

Large Scheme: A Personal View

John Cowan
<cowan@ccil.org>

Scheme 2014

Recap of R7RS-small

 Based on R5RS, but with many R6RS
changes

 Case-sensitive, like many implementations
 String and character escapes
 Datum and block comments
 Datum labels
 #true and #false

Recap of R7RS-small

 R6RS-style libraries; R5RS refactored
 R6RS exception handling (but not conditions)
 letrec*
 define-values, let-values, letrec-
values

 define-record-type from SRFI 9
 Dynamically bound parameters like SRFI 39

Recap of R7RS-small

 Numeric extensions, including optional
IEEE floats

 Revised integer division routines
 Unicode semantics (but a subset is allowed)
 String comparison no longer lexicographic
 String and vector procedures matching list

procedures (with start and end arguments)

Recap of R7RS-small

 Bytevectors
 Binary and textual ports
 String and bytevector ports
 Environment variables, command line, and

exit status
 Time of day and run time
 Various other points

Basic WG2 process

 Proposals are put on the wiki
 When ready, the SRFI process is used to

develop and evaluate them

– Posted on the SRFI site
– Discussed on the SRFI-specific mailing list
– A sample implementation is required

• Preferably a portable one
 The WG votes on adding them to R7RS-large

Existing implementations

 Chibi (small, embedded)
 Chicken (R5RS/R7RS; fast compiler to C)
 Foment (compiler and interpreter)
 Gauche (script interpreter)
 Kawa (JVM-based)
 Owl Lisp (pure functional subset)
 Picrin (lightweight interpreter)
 Sagittarius (R6RS/R7RS)

What follows is a personal view

 Not based on Working Group votes

 Unless otherwise noted
 The WG has an indefinite membership

 If you cast a vote on the mailing list,
you're in

 A majority of votes cast carries a motion
 I expect people will drop in and out

Release structure

 There will be rolling releases

 Waiting till it's done would be frustrating
 Each release will build on the last

 Infrared Edition: Overview of Scheme (done)
 Red Edition: Data structure libraries
 …?
 Ultraviolet Edition: Complete (but out of

sight)

The Red Edition

 List library (SRFI 1; unanimous consent)
 String library (string slices and positions,

plus parts of SRFI 13)
 Vector library (enhanced SRFI 43)
 Sorting vectors and lists (SRFI 32 revised)
 Comparators (SRFI 114)

The Red Edition

 Boxes (SRFI 111; already voted in)
 Sets and bags (SRFI 113), integer sets,

character sets (SRFI 14)
 Mutable queues
 Immutable deques, sets, maps
 Immutable pairs and lists (SRFI 116)
 Enumerations and their sets and maps

The Red Edition

 Hash tables and bimaps
 Generators (Gauche) or streams (SRFI 41)
 Lazy sequences
 Immutable cyclic lists
 Run-time records (SRFI 99)

The Red Edition — Maybe

 Multi-dimensional general arrays
 Sparse vectors and maps
 Ternary search trees
 Ephemerons and weak hashtables

(optional)

Typical procedures

 Constructors: make-foo, foo, foo-unfold
 Predicates: foo?, -contains?, -empty?
 Selectors: -ref, -take, -drop, -split-at
 Mutators: -adjoin!, s-set!, -delete!, -search!
 The whole foo: -length, -append,

-concatenate, -reverse, -count, -copy, -zip,
-unzip, foo->list, list->foo

Typical procedures

 Fold & map: -map, -for-each, -reduce
 Delete: -delete, -delete-dups
 Filter & partition: -filter, -remove, -partition
 Search: -find, -any, -every, -take-while,

-drop-while
 Comparison: foo=?, foo<?, foo>?

Possible future editions

 Orange Edition: numerical libraries
 Yellow Edition: I/O
 Green Edition: syntax enhancements
 Blue Edition: ???
 ???

Stand-alone issues

 Require full numeric tower?

– WG voted yes
• Except for exact complex numbers

 Require full Unicode repertoire?

– Maybe except NUL in strings
 Which R7RS-small libraries to require?
 Require multiple inexact-number precisions?

s

Help!

 I can handle the overall process
 I can handle spec design if I have to

– At worst, the whole thing will reflect my own
prejudices

– At best, it will be nicely consistent
 Writing the implementations is another story

– Alex Shinn wrote Chibi Scheme during WG1
– I'm not sure I can write all the WG2 code
– Volunteers needed and welcome!

Where

<http://trac.sacrideo.us/wg/wiki/WG2Dockets>

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

