-syntax let-syntax
(syntax-rules ()

((_ ((vars trans) ...) expr ...)
(r6rs:let-syntax ((vars trans) ...)

(let () expr ...)))))

Thus, the incompatibilities we need to discuss here are the lay-
ers that require deeper support of implementations such as library
forms and lexical notations.

2.1 Library forms
A library or module system is essential for modern programming
languages to allow programmers to reuse useful programs. How-
ever, the Scheme language did not provide this until the R6RS was
standardised. R6RS decided to call it a library system so we also
call it library system here. From Scheme language perspective, it
is quite a new concept. R7RS has also been standardised with a li-
brary system however it does not have the same form as the R6RS.

The R6RS has library keyword for library system whilst
the R7RS has define-library. The R6RS does not define

1 Sagittarius Scheme: https://bitbucket.org/ktakashi/sagittarius-scheme/

1 2014/11/7

mechanism to absorb incompatibilities between implementations
nor to check whether required libraries exist. Thus making a
portable library requires using unwritten rules. The library sys-
tem of the R7RS, on the other hand, does have the feature provided
by cond-expand keyword.

To demonstrate the difference between R6RS and R7RS library
forms, we show concrete examples of both. The library foo ex-
ports the variable bar and requires an implementation dependent
procedure.

2.1.1 R6RS library
The R6RS library system has rather fixed form. With the R6RS
library form, the library (foo) would look like the following:

Listing 2: R6RS library form

(library (foo)
(export bar)
(import (rnrs) (compat foo))

(define bar (compat-foo-proc)))

An R6RS library name can only contain symbols and a version
reference at the end of library name2, which must be a list of
numbers. Both export and import forms must be present only
once in respective order.

Here, the (compat foo) is a compatible layer of an
implementation-dependent procedure. R6RS does not have the
means to load implementation-specific code, however, there is a
de-facto standard supported by most of the R6RS implementations
listed on
http://www.r6rs.org/implementations.html. If the
implementation is Sagittarius Scheme, for example, then the file-
name of its (compat foo) library would be
compat/foo.sagittarius.sls which could contain some-
thing like the following:

Listing 3: Compatible layer

;; compat/foo.sagittarius.sls
(library (compat foo)

(export compat-foo-proc)
(import (sagittarius))

(define compat-foo-proc
implementation-dependent-procedure))

If the library wants to provide a default procedure, then it needs
to have compat/foo.sls as the default library file name. The
implementations first try to resolve the library file name with its
featured name then fall back to the default filename. This requires
the same number of compatible layer library files as implementa-
tions that the library would support. Moreover, it is not guaranteed
to be portable by the standard.

2.1.2 R7RS define-library
The R7RS library system provides much more flexibility than the
R6RS library system does. With the R7RS define-library
form, the (foo) library can be written something like the follow-
ing:

Listing 4: R7RS define-library form

(define-library (foo)
(import (scheme base))
(cond-expand

2 Version reference is optional and it is meant that user can choose a specific
version of using library. However, most of the implementations ignore it.

((library (bar))
(import (bar)))

(sagittarius
(import (sagittarius))
(define bar

implementation-dependent-procedure))
(else
(error "unsupported implementation")))

(export bar))

An R7RS library name can contain symbols and numbers, and
does not support library version references. Thus, (srfi 1) is
a valid library name whilst the R6RS one needs to be written
something like (srfi :1).

Moreover, unlike the R6RS library form, R7RS supports
more keywords, import, export, cond-expand, include,
include-ci and include-library-declarations. Us-
ing cond-expand makes the R7RS library system enables writ-
ing implementation-dependent code without separating library
files.

The above example does not show, however, using include or
include-ci, which enable including files from outside of the file
where libraries are defined. And include-library-declarations
includes files containing library declarations.

2.1.3 Export form
Besides those overall differences, the R6RS and R7RS have slightly
different syntax for the rename clause of export forms. The
R6RS export may have multiple renamed exporting identifiers
whilst the R7RS export only allows to have one renamed export-
ing identifier. So the R7RS form requires multiple rename clauses
to export more than one identifier with different names.

Listing 5: R6RS export

(export (rename (foo foo:foo)
(bar foo:bar)))

Listing 6: R7RS export

(export (rename foo foo:foo)
(rename bar foo:bar))

2.2 Lexical incompatibilities
Basic lexical representations for data types are shared between
R6RS and R7RS. However, the symbol escaping and the bytevector
notation from R6RS have been changed in R7RS3.

2.2.1 Symbols
A lot of R5RS implementations have a relaxed symbol reader that
allows symbols to start with “@” or “.” which R5RS does not
allow4. And some of de-facto standard libraries, such as SXML [4],
depend on it. However, R6RS does not allow identifiers to start with
these characters and mandates implementations to raise an error. So
writing those symbols requires escaping like the following:

3 Additionally, the R7RS supports shared data structure notations however
it is an error if program or library form contains it. Thus, only the read
procedure needs to support it and it can be defined in R7RS library. So we
do not discuss it here.
4 In R5RS, “it is an error” means implementations do not have to raise an
error so they may allow them as their extension. The same rule is applied to
R7RS. The R6RS has strict error condition. It specifies that which condition
implementations must raise.

2 2014/11/7

Listing 7: R6RS symbol escaping

\x2E;foo ;; -> .foo
\x40;bar ;; -> @bar

This does not break R5RS compatibility however it does break
de-facto standards and most R6RS implementations adopt the strict
lexical rule5. Therefore, non-R5RS symbols cannot be read by
these implementations.

R7RS has decided to allow those symbols so that implemen-
tations can use R5RS libraries without changing code. R7RS also
supports symbol escaping using vertical bars “|”. Hex scalar, the
same as R6RS supports, is also allowed inside of vertical bars. The
R7RS escaped symbol notation would look something like the fol-
lowings:

Listing 8: R7RS symbol escaping

|foo bar| ;; -> |foo bar|
|foo\x40;bar| ;; -> |foo@bar|

Hex escaped symbols are not required to be printed with
hex scalar even if the value is not a printable character such as
“U+007F”.

Unlike the R6RS, the R7RS hex escaping can only appear inside
of vertical bars6. Thus the two standards do not share the escaped
symbol notations.

2.2.2 Bytevectors
Since R6RS, Scheme can handle binary data structure called
bytevectors. The data structures can contain octet values which
are exact integers ranging from 0 to 28 − 1. Both standards support
it however the lexical notations are not the same. There is a Scheme
Requests For Implementation (SRFI) for binary data types, SRFI
4: Homogeneous numeric vector datatypes [5]. With this SRFI, the
binary data types are similar to bytevectors and can be written like
the following:

Listing 9: u8vector

#u8(0 1 255)

The SRFI defines more data types and their external representa-
tion such as 32 bit integer vectors. It also defines procedures such
as getters and setters.

R6RS has adopted its concept, but has not taken the name and
the external representation as it is. Instead, writing a bytevector
literal in R6RS looks like the following:

Listing 10: R6RS bytevector

#vu8(1 2 3)

To handle the other data types defined in the SRFI, the R6RS
provides conversion procedures which can treat a bytevector as if it
is a vector of other data type such as 32 bit integer. Take as exam-
ples bytevector-u32-ref and bytevector-u32-set!.
The first one can retrieve a 32 bit integer value from a bytevector
and the second one can set a 32 bit integer value into a bytevector.

R7RS, on the other hand, has decided to use the SRFI as it
is but only the octet values one. The lexical notation of R7RS
bytevector is the same as SRFI 4. Even though it has only one type
of bytevector, there is no conversion procedure provided.

5 Some implementations have strict reader mode and compatible mode.
6 Initially, the R7RS had both vertical bar notation and the R6RS style
hex scalar notation. But the R6RS compatible notation was removed.
http://trac.sacrideo.us/wg/ticket/304

3. Implemention strategy
There are several strategies to implement R7RS on R6RS. Here we
discuss handling different library forms and lexical notations.

3.1 Expander vs built-in
There are two portable R6RS expanders which provide the R6RS
library system, syntax-case and some procedures and the
macros. One is SRFI 72: Hygienic macros [6] and the other one
is Portable syntax-case (psyntax) [7]. These expanders pre-process
and expand libraries and macros. Knowing this gives us two pos-
sible solutions to implement the R7RS library system. One is to
build the R7RS library system on top of the R6RS library system
by transforming the R7RS define-library form to the R6RS
library form like these expanders do. We call this expander
style. The other one is for implementations to support the library
form as their built-in keyword. We call this built-in style. There are
advantages and disadvantages for both strategies.

Built-in style requires changing expanders or compilers. Thus,
it is the more difficult method to implement. However, it give us
more control so that it has the same expansion phase of existing
library systems. Thus, during a library compilation, it can refer the
same compile time environment as the expanders can.

Expander style is, on the other hand, easier to implement
and can keep the portable code intact. However, it may impact
the performance of loading libraries. It first needs to transform
define-library forms to library forms then underlying
R6RS expanders expand library forms and macros. Moreover,
transforming library forms may introduce phasing issues. Phasing
has been introduced for the R6RS library system with keyword for
to resolve macro-expansion time environment references. Psyntax
implicitly resolves the phase but the SRFI 72 expander mandates
explicit phasing. However, R7RS does not specify phasing because
it has only syntax-rules as its macro transformer and it does
not require phasing. It depends on underlying R6RS expanders,
however: the library form transformer would need to consider in
which phase imported libraries are used. Since R7RS does not
require phasing, the only case it would be a problem is that of pro-
cedural macros used in R7RS libraries. For example, suppose we
have the following R7RS library form.

Listing 11: Phasing

(define-library (foo)
(import (rnrs))
(begin

(define-syntax foo
(lambda (x)

(define-syntax name
(syntax-rules ()

((_ k)
(datum->syntax k

(string->symbol "bar")))))
(syntax-case x ()

((k)
(with-syntax ((def (name #’k)))

#’(define def ’bar)))))))
(export foo))

If underlying R6RS expanders have explicit phasing, then the
transformation of the define-library form to a library
form would need to traverse the macro foo to detect which phase
it requires. And it needs to add proper indication of the required
phase. One of the possible transformation results would be the
following:

3 2014/11/7

Listing 12: Possible transformation

(library (foo)
(export foo)
(import (for (rnrs) run expand))

(define-syntax foo
(lambda (x)

(define-syntax name
(syntax-rules ()

((_ k)
(datum->syntax k

(string->symbol "bar")))))
(syntax-case x ()

((k)
(with-syntax ((def (name #’k)))

#’(define def ’bar)))))))

Besides the phasing issue, R7RS also requires “include” mech-
anism as one of the keywords inside of define-library and
syntax. And this requires implementations to properly resolve file
paths. Suppose library foo includes “impl/bar.scm” which itself
includes “buzz.scm”. R7RS actually does not specify how this
nested include should be resolved however is seems natural that the
include form in “impl/bar.scm” should include “impl/buzz.scm”
just as the C’s #include preprocessor which resolves an included
file’s location from where its includer is located7.

Listing 13: Nested include

#|
File hierarchy
/
+ foo.sld

+ impl/
+ bar.scm
+ buzz.scm

+ buzz.scm
|#
;; foo.sld
(define-library (foo)

(import (scheme base))
(export bar)

(include "impl/bar.scm"))

;; impl/bar.scm
(include "buzz.scm")

;; impl/buzz.scm
(define bar ’bar)

;; buzz.scm
(define bar ’boo)

Suppose we have two files “buzz.scm”: one is inside of “impl”
directory and the other is in the same directory as “foo.sld” is lo-
cated. “impl/buzz” and “buzz.scm” define a binding barwhich has
values bar and boo, respectively. And a library foo exports the
binding bar. If implementations resolve this as the C’s #include
preprocessor does, then the bound value of bar would be a symbol
bar. However, if it does not, then it would be a symbol boo.

Implementing such a behaviour requires meta information of
source file locations and expression mappings, so R7RS library ex-
panders need to know where expressions are read from. Thus, the
expanders are required to traverse transforming expressions and

7 Implementations may decide to implement complete opposite way, that is
discouraging users to use nested include or include-ci syntax.

find include expressions to include nested inclusion properly.
However, finding these expressions also requires the analysis of
bindings. If the syntax include is shadowed or not imported,
then the expander should not resolve it as an include expres-
sion but a mere symbol. Therefore, it also needs to have binding
environment managing which the R6RS expander does. Moreover,
if a macro contains an include expression, this would also be
hard to implement in expander-style.

Listing 14: Macro with include

(define-syntax include-it
(syntax-rules ()

((_ file) (include file))))

In this case, the macro could be expanded anywhere and
the file location would depend on where it is expanded. Thus,
define-library expanders need to handle macros during
transforming so that they can resolve file locations properly.

3.2 Reader and writer modes
As we discussed, R6RS and R7RS have different symbol escaping
styles and lexical notations for bytevectors. It is not difficult to
support reading; supporting writing is more challenging. One of the
specific advantage of Lisp dialect languages is the read and write
invariance. Thus writing them in expected form is necessary.

One solution is to use #!. R6RS has the #!r6rs notation
so if a script has this, then implementations can choose R6RS
style writer. R7RS, on the other hand, does not define #!r7rs
notation and if implementations choose to strictly adhere to R7RS
then this would be an error. Therefore, switching reader or writer
mode by #! notation only works for R6RS scripts. Thus using
#! notation to switch mode without depending on implementation-
specific features requires the default mode of the reader and writer
to be R7RS.

Another solution is to detect library forms. When the reader find
define-library form, then it should switch to R7RS mode.
Doing this requires two-pass reading since a library form is one
S-expression. First the reader reads one expression and checks
whether or not it is a list whose first element is a define-library
symbol. If it is, then the reader needs to discard the expression and
re-reads it with R7RS mode. This only works for loading libraries
and reading expressions, and requires the reader to be able to han-
dle positioning. Writing the R7RS style symbols and bytevectors
requires something else.

Switching mode only works if reading and writing are done by
only one Scheme implementation. If more than one implementation
needs to share code or written S-expressions, then it will be a
problem. Suppose a server-client type application is running on
three implementations. The server is an R6RS and R7RS compliant
implementation and one of the clients is R6RS compliant, the other
client is R7RS compliant. Now the data exchange is done with
S-expressions so that all implementations can use the bare read
procedure. However, if the data being exchanged can also contain
bytevector, the server would not be able to determine which style of
bytevector form it should send. Unless, that is, the exchanging data
contains a client mode so that the server can detect which style of
notation it should use. This problem occurs not only for bytevectors
but also for escaped symbols.

Listing 15: Example situation

;; Server S is a hybrid implementation but
;; would return R6RS style lexical notation.

;; Client A is an R6RS implementation
Client A -- #vu8(1 2 3) --> Server S

4 2014/11/7

Client A <-- #vu8(1 2 3) -- Server S

;; Client B is an R7RS implementation
Client B -- #u8(1 2 3) --> Server S
Client B <-- #vu8(1 2 3) -- Server S

4. Implementing on Sagittarius
Sagittarius has strict R6RS read and write mode and relaxed mode.
The macro expander does not have an explicit macro expansion
phase so the compiler expands macros as well when it finds a
macro. The mode switch is done by #! notation and by default
it is set to relaxed mode which is close to R7RS compatible with
some extensions.

4.1 Library
We decided to implement define-library with the built-
in style so that macro expansions are done by the existing ex-
pander. For the most part, handling the R7RS library form could
be implemented in the same style as R6RS library system. How-
ever, unlike the R6RS, the R7RS allows all keywords inside of
define-library such as import and export to appear in
any order and any number of times.

Listing 16: Multiple imports

(define-library (foo)
(begin

(define bar ’bar)
(define foo ’foo))

(import (scheme base))
(begin (display bar) (newline))
(import (scheme write))
(export bar foo))

Import forms need to be collected before bodies are compiled,
otherwise the compiler can not find imported bindings referred by
body expressions. For example, if a body expression depends on
bindings exported from the library inside of import forms which
comes after the body expression, then the compiler raises an error.
During the process of collecting of import forms, the compiler
needs to keep the order of begin forms so that it can resolve bind-
ings properly when begin forms contain non-definition expres-
sions8.

Even though we have decided to take the built-in style, include
and include-ci need to be handled specially. These are resolved
in a hybrid way. The ones in define-library are resolved in
the expander style, thus when the compiler finds it in a library form,
it simply reads the files and slices the expressions into the library
form. Syntaxes of include and include-ci are resolved in
the built-in style so that they can be treated as bindings. However,
read expressions of both styles contain location information as part
of their meta information. This meta information is propagated to
compile time environments so that the compiler can see where the
source files are located.

The expander style include is expanded as it is. The only
thing that the compiler needs to consider is propagating the source
file locations to the rest of compilation unit.

The built-in style needs to be more careful. Besides the compiler
needs to consider bindings. If an include form appears in top
level, it is relatively easy to handle. However, if it appears in a
scope, then the compiler needs to consider lexical bindings. The
following is a simple example.

8 The R7RS allows to have non definition forms anywhere inside of begin
forms.

Listing 17: Local include

(let ((bar ’bar))
(include "bar.scm")
buzz)

;; bar.scm
(define buzz ’buzz)
(display bar) (newline)

The define form inside of “bar.scm” needs to be handled as
an internal definition. So the compiler needs to handle include
forms inside of a scope explicitly otherwise a define form would
be treated as a toplevel form and the compiler would raise an
error. If macros were expanded before compilation with proper
source location, this would not be a problem. However, this requires
accessing the meta information, and there is no way to do so on our
Scheme system.

Resolving export is straightforward. There are two ways to do
it: one is to implement an R7RS-specific one, and the other one is
to make the R6RS export able to handle the R7RS style as well.
We chose the latter, so that shared code can be used. However, we
are not certain that this was the right way to do it yet.

4.2 Reader and writer
The reader needs to adopt two incompatibilities with R6RS, one is
the escaped symbol and the other one is the bytevector literal. The
reader on our Scheme system adopted Common Lisp-like reader
macros, thus handling bytevector notation incompatibilities is just
adding the additional reader macro. Handling vertical bar-escaped
symbols also requires just adding the reader macro. However, when
reading usual symbols we need to provide both the R6RS symbol
reader and the R7RS symbol reader.

To make strict modes for R6RS and R7RS, the Scheme system
has three default readtables which are tables of bundled reader
macros. One is the R6RS strict mode, another one is the R7RS
strict mode and the last one is the default mode. Switching these
readtables requires #!r6rs or #!r7rs notations. As we already
discussed R7RS does not support #!r7rs, thus switching mode
with this is our specific extension and may break portability.

The writing of escaped symbols and the bytevectors literals is
also separated into modes. In the strict R6RS mode, the escaped
symbols are written without vertical bar and bytevectors are written
with #vu8 notation. In the strict R7RS mode, bytevectors are writ-
ten with #u8 notation. If an escaped symbol contains non-printable
characters then they are written in hex scalar. The default relaxed
mode can read both the R6RS and the R7RS lexical notations so
that it can understand both types of scripts and libraries. Its writer
mode is hybrid, escaped symbols are written in R7RS style9 and
bytevectors are written R6RS style.

Listing 18: Read/write symbols and bytevectors

;; mode: default
’|foo\x20;bar| ;; -> ’|foo bar|
’foo\x20;bar ;; -> ’|foo bar|

#vu8(1 2 3) ;; -> #vu8(1 2 3)
#u8(1 2 3) ;; -> #vu8(1 2 3)

;; mode: R6RS
#!r6rs

9 This is for an historical reason. Sagittarius was initially made as an
R5RS/R6RS Scheme system. So we did not have to consider the differ-
ence between bytevector lexical notations, and writing R6RS-style escaped
symbols in default mode breaks R5RS compatibility.

5 2014/11/7

’|foo\x20;bar| ;; error
’foo\x20;bar ;; -> ’foo\x20;bar

#vu8(1 2 3) ;; -> #vu8(1 2 3)
#u8(1 2 3) ;; error

;; mode: R7RS
#!r7rs
’|foo\x20;bar| ;; -> |foo bar|
’foo\x20;bar ;; -> |foo bar|10

#vu8(1 2 3) ;; error
#u8(1 2 3) ;; -> #u8(1 2 3)

5. Other R7RS features
We have discussed the major incompatibilities and how we handled
them. There are some other points that still need to be considered.

5.1 cond-expand
As we already discussed, the R7RS define-library form
allows the cond-expand keyword, which is based on SRFI
0: Feature-based conditional expansion construct [8] with the
library keyword extension. The library keyword allows
checking if the specified library exists on the executing imple-
mentation.

Listing 19: Library keyword in cond-expand

(define-library (foo)
(cond-expand

((library (srfi 1))
(import (srfi 1)))

(else
(begin

(define (alist-cons a b c)
(cons (cons a b) c)))))

(import (scheme base)))

The cond-expand form inside of a define-library
form can only have library declarations in its body. There is an-
other cond-expand defined as a syntax in R7RS which can be
used in expressions. This is close to SRFI 0 but added library
as a keyword. However, this body can only take expressions thus it
is invalid to write an import form11.

Listing 20: cond-expand in expression

;; This is not a valid R7RS program
(cond-expand

((library (srfi 1))
(import (srfi 1)))

(else
(define (alist-cons a b c)

(cons (cons a b) c))))

Even though this is not a valid program, we decided to accept
this type of expressions its support is recommended one of the
R7RS editors [9].

10 It is an extension that’foo\x20;bar can be read in strict R7RS mode
even thoughit is defined to be an error.
11 R7RS defined that cond-expand can only have expressions and
import form is not an expression.

5.2 #!fold-case and #!no-fold-case
Like R6RS, R7RS has decided to make symbols case-sensitive.
However, until R5RS, the Scheme language was case-insensitive
so there may be some scripts or libraries that expect to be case-
insensitive. To save such programs, R7RS has introduced the
#!fold-case directive and the include-ci form.

If the reader reads #!fold-case then it should read ex-
pressions after the directive as case-insensitive, and if it reads
#!no-fold-case, it should read expressions after the directive
as case-sensitive. These directives can appear anywhere in scripts
or libraries. Thus, to handle this, ports need to have the state in
which they read symbols.

The symbols read in case-insensitive context need to be case
folded as if by string-foldcase. Thus comparing symbol ß
and ss needs to return #t in case-insensitive context12.

Listing 21: #!fold-case

#!fold-case
(eq? ’ß ’ss) ;; => #t

6. Interoperability
We show how R6RS and R7RS libraries cooperate on our Scheme
system.

Suppose we have the library (aif) which defines anaphoric
if macro with syntax-case. The macro aif is similar to if.
The difference is that it captures the variable it as the result of
its predicate and then and else forms can refer it. This is a typical
macro can not be written in syntax-rule.

Listing 22: aif

#!r6rs
(library (aif)

(export aif)
(import (rnrs))

(define-syntax aif
(lambda (x)

(syntax-case x ()
((aif c t) #’(aif c t (if #f #t)))
((k c t e)
(with-syntax

((it (datum->syntax #’k ’it)))
#’(let ((it c))

(if it t e))))))))

The R7RS library (foo) defines the variable foo using aif
defined in the R6RS library.

Listing 23: Using aif

(define-library (foo)
(import (scheme base) (aif))
(export foo)
(begin

(define foo
(let ((lis ’((a . 0) (b . 1) (c . 2))))

(aif (assq ’a lis)
(cdr it))))))

The variable foo can be used in user scripts, R7RS libraries or
R6RS libraries.

12 The R6RS mandates to support Unicode so string-foldcase does
full case folding.

6 2014/11/7

As we already mentioned, Sagittarius has implicit phasing so it
is also possible to use procedural macros in R7RS libraries without
the for keyword.

7. Conclusion
We have discussed the incompatibilities between R6RS and R7RS
and described implementation strategies. Then we discussed how
we built an R7RS Scheme system on top of an R6RS Scheme sys-
tem. What we have experienced so far is that as long as implemen-
tation could absorb those difference, there is no problem using the
R6RS library system and the R7RS library system simultaneously.
And we believe that this could be a big benefit for the future.

Implementing an R7RS-compliant Scheme system on top of an
R6RS Scheme system is not an easy task to do. Moreover, most
R6RS users do not habitually use R7RS and vice versa. However,
we believe that both standards have good points that are worth
taking. We think that complying standards is also important for
implementators.

We hope this will encourage R6RS implementators to make
their implementation R7RS compliant as well.

Acknowledgments
We would like to thank Shiro Kawai for style checking and advis-
ing.

References
[1] Richard Kelsey, William Clinger, and Jonathan Rees, editors. Revised5

Report on the Algorithmic Language Scheme. February 1998.
[2] Michael Sperber, R. Kent Dybvig, Mathew Flatt, and Anton van

Straaten, editors. Revised6 report on the algorithmic language Scheme.
September 2007.
URL http://www.r6rs.org/

[3] Alex Shinn, John Cowan, and Arthur A. Gleckler, editors. Revised7
report on the algorithmic language Scheme. July 2013.
URL http://scheme-reports.org/

[4] Oleg Kiselyov. SXML Specification. March 2004
URL http://pobox.com/ oleg/ftp/Scheme/SXML.html

[5] Marc Feeley. SRFI 4: Homogeneous numeric vector datatypes. May
1999.
URL http://srfi.schemers.org/srfi-4/

[6] André van Tonder. SRFI 72: Hygienic macros. September 2005.
URL http://srfi.schemers.org/srfi-72/

[7] Abdulaziz Ghuloum and R. Kent Dybvig. Portable syntax-case
URL http://www.cs.indiana.edu/chezscheme/syntax-case/

[8] Marc Feeley. SRFI 0: Feature-based conditional expansion construct.
May 1999
URL http://srfi.schemers.org/srfi-0/

[9] [Scheme-reports] programs and cond-expand.
URL http://lists.scheme-reports.org/pipermail/scheme-reports/2013-
October/003802.html

7 2014/11/7

