
DRAFT

Nash: A Tracing JIT For Extension Language

Atsuro Hoshino

hoshinoatsuro@gmail.com

Abstract
This paper introduces Nash, a virtual machine (VM) for
GNU Guile with tracing just-in-time (JIT) compiler. Nash
is designed as a drop-in replacement for Guile’s existing
VM. Nash could be used for running script, interacted with
REPL, and embedded in other programs. Design of Nash in-
ternal is discussed, including VM interpreter which records
frequently executed instructions found in Guile’s bytecode,
and JIT compiler which emits native code from recorded in-
structions. Nash coexists with Guile’s existing VM. Lots of
Guile’s features, such as bytecode interpreter, are reused in
Nash. When conditions were met, Nash runs more than 40×
faster than Guile’s existing VM, without modifying the input
program. Benchmark results of Nash are shown, including
comparisons with other Scheme implementations.

Keywords Just-In-Time Compilation, Virtual Machine,
Implementation, Scheme Programming Language

1. Introduction
From its simple design, Scheme is used for various purposes,
many implementations exist. One of the use is as an exten-
sion language embedded in other program. Implementations
such as Chibi-Scheme, TinyScheme are designed with use as
an extension language in mind. On the other hand, there are
Scheme implementations used for more expensive computa-
tions. This kind of Scheme implementations typically com-
piles to native code before executing. The compilation could
be done ahead-of-time (AOT), such as in Bigloo (Serrano
and Weis 1995) and Gambit (Feeley 1998), or incrementally,
such as in Chez (Dybvig 2006) and Larceny (Hansen 1992),
or in a mixture of AOT and JIT compilation, such as in Py-
cket (Bauman et al. 2015), and Racket (Flatt et al. 2013).

There exist a performance gap between Scheme imple-
mentations which does native code compilation, and imple-
mentations which doesn’t. Tracing JIT compilation is a tech-

[Copyright notice will appear here once ’preprint’ option is removed.]

1 (define (sumv-positive vec)

2 (let lp ((i 0) (acc 0))

3 (if (<= (vector-length vec) i)

4 acc

5 (lp (+ i 1)

6 (if (< 0 (vector-ref vec i))

7 (+ acc (vector-ref vec i))

8 acc)))))

Figure 1. Scheme source code of sample procedure.

nique used in VM to improve performance by compiling the
frequently executed instruction code paths. Dynamo (Bala
et al. 2000) has pioneered the use of tracing JIT by trac-
ing native code. Later the technique was used in various
VMs for dynamic programming language to achieve perfor-
mance improvement. Languages such as Lua (Pall 2016),
JavaScript (Gal et al. 2009), and Python (Bolz et al. 2009)
have made success with VMs which implement tracing JIT.

Nash is a new tracing JIT VM for GNU Guile. Guile is
a general-purpose Scheme implementation which could be
used as an extension language, as a scripting engine, and
for application development. Guile offers libguile to allow
itself to be embedded in other program. GnuCash, gEDA,
GNU Make, and GDB uses Guile as an extension language.
Guile implements standard R5RS (Abelson et al. 1998),
most of R6RS (Sperber et al. 2010), several SRFIs, and many
extension of its own, including delimited continuation and
native POSIX thread support (Galassi et al. 2002). Nash is
designed to be a drop-in replacement for Guile’s existing
VM, which is called VM-regular in this paper, to achieve
performance improvement.

Figure 1 shows Scheme source code of a sample pro-
cedure sumv-positive which contains a loop. Details of
Nash internal are explained with using sumv-positive.
The sumv-positive procedure takes a single argument
vec, a vector containing numbers. The loop inside the pro-
cedure checks whether the i-th vector-ref of vec is
greater than 0, adds up the element if true. The loop re-
peat the comparison and addition with incremented i un-
til i is greater than the vector-length of vec. In Guile,
Scheme source codes are compiled to bytecode before the

DRAFT — Nash: a tracing JIT for Extension Language 1 2016/6/23

execution.1 Section 2 briefly mentions some background of
Guile. When Nash execute sumv-positive, the compu-
tation starts with bytecode interpreter. After executing the
bytecode for a while, the bytecode interpreter detects a hot
loop in the body of sumv-positive. Then the bytecode
interpreter switches its state, start recording the bytecode
instructions of the loop, and corresponding stack values for
the instructions. Recording of instructions are described in
Section 3. When the bytecode interpreter reached to the be-
ginning of the observed loop, recorded data are passed to JIT
compiler. The JIT compiler is written in Scheme, executed
with VM-regular. The compiler uses recorded bytecode and
stack values to emit optimized native code. The variables
from the stack are used to specify types, possibly emitting
guards to exit from the compiled native code. More the JIT
compiler internals are covered in Section 4.

The rest of the sections are organized as follows. Sec-
tion 5 shows results from benchmark, including comparisons
between Nash and other Scheme implementations. Section 6
mentions related works. Finally, Section 7 discusses current
limitations and possibilities for future work, and Section 8
concludes this paper.

2. Background
This section describes background information and brief
history of tracing JIT and GNU Guile. Some of the Guile
internals which relates to Nash are mentioned.

2.1 Tracing JIT
Tracing JIT is one of JIT compilation styles (Bolz et al.
2009) which assumes that:

• Programs spend most of their runtime in loops.
• Several iterations of the same loop are likely to take

similar code paths.

After Dynamo (Bala et al. 2000) used the technique to
trace native code, various development has been done in
the area. LuaJIT is one of the successive implementation
of tracing JIT VM for the Lua (Ierusalimschy et al. 1996)
programming language. Pypy (Bolz et al. 2009) is a tracing
JIT VM for the Python programming language. Pypy is
implemented with RPython (Bolz et al. 2009) framework,
which is a meta-tracing infrastructure to develop a tracing
JIT VM by defining an interpreter of the target language.
The framework was adapted to other language than Python,
including Pycket (Bauman et al. 2015), a tracing JIT VM
for Racket language, and Pixie, a tracing JIT VM for Pixie
language, which is a dialect of Lisp.

Typical settings for tracing JIT of dynamic programming
language contains an interpreter and a JIT compiler. Inter-
preter observes the execution of instructions, detects hot

1 In most case, source codes are byte-compiled before executed. Guile can
run Scheme source code without compiling so that trivial computations
could be done quickly.

Tag Type Scheme value

XXXXXXXXXXXXX000 heap object ‘foo, #(1 2 3) . . .
XXXXXXXXXXXXXX10 small integer 1, 2, 3, 4, 5 . . .
XXXXXXXXXXXXX100 boolean false #f
XXXXXXXX00001100 character #\ a, #\ b, . . .
XXXXXX1100000100 empty list ‘()
XXXXX10000000100 boolean true #t

Table 1. Tag value with corresponding Scheme type and
Scheme value. The “X” in the tag column indicates any
value.

loops, and records frequently executed instructions. The
recorded instructions are often called trace. JIT compiler
then compiles the trace to get optimized native code of
the hot loop. The interpreter typically has a functionality to
switch between a phase for observing the loop, a phase for
recording the instructions, and a phase executing the com-
piled native code. Compiled native code contains guards to
terminate the execution of native code, and bring the con-
trol of program back to the interpreter. Guards are inserted
when recorded trace contains conditions which might not
satisfied in later iteration of the loop. For instance, the loop
in Figure 1 will emit a guard which compares the value of i
with length of the vector. In dynamic programming language
such as Scheme, guard for type check may inserted as well,
since compiler could generate more optimized native code
when the types of the values are known at compilation time.

2.2 GNU Guile
GNU Guile was born to be an official extension language
for GNU projects (Galassi et al. 2002). Since then, various
developers have made changes to the implementation. As
of version 2.1.2, Guile contains a bytecode compiler and a
VM which interprets the compiled bytecode. Guile uses con-
servative Boehm-Demers-Weiser garbage collector (Boehm
and Weiser 1988).

2.2.1 SCM Data Type
Guile’s internal data type for Scheme object is defined as
typedef SCM in C (Galassi et al. 2002). SCM value contains
a type tag to identify its type in Scheme, which could be
categorized in two kinds: immediates and heap objects. Im-
mediates are Scheme value with type tag, and the value to
identify itself in system dependent bit size. Immediates in-
cludes booleans, characters, small integers, the empty list,
the end of file object, the unspecified object, and nil object
used in the Emacs-Lisp compatibility mode, and other spe-
cial objects used internally. Heap objects are all the other
types which could not fit itself in system dependent bit size,
such as symbols, lists, vectors, strings, procedures, multi-
precision integer numbers, and so on. When Guile decide
the type of SCM value, firstly the three least significant bits

DRAFT — Nash: a tracing JIT for Extension Language 2 2016/6/23

Disassembly of #<sumv-positive (vec)> at #x7f4ddb7fc51c:

0 (assert-nargs-ee/locals 2 5) ;; 7 slots

1 (make-short-immediate 6 2) ;; 0

2 (vector-length 4 5)

3 (load-u64 3 0 0)

6 (br-if-u64-<= 4 3 #f 30) ;; -> L5

9 (vector-ref/immediate 2 5 0)

10 (br-if-u64-<-scm 3 2 #t 4) ;; -> L1

13 (add/immediate 6 2 0)

L1:

14 (load-u64 2 0 1)

17 (br-if-u64-<= 4 2 #f 16) ;; -> L4

20 (mov 1 6)

21 (mov 6 2)

L2:

22 (uadd/immediate 0 6 1)

23 (vector-ref 6 5 6)

24 (br-if-u64-<-scm 3 6 #t 4) ;; -> L3

27 (add 1 1 6)

L3:

28 (br-if-u64-<= 4 0 #f 9) ;; -> L6

31 (mov 6 0)

32 (br -10) ;; -> L2

L4:

33 (mov 0 2)

34 (mov 1 6)

35 (br 2) ;; -> L6

L5:

36 (mov 1 6)

L6:

37 (mov 5 1)

38 (return-values 2) ;; 1 value

Figure 2. Byte compiled code of sumv-positive. The
contents is slightly modified from output of disassembler for
displaying purpose.

(called tc3 tag in Guile) of SCM value is used to decide
whether the value belongs to immediates or heap objects. Ta-
ble 1 shows the type tags for immediates and heap objects.
When tc3 tag was 000, the value belongs to heap objects. All
the other values of tc3 tag are immediates, though some of
the tag values are unused. For instance, tc3 tag 010 and 110

are used for small integer. For small integer, only the first two
bits are used to identify the type, the rest of the bits are used
to contain the integer value. For instance, Scheme value 0 is
SCM 00000010, Scheme value 1 is SCM 00000110, Scheme
value 2 is SCM 00001010, and so on. Types of various heap
object are decided by using the rest of SCM value, possibly
referencing the address derived from non-tc3 tag value in
SCM.

2.2.2 Bytecode Compiler
Guile’s bytecode compiler is designed as compiler tower.
The compiler consists from several compilers defining tower
of languages. Each step of the compilation sequence knows

how to compile down to the step below, until the compiled
output turns into bytecode instruction set executed by the
VM.

In Guile version 2.1.2, Scheme input program is first
translated to a program in tree-il language, an internal rep-
resentation used by Guile. Then resulting tree-il program
is compiled to cps, which is another internal representa-
tion, then the resulting cps code is translated to bytecode.
Guile contains compilers for Emacs-Lisp and Ecmascript,
which compiles to tree-il. Compilation of tree-il results from
Emacs-Lisp and Ecmascript could reuse the compilation
from tree-il to bytecode used for Scheme. The definition
of the compilation steps could be modified, which helps the
user to add a new high-level language compiled to tree-il,
or directly compiling to bytecode, or compiling to different
new target. Guile’s bytecode compiler applies various opti-
mizations, which all of them are turned on by default. The
optimizations could be turned off to save compilation time,
with sacrificing some run time performances.

Figure 2 shows compiled bytecode of sumv-positive.
Each bytecode instruction takes arguments and its use varies,
some arguments are used as constant, some are used as an
index value to read or write a value in current stack. The
first line of the figure shows the procedure name and mem-
ory address of the byte-compiled data of sumv-positive.
The numbers shown in the left of each line are bytecode in-
struction pointer (IP) offset. For IP offsets specified as jump
destination, a label starting from L is shown (IP offset 14, 22,
28, 33, 36, and 37 in the figure). The bytecode possibly caus-
ing a jump contains a comment with the destination label (IP
offset 6, 10, 17, 24, 28, 32 and 35 in the figure).

When the procedure sumv-positive is called, VM-
regular start executing the bytecode from IP offset 0. Later,
the execution reaches to IP offset 32, (br -10). The br

bytecode instruction is unconditional jump to specified IP
offset, which is -10 in the figure. This is a backward jump to
IP offset 22 (labeled as L2 in the figure), which indicates a
loop. In the bytecode instruction inside the loop, IP offset 24
contains a branching instruction, which may skip (add 1 1

6) instruction in IP offset 27. The loop contains a jump to
L6 in IP offset 28, to exit from the loop and return the value
from sumv-positive procedure to the caller.

The bytecode was compiled with optimizations turned on.
The compiler has moved vector-length out of the loop,
by loop-invariant code motion. The bytecode compiler also
refactored the two calls to vector-ref, by common sub-
expressions elimination.

2.2.3 VM Engine
Guile uses C function to interpret compiled bytecode. This
C function is called VM engine in Guile. VM engine is
defined in a dedicated file named vm-engine.c, which is
included multiple times from other source code. Figure 3
shows the snippets of vm-engine.c. In existing implemen-
tation, Guile contains two VM engines: one is vm-regular-

DRAFT — Nash: a tracing JIT for Extension Language 3 2016/6/23

static SCM

VM_NAME (scm_i_thread *thread, struct scm_vm *vp,

scm_i_jmp_buf *registers, int resume)

{

...

VM_DEFINE_OP (33, br, ...)

{

...

NEXT (offset);

}

...

VM_DEFINE_OP (87, add_immediate, ...)

{

...

NEXT (1);

}

...

VM_DEFINE_OP (152, uadd_immediate, ...)

{

...

NEXT (1);

}

...

}

Figure 3. VM NAME defined in C source code.

engine, the engine used by VM-regular, and another is vm-
debug-engine, which is used for debugging and contains
more functionality to help developers during the debug.
vm-debug-engine can invoke user defined hook proce-
dures in several predefined places, such as before a proce-
dure call, before returning values, and before executing each
bytecode instruction. The invocation of hooks are disabled
in vm-regular-engine for performance reason. When in-
cluding vm-engine.c, VM NAME is defined with different
literal. i.e.: Some C codes resembling below are written in
other file than vm-engine.c:

#define VM_NAME vm_regular_engine

#define VM_USE_HOOKS 0

#include "vm-engine.c"

#undef VM_NAME

...

#define VM_NAME vm_debug_engine

#define VM_USE_HOOKS 1

#include "vm-engine.c"

#undef VM_NAME

Inside the VM NAME function, each bytecode instructions
is defined with VM DEFINE OP macro with unique instruc-
tion number, with NEXT at the last of definition body to
perform next instruction. VM DEFINE OP macro fills in the
jump table used by VM NAME to define jump destinations.2

2 Strictly speaking, Guile chooses jump table or switch ... case expres-
sion at build time for dispatching bytecode, by deciding whether the plat-
form supports label as values (computed goto).

union scm_vm_stack_element

{

scm_t_uintptr as_uint;

scm_t_uint32 *as_ip;

SCM as_scm;

double as_f64;

scm_t_uint64 as_u64;

scm_t_int64 as_s64;

...

};

Figure 4. C code defining union of stack element in VM
engine.

Figure 5. A diagram showing software components and
language its written.

Some of the instructions continue the interpretation with
NEXT using constant value, such as add immediate and
uadd immediate which using 1, some with using offset
value specified in argument, such as br.

The stack element type used in VM NAME is defined as C
union, shown in Figure 4. The actual type used by each
bytecode instruction differs, some of the instructions use
stack element as SCM, or as scm t uint64 which is an in-
ternal type for unsigned 64 bit in Guile. For instance, byte-
code instruction add immediate adds a constant immedi-
ate value to a stack element specified by given index, with
referring the stack element as SCM. Bytecode instruction
uadd immediate does almost the same, except for treating
the stack element as scm t uint64 type. This type special-
izations are done at the time of bytecode compilation, to re-
move unnecessary tagging and untagging of SCM values.

3. Nash Interpreter
3.1 Nash Overview
Nash is designed as a drop-in replacement of VM-regular,
could be used to run a script, has REPL, and could be em-
bedded in a C program as extension language. Figure 5

DRAFT — Nash: a tracing JIT for Extension Language 4 2016/6/23

static SCM

VM_NAME (scm_i_thread *thread, struct scm_vm *vp,

scm_i_jmp_buf *registers, int resume)

{

...

VM_DEFINE_OP (1, call, ...)

{

...

VM_NASH_CALL (old_ip);

}

...

VM_DEFINE_OP (3, tail_call ...)

{

...

VM_NASH_TAIL_CALL (old_ip);

}

...

VM_DEFINE_OP (33, br, ...)

{

...

VM_NASH_JUMP (offset);

}

...

VM_DEFINE_OP (152, uadd_immediate, ...)

{

...

NEXT (1);

}

...

}

Figure 6. Modified VM NAME function shown in Figure 3.

contains a diagram showing which software components
are written as C function, compiled bytecode, or JIT com-
piled native code. C function vm nash engine is the in-
terpreter used by Nash, which does the bytecode interpre-
tation to count loops, records the instructions in loops, and
calls compiled native code. When traces and stack values are
recorded, vm nash engine calls vm regular engine, the
C function used by VM-regular, and pass the recorded trace
and stack values. The bytecode of compiler interpreted by
vm regular engine is written in Scheme. After successful
compilation, vm regular engine emits a native code of the
input trace. The native code is called from vm nash engine

when the same loop was encountered.

3.2 VM Engine For Nash
The bytecode interpreter in Nash uses the vm-engine.c file,
which was used for defining vm engines as described in
Section 2.2.3. The file vm-engine.c is included once more
with similar code to below:

#define VM_NAME vm_nash_engine

#define VM_NASH 1

#include "vm-engine.c"

#undef VM_NAME

Few small modifications were made to vm-engine.c.
Nash adds two kinds of macros to mark interpreter, one for
recording instructions, and others to detect hot loops and
execute compiled native codes. A C macro VM NASH MERGE

is used for recording, and three C macros VM NASH JUMP,
VM NASH CALL, and VM NASH TCALL are used for detecting
hot loops and entering compiled native code.

3.2.1 Finding Loops
Figure 6 shows a snippet containing modifications made
to VM NAME. VM NASH JUMP is used in definition body of
br, VM NASH CALL in call, and VM NASH TAIL CALL in
tail-call. Bytecode definitions br, call, and tail-call
are marked since these bytecode perform a jump, which may
start a loop.3 Bytecode definitions which do not start a loop,
such as uadd immediate, are unmodified. The definition of
br contains VM NASH JUMP with a parameter offset at the
end of definition body. When offset was negative, it means
a backward jump which is detected as a loop by Nash. When
br with negative offset was found in interpreted bytecode,
vm nash engine looks for a native code with the next IP.
Similarly, VM NASH CALL and VM NASH TAIL CALL use its
argument old ip to detect loop from consequent calls to
identical IP.

If a native code was found, the native code is executed.
If not, vm nash engine increment the counter value for the
IP, and if the counter value exceeds a threshold parameter,
vm nash engine starts recording the bytecode instruction
in current loop. For instance, vm nash engine can find the
loop in sumv-positive from the bytecode (br -10) in IP
32 of Figure 2.

Codes used internally in VM NASH JUMP, VM NASH CALL,
and VM NASH TCALL are mostly shared. One of the differ-
ences between these three macros is to use different strategy
to decide loops as hot, by using different values to incre-
ment loop counter. For instance, VM NASH JUMP may add 2
to the loop counter, while VM NASH CALL may add 1, which
will result in a setting that backward jumps get hot sooner
than consequent calls. VM NASH JUMP, VM NASH CALL, and
VM NASH TACLL are defined as NEXT when including the file
vm-engine.c to define other VM engines.

3.2.2 Recording Instructions
Figure 7 shows dumped sample data of recorded bytecode
and stack values, and Figure 8 shows the modified contents
of NEXT. When vm nash engine found a loop, observed
bytecode and stack values are recorded by VM NASH MERGE.
Figure 8 shows how the interpretation continues with updat-
ing the value of ip, which is a variable in VM NAME used for
bytecode IP. When the value of ip match with beginning of
the loop, VM NASH MERGE will stop the recording, and pass

3 Guile has more bytecode instructions for branching, such as
br-if-u64-<=. These branching instructions are marked with
VM NASH JUMP since they may perform a backward jump, though not
shown in the figure.

DRAFT — Nash: a tracing JIT for Extension Language 5 2016/6/23

7f4ddb7fc574 (uadd/immediate 0 6 1) ; #(#x3e #x2a2 #x1 #x0 #x3e8 #x7f4ddb808660 #x3e)

7f4ddb7fc578 (vector-ref 6 5 6) ; #(#x3f #x2a2 #x1 #x0 #x3e8 #x7f4ddb808660 #x3e)

7f4ddb7fc57c (br-if-u64-<-scm 3 6 #t 4) ; #(#x3f #x2a2 #x1 #x0 #x3e8 #x7f4ddb808660 #x1a)

7f4ddb7fc588 (add 1 1 6) ; #(#x3f #x2a2 #x1 #x0 #x3e8 #x7f4ddb808660 #x1a)

7f4ddb7fc58c (br-if-u64-<= 4 0 #f 9) ; #(#x3f #x2ba #x1 #x0 #x3e8 #x7f4ddb808660 #x1a)

7f4ddb7fc598 (mov 6 0) ; #(#x3f #x2ba #x1 #x0 #x3e8 #x7f4ddb808660 #x1a)

7f4ddb7fc59c (br -10) ; #(#x3f #x2ba #x1 #x0 #x3e8 #x7f4ddb808660 #x3f)

Figure 7. Bytecode instructions and stack values recorded with running sumv-positive.

define NEXT(n) \

do \

{ \

ip += n; \

VM_NASH_MERGE (); \

...

op = *ip; \

goto *jump_table[op & 0xff]; \

} \

while (0)

Figure 8. Modified definition of NEXT.

the recorded data to JIT compiler. The recorded bytecode
instructions and stack values in Figure 7 were made by run-
ning sumv-positive with passing a length 1000 vector

containing random small integer numbers from -10 to 10

as argument. The hexadecimal numbers in left are the ab-
solute bytecode IP of each bytecode instruction, and the
commented out vector in each line contains SCM represen-
tation of the values in the stack at the time of recording.
The first bytecode (uadd/immediate 0 6 1) in Figure 7
is shown at IP offset 22 in Figure 2. vm nash engine con-
tinued the recording with IP offset 23, 24, 27, 28, and 31.
Then at IP offset 32, the last bytecode (br -10) is recorded
and jumped back to IP offset 22, which is labeled as L2 in
Figure 2. The bytecode IP matched with the IP where the
recording started, vm nash engine stopped the recording.
VM NASH MERGE is defined with empty body when including
vm-engine.c file for other VM engines.

4. Nash Compiler
This section describes the details of JIT compiler in Nash,
which is written in Scheme. Compiled bytecode of the JIT
compiler is executed by vm regular engine.

4.1 Trace To IR
Nash compiles traces to relaxed A-normal form (Flanagan
et al. 1993) internal representation (IR) before assigning reg-
isters and assembling to native code. Figure 9 shows IR of
primitive operations compiled from the recorded trace in
Figure 7. The IR primitives contains two lambda terms, the
first block is for prologue, and the second block is for loop
body. The IR uses let* instead of let to express the se-
quence of computation. Each primitive operation takes two

1 (lambda ()

2 (let* ((_ (%snap 0))

3 (v0 (%sref 0 #f))

4 (v1 (%sref 1 1))

5 (v3 (%sref 3 67108864))

6 (v4 (%sref 4 67108864))

7 (v5 (%sref 5 131072))

8 (v6 (%sref 6 67108864)))

9 (loop v0 v1 v3 v4 v5 v6)))

10 (lambda (v0 v1 v3 v4 v5 v6)

11 (let* ((v0 (%add v6 1))

12 (_ (%snap 1 v0 v1 v6))

13 (r2 (%cref v5 0))

14 (r2 (%rsh r2 8))

15 (_ (%lt v6 r2))

16 (r2 (%add v6 1))

17 (v6 (%cref v5 r2))

18 (_ (%snap 2 v0 v1 v6))

19 (_ (%typeq v6 1))

20 (_ _)

21 (r2 (%rsh v6 2))

22 (_ (%lt v3 r2))

23 (_ (%snap 3 v0 v1 v6))

24 (v1 (%addov v1 v6))

25 (v1 (%sub v1 2))

26 (_ (%snap 4 v0 v1 v6))

27 (_ (%gt v4 v0))

28 (v6 v0))

29 (loop v0 v1 v3 v4 v5 v6)))

Figure 9. IR of recorded trace in relaxed A-normal form.

arguments, except for %snap operation. Primitive operations
updating a variable, such as %add, has the variable on the
left side of expression, which is updated by the correspond-
ing operation. Primitive operations without variable update
contain a symbol at the left. The variables starting with
the letter v indicates that the variable is loaded from current
stack. The variables starting with the letter r indicates that
the variable is for temporal use only.

4.1.1 Snapshot
Between recorded bytecode instructions, %snap expressions
may inserted to make snapshot data. Snapshot contains var-
ious information to recover the state of vm nash engine

when native code passed the control back. Snapshot data
includes local indices to store variables, and a bytecode IP

DRAFT — Nash: a tracing JIT for Extension Language 6 2016/6/23

where the interpretation continue. The expression %snap

takes variable number of arguments: the first argument is
a snapshot ID, which is a unique integer number to iden-
tify the snapshot in single trace. The rest of the arguments
are local variables to be stored to current stack. In Figure 9,
Nash inserted %snap expression at the beginning, and before
the primitive operations %lt, %typeq, %addov, and %gt,
which act as guard. The primitives %lt and %gt does arith-
metic less-than and greater-than comparisons, respectively,
the primitive %typeq does type check with given variable
and type, and the primitive %addov does addition with over-
flow check. When the result of guard differed from the result
observed at the time of JIT compilation, native code execute
the recovering steps to setup the state in vm nash engine,
and input program continues with bytecode interpreter.

4.1.2 Prologue section
The prologue section, the first lambda block shown in Fig-
ure 9, loads initial values from the stack with %sref prim-
itive. The first argument number passed to %sref is a local
index offset, the second argument is an integer used inter-
nally to represent the type of expected local in the stack.
For instance, the value 1 is for fixnum, which means small
integer value in Scheme, 131072 is used for vector object,
67108864 is for u64, which is a non-SCM unsigned 64 bit
integer value to alias scm t uint64 shown in Figure 4, and
so on.

Type information are specified from bytecode operation,
or from the stack values recorded alongside with bytecode
instructions. The tc3 tag, described in Section 2.2.1, of
each value is observed and type check for the locals are
added when necessary. For instance, in the line containing
(add 1 1 6) in Figure 7, the second element in the stack is
#x2a2, which is 1010100010 in binary. Nash could decide
this value as a small integer, since it has tc3 tag 010.

The value #f in %sref primitive means that there is no
need for type check, for instance the local is overwritten
without referencing. The variable v0, which hold local 0 in
above example is immediately overwritten by result of %add
primitive with the first line of loop body. There is not need
to load this local from current stack, though such dead-code
eliminations are not yet implemented.

4.1.3 Loop body section
The loop body section, the second lambda block in Figure 9,
is compiled by translating each recorded bytecode instruc-
tion sequentially.

uadd/immediate The first primitive operation contains
%add, which does arithmetic addition with variable v6 and
constant value 1. The result of addition overwrites variable
v0. No overflow check is done with uadd/immediate in
bytecode interpreters, and result will wrap around. Native
code followed this behavior.

vector-ref Then a snapshot 1 is inserted, and the primitive
operations for vector-ref follows. The primitive opera-
tions contain vector index range check, by comparing the
length of vector with the index value passed to vector-ref

instruction. For Scheme vector object, Guile uses the first
one word to store a tc7 tag and the length of the vector. A tc7
tag is, like tc3 tag, a 7 bits long tag value used to distinguish
types. The length is left shifted for 8 bits so that tc7 tag and
the length could fit in single word. Actual vector elements
are stored from the memory address of the SCM object plus
one word.

The primitive operation %cref in line 13 loads a value
from Scheme heap object with offset 0, then store the loaded
value to temporary register r2. The r2 is passed to %rsh

in line 14, which does arithmetic right shift for 8 bits and
overwrite the value of r2. Now the variable r2 contains the
reproduced vector length, and compared with v6, which is
the variable holding local 6, which is the index value used
in vector-ref bytecode instruction of recorded trace. Line
16 adds 1 to v6 get offset of vector element. Line 17 does
another %cref to load the vector element, and overwrites
the value of v6.

br-if-u64-<-scm Line 18 contains a snapshot used by next
primitive operation %typeq, which does a type check of
v6 with fixnum. The variable v6 is the value loaded from
vector, which was observed as fixnum at the time of JIT
compilation. Line 20 shows empty value assigned to empty
value. This line used to contain a %snap expression, though
the JIT compiler has optimized away the snapshot, since the
bytecode IP destination in snapshot data was identical to the
previous snapshot. Nash does few on-the-fly optimizations,
such as this cached snapshot reuse, duplicated guard elimi-
nation, and constant folding. Variable v6 is right shifted for
2 bits to move away the tc3 tag of fixnum, and the result is
stored to variable r2 in line 21, to compare with variable v3
shown in line 22. Bytecode instruction br-if-u64-<-scm

takes u64 type as first argument, SCM type as second ar-
gument, and compares the two. The type of variable v3 is
determined at compile time as u64, no type check is done.

add Line 23 contains a snapshot, which is used when arith-
metic overflow occurred. Line 24 adds two fixnum values
in v1 and v6 with %addov primitive, and overwrites the con-
tents of v1. Type checks for v1 and v6 are not done, since
the fixnum type check done with %typeq for v6 is still valid,
and fixnum type check for v1 is already done in prologue
section. Resulting type from addition of two fixnum is again
a fixnum unless it overflows, thus type check for v1 inside
loop body is eliminated. The %sub primitive in line 25 moves
away the extra tc2 bits added by %addov.

br-if-u64-<= Line 26 inserts another snapshot. Then in
line 27, two 64 bit unsigned values in v4 and v0 are com-
pared. Types of variables are determined from the bytecode.

DRAFT — Nash: a tracing JIT for Extension Language 7 2016/6/23

---- [snap 0] ()

0001 (%sref r14 +0 ---)

0002 (%sref r15 +1 fixn)

0003 (%sref r9 +3 u64)

0004 (%sref r8 +4 u64)

0005 (%sref rcx +5 vect)

0006 (%sref rdx +6 u64)

==== loop:

0007 (%add r14 rdx +1)

---- [snap 1] ((0 u64) (1 fixn) (6 u64))

0009 (%cref r11 rcx +0)

0010 (%rsh r11 r11 +8)

0011 > (%lt rdx r11)

0012 (%add r11 rdx +1)

0013 (%cref rdx rcx r11)

---- [snap 2] ((0 u64) (1 fixn) (6 scm))

0015 > (%typeq rdx fixn)

0016 (%rsh r11 rdx +2)

0017 > (%lt r9 r11)

---- [snap 3] ((0 u64) (1 fixn) (6 scm))

0019 (%addov r15 r15 rdx)

0020 (%sub r15 r15 +2)

---- [snap 4] ((0 u64) (1 fixn) (6 scm))

0022 > (%gt r8 r14)

0023 (%move rdx r14)

Figure 10. Primitive operation of recorded trace under x86-
64 architecture. Slightly modified from dumped output for
displaying purpose.

mov Line 28 simply does a move, and overwrites the con-
tents of v6 with v0.

br Then the IR shows a call to loop, which tells that the
computation jumps to the beginning of loop body section.
Loop body of native code exit when any of the guards failed.
For instance, when the result returned by (%gt v4 v0) dif-
fered from the result observed at the time of JIT compilation,
native code will pass the control back to vm nash engine,
recover the interpreter state by using snapshot data from
(%snap 3 v0 v1 v6) and the bytecode interpretation of
input program will continue from bytecode IP 7f4ddb7fc5b0,
which is the jump destination of (br-if-u64-<= 4 0 #f 9)

in recorded trace. 4

4.2 IR To Native Code
Figure 10 shows IR after register assignment. The numbers
in left of each line, which are omitted for snapshot data,
tells primitive operation number. The variables for primitive
operations in Figure 10 are using register names in x86-
64 architecture. Nash uses a module defining architecture
specific register variables. At the time of writing, x86-64
implementation is the only one which exist.

4 7f4ddb7fc5b0 = 7f4ddb7fc8c + (9 * 4). 7f4ddb7fc8c is the ab-
solute bytecode IP of (br-if-u64-<= 4 0 #f 9) shown in recorded
trace, 9 is the offset argument passed to br-if-u64-<=, and 4 is the size
of single byte used for bytecode.

0x02cc005b mov r14,QWORD PTR [rbx]

0x02cc005e mov r15,QWORD PTR [rbx+0x8]

0x02cc0062 mov r9,QWORD PTR [rbx+0x18]

0x02cc0066 mov r8,QWORD PTR [rbx+0x20]

0x02cc006a mov rcx,QWORD PTR [rbx+0x28]

0x02cc006e mov rdx,QWORD PTR [rbx+0x30]

0x02cc0072 nop WORD PTR [rax+rax*1+0x0]

loop:

0x02cc0078 lea r14,[rdx+0x1]

0x02cc007c mov r11,QWORD PTR [rcx]

0x02cc007f sar r11,0x8

0x02cc0083 cmp rdx,r11

0x02cc0086 jge 0x02ccc028 ->1

0x02cc008c lea r11,[rdx+0x1]

0x02cc0090 lea rax,[r11*8+0x0]

0x02cc0098 mov rdx,QWORD PTR [rax+rcx*1]

0x02cc009c test rdx,0x2

0x02cc00a3 je 0x02ccc030 ->2

0x02cc00a9 mov r11,rdx

0x02cc00ac sar r11,0x2

0x02cc00b0 cmp r9,r11

0x02cc00b3 jge 0x02ccc030 ->2

0x02cc00b9 mov r11,r15

0x02cc00bc add r11,rdx

0x02cc00bf jo 0x02ccc038 ->3

0x02cc00c5 mov r15,r11

0x02cc00c8 sub r15,0x2

0x02cc00cc cmp r8,r14

0x02cc00cf jle 0x02ccc040 ->4

0x02cc00d5 mov rdx,r14

0x02cc00d8 jmp 0x02cc0078 ->loop

0x02cc00dd nop DWORD PTR [rax]

Figure 11. Native code compiled from trace, under x86-64
architecture.

Nash uses GNU lightning as an assembler backend. GNU
lightning is a JIT compilation library, which runs under var-
ious architectures including aarch64, alpha, arm, ia64, mips,
powerpc, s390, sparc, and x86. Nash contains a thin C wrap-
per which binds SCM type to the types understood by GNU
lightning. The resulting bindings are called from Scheme
code under vm regular engine just like other Scheme pro-
cedures defined in C.

Figure 11 shows dumped native code of primitive oper-
ations shown in Figure 10 under x86-64 architecture. The
native code contains a mark to show the beginning of loop
body with loop:, and corresponding snapshot ID number
for jump instructions.

Native code compiled in Nash contains debug symbol to
interact with JIT compilation interface in GDB (Stallman
et al. 2002), a well-known open-source debugger. This de-
bugging support is turned off by default, turned on by pass-

DRAFT — Nash: a tracing JIT for Extension Language 8 2016/6/23

Benchmark name Nash Racket Pycket

sumfp 0.021 0.127 0.015
mbrot 0.036 0.122 0.018

sum 0.118 0.373 0.088

ctak 0.844 1.050 0.091
fibc 1.282 1.116 0.095

paraffins 1.160 0.725 1.500
parsing 1.886 0.149 0.154

dynamic 4.526 0.549 2.043

Geometric mean 0.420 0.312 0.235

Table 2. Selected benchmark results and geometric mean in
Figure 12 shown in numbers. Smaller is better.

ing command line option when invoking guile executable.
5

5. Evaluation
5.1 Settings
Performance of Nash is evaluated with modified cross plat-
form benchmark suite from Pycket project. The source code
of the benchmarks originate from Larceny and Gambit
project. Some modifications were done to the Pycket ver-
sion for evaluating Nash. Benchmarks bv2string, ntakl
and quicksort were added. All of the three newly added
benchmarks exist in the original Larceny and Gambit bench-
mark suite. Iteration counts for ctak, fft, pnpoly, fibc,
and ray are decreased, which were taking long execution
time in Guile’s VM-regular. The modified benchmark suite
contains 57 programs.

The benchmark results were taken under a machine with
Intel Core-i5 3427-U and 8GB of memory, running Arch
Linux, Linux kernel 4.5.4. The Scheme implementations
and its versions used are Guile VM-regular version 2.1.2,
Racket version 6.5, and Pycket git revision 5f98bfe (with
RPython hg revision 83529:2179c). Total elapsed time of
each program including JIT warm up time was measured.

5.2 Results
Figure 12 shows relative total time of each benchmark result
and geometric mean normalized to Guile’s VM-regular. The
range of the plot in the figure is limited from 0 to 2 for
displaying purpose. Table 2 contains selected benchmark
results and geometric mean shown in numbers. Geometric
means of 57 programs shows that Nash runs approximately
2.4× faster than VM-regular, 1.4× slower than Racket, and
1.8× slower than Pycket.

Some of the benchmarks have shown significant per-
formance improvement in Nash compared to VM-regular.

5 Other than debug symbol, Nash contains a command line option to dump
intermediate data used during compilation. Contents of Figure 7, 9, 10, and
11 are obtained from the dumped output.

 0 0.5 1 1.5 2

sumfp

mbrot

sum

ray

sumloop

pnpoly

takl

ntakl

trav2

trav1

triangl

wc

array1

tak

fft

boyer

simplex

ack

fib

sboyer

bv2string

dderiv

scheme

quicksort

lattice

cpstak

maze

nboyer

browse

deriv

destruc

cat

divrec

puzzle

tail

perm9

nqueens

primes

gcbench

diviter

nucleic

fibfp

graphs

mazefun

matrix

earley

ctak

conform

sum1

peval

pi

gcold

string

paraffins

fibc

parsing

dynamic

Nash
Racket
Pycket

Total time normalized to Guile VM-regular

 0 0.5 1 1.5 2

geometric
mean

Figure 12. Relative total time of benchmarks and geometric
mean normalized to Guile VM-regular. Smaller is better.

DRAFT — Nash: a tracing JIT for Extension Language 9 2016/6/23

Benchmark sumfp and mbrot contain tight loop with Scheme
flonum, which is implemented with heap object in Guile.
When possible, Nash tries to unbox flonum values and keep
using the unboxed value in native code. Nash runs sumfp

47× faster, and mbrot 27× faster than VM-regular. The
results of sumfp and mbrot are about 6× and 3.3× faster
than Racket, respectively. However, both benchmarks still
run slower than Pycket.

Some of the benchmarks performed worse than Guile’s
VM-regular. Benchmark parsing and dynamic contain
program to parse a Scheme source code. These programs
include lots of branching conditions. The parsing and
dynamic performed approximately 1.9× and 4.5× slower
than VM-regular, respectively.

6. Related Work
Implementation of Nash was inspired from pioneers in trac-
ing JIT field. Nash does type checks in VM interpreter be-
fore running compiled native code, which was done in Trace-
Monkey (Gal et al. 2009) with similar design.

The mechanism in interpreter to record instructions and
detect hot loops are inspired from Pypy and RPython (Bolz
et al. 2009). The way how Nash mark NEXT and loop starting
bytecode definitions are influenced by the approach used in
interpreter written with RPython.

Use of A-normal form (Flanagan et al. 1993) was in-
spired from Pycket (Bauman et al. 2015). Though Pycket
expand the source code and generates JSON data, and parses
it to AST for execution. Both Nash and Pycket use trac-
ing JIT in its implementation. Both performed well with
benchmarks containing tight loop, such as sumfp, sum, and
sumloop. Pycket performed better than Nash. From Table 2,
Pycket performed well with benchmark containing extensive
use of call/cc, such as fibc and ctak. Nash implements
call/cc with C stack, to keep compatibility with C inter-
face of libguile, which did not led to performance improve-
ment. Both performed bad in benchmarks containing lots of
condition branches, such as paraffins and dynamic. Nash
performed bad in parsing benchmark also, but the perfor-
mance of parsing in Pycket was close to Racket.

Design of snapshot was inspired from LuaJIT (Pall 2009).
LuaJIT uses more sophisticated approach and compressed
snapshot data. LuaJIT used NaN-tagging, which enables ef-
ficient handling of unboxed floating point numbers. Guile
once had an attempt to use NaN-tagging (Wingo 2011),
though the attempt wasn’t merged to Guile source code, due
to supporting conservative garbage collector under 32 bit ar-
chitectures.

7. Limitations and Future Work
Nash is still an experimental implementation, still has a lot of
space for improvement. Some of the possibilities for future
works follows.

Support more bytecode instructions Nash still have byte-
code instructions which are not implemented at all, such
as prompt and abort used for delimited continuation, or
partially implemented, such as arithmetic operations. Arith-
metic operations for multi-precision numbers and complex
numbers are not yet implemented. When JIT compiler en-
countered unsupported bytecode, the abort the work and fall
backs to vm nash engine.

Detect more loops Nash detects loops with backward
jump, tail-calls, and consequent calls for non-tail-call re-
cursion (down-recursion6), though not with consequent re-
turns from non-tail-call recursions (up-recursion) yet. Nash
does not detect looping side traces. Side trace start from
frequently taken exit in native code. Side traces are usually
patched to existing trace when vm nash engine encoun-
tered beginning bytecode IP of existing trace. In looping
side trace, bytecode instructions loops inside the side trace
instead of patched back.

Optimize IR Nash does only a few IR level optimizations.
In prologue section of IR shown in Section 4.1.2, unneces-
sary load from stack exist, which could be omitted by dead-
code elimination. More optimizations could be done, such
as loop invariant code motion, escape analysis, and so on.
Also, Nash currently uses naive method to assign registers.
More sophisticated method such as Linear-Scan register al-
location (Poletto and Sarkar 1999) could be used.

Blacklist Benchmarks such as parsing and dynamic

were slower than Guile VM-regular. Programs containing
large number of branching conditions need some treatments
to perform well under tracing JIT. One approach is to limit
the JIT compilation when branching exceed certain thresh-
old. These thresholds mechanism are sometime called black-
listing of trace. Nash could take more sophisticated approach
to blacklist unwanted traces.

8. Conclusion
This paper has shown how Nash is designed. Nash reused
existing bytecode interpreter in Guile, turned it to a trace
recording interpreter with few small modifications. Nash co-
exist with existing VM, which is used for JIT compiler writ-
ten in Scheme. Existing bytecode compiled by Guile are
traced, recorded and compiled to native code. Performance
comparison between Nash, Guile’s existing VM, Racket and
Pycket were done. With keeping itself as an extension lan-
guage, Nash showed significant speed ups in programs with
tight loops compared to Guile’s existing VM, and close per-
formance with Scheme implementation with native compiler
in several of the benchmarks.

6 Consequent calls to procedure are called as down-recursion in Nash,
because Guile’s stack grows down

DRAFT — Nash: a tracing JIT for Extension Language 10 2016/6/23

Acknowledgments
Nash exist because of the hard works done for GNU Guile
by many open source developers.

References
H. Abelson, R. K. Dybvig, C. T. Haynes, G. J. Rozas, N. I.

Adams IV, D. P. Friedman, E. Kohlbecker, G. L. Steele Jr, D. H.
Bartley, R. Halstead, et al. Revised5 report on the algorithmic
language scheme. Higher-order and symbolic computation, 11
(1):7–105, 1998.

V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a transparent
dynamic optimization system. In ACM SIGPLAN Notices, vol-
ume 35, pages 1–12. ACM, 2000.

S. Bauman, C. F. Bolz, R. Hirschfeld, V. Kirilichev, T. Pape, J. G.
Siek, and S. Tobin-Hochstadt. Pycket: A tracing jit for a func-
tional language. In Proceedings of the 20th ACM SIGPLAN In-
ternational Conference on Functional Programming, pages 22–
34. ACM, 2015.

H.-J. Boehm and M. Weiser. Garbage collection in an uncooper-
ative environment. Software: Practice and Experience, 18(9):
807–820, 1988.

C. F. Bolz, A. Cuni, M. Fijalkowski, and A. Rigo. Tracing the
meta-level: Pypy’s tracing jit compiler. In Proceedings of the 4th
workshop on the Implementation, Compilation, Optimization of
Object-Oriented Languages and Programming Systems, pages
18–25. ACM, 2009.

R. K. Dybvig. The development of chez scheme. In ACM SIGPLAN
Notices, volume 41, pages 1–12. ACM, 2006.

M. Feeley. Gambit-c version 3.0. An implementation of Scheme
available via http://www. iro. umontreal. ca/˜ gambit, 6, 1998.

C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The essence
of compiling with continuations. In ACM Sigplan Notices,
volume 28, pages 237–247. ACM, 1993.

M. Flatt et al. The racket reference, 2013.

A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin, M. R.
Haghighat, B. Kaplan, G. Hoare, B. Zbarsky, J. Orendorff, et al.
Trace-based just-in-time type specialization for dynamic lan-
guages. ACM Sigplan Notices, 44(6):465–478, 2009.

M. Galassi, J. Blandy, G. Houston, T. Pierce, N. Jerram, and
M. Grabmller. Guile reference manual, 2002.

L. T. Hansen. The impact of programming style on the performance
of Scheme programs. PhD thesis, Citeseer, 1992.

R. Ierusalimschy, L. H. De Figueiredo, and W. Celes Filho. Lua-
an extensible extension language. Softw., Pract. Exper., 26(6):
635–652, 1996.

M. Pall. Luajit 2.0 intellectual property disclosure and
research oppotunities. http://lua-users.org/lists/

lua-l/2009-11/msg00089.html, 2009. [Online, accessed
June 14, 2016].

M. Pall. Luajit project. http://www.luajit.org, 2016. [Online,
accessed June 14, 2016].

M. Poletto and V. Sarkar. Linear scan register allocation.
ACM Transactions on Programming Languages and Systems
(TOPLAS), 21(5):895–913, 1999.

M. Serrano and P. Weis. Bigloo: a portable and optimizing compiler
for strict functional languages. In Static Analysis, pages 366–
381. Springer, 1995.

M. Sperber, R. K. Dybvig, and M. Flatt. Revised [6] report on the
algorithmic language Scheme, volume 19. Cambridge Univer-
sity Press, 2010.

R. Stallman, R. Pesch, S. Shebs, et al. Debugging with gdb. Free
Software Foundation, 51:02110–1301, 2002.

A. Wingo. value representation in javascript implementa-
tions. https://wingolog.org/archives/2011/05/18/

value-representation-in-javascript-implementations,
2011. [Online, accessed June 14, 2016].

DRAFT — Nash: a tracing JIT for Extension Language 11 2016/6/23

http://lua-users.org/lists/lua-l/2009-11/msg00089.html
http://lua-users.org/lists/lua-l/2009-11/msg00089.html
http://www.luajit.org
https://wingolog.org/archives/2011/05/18/value-representation-in-javascript-implementations
https://wingolog.org/archives/2011/05/18/value-representation-in-javascript-implementations

	Introduction
	Background
	Tracing JIT
	GNU Guile
	SCM Data Type
	Bytecode Compiler
	VM Engine

	Nash Interpreter
	Nash Overview
	VM Engine For Nash
	Finding Loops
	Recording Instructions

	Nash Compiler
	Trace To IR
	Snapshot
	Prologue section
	Loop body section

	IR To Native Code

	Evaluation
	Settings
	Results

	Related Work
	Limitations and Future Work
	Conclusion

