Large Scheme: A Personal View

John Cowan
<cowan(@ccil.org>

Scheme 2014

Recap of R7RS-small

* Based on R5RS, but with many R6RS
changes

* Case-sensitive, like many implementations
* String and character escapes
* Datum and block comments

 Datum labels
e #true and #false

Recap of R7RS-small

* R6RS-style libraries; R5RS refactored

* R6RS exception handling (but not conditions)
* letrec*

* define-values, let-values, letrec-
values

 define-record-type from SRFI 9
* Dynamically bound parameters like SRFI 39

Recap of R7RS-small

Numeric extensions, including optional
IEEE floats

Revised integer division routines
Unicode semantics (but a subset is allowed)
String comparison no longer lexicographic

String and vector procedures matching list
procedures (with start and end arguments)

Recap of R7RS-small

* Bytevectors
* Binary and textual ports
* String and bytevector ports

* Environment variables, command line, and
exit status

* Time of day and run time
* Various other points

Basic WG2 process

* Proposals are put on the wiki

* When ready, the SRFI process is used to
develop and evaluate them

— Posted on the SRFI site
— Discussed on the SRFI-specific mailing list
— A sample implementation is required

* Preferably a portable one
* The WG votes on adding them to R7RS-large

Existing implementations

* Chibi (small, embedded)

* Chicken (R5RS/R7RS; fast compiler to C)
* Foment (compiler and interpreter)

* Gauche (script interpreter)

 Kawa (JVM-based)

* Owl Lisp (pure functional subset)

* Picrin (lightweight interpreter)

* Sagittarius (R6RS/R7RS)

What follows is a personal view

* Not based on Working Group votes

- Unless otherwise noted
* The WG has an indefinite membership

- If you cast a vote on the mailing list,
you're in

- A majority of votes cast carries a motion

- | expect people will drop in and out

Release structure

* There will be rolling releases
- Waiting till it's done would be frustrating
* Each release will build on the last
- Infrared Edition: Overview of Scheme (done)
- Red Edition: Data structure libraries
2

- Ultraviolet Edition: Complete (but out of
sight)

The Red Edition

* List library (SRFI 1; unanimous consent)

* String library (string slices and positions,
plus parts of SRFI 13)

* Vector library (enhanced SRFI 43)
* Sorting vectors and lists (SRFI 32 revised)
* Comparators (SRFI 114)

The Red Edition

Boxes (SRFI 111; already voted in)

Sets and bags (SRFI 113), integer sets,
character sets (SRFI 14)

Mutable queues

Immutable deques, sets, maps
Immutable pairs and lists (SRFI 116)
Enumerations and their sets and maps

The Red Edition

Hash tables and bimaps

Generators (Gauche) or streams (SRFI 41)
Lazy sequences

Immutable cyclic lists

Run-time records (SRFI 99)

The Red Edition — Maybe

* Multi-dimensional general arrays
* Sparse vectors and maps
* Ternary search trees

* Ephemerons and weak hashtables
(optional)

Typical procedures

* Constructors: make-foo, foo, foo-unfold

* Predicates: foo?, -contains?, -empty?

* Selectors: -ref, -take, -drop, -split-at

* Mutators: -adjoin!, s-set!, -delete!, -search!

* The whole foo: -length, -append,
-concatenate, -reverse, -count, -copy, -zip,
-unzip, foo->list, list->foo

Typical procedures

* Fold & map: -map, -for-each, -reduce
* Delete: -delete, -delete-dups
* Filter & partition: -filter, -remove, -partition

* Search: -find, -any, -every, -take-while,
-drop-while

* Comparison: foo=?, foo<?, foo>?

Possible future editions

* Orange Edition: numerical libraries

* Yellow Edition: I/O

* Green Edition: syntax enhancements
* Blue Edition: 77?7

« 777

Stand-alone issues

Require full numeric tower?

— WG voted yes

* Except for exact complex numbers
Require full Unicode repertoire?

— Maybe except NUL in strings
Which R7RS-small libraries to require?

Require multiple inexact-number precisions?
S

Help!

* | can handle the overall process
* | can handle spec design if | have to

— At worst, the whole thing will reflect my own
prejudices

— At best, it will be nicely consistent

* Writing the implementations is another story
— Alex Shinn wrote Chibi Scheme during WG1
— I'm not sure | can write all the WG2 code
— Volunteers needed and welcome!

Where

<http://trac.sacrideo.us/wg/wiki/WG2Dockets>

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

